AN ESTIMATE FOR THE LENGTH OF AN ARITHMETIC PROGRESSION
THE PRODUCT OF WHOSE TERMS ISALMOST SQUARE

SHANTA LAISHRAM

ABSTRACT. Erdés conjectured that
(1) nn+d)---(n+(k—1)d) =y*

in positive integers:, k > 3,d > 1,y with gcd(n, d) = 1, implies thatk is bounded by an
absolute constant. Shorey and Tijdeman [16] showed thaml)es thatk is bounded by
an effectively computable number depending only.dd), the number of distinct prime
divisors ofd. In this paper, an explicit bound férin terms ofw(d) is presented.

1. INTRODUCTION

For an integer: > 1, we denote byP(z) andw(z) the greatest prime factor of and
the number of distinct prime divisors of, respectively. Further we pu?(1) = 1 and
w(l) = 0. Letn,d, k,b,y be positive integers such thais square freed > 1, k£ > 3,
P(b) < k and gcdn, d) = 1. We consider the equation
2) nin+d)---(n+ (k—1)d) = by* inn,d, k,b,y with P(b) < k.

For a survey of results on (2), see [16], [4], [14] and [15]uBtion (2) withd = 1 has been
solved completely in [3] withP(b) < k and in [11] with P(b) = k. Therefore we assume
from now onwards thai > 1. Marszalek [7] proved that (2) impligsis bounded by an
effectively computable numbég depending only or. In fact the above assertion holds
with &, depending only oo (d). This is due to Shorey and Tijdeman [16], who proved that
2w(d) > c@ wherec is an effectively computable absolute constant. Howevebtbund

ko is very large. Further (2) witbv(d) = 1 andk ¢ {3,5} has been solved completely in

[12] and [8]. Therefore we shall always assume that) > 2. In this paper, we give an
explicit bound fork in terms ofw(d) whenever (2) holds.

For2 < w(d) < 11, we definesg = ko(w(d)) as in the Table below.

w(d) | ko(deven | ko(dodd) | w(d)| ko(deven | ko(dodd)
2 500 800 7 12.643 x 10° | 1.376 x 10°
3 700 3400 8 [1.172 x 10° | 6.061 x 10°
4 2900 15300 9 [5.151 x 10° | 2.649 x 107
D 13100 69000 10 [2.247 x 107 | 1.149 x 10®
6 59000 3.096 x 10° || 11 | 9.73 x 107 | 4.95 x 10°
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Forw(d) > 12, we definesy = ko(w(d)) as

2.25w(d)4“@ if d is even
d)) =
Fo(w(d)) {11w(d)4“(d) if d is odd.

We prove

Theorem 1. Equation(2) implies that
(3) k < Ro-.

Theorem 1 is a direct consequence of the following two prijors.

Proposition 2. Letk > ko. Then(2) implies that

(4) d < 4c(k —1)%

(5) n<c(k—1)>

and hence

(6) n+ (k—1)d < 5c(k —1)3
where

% 1f dis odd
¢ =4 g ifordy(d) =1
1 if ordy(d) > 2.

Proposition 3. Letk > k. Then(2) implies that
(7) n+(k—1)d> 25136k3
where

0 = min{ordz(d), 3}.

2. NOTATION AND PRELIMINARIES

From (2), we have

(8) n+id = A; X7

for 0 <i < kwith P(4;) < kand(X;,[],-, p) = 1. Also we have

(9) n+id = a;x7

for 0 < i < k with a; squarefree. Since g¢a, d) = 1, we see that

(10) (Aiyd) = (a;,d) = (X;,d) = (z5,d) =1 for 0 <i < k.
Let

T={i|0<i<k X;=1}, T'={i |0<i<k, X;#1}.
Note thatX; > k fori: € T,. For0 < < k, let
(11) v(A;) = [{j € Th,A; = Ai}|.



ALMOST SQUARES IN ARITHMETIC PROGRESSION 3

We always suppose that there exist> i; > --- > i,(4,)—1 SUCh thatd;) = A; = --- =
Aium_),l. Similarly we define

R:{ai |0§Z<k’}

and
(12) via) =|{j|0<j<ka =a}|
Define
1if 3+d
13 = d =
(13) p = p(d) {3if3|d.

The letterp always denotes a prime number gndhei—th prime number. LeP; < P, <
-+- be odd prime divisors df. Letr := r(d) > 0 be the unique integer such that

(14) PPy P, < (4¢1)3(k — 1)3 but PPy Prpy > (dcy)3 (k — 1)5.
If » = 0, we understand that the produét- - - P, = 1.

