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Abstract. In this paper, we consider the usual Pell and Pell-Lucas sequences. The
Pell sequence (un)∞n=0 is given by the recurrence un = 2un−1 + un−2 with initial
condition u0 = 0, u1 = 1 and its associated Pell-Lucas sequences (vn)∞n=0 is given
by the recurrence vn = 2vn−1 + vn−2 with initial condition v0 = 2, v1 = 2.

Let n, d, k, y,m be positive integers with m ≥ 2, y ≥ 2 and gcd(n, d) = 1. We
prove that the only solutions of the Diophantine equation unun+d · · ·un+(k−1)d =

ym are given by u7 = 132 and u1u7 = 132 and the equation vnvn+d · · · vn+(k−1)d =
ym has no solution. In fact we prove a more general result.

1. Introduction

There are a lot of integer sequences which are used in almost every field of modern
sciences. For instance, the Fibonacci sequence is one of the most famous and curious
numerical sequences in mathematics and has been widely studied in the literature.
Also, there is the Pell sequence, which is as important as the Fibonacci sequence.
The Pell sequence u := (un)∞n=0 are defined by the recurrence un = 2un−1 + un−2 for
all n ≥ 2 with u0 = 0 and u1 = 1 as initial conditions, and the Pell-Lucas sequence
v := (vn)∞n=0 by the same recurrence relation but with initial conditions v0 = 2
and v1 = 2. Further details about Pell and Pell-Lucas sequences can be found, for
instance, in [2, 6, 7, 8].

Explicit Binet formulas for u and v are well known. Namely, for all n ≥ 0, we have
that

(1) un =
αn − βn

α− β
and vn = αn + βn,

where α := 1 +
√

2 and β := 1 −
√

2 are the roots of the characteristic equation
x2 − 2x − 1 = 0. Below we present the first few elements of the Pell and Pell-Lucas
sequences:

u = {0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, . . .}.
v = {2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, . . .}.
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There are several papers in the literature dealing with Diophantine equations in-
volving powers in products of consecutive integers, or in products of consecutive terms
in arithmetic progressions. For example, Erdős and Selfridge [5] showed that a prod-
uct of at least two consecutive integers is never a perfect power. For a survey, see
[21]. On the other hand, Luca and Shorey in [9] addressed a similar question when
the product of consecutive terms in arithmetic progressions is replaced by the product
of terms in Lucas sequences whose indices form an arithmetic progression. In this
paper, we consider Pell and Pell-Lucas sequences and solve it explicitly.

Let n, d, k, b, y and m be positive integers with m ≥ 2, gcd(n, d) = 1 and y > 1.
For an integer t, we denote by P (t) the largest prime divisor of t with the convention
P (±1) = 1. We put

f(k, d) =

{
2k if d > 1

k if d = 1.

In this paper we consider the Diophantine equations

(2) unun+d · · ·un+(k−1)d = bym

and

(3) vnvn+d · · · vn+(k−1)d = bym

in positive integer unknowns (n, d, k, b, y,m) with P (b) ≤ f(k, d). The special case
when k = b = 1 in (2) is due to Pethő [12] (see also Cohn [4]). Let us state their
result since we shall use it later.

Theorem A. [Pethő [12], Cohn, [4]] The Diophantine equation un = ym in positive
integers n, y,m with m ≥ 2 has only the solutions (n, y,m) = (1, 1,m) and (7, 13, 2).

For a given b, it follows from results proved independently by Pethő [11] and Shorey
and Stewart [19], that either one of equations (2) and (3) with k = 1 or 2 implies that
n, d, y and m are bounded by an effectively computable number depending only on
the sequence and b. In fact, the preceding assertion with b composed only of primes
from a given finite set follows from the result of Pethő.

For k ≥ 3, Luca and Shorey [9] proved that if P (b) ≤ f(k, d), then k is bounded
by an effectively computable number depending only on the sequence. It was also
proved in [9] that if P ≥ 1 is an integer such that P (b) ≤ P , then equations (2) and
(3) implies that n, d, k, b, y and m are bounded by an effectively computable number
depending only on the sequence and P . Furthermore, Luca and Shorey in the same
work showed that equation (2) with un = Fn and b = 1 has no solution except for
F1F2 = 1, F1F6 = 23 and F1F12 = 122 where Fn is the nth Fibonacci number. They
proved it as an extension of a breakthrough result of Bugeaud, Mignotte and Siksek
[3] which states that (2) with un = Fn, k = 1 and b = 1 implies F1 = 1, F2 = 1, F6 = 23

and F12 = 122.
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In this paper, we explicitly solve find all the solutions of (2) and (3) for the se-
quences u and v. We prove the following results.

Theorem 1. Let n, d, k, b, y,m be positive integers with gcd(n, d) = 1, y > 1 and
m > 1. Then the equation

unun+d · · ·un+(k−1)d = ym

implies

u7 = 132 and u1u7 = 132.

The equation

vnvn+d · · · vn+(k−1)d = ym

has no solution.

In fact we prove stronger results.

Theorem 2. The only solutions of the Diophantine equation (2) are given by

(n, d, k) ∈ {(7, d, 1), (1, 6, 2), (2, 5, 2), (4, 3, 2), (1, 3, 3)}.