Letd |dandd” = 4 be such that gad', d") = 1. We write

Lif ordy(d’) <1

du = d1d27 ng(d17d2) = {2 if ordg(dﬂ) > 9

and we always suppose that is odd if ordh(d’) = 1. We call such pairgd,,d;) as
partitions ofd” .

We observe that the number of partitionsdSfis 2(¢ )% where

p 1if N =1,2
0, = 0,(d) = i ordg(.d ) =1,
0 otherwise
and we writed for #,(d). In particular, by takingl’ = 1 andd" = d, the number of

partitions ofd is 2«(4)-,

Suppose thatl; = A;,7 > j. Then from (8) and (10), we have
(15) (i — j)d = Ai(X}? = X7) = Ai(X; = X;)(X; + X))
such that gc@il, X; — X;, X; + X;) = 1if d is odd and® if d is even. Hence for any
divisor d” of d, we have a partitiorid,, d,) of d' corresponding to4; = A; such that
dy | (X; — X;) andd, | (X; + X;) and it is the unique partition af " corresponding to

the pair(i, 7). Similarly, we have unique partition @f' corresponding to every pai, ;)
whenevew; = a;.

As in Shorey and Tijdeman [16], the proof depends on comgamupper bound and a
lower bound forn + (k — 1)d. The upper bound of + (k£ — 1)d given by Proposition 2
is a consequence of Lemmas 5, 8, 11, 12, 13 which are refinsménrgsults in [16], [1]
and [12]. It is proved by counting the number of distings and looking at the number of
partitions ofd. The proof of Proposition 3 is by counting the numbergfs greater than
k and calculating the maximal value df. Proposition 3 is a consequence of Lemmas 4,
6, 7, 9, 10, 14. The new features of the paper are the refineaighe upper bound of
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the multiplicities of A; with respect to partitions of, counting the number aofl;’s with
multiplicity greater thanl and the use of to improve the lower bounds of the maximum
of A;’s.

We shall follow the notation of this section throughout tfaer. We uséMATHEMAT-
ICA for the computations in the paper. This is a part of my Mastiesis [6].
3. LEMMAS

We begin with some estimates from Prime number theory.

Lemma 1l. We have

v 1.5
' < 14— 1
(1) 7(v) < Tog v < + logl/) forv >

v 0.5
X! > 1 >
(17) m(v) > Tog v ( + logy) forv > 159
(i) p; > tlogi fori > 2

(iv) > logp < 1.000081v for v >0

p<v

(v) ord,(k!) > H — 10%(()/;;1) forp < k.

Proof. The estimates (i), (ii) and (iii) are due to Rosser 8ntoenfeld [10]. For estimate
(iv), see [13, p.360] and [2, Prop 1.7]. For a proof of (v), Egd_emma 2(i)]. O

The next result is Stirling’s formula, see [9].
Lemma 2. For a positive integer, we have
1 _ L
2nv e "V et < vl <\ 2mv e Y eTer,

Lemma 3. Letmy(k) < w(k) — 1. Then

(k—1)log (k —1)
log (n+ (k—1)d) —log2

(16) T3] > & — (k).

Proof. We use [12, Lemma 3] with= k, —log [ [p~""**~"" > 0 andmy(k) < (k) —
pld

w(d) + 2. Letn > (k — 1)d. Thenlogn > log(n + (k — 1)d) — log2. This with [12,

(4.2)] and Lemma 1 (i) gives (16). For < (k — 1)d, we havelog(k — 1) + logd >

log(n + (k — 1)d) — log 2. This with [12, (4.1)] and Lemma 1 (i) gives (16). O

Lemmad4. Letd = d'd” with gcdd ,d") = 1. Leti, € T} be such thatd,, > d'. Then

(17) V(A,,) < 200
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Proof. For simplicity, we writef, = 6,(d"). Assume thav(4;,) > 2@ )0 Then
there exists a sequence of indicgs> i > -+ > i, _, such thatd,, = A; =

-=4A4A; , . Foreach paifi,i,),r = 1,2, .9¢(d")=01 e have a unique partition

Zgw(d )—61
corresponding to the pair. But there are at m$t )= partitions ofd”. Since(iy—i,)d =
Ai (X, — Xi)(Xy, + X;,) andA,, > d', we have