In fact

u7 = 132, u1u7 = 132, u2u7 = 2 · 132, u4u7 = 22 · 3 · 132, u1u4u7 = 22 · 3 · 132.

Theorem 3. The only solutions of the Diophantine equation (3) are given by k =
1, n = 1, v1 = 2 · 1m for any m ≥ 2 and possibly k = 2, n = 1, d > 1, d ≡ 1 (mod 4)
and v1+d = 2 · 3bym for some b ≥ 1 and m > 2. In particular, for k ≥ 3, there is no
solution.

We believe that k = 2, n = 1, d > 1, d ≡ 1 (mod 4) and v1+d = 2 · 3bym is not
possible. It follows if the equation which we believe to be true. We state it as a
conjecture.

Conjecture 4. The equation 2x2 + 1 = 3bym has no solution in positive integers
x, b, y,m with y > 1,m > 2 and b,m even.

We observe that Theorem 1 follows easily from Theorems 2 and 3. We prove
Theorem 2 in Section 4 and Theorem 3 in Section 5. For the proof of Theorem 3, we
use the following result which is of independent interest.

Theorem 5. Let n ≥ 1, d > 1 and k ≥ 6 with gcd(n, d) = 1. Then there is at least
one i, 0 ≤ i < k with P (n+ id) > k and n+ id odd.

We prove Theorem 5 in Section 3. The preliminaries and lemmas for the proof of
Theorems 2-5 are given in Section 2.
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2. Notations and Preliminaries

For a real number x > 1, let π(x) denote the number of primes p ≤ x. For a
positive integer `, let P (`) and ω(`) denote the greatest prime divisor and number
of distinct prime divisors of ` and we put P (1) = 1 and ω(1) = 0. We denote by
p1 = 2, p2 = 3, p3 = 5, . . . the sequence of prime numbers. We always write p for a
prime.

For a non-zero integer ` and a prime number p we write ordp(`) for the highest
power of p dividing `. For two positive integers s and t we write either gcd(s, t) or
(s, t) for the greatest common divisor of s and t.

First we list some of the well-known properties for the sequences u and v which we
will be using frequently.

Lemma 2.1. For the sequences u and v, we have

(a) u2n = unvn.
(b) 8u2n − v2n = 4(−1)n+1.
(c) v2n = v2n − 2(−1)n.
(d) gcd(um, un) = u(m,n).
(e) If m | n and p is a prime dividing gcd(um, un/um), then p divides n/m.
(f) For n ≥ 3, there exists a prime p|un such that p - um for each positive integer

m < n. Such a prime is called a primitive prime divisor of un and is always
congruent to ±1 modulo n.

(g) For n ≥ 2, then exists a prime p|vn such that p - vm for each positive integer
m < n. Such a prime is called a primitive prime divisor of vn and is always
congruent to ±1 modulo 2n.

As a consequence we have:

Corollary 2.2. Let q be a odd prime and r > 0 be any integer. Let p be a prime.

(i) If p|uqr , then p ≥ 2q − 1.
(ii) If p|vqr and p 6= 2, then p ≥ 2q − 1.

Proof. By Lemma 2.1 (d), gcd(uqr , un) = u1 = 1 if q - n and gcd(uqr , uqs) = uqs for
every 1 ≤ s < r. Hence p|uqr implies either p is a primitive prime divisor of uqr or a
primitive prime divisor of uqs for some 1 ≤ s < r. Hence p ≡ ±1 modulo qu for some
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1 ≤ u ≤ r implying p ≡ ±1 modulo 2qu since p±1 is even. Hence p ≥ 2qu−1 ≥ 2q−1.
This proves the assertion (i).

For any r ≥ 1 and t ≥ 1, observe that

gcd(vqr , vt)| gcd(u2qr , u2t) = u2 gcd(qr,t) = u2 or u2qs

according as q - t or q|t, s = min(r, ordq(t)).

Let p|vqr , p 6= 2. If p is a primitive prime divisor of vqs for any 1 ≤ s ≤ r, then
by Lemma 2.1 (g), p ≥ 2qs − 1 ≥ 2q − 1. Hence assume that p is not a primitive
prime divisor of vqs for any 1 ≤ s ≤ r. Then p|vt for some 1 < t < qr. Since p 6= 2,
we have p|u2qs where 1 ≤ s =ordq(t) < r. Let t be the one with minimal s. Observe
that gcd(vqr , uqs) = 1 since gcd(vqr , uqr) = 1 and uqs|uqr . Thus p|u2qs

uqs
= vqs . Since

p is not a primitive divisor of vqs , p|vt for some 1 < t < qs implying p|u2qs1 where
1 ≤ s1 =ordq(t) < s contradicting the minimality of s with p|u2qs . Hence assertion
(ii) follows. �

In the next lemma, we derive some algebraic properties for the sequences u and v.

Lemma 2.3. The following properties for u and v hold:

(a) For all n ∈ N, we have that ord2(un) =ord2(n) and ord2(vn) = 1.
(b) 3 | vn if and only if n ≡ 2 (mod 4).
(c) 5 - vn for any n.
(d) For (n, d) = 1, we have gcd(vn, vn+d) = gcd(vn, vn+2d) = 2 and gcd(vn, vn+3d)|14.
(e) Let m | n and n

m
is odd. If a prime p|gcd(vm,

vn
vm

), then p | n
m
.

Proof. (a) From Lemma 2.1 (b), we get 4|v2n but 8 - v2n implying ord2(vn) = 1. For
un’s, we note from the recurrence for u that un ≡ un−2 (mod 2) for all n ≥ 2. Using
this and u1 = 1, we obtain un is odd when n is odd. Let n be even and write n = 2et
with e and t are positive integers and t is odd. Repeatedly applying Lemma 2.1 (a),
we have

(4) un = ut

(
e−1∏
i=0

v2it

)
.

Since t is odd, ut is odd. This together with the fact that ord2(v2it) = 1 for each
0 ≤ i < e implies ord2(un) = e =ord2(n), which proves (a).

The assertions (b) and (c) follow easily by considering the sequence v modulo 3
and 5, respectively. For the proof of (d), we observe from Lemma 2.1 (a) and (d) that

gr := gcd(vn, vn+rd)| gcd(u2n, u2(n+rd)) = u2·gcd(n,n+rd) = u2·gcd(n,r)
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for any r > 0. Also by (a), 2||gr. Hence for r = 1, we get g1 = 2. For r = 2, g2|u4 = 12.
If 3|g2, then from (b), n ≡ 2 (mod 4) and n+ 2d ≡ 2 (mod 4) which is not possible.
Hence g2 = 2. The assertion (d) now follows from (c) and the fact that g3|u6 = 70.

Finally we prove (e). We observe that αm ≡ −βm (mod p) since p | vm. If n = m`
with ` odd, we have

vn
vm

=
(αm)` + (βm)`

αm + βm
= (αm)`−1 − (αm)`−2(βm) + · · ·+ (βm)`−1

≡ `αm(`−1) ≡ `βm(`−1) (mod p).

Consequently p2 | `2(αβ)m(`−1) implying p | ` as desired. �

The following result follows from Lemma 2.3 (e).

Corollary 2.4. Suppose that m|n and n
m

is odd. If P ( n
m

) < p for any odd prime p
dividing vm, then gcd(vm,

vn
vm

) = 1.

Proof. Let m|n, n
m

is odd and d = gcd(vm, vn/vm). Suppose d > 1. Then there is a
prime p such that p|vm and p| vn

vm
. By Lemma 2.3 (e), we get p| n

m
since n

m
is odd. This

implies that p is an odd prime with p ≤ P ( n
m

). This contradicts the assumption of
the Corollary. Thus d = 1. �

The next two lemmas give all solutions of (3) and (2) when k = 1.

Lemma 2.5. Let n, y,m ∈ N with m ≥ 2. Then the equation vn = ym has no integer
solutions and the equation vn = 2ym has the only integer solution v1 = 2 · 1m.

Proof. By Lemma 2.3 (a), we have ord2(vn) = 2 implying that vn = ym has no integer
solutions. For solving the equation vn = 2ym, we use Lemma 2.1 (b). When n is odd
we obtain

2u2n − y2m = 1.

By [1, Theorem 1.1], we see that the only solution is given by un = 1, y = 1 implying
then n = 1 and v1 = 2 · 1m. When n is even, we have

2u2n = y2m − 1 = (ym − 1)(ym + 1).

Since gcd(ym + 1, ym − 1) = 2, we get either ym − 1 = 2x21, y
m + 1 = x22 or ym − 1 =

x22, y
m+1 = 2x21 where x1 is odd and x2 is even. Catalan’s conjecture, now Mihailescu’s

Theorem implies that ym + 1 = x22 or ym − 1 = x22 has no integer solutions when x2
is even. Hence the result. �

Lemma 2.6. The only solutions of the Diophantine equation

(5) un = 2α3βzm
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in positive integers n, z,m with m ≥ 2 and non-negative integers α, β are given by
n = 1, 2, 4, 7.

Proof. If α = β = 0, then by Theorem A, we find that the solutions of (5) are given
by n = 1 and n = 7. Hence, from now on we assume that α+ β > 0. By Lemma 2.1
(a) and (b), we get n is even. Let n = 2et, where e and t are positive integers with t
odd. Since ord2(un) =ord2(n), it follows that e = α and (5) can be rewritten as

(6) ut

(
e−1∏
i=0

v2it

)
= 2e3βzm.

Note that if i < j, then

gcd(v2it, v2jt) | gcd(u2i+1t, v2jt) | · · · | gcd(u2jt, v2jt) = 2.

Thus, gcd(v2it, v2jt) = 2 because v2it and v2jt are both even numbers. In addition,
since t is odd, we get gcd(ut, v2it) = 1 for all i. Hence it follows from (6) that ut = zm1
for some z1|z and there is some positive integer i0 in the interval [0, e− 1] for which
v2i0 t = 2 · 3βzm2 for some integer z2|z. Then t ∈ {1, 7} by Theorem A. If e = 1,
then n ∈ {2, 14} and n = 14 is not a solution for (5) and n = 2 is already listed.
Thus e > 1. Then for every 0 ≤ i ≤ e − 1, i 6= i0, we get v2it = 2 · z′m for some z′|z
implying 2it = 1 by Lemma 2.5. Thus t = 1 and e − 2 ≤ 0 or n ∈ {1, 2, 4}. Hence
the assertion. �

We also need the following lemma which follows from [23, Theorem 6.3].