A (X, —X; X, + X, X, — X, X, + X,
]{Z - .T _ 20 10 T 10 Ly > 10 1y 20 Ly
Zht d’( dr )( da )_< dr )( da >’

where (dy, d;) is the partition ofd” corresponding to paifio,i,). This shows that we
cannot have the partitio(nz%l, 291) corresponding to any pair. Hence there can be at most

92¢(d)=01 _ 1 partitions ofd” with respect t@( )~% pairs of iy, i,),r = 1, - - 22(d )=61
Hence by Box Principle, there exist paits, i,), (i, i) With 1 < r < s < 2@ )=01 gand a
partition (d,, d,) of d" corresponding to these pairs. Thus

di [ (Xig = Xi,), d2 | (X, + Xi,) and dy | (X, — X3,), da | (X, + X,
so that Icnid,, do) | (X;, — X;,). SinceA;, = A;, = A;, and gcdd,, dy) < 2, we have

d (X, - X;,) (X, +X,,) - (Xi, + X, L 2k
Ai n lcm(dl,dQ) ng(dl,dz) 2 2

a contradiction. O

k> (i, —is) =k,

0

By takingd = 1 andd’ = d, the following result is immediate from Lemma 4 since
Corollary 1. For iy € T}, we have/(4;,) < 2#(@-0

Lemmab. Letk > 17. Supposer > c;(k — 1)3 or d > 4¢,(k — 1)%. Then for0 < iy < k,
we have

(18) v(az) < 29077,

Proof. Suppose that(a;,) > 2(9~%. We note that both; + x; andx; — x; are even when
d is even. Continuing as in the proof of (17) with = d, we see that there existsj with
i > jand
@io (T; + ;)
2
where?|(z; — xo) if d is even andyl] xl — xo) if dis odd. We haver; > z; + ¢ so that

k>

k> tai(z; + z;) > (a2 ) +4>n2 + ¢ and hence

I 1—1—01( —1)2if d > ey (k — 1)?
(c1)2(k—1)2 +1ifn > ¢y (k—1)3

which is not true fork > 17. O
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Lemma 6. Equation(2) implies that either
d Z 401(]{] — 1)2

or
r > l_w(d)} .
M EE
Proof. Ifr + 1 < [“9], thenw(d) > 3(r + 1) givingd > 4c;(k — 1)2 by (14). O

Lemma?7. LetS C {4;|0 <i < k} andini%Ah > U. Lett > 1. Assume that
€

(19) 51> Qi (H;l)m(agl)

where(@); > 1is an integer. Then
(20) maXAh > 2 Qtpl Pt—|—U

ApeS

Proof. For an odg|d, we have

()= (57)-C6)

where(-) is Legendre symbol, so that;, belongs to at mos;‘t;—1 distinct residue classes
modulop for each0 < h < k. If d is even, therd,, also belongs to a unique residue class
modulo?2’ for each0 < h < k. Hence by Chinese remainder theorefy, belongs to at

most (L) - P 1) distinct residue classes moduléP, - - - P; for eachj, 1 < j < t.
Assume that (20) does not hold. Then

maxA, — (U —1) < 2°Q,P,--- P,.

ApesS

Therefore

5 DY —_— —_—

|S|§2Qtp1 Po(h=1) (Rl

2P, - P, 2 2
contradicting (19). O
Corollary 2. LetS andU be as in Lemma 7. Léf| > s > (21 ... (£21), then

3
> Z t+96 ]

(21) zr}llié)éAh > 42 s+ U

Proof. Let(f—1) (&) - - (%) <s5—Qi (B - (B < (Pt 1)

where@, > 1andl < f < Z-lisan mteger To see this, write= Q( > ) (B +

Q (51 - (M) +Rwhere0 <Q < -lando < R < (&7 1)( L1l 1). If
R > 0,thentake); = Q, f — 1 =Q’; |fR_0andQ’ > 0, thentake)); = Q, f = Q’;
andifR = Q' =0, thentake);, = Q — 1 andf = . We arrange the elements 8fin

increasing order and let’ C S be the first(f — 1) (PlT) (%) + 1 elements and
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S" consist of the remaining set. Then we see from Lemma 7 wvitht — 1 and@Q, = f — 1
that

max A, > 2°(f —1)P\P,--- Py +U =U.
AhGS/

Now we apply Lemma 7 with/ = U in S” to derive

max Ay, > QP Py P, +2°(f —1)PPy--- Py +U.
IS

Hence to derive (21), it is enough to prove
QPP+ (f-1)P Py > Z{Qt(Pl—1)"'(Pt—1)+2f(P1—1)"'(Pt1—1)}-
By observing that
QP —1)---(P,—1)< QP ---P,—Q,P,--- P,
2f(Pr—=1)- - (Poy = 1) <2fP1--- Py = 2f P+ Py,
it suffices to show that