Lemma 2.7. The solutions of Diophantine equations

(1) 3a + 5b = 2 · 7c; (2) 3a + 7c = 2 · 5c (3) 5b + 7c = 2 · 3a;
(4) 1 + 3a = 2 · 5b7c; (5) 1 + 5b = 2 · 3a7c; (6) 1 + 7c = 2 · 3a5b;
(7) 1 + 3a5b = 2 · 7c; (8) 1 + 3a7c = 2 · 5a; (9) 1 + 5b7c = 2 · 3a

in non negative integers a, b, c with max(3a, 5b, 7c) > 1 are given by

32 + 51 = 2 · 71; 31 + 71 = 2 · 51; 35 + 71 = 2 · 53; 1 + 32 = 2 · 5170;
1 + 51 = 2 · 3170; 1 + 53 = 2 · 3271; 1 + 72 = 2 · 3052; 1 + 5170 = 2 · 31.

Proof. We observe that the equations (1) − (9) are special cases of the the equation
x + y = z with P (xyz) ≤ 13 and gcd(x, y) = 1. In [23, Theorem 6.3], it was shown
that such equations x + y = z with x < y has exactly 545 solutions. Of them, 514
satisfy

ord2(xyz) ≤ 12, ord3(xyz) ≤ 7, ord5(xyz) ≤ 5,

ord7(xyz) ≤ 4, ord11(xyz) ≤ 3, ord13(xyz) ≤ 4
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and remaining 31 solutions were listed. We checked that none of the listed 31 solutions
give any solution for the equations (1) − (9). Further we check for solutions with
a ≤ 7, b ≤ 5 and c ≤ 4 and find that only solutions are those listed in the assertion
of the lemma. �

Lemma 2.8. Let x > 10 be an integer. Then the interval (2x/3, x] contains a prime.

Proof. It suffices to prove π(x)− π(2x/3) ≥ 1 holds for all x > 10. From the inequal-
ities

(7)
x

log x− 0.5
< π(x) <

x

log x− 1.5
, x > 67

(see [13]), it follows that it is enough to check the inequality

x

log x− 0.5
− (2x/3)

log(2x/3)− 1.5
≥ 1.

But the last inequality holds for all x ≥ 150. This implies π(x) − π(2x/3) ≥ 1
whenever x ≥ 150. For the values x ∈ [10, 149], we check using exact values that the
assertion of the Lemma is valid. �

We also need some results on the greatest prime factor of a product of consecutive
terms of an arithmetic progression. The following result is due to Sylvester [22] for
d = 1 and Shorey and Tijdeman [20] for d > 1.

Lemma 2.9. Let k ≥ 3, n ≥ 1, d ≥ 1 with gcd(n, d) = 1. Then

P (
k−1∏
i=0

(n+ id)) > k for

{
n > k if d = 1

n ≥ 1 if d > 1 unless (n, d, k) = (2, 7, 3).
(8)

We also need the following sharpenings which are contained in Laishram and Shorey
[15, Theorem 1] and [16, Theorem 1].

Lemma 2.10. Let k ≥ 4, n ≥ 1, d ≥ 1 with gcd(n, d) = 1. Then

P (
k−1∏
i=0

(n+ id)) > 2k for

{
n > max(k + 13, 279k

262
) if d = 1

n ≥ 1 if d > 2
(9)

unless k = 4, (n, d) ∈ {(1, 3), (1, 13), (3, 11)} and k = 10, (n, d) = (1, 3).

For d = 2, we have the following result which is contained in [17, Theorem 3].

Lemma 2.11. Let k ≥ 2 and n odd with n > 2k. Then

P (
k−1∏
i=0

(n+ 2i)) > 3.5k

unless (n, k) ∈ {(5, 2), (7, 2), (25, 2), (243, 2), (9, 4), (13, 5), (17, 6), (15, 7), (21, 8), (19, 9)}.
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We also need the following result which follows from Saradha, Shorey and Tijdeman
[18] for k ∈ {6, 7, 8} and Laishram and Shorey [14, Theorem 1] for k ≥ 9.

Lemma 2.12. Let k ≥ 6, n ≥ 1, d > 2 with d even and gcd(n, d) = 1. Then

ω(
k−1∏
i=0

(n+ id)) ≥ π(2k) unless (n, d, k) = (1, 4, 7).(10)

3. Proof of Theorem 5

For the proof of Theorem 5, we need the following result which is a refinement of
Laishram and Shorey [16, Theorem 1].

Lemma 3.1. Let n ≥ 1, d > 2 be even which is not a power of 2 and k ≥ 3 with
gcd(n, d) = 1. Then

P (
k−1∏
i=0

(n+ id)) > 2k + 1(11)

unless k = 3, (n, d) ∈ {(1, 124), (7, 118)}.

Proof. Let n ≥ 1, d > 2 be even is not a power of 2 and k ≥ 4 with gcd(n, d) = 1.
Clearly (11) holds when (n, d, k) = (1, 4, 7). Hence we take (n, d, k) 6= (1, 4, 7).