Q-1 - (f+1), 6f

>0
Gt P PP =

which is true sinc&); > 1 andl < f < &1, O
Lemma 8. Lets; denote the-th squarefree positive integer. Then
(22) s; > 1.6 for v > 78
and

l
(23) [[s:i=@6) 1 for 1> 286

i=1

Further lett; be i-th odd squarefree positive integer. Then
(24) t; > 241 for i > 51
and

l
(25) [t =@ for 1> 200.

i=1

Proof. The proof is similar to that of [12, (6.9)]. For (22)ca(R4), we check that; > 1.6i
for 78 < i < 286 andt; > 2.4i for 51 < ¢ < 132, respectively. Further we observe that
in a given set ofl44 consecutive integers, there are at massquarefree integers and at
most60 odd squarefree integers by deleting multiplestdd, 25,49, 121 and2, 9, 25, 49,
respectively. Then we continue as in the proof of [12, (6t8)jet (22) and (24). Further
we check that (23) holds at= 286 and (25) holds at = 200. Then we use (22) and (24)
to obtain (23) and (25), respectively. O

Lemma9. Let X > 1 be a positive integer. Then

X-1
(26) > 220 < (X)X log X
=1
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where
’1¢fX_1

(27) n:=nX)= 22
mlf1<X<248
\0.75 if X > 248.

Proof. We check that (26) holds far< X < 11500. Thus we may assumg > 11500.
Let s; be the largest squarefree integerX. Then by Lemma 8, we havie6j < s; < X
so thatj < [{s]. We have2“®) = 3= |u(e)|. Therefore

X-1 ‘ X-1 X 1 |,u(e)| [%] 1
Yr0-Y Sl 3 [ kel 3 By
i=1 i=1 eli 1<e<X 1<e<X i=1
We check that there a®90 squarefree integers uptd500. By using (22), we have
6990 6990 (6]
1 1 1
200 < X — =) =) -
) >
6990 6990
1 1 1 1 X
<X —— =Y 4+ —(1+log—
= {25 164 z+1.6< * Og16>}
3 41.1658 4 1
< -XlogX - —
=708 {3 g X '3 1.6}’
implying (26). O
Lemma 10. Letc > 0 be such that2«(¥—3 > 1, , > 2 and
p2°k
C,={4 |v(A)=p A > 32w()}
Then
(28) ¢:= Z“ e, < n(csz 3Y24(@ (99 =0 _ 1) (log (2#(D=3),
u>2
Proof. Leti; > iy--- > i, be such thatl;, = A;, = --- = A;,. These give rise té‘@

pairs of (¢, j),i > j with A; = A;. Therefore the total number of paifs j) with i > j
andA; = A;isc.

We know that there is a unique partition®€orresponding to each pdir, j),: > j such
that A, = A;. Hence by Box Principle, there exists at IegﬁﬁT_l pairs of (i, 7),i > j
with A; = A; and a partitior{d;, d-) of d corresponding to these pairs. For every such pair
(i,7), we write X; — X; = dyr;;, X; + X; = dss;;. Then gedX,; — X;, X; + X;) =2 and

24
24|(Xi2—X2) Letrw, ;J be such that, . |rij, s§j|sz~j, gcc(rgj, s;j) = landr;;s;; = p257“;]szj
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Then
rh g = p—26r..3.. — p_?w — p_26,l _‘7 < p—26£ < C2W(d)—3
VT4 Y24 d 24 A; 24 A
c2w(d)=3_1
since4; > 30”22% There are atmost »  2*) possible pairs ofr;, s;,), and hence an

=1
equal number of possible pairs 0f;, s;;). By Lemma 9, we estimate

c2w(d)=3_1

Z 2w(z) < n(CQw(d)—?))CQw(d)—?)(log C2w(d)—3)'
i=1
Thus if we have

W > n(CQw(d)—?))CQw(d)—?)(lOg C2w(d)—3)’

then there exist distinct paits, j) # (g,h),7 > j,g > hwith A; = A;, A, = A, such that
Tij = Tgh, Sij = Sgh g|V|ng

Xi - Xj = dlrij = Xg - Xh and XZ + XJ = d28ij = Xg + Xh-
ThusX,; = X,, X, = X, implying (4, j) = (g, h), a contradiction. Hence

w(d)—3 w(d)—3 w(d)—3
implying (28). O
The following Lemma is a refinement of [16, Lemma 2].

Lemmall. Leti > j,g > h,0 <1, j,g,h < k be such that

(29) a; = aj, a, = a
and
(30) Ty — T = dlrl, T+ T; = d27’2, Ty — Thp = d181, oy +x = d2$2

where(d;, dy) is a partition ofd; r; = s;(mod2), r = sy(mod2) whend is even; and
eitherr; = s;(mod2) anda; = a,(mod4) or 2|gcd(r, s;) whend is odd. Then we have
either

(31) a; = Qg,T1 = S1 0I' @; = Ag, T2 = S2

or (4) and(5) hold.

Proof. We follow the proof of [16, Lemma 2]. Suppose that (8&gs not hold. Then
(32) air} — agsi £ 0, a;rs — agsy # 0.

We proceed as in [16, Lemma 2] to conclude frat(a;z7 — a,z?) that

1
(33) didy = d | 1 {(air} — agsi)di + (a3 — ags3)ds + 2d(arirs — agsiss2) } -

Thus we have

(ai"’% - ags%)d% = a;(7; — 'rj>2 - ag(xg - xh)z #0
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and
(airg - ags%)dg = a;(2; + xj)Q — ag(zy + xh)Z # 0.
Since
n < arl < azir; < ax; <n+(k—1)d
and
n < apT; < agTyTy < agxz <n+ (k—1)d,
we have
(34) }aixixj — ag:pgxh’ < (k—1)d.
Also
a;x? — a2’ =i —gld < (k—1)d
(35) | : 992| |.9|_( )
;a5 — apay| = [j — hld < (k—1)d
and
e 2 1 2
(36) n < min Zai(a:i + ;)7 Zag(:vg +xp) .
Hence we derive from (34), (35) and (36) that
(37) [(airs — a,s5)ds| < 4(k — 1)d
1
(38) l(ar? — ag ] < 5k — 17

H H 2 2 2 2 2 2 2 2
and further considering the casggr; > a,s7, a;rs > az55}, {a;r > g8y, airy < ayss},
{a;ir} < ays?, a3 > ags3} and{a;r? < azs3, a;rs < a,s3}, we derive

(39) G(i,g) = |air; — a,s5|d; + |airy — ays5|ds < 4(k — 1)d.
Let d = d,d, be odd, gcdd,,d>) = 1. We have either, s; are even and hence

1,72, 51, S are even, on; = a,(mod4) andr; = s;(mod2) and hence; = sy(mod
2). Then reading moduld, andd, separately in (33), we have

(40) dy i(aﬂ“g —ays3) and dy i(aﬂ“% — ays?).
Therefore

(41) 4ddy = 4dyd; < |agry — a,s5|ds

and

(42) 4dd, = 4didy < |agr} — agst|d}.

From (39), we have
4d(dy + do) < G(i,g9) < 4(k — 1)d
so that

di +dy\?  (k—1)2
1;2><( )

d:d1d2§< 1
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This gives (4). Again from (42) and (38), we see tHatld, < i(k — 1)2d?, i.e,n <
+=(k — 1)?d,. From (41) and (37), we havkld, < 4(k — 1)d, i.e,d, < (k — 1). Thus (5)
is also valid.

Letd = d,ds be even with org(d) = 1 andd; odd. Then the;’s are odd and therefore
bothr; ands; is even. We see from (33) that

(43) Ad,

(a;r3 — ays3)d; and 4d,

(aﬂ“f — ags%)d%.
Sincer; = s1(mod2), ry = so(mod2), gcd dy, dy) = 1 andd; odd, we derive that
2d,

(airy — ay83), 4ds|(a;r3 — aysy).
Therefore

2ddy = 2d,d5 < |a;rs — a,s5|ds, 4ddy = 4didy < |a;r; — a,st|d;.
Now we argue as above to conclude (4) and (5).

Let d = did, be even with org(d) > 2, gcdd,,ds) = 2. Then we see from (33) that
(43) holds. Since gdd,, d2) = 2, 1 = s;(mod2) andry, = ss(mod2), we derive that

2dy |(a;rs — ags3), 2da|(air} — a,s3).
Therefore
2ddy = 2dydy < |airs — agsylds, 2dd, = 2didy < |a;r; — aysild;.
Now we argue as above to conclude (4) and (5). O
Lemma 12. For a primep < k, let

v = ord, (H al-) , vy =1+ ordy((k—1)!).

a;€ER
Letm > 1 by any real number. Then

—k
(44) H p’Yp*“/z; §k1.57r(m) <Zl H pp22§1> (ZQ H pp22_1>

2<p<m 2<p<m 2<p<m

where(z, z) = (23,23) if d is odd and(z;, 2,) = (4, 2) if d is even.