Assume that P (
∏k−1

i=0 (n+ id)) ≤ 2k + 1.

Let k = 3. Then P (n(n+d)(n+2d)) ≤ 7. Since d is even, n is odd and hence gcd(n+
id, n+ jd) = 1 for 0 ≤ i < j ≤ 2. If n > 1, we get {n, n+ d, n+ 2d} = {3a, 5b, 7c}. If
n = 1, then (n+d)(n+2d) = (1+d)(1+2d) = 3a5b7c. Using n+(n+2d) = 2(n+d), we
get one of equations (1)−(9) listed in Lemma 2.7. We obtain from the solutions listed
in Lemma 2.7 that d = 2, n ∈ {1, 3, 5} or (n, d) ∈ {(1, 4), (1, 24), (1, 124), (7, 118)}.
Since d > 2 is not a power of 2 and 3 - d, we have (n, d) ∈ {(1, 124), (7, 118)} which
is listed in assertion of the lemma.

Thus k ≥ 4. By (8), we have P (
∏k−1

i=0 (n+ id)) = 2k+ 1 implying 2k+ 1 is a prime.

Hence k ≥ 5. Further ω(
∏k−1

i=0 (n + id)) ≤ π(2k + 1)− 1 = π(2k) since n + id are all

odd for 0 ≤ i < k. This together with (10) implies ω(
∏k−1

i=0 (n + id)) = π(2k) when

k ≥ 6. Further for k ≥ 6, if p|d for some 3 ≤ p ≤ 2k + 1, then P (
∏k−1

i=0 (n + id)) ≥
pπ(2k)+2 > 2k + 1 since d is also even. Thus p|d with p ≥ 3 implies p ≥ 2k + 3 when
k ≥ 6. When k = 5, if p|d for some 3 ≤ p ≤ 11, then after deleting terms divisible by
primes 3 ≤ p ≤ 11, we are left with two terms n + i0d, n + i1d, 0 ≤ i0 < i1 such that
(n + i0d)(n + i1d)|3 which is not possible since d > 2 is even. Hence for k ≥ 5, we
have p|d with p ≥ 3 implies p ≥ 2k + 3. In particular, d ≥ 2(2k + 3) since d is even.
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Let k ∈ {5, 6}. After deleting terms divisible by primes 7 ≤ q ≤ 2k+ 1, we are left
with three distinct terms n+ i0d, n+ i3d, n+ i5d such that p|(n+ i0d)(n+ i3d)(n+ i5d)
imply p ∈ {3, 5} and 3 divides to a maximal power in n + i3d and 5 divides to a
maximal power in n + i5d. Hence (n + i0d)|15. If i0 > 0, then n + d ≤ n + i0d ≤ 15
contradicting d ≥ 2(2k + 3). Thus i0 = 0 and n = n + i0d ∈ {1, 3, 5, 15}. Then we
have the following possibilities:

n = 1 : n+ i3d = 3a, n+ i5d = 3δ5b where i3 6= 3, i5 6= 5

n = 3 : n+ 3d = 3a, n+ i5d = 5b where i3 = 3, i5 6= 5

n = 5 : n+ i3d = 3a, n+ 5d = 3δ5b where i3 6= 3, i5 = 5

n = 15 : n+ 3d = 3a, n+ 5d = 5b where i3 = 3, i5 = 5

and a > 0, b > 0 are integers, 3δ ∈ {1, 3} and 3δ = 3 only if i5 − i3 = ±3. From the
equality

i5(n+ i3d)− i3(n+ i5d) = (i5 − i3)n,

we obtain an equation of the form 3r − 2γ5s = ±1 or 2γ3r − 5s = ±1 or 3r − 5s =
±2γ where 2γ ∈ {1, 2, 4}. Observe that for the above terms, the pairwise gcd g ∈
{1, 2, 3, 5, 6, 15} and further (n + i3d)|3rg

i5
and (n + i5d)|5sg

i3
. Special cases Catalan’s

Conjecture and the results of Nagell [10](see [16, Lemmas 2, 3]) along with [16, Lemma
4] imply that the only solutions are given by

3− 5 = −2, 32 − 5 = 4, 33 − 52 = 2, 32 − 2 · 5 = −1, 2 · 3− 5 = 1.

Bringing back to the original equation and from d ≥ 2(2k + 3), we find that no such
n and d exists.

Hence k ≥ 7 and since 2k + 1 is a prime, we have k ≥ 8. Let k ∈ {8, 9, 11}. After
deleting terms divisible by primes 11 ≤ p ≤ 2k + 1, we are left with 5 or 6 terms
terms divisible by 3, 5, 7 according as k ∈ {8, 9} or k = 11, respectively. If 7|n or
7 divides exactly one of n + id, we are left with a term n + i0d, i0 > 0 such that
(n + i0d)|15 if k ∈ {8, 9} or (n + i0d)|45 if k = 11. Since d ≥ 2(2k + 3), this is not
possible. This is the case when k = 8. When k = 11, if 7 divides exactly two terms
different from n, we are still left with a term n + i0d, i0 > 0 such that (n + i0d)|45
and this is not possible. Thus k = 9 and we can assume that 7|(n+d), 7|(n+ 8d) and
P ((n+ d)(n+ 8d)) ≤ 7. After removing the terms divisible by 3, 5, 7 to the maximal
power, we are left with with a term (n + i0d)|15. If i0 > 0, we a get a contradiction
and hence i0 = 0, n ∈ {1, 3, 5, 15}. Further we have either (n+ d)|105 or (n+ 8d)|105
which together with d ≥ 2 · 21 implies that (n + d)|105. This forces n = 1 since
gcd(d, 3 · 5) = 1 and we have (1 + d)|105. Since p|d implies p > 2k + 1 = 19, no such
d exists. Hence the assertion (11) is valid.