Proof. The proof is the refinement of inequality [12, (6.4t p" < k — 1 < p"** where
h is a positive integer. Then

E—1 E—1 E—1
45 ’—1:[—}+{ }+---+[ ]
Letp 1 d. Then we see thaj, is the number of terms ifn,.n +d,--- ,n + (k — 1)d}

divisible by p to an odd power. After removing a term to whiphappears to a maximal
power, the number of terms in the remaining set divisible by an odd power is at most

) () oo (] o)
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wheree = 1 or 0 according a% is even or odd, respectively. We note that the above

expression is always positive. Combining this with (45) @ﬁcré > ’f = 1+ 1l-k_q,
we have
, k—1 k—1 h—1+e¢
e U R == I s
k k h—1+4c¢€ h—1+c¢€
S_Q{E—i_'”_'_phpre_ 9 }_'_ 9
2k 1
= (1= ——)+15(h—1+¢€).
p2(1— ]%)( ph—l-t-s) ( )
i h~ k logk
Sincep” > 7 andh < oe . We get
2k 1.5logk  2p*>~¢ 2k 1.5logk 2p
— < — 1he—15<— .
T M S p?—1 log p p2—1+ ‘ - p?—ljL log p p?—1
Whend is even, we have, — 7, = —1—ordy(k — 1) < —k + % + 2 by Lemma 1 (v).
Now (44) follows immediately. O

Lemma 13. Suppose that > ¢, (k — 1) or d > 4¢,(k — 1)? or both. Letl < p < 2«(@—0
be the greatest integer such thaf = {a;|v(a;) = o} # ¢. For k > ko, we have

40(2¢°@ — 1) if dis odd

v=|{(i,))|a; = a;,i > j}| > g(o) := {QQ(Qw(d)—G —1) if dis even.

Proof. We have
4 4
k= Z/ﬂ"u and |R| = ZT“
p=1 p=1

wherer, = |R, = {a;|v(a;) = pu}|. EachR,, gives rise to@m pairs ofi, j withi > j
such thaty; = a;. Then

t_Z“ W=k — |R|+Z “ 2.

Suppose that the assertion of the Lemma 13 does not hold. ghen> k£ — |R| +

o =2, We have

o(0) =S (b —1)(p — Q)Tu < (o) - (e—1(e—2)

5 5 = go(0).

pn=1
We see thay (o) is an increasing function qf. Sincep < 2(4=¢ we find that
— |R| < go(2°D=0) = (29M=0 _ 1) (23240 1 1) .= ¢

wherez; = % if dis odd anc% if dis even. Thu$R| > k—g;. Since thes,’s are squarefree,
we have by Lemma 8 that

Ha22z4 (k—g1)!

a;€ER
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wherez, = 1.6 if dis odd and.4 if d is even. Also, we have

IT @ | (k—1) <Hp) I1 v

a; €ER p<k 2<p<m

wherev,, v, andm are as in Lemma 12. This with (44) and Lemma 1 (iv) gives

—k

a;€ER 2<p<m 2<p<m
Comparing the lower and upper bounds, we have

2 k!

-1 k
46 : k—1.57r(m)+1 p;ijl 2924 p2271 .
“@e) G a ]l v 57205 L1 7

2<p<m 2<p<m

By Lemma 2, we have
g k—g1+1 1
2’41]{;! < 101 1 ( k ) 2 e12k
| 4 k _ 1 .
(k - gl) 231 e12(k—g1)+1

Sincek > kg, we find thaty; < Zﬁ for w(d) > 12 wherez; = 37, 18 for d odd andd even,
respectively. Thus

1 k+3
R < (24(ke—91)>g (kfm) 2 if w(d) <11
(k—g1)! (2_5)k+2 (M)gl if w(d) > 12.

z5—1 zZ5e

Hence we derive from (46) that

2
klog <2.Z$§§5 p*’“) + (k+3)log(1 - %)

> 2<p<m .
o log(k — g1) — 1 + log 24

(L.5m(m) — 1) log k + log (zl H pp§p1>

2<p<m

(47)

log(k — g1) — 1+ log 24
for w(d) < 11 and

(48)
k1 z5—1 2924 p22_1 — (1.5 — 11 k—1 25 pS’jl
08 | “% 27205 p (157 (m) — 1) log g | \/ =74 p

2<p<m 2<p<m

>
& logk — 1+ log z4(25 — 1) — log z5

for w(d) > 12.

Letw(d) < 11. Takingm = min(1000, \/ko) in (47), we observe that the right hand side
of (47) is an increasing function df and the inequality does not hold fat= ~,. Hence
(47) is not valid for allk > k. For instance, whew(d) = 4, d odd, we have:, = 15700
andg; = 855. With these values, we see that the right hand side of (4exa855 at
k = 15300, a contradiction. Hence (47) is not valid for &l> 15300.
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Letw(d) > 12. Takingm = 1000 in (48), we derive that

0. 63104— if dis odd
91> 1. 183— 1f d is even.

For d odd, we see that
0.63104 x 11w(d)4~@

k
0.63104——- > 0.63104 =

log k log ko  w(d)log4 +log1l 4+ logw(d)
7
> —49@) >
2 g1,
a contradiction. Similarly, we get a contradiction tbeven. O

Lemma 14. Letk > ko = ko(w(d)). Assume thad < 4c;(k — 1) LetT; = {0 <@ <
k|X; > 1} defined in section 2 be such that
—+48—|—C3+—Zf w(d) =2
ITy| > C) = 02 i E 4 Oy + 297G w(d) = 3,4,5
it sz( )=>6

whereC, < 2k3 andCy = 39, 42, 195, 806 for w(d) = 2,3,4,5, respectively. Then
1 ifw(d)=2
3915 if w(d) > 3.

€Ty 2

(49) maxA4; > 2 Cocﬁ where Cy = Cy(w(d)) = {

Proof. We see that fav(d) > 6,

1 1
57 e = (dea(k = 1)%) 70 > d=@

wherec; is given by Proposition 2. Hence there exists a partitica d;d, of d with

k
dy < ———— with w(dl) > 1 and w(dz) < w(d) — 1.

20 - 2¢(d)
Therefore
k
] w(dg) w(d)—1
(50) v(A;) <2 <2 for A; > 20 @
by Lemma 4.
Let
2° pk
(51) — (i € T1|A; > Qp(d Y Ty =T — T,
wherec = 16 if w(d) =2, ¢ =4if w(d) = 3,4,5andc = 2 if w(d) > 6. Further let
(52) Sy = {AZ‘Z c TQ}, S3 = {AZ‘Z S Tg}
and|S;| = s. Then considering residue classes modilg we derive that
20 pk

—_— 6 —
3o ge@ = RaxAi = Lols =D +1
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so that|S;| = s < ST1< = + 5. We see from Corollary 1, (50), (51) and

Qw(d) -
(52) that
L k k 2
ek w(d) _ “ w(d)—1
ITs) < 0. =@2 T <6 2@ 20 2@ 3) ?

ch (b RNy 2w kK k_E
=20 3 =12 740 T 6x26 79

if w(d) > 6and

k 2\ow(d
< [ + D20 = i) =2
2wl = k4 2 if w(d) = 3,4,5.

12 3

Therefore

k1 Cyif w(d) =2,3,4,5

Ty > C) — T3] > Cy := < 2

Bl > G~ T3] > Ca {C%+§ifw(d)z6.
Let ¢, €, be asin Lemma 10 with = 16 if w(d) =2, c = 4 if w(d) = 3,4,5 andc = 2 if
w(d) > 6. ThenCy < [Ty| = [Sa| +>_ 5o(n — 1)|€,]. Now we apply Lemma 10 and use

k> ko > n(2¢@=2)(log 2(d)=2) 2 (2¢(d)=0 _ 1) for w(d) > 6 to get
C < |SQ|+Cglf2<w(d)§5
P18 + & ifw(d) > 6.

Thus
k

So| > —.
520> &
Letw(d) = 2. Then considering thd,;’s modulo2’, we see that

2 2 2
> ) )
max A; 2[02H48><4—202

which gives (49). Now we take(d) > 3. Sinced < 4¢;(k — 1)2 we haver > [“9] py

Lemma 6. By (14), we havg- > é > L(der(k - 1)?))5 > H ( ) We now
apply Corollary 2 withs = [C% + 1] andU =1 to get
3 k 3 e, s k
A > S P ) > Dol
maxA; > o [02+]_4 TG
which yields (49). O

4. PROOF OFPROPOSITIONZ2

We assume that either > c;(k — 1) ord > 4c,(k — 1)%. Thenv(a;,) < 2¢@—0
for 0 < iy < k by Lemma 5. Letp be as defined in the statement of Lemma 13. Then
v(a;,) < o. By Lemma 13, there are at least(2«(?) —1) distinct pairs(i, j) withi > j and
a; = a;, wherez = 4if d is odd an@ if d is even. Since there can be at mggt)—¢ — 1
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possible partitions ofl, by Box principle, there exists a partitidd,, d;) of d and at least
zp pairs of(4, j) with a; = a;,7 > j corresponding to this partition. We write

x; —x; = diri(i, j) and @; + x5 = dora(i, ).