Thus k ≥ 12 implying k ≥ 14 since 2k + 1 is a prime. We follow the proof as in
[14, Section 3] by taking R = π(2k)− πd(k) where πd(k) is the number of primes ≤ k
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which are coprime to d. We have πd(k) = π(k)− 1 since d is even and p|d with p ≥ 3
implies p > 2k + 1. We obtain

dk−π(2k)−1 ≤ (k − 2) · · · (k − π(2k))2−ord2(k−2)!(12)

and

d ≤ exp

[
2 log(k−2)

log 2k
(1 + 1.2762

log 2k
)− (1− 3

k
) log 2

1− 2
log 2k

(1 + 1.2762
log 2k

)− 1
k

]
.(13)

We observe that the right hand side of (13) is a decreasing function of k. We find
that d < 50 at k = 40 and hence d < 50 for all k ≥ 40. Since d > 2(k + 1), we
get a contradiction for k ≥ 40. Hence k < 40. We get from (12) that d ≤ 22 for
14 ≤ k < 40, k 6= 16. This is a contradiction since d ≥ 2(2k + 3) and 2k + 1 is a
prime. �

Proof of Theorem 5: Let d be even. Then n is odd and each of n, n+ d, . . . , n+
(k− 1)d is odd. By Lemma 2.9, the assertion is valid. Thus we now assume d is odd.
Then the odd terms of among {n, n+ d, · · · , n+ (k − 1)d} are given by

n, n+ 2d, . . . , n+ 2[
k − 1

2
]d if n is odd

n+ d, n+ 3d, . . . , n+ d+ 2[
k − 2

2
]d if n is even

and hence there are at least 1 + [k−2
2

] = [k
2
] consecutive odd terms. Since k ≥ 6,

[k
2
] ≥ 3. By Lemma 3.1, the greatest prime factor of these consecutive odd terms is

at least 2[k
2
] + 3 ≥ 2(k−1

2
) + 3 > k except possibly when k ∈ {6, 7} and (n, 2d) ∈

{(1, 124), (7, 118)} if n is odd and (n+ d, 2d) ∈ {(1, 124), (7, 118)} if n is even. Since
d is odd and the assertion for Theorem 5 is valid when k = 7, (n, 2d) = (7, 118), all
this possibilities are excluded . This completes the proof of Theorem 5. �

4. Proof of Theorem 2

We need the following main lemma for the proof of Theorem 2.

Lemma 4.1. Suppose there is an i, 0 ≤ i < k with Q := P (n + id) > 1+f(k,d)
2

, Q 6= 7
and Q - (n + jd) for 0 ≤ j < k, j 6= i. Then the equation (2) has no solution in
positive integers (n, d, k, b, y,m) with P (b) ≤ f(k, d).

Proof. Suppose the conditions of Lemma 4.1 are satisfied. Let 0 ≤ i < k be such that

Q := P (n+ id) > 1+f(k,d)
2

. Then 2Q− 1 > f(k, d). Further write n+ id = Q1t where
Q1 = Qν , ν =ordQ(n+ id) and gcd(Q, t) = 1. Then P (t) < Q. From (2), we get

uQ1 ·
un+id
uQν

∏
j 6=i

un+jd = bym.(14)
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By Corollary 2.2 (i), we have p ≥ 2Q− 1 for every prime p|uQ1 .

We now argue exactly as in [9]. If p is a prime such that p | gcd(uQ1 , un+id/uQ1),
then it is well known that p | t and hence p ≤ P (t) < Q. This contradicts p ≥ 2Q− 1
since p | uQ1 . Hence gcd(uQ1 , un+id/uQ1) = 1.

We now look at gcd(uQ1 , un+jd) for j 6= i. Since P (n+ jd) < Q for j 6= i, we have
gcd(Q1, n+ jd) = 1 for j 6= i and hence

gcd(uQ1 , un+jd) = u(Q1,n+jd) = 1.

Since p ≥ 2Q− 1 > f(k, d) for every p|uQ1 and P (b) ≤ f(k, d), it follows from (14)
that uQ1 is a perfect m−th power. By Theorem A and Q > 1, we get Q1 = Q =
7,m = 2 and uQ1 = 132. Since Q 6= 7, this is a contradiction. Hence the assertion. �

Proof of Theorem 2: By Lemma 2.6 we may assume that k ≥ 2. Let k = 2.
Then equation (2) becomes

unun+d = by2 with P (b) ≤ 3.