Let d be odd. Suppose there are at leastistinct pairs(iy, j1),- - - , (i, jo), - - - With
the corresponding, (i, ) even. Then{iy,--- i, 71, - ,Jo}| > 0. Hence we can find
1 <i,m < owith (if, 5i) # (im,Jm)s @, = @, a;,, = a;,, anda;, # a;,,. Now the result
follows by Lemma 11. Thus we may assume that there are at pnest pairs (i, j) with
r1(4,j) even. Then there are at leakst + 1 distinct pairs(i, j) with (¢, j) odd. Since
a; = 1,2,3( mod4), we can find at least pairs witha; = a,( mod4) for any two such
pairs (i, j), (g, h). Then there exist two distinct pai(s, j), (¢, h) with a; = a;,a, = a,
anda; # a, from these pairs. Also, (i, j) = (g, h)( mod2). This gives (4) and (5) by
Lemma 11 which is a contradiction.

Let d be even. We observe thaf(z} — z7) and gcdz; — x5, z; 4+ ;) = 2. We claim
that there are at leagtpairs withr, (i, j) = r1(g, h)(mod2) andry(i, ) = ra(g, h)( mod
2) for any two such distinct pair§, j) and(g, #). If the claim is true, then there are two
pairs(i, j) # (g, h) withi > j,g > h,a; = a;,a, = a, anda; # a4 sincev(a;) < p. This
implies (4) and (5) by Lemma 11, contradicting our assunmptibet ord,(d) = 1. Then
d is odd, implying that (i, 7) is even. We can choose at leagpairs whose-,’s are of
the same parity. Thus the claim is true in this case. Lef(@djd> 3. Then we have either
ordy(d;) = 1 implying that all ther;’s are odd, or orgld;) = 1 implying that all thery’s
are odd. Thus the claim follows. Finally, let efd) = 2. Then2 || d; and2 || d, so thatr
andr, are of the opposite parity for any pair and hence the claird$ol O

5. PROOF OFPROPOSITION3

In this section, we assume that> xy = ro(w(d)). In view of Proposition 2, we may
assume that < 4c;(k — 1)2. We may also assume that is a prime for each € T; in the
proof of Proposition 3. Otherwise+ (k — 1)d > (k + 1)*, which implies the assertion.

Sinced < 4c¢,(k — 1)2, d has at least one prime diviser k otherwised > k@ > k2,
giving a contradiction. Thus,(k) < n(k) — 1. Letn + (k — 1)d > L for someL > 0. By
Lemma 3 and Lemma 1 (i), we have

(k—1)log(k —1) k 1.5
53 T >k — - 1 .
(53) T3l > logL —log2  loghk \" loghk

We see from [5] thatu(n + d) - - - (n + (kK — 1)d) is divisible by at leastr(2k) — 74(k) >
7(2k) — w(k) + 1 primes exceeding. Hence we have + (k — 1)d > 4k?. Thus by taking
L = 4k? in (53), we get

(k= Dlog(k—1) & 15
T >k — _ 1 .
7l > log (252 logk \" " logk
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The right hand side of the above inequality is an increasimgtion ofx and
E+4—’“8+03+§ifw(d):2

Ey 12+C3+ if w(d) =3

5k;+ i +03+ 20 i (d) = 4,5

Now we see from Lemma 14 that (49) holds with

5 if w(d) = 2
6if w(d) =3

2 if (d) = 4,5
Lif w(d) > 6.

Cy =

This givesn+ (k—1)d > S2k*. Hence (7) is valid fow(d) > 4. Now we takeu(d) = 2, 3.
PuttingL = $2£% in (53), we derive that

|T7| > ?lg + s 48 +Cs + QW(dHl if w(d) =2
' Sk k4 Oy + 2”(‘““ if w(d) = 3.

We apply Lemma 14 again to gEiaxA > 202k so thatn + (k — 1)d > 2°2k?, which

1€Ty

implies (7). This completes the proof. O
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