Since gcd(un, un+d) = 1, we obtain un+d = 2α3βy21 for some integer y1 ≥ 1 and
non-negative integers α, β and further β = 0 when d = 1. By Lemma 2.6, we get
n+ d ∈ {1, 2, 4, 7}. For these possibilities of n and d, we check that only solutions of
unun+d = by2 with P (b) ≤ 3 are given by (n, d) ∈ {(1, 6), (2, 5), (4, 3)}.

Let k = 3. We need to solve

(15) unun+dun+2d = by2 with P (b) ≤ 5.

Observe that gcd(un+id, un+(i+1)d) = 1 for i = 0, 1 and further

gcd(un, un+2d) = ugcd(n,n+2d) | u2 = 2.

If P (b) < 5, then unun+d = b1y
2
1 and un+dun+2d = b2y

2
2 for some integers b1, b2, y1, y2

with P (b1b2) ≤ 3. By case k = 2, we get (n, d) ∈ {(1, 6), (2, 5), (4, 3)} and also
(n + d, d) ∈ {(1, 6), (2, 5), (4, 3)}. This is not possible. Hence P (b) = 5. Fur-
ther 5 divides at most one of un, un+d or un+2d. Therefore either unun+d = b1y

2
1

or un+dun+2d = b2y
2
2 or unun+2d = b3y

2
3 with P (b1b2b3) ≤ 3. Then the case k = 2

gives either (n, d) ∈ {(1, 6), (2, 5), (4, 3)} or (n + d, d) ∈ {(1, 6), (2, 5), (4, 3)} or
(n, 2d) ∈ {(1, 6), (2, 5), (4, 3)}. These possibilities gives the only solution n = 1, d = 3
of (15) or u1u4u7 = 23 · 3 · 132.

Thus k ≥ 4. Suppose d > 1 or d = 1, n > k. We observe that a prime > k divide at
most term n+ id with i ∈ [0, k). Hence by Lemmas 4.1 and 2.9, we have k ∈ {4, 5, 6}.
Further P (

∏k−1
i=0 (n+id)) = 7 and 5 -

∏3
i=0(n+id) if k = 4. For d = 1, k < n ≤ k+13 or

d = 2, n ≤ 2k or (n, d, k) ∈ {(1, 3, 4), (1, 13, 4), (3, 11, 4), (9, 2, 4), (13, 2, 5), (17, 2, 6)}.
we check that this is not possible except when (n, d, k) = (6, 1, 4). For (n, d, k)
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different from these, we obtain from Lemmas 2.10 and 2.11 that P (
∏k−1

i=0 (n+ id)) >
2k > 7. When (n, d, k) = (6, 1, 4), we check that (2) has no solution with m ≥ 2.

Thus we may now assume d = 1 and n ≤ k. Recall that k ≥ 4. For n + k ≤ 11,
we check that conditions of Lemma 4.1 are satisfied except when n + k = 11. For
n + k = 11, we check that equation (2) has no solution with m ≥ 2. Therefore we
now assume that n+ k ≥ 12. By Lemma 2.8, the interval [2(n+ k − 1)/3, n+ k − 1]
contains a prime. Since n ≤ k, we have 2(n+ k − 1)/3 ≥ n and consequently

Q = P (n(n+1) · · · (n+k−1)) ≥ max{primes in [
2(n+ k − 1)

3
, n+k−1]} ≥ 2(n+ k − 1)

3
.

Since 2Q > n + k − 1, we deduce that there exists a unique integer i in the interval

[0, k − 1] such that n + i = Q. Further Q ≥ 2(n+k−1)
3

> k+1
2

. Hence by Lemma 4.1,

we can assume that Q = 7. Then 7 = Q ≥ 2(n+ k− 1)/3 ≥ 22
3
> 7 since n+ k ≥ 12.

This is a contradiction. Thus Theorem 2 is proved. �

5. Proof of Theorem 3

We need the following main lemma for the proof of Theorem 3.

Lemma 5.1. Suppose there is an i, 0 ≤ i < k with n+id odd, Q := P (n+id) > 1+f(k,d)
2

and Q - (n+jd) for 0 ≤ j < k, j 6= i. Then the equation (3) has no solution in positive
integers (n, d, k, b, y,m) with P (b) ≤ f(k, d).

Proof. Suppose the conditions of Lemma 5.1 are satisfied. Let n + id be odd and

Q := P (n+ id) > 1+f(k,d)
2

. Then 2Q− 1 > f(k, d). Further write n+ id = Q1t where
Q1 = Qν , ν =ordQ(n+ id) and gcd(Q, t) = 1. Then P (t) < Q. From (3), we get

vQ1 ·
vn+id
vQν

∏
j 6=i

vn+jd = bym.(16)

Let p|vQ1 and p 6= 2. By Corollary 2.2 (ii), we have p ≥ 2Q−1. Since 2Q−1 ≥ Q >
p(t), we obtain from Corollary 2.4 that gcd(vQ1 ,

vn+id
vQ1

) = 1. Also for 0 ≤ j < k, j 6= i,

gcd(vQ1 , vn+jd) | gcd(u2Q1 , u2(n+jd)) = ugcd(2Q1,2(n+jd)) | u2 = 2

since Q - (n + jd). Hence gcd(vQ1 , vn+jd) = 2. Now (16) together with P (b) ≤
f(k, d) < 2Q − 1 ≤ p for every odd prime divisor of vQ1 implies vQ1 = 2ym1 for
some positive integer y1. By Lemma 2.5, we get Q1 = 1 which is not possible since
Q1 ≥ Q > 1. Hence the assertion. �

Proof of Theorem 3: The case k = 1 follows by Lemma 2.5. Hence we consider
k ≥ 2. Let k = 2. Then we have vnvn+d = bym with P (b) ≤ 3. By Lemma 2.3 (d),
we get either vn = 2ym1 , vn+d = b′ym2 or vn = b′ym1 , vn+d = 2ym2 with P (b′) ≤ 3. By
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Lemma 2.5, we get vn = v1 = 2 in the first case and vn+d = v1 = 2 in the latter case.
The latter case is not possible and we have n = 1, v1v1+d = 2v1+d = b′ym for some b′

with P (b′) ≤ 3. If 3 - b′, we get from Lemma 2.3 (a) that v1+d = 2ym which is again
not possible by Lemma 2.5. Thus 3|b′ and we have v1+d = 2 · 3rym for some r > 0.
By Lemma 2.3 (b), we get 1 + d ≡ 2 modulo 4 or d ≡ 1 modulo 4. This is the case
k = 2 of Theorem 3.

Let k = 3. We need to solve vnvn+dvn+2d = bym with P (b) ≤ 5. By Lemma 2.3 (c),
we obtain P (b) ≤ 3. By Lemma 2.3 (d), we get vnvn+d = b1y

m
1 and vn+dvn+2d = b2y

m
2

for some b1, b2 with P (b1b2) ≤ 3. By the case k = 2, we get n+ d = 1 from the latter
equation which is not possible.

Let k = 4 and we consider the equation vnvn+dvn+2dvn+3d = bym with P (b) ≤ 7.
By Lemma 2.3 (d), we observe that either 7|vn, 7|vn+3d or 7 divides at most one of
vn, vn+d, vn+2d, vn+3d. Again by Lemma 2.3 (b) and (c), there is at most one vn+id, 0 ≤
i < 4 which is divisible by 3 since gcd(n, d) = 1 and also none of them is divisible by
5. Therefore at least one i ∈ {1, 2, 3} such that gcd(vn+id, 3 · 5 · 7) = 1. Hence from
the equation (3), by using Lemma 2.3 (d), we get vn+id = 2ym1 for some y1. This is
not possible by Lemma 2.5.

The case k = 5 follows from case k = 4 since P (b) ≤ 10 is same as P (b) ≤ 7. Thus
k ≥ 6. Let d > 1. Observe that a prime p > k divides at most one of n + id with
0 ≤ i < k and 2p ≥ 2(k+ 1) > 1 + 2k. Hence the assertion of Theorem 3 follows from
Lemma 5.1 and Theorem 5.

Therefore d = 1. For n + k ≤ 11, we check that (3) has no solution. Hence we
suppose that n + k ≥ 12. Let n ≤ 2k. Then 2

3
(n + k − 1) ≥ n if n < 2k − 1 and⌈

2
3
(n + k − 1)

⌉
= n if n ∈ {2k − 1, 2k}. By Lemma 2.8 and n + k ≥ 12, the interval

(2
3
(n+k−1), n+k−1] contains a prime and let Q be the largest prime in the interval.

Then Q = n + i for some i, 0 ≤ i < k and n + i is odd. Further Q > 2
3
(n + k − 1)

implying 2Q > 4
3
(n+ k − 1) > k so that Q - (n+ j) for 0 ≤ j < k, j 6= i. Also

2Q− 1 ≥ 4

3
(n+ k − 1)− 1 ≥

{
4k
3
− 1 > k if n ≤ k

8k
3
− 1 > 2k if n > k

since k ≥ 6 implying 2Q−1 > f(k, d). By Lemma 5.1, assertion of Theorem 3 follows.

Thus n > 2k. Then the odd terms of among {n, n+ d, . . . , n+ (k − 1)d} are given
by

n, n+ 2, . . . , n+ 2[
k − 1

2
] if n is odd

n+ 1, n+ 3, . . . , n+ 1 + 2[
k − 2

2
] if n is even
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and hence there are at least 1 + [k−2
2

] = [k
2
] consecutive odd terms. Since k ≥ 6, [k

2
] ≥

3. Let S = {(5, 2), (7, 2), (25, 2), (243, 2), (9, 4), (13, 5), (17, 6), (15, 7), (21, 8), (19, 9)}.
For (n, [k−1

2
] + 1) ∈ S if n is odd and (n + 1, [k

2
]) ∈ S if n is even, we check that

conditions of Lemma 5.1 are valid and hence (3) has no solution in this case. Thus
we now suppose that (n, [k−1

2
]+1) /∈ S if n is odd and (n+1, [k

2
]) /∈ S if n is even. Then

by Lemma 2.11, the greatest prime factor of these consecutive odd terms is at least
3.5[k

2
] ≥ 3.5(k−1

2
) > k and hence there is an odd term n + i for which P (n + i) > k.

Since P (b) ≤ 2k, the assertion of Theorem 3 follows from Lemma 5.1. �
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