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Introduction

An old and well known theorem of Sylvester for consecutive integers [77] states that a product
of k consecutive integers each of which exceeds k is divisible by a prime greater than k.

In this thesis, we give refinements, extensions, generalisations and applications of the above
theorem. First we give some notation which will be used throughout the thesis.

Let p; denote the i-th prime number. Thus p; = 2,ps = 3,.... We always write p for a prime
number. For an integer v > 1, we denote by w(v) and P(v) the number of distinct prime divisors
of v and the greatest prime factor of v, respectively. Further we put w(1) = 0 and P(1) = 1. For
positive real number v and positive integers [, a with ged(l,a) = 1, we denote

mv)=> 1,

p<v

(V) = Z 1,

p<v
ged(p,a)=1

(v, a,l) = Z 1.

p<v
p=l(mod a)

We say that a number is effectively computable if it can be explicitly determined in terms
of given parameters. We write computable number for an effectively computable number. Let
d>1,k>2,n>1andy > 1 be integers with ged(n,d) = 1. We denote by

A=A(n,dk)=n(n+d) - (n+ (k—1)d)
and we write
A(n, k) = A(n, 1, k).
In the above notation, Sylvester’s theorem can be stated as
(1) P(A(n,k)) > Ekif n > k.

On the other hand, there are infinitely many pairs (n,k) with n < k such that P(A) < k. We
notice that w(A(n,k)) > w(k) since k! divides A(n, k). The first improvement in this direction is
the following statement equivalent to (1)

(2) w(A(n, k) > (k) if n > k.
Let d > 1. Sylvester [77] proved that
(3) P(A) > kif n>k+d

Langevin [38] improved (3) to
P(A) > kif n> k.
Finally Shorey and Tijdeman [75] proved that
(4) P(A) > k unless (n,d, k) =(2,7,3).
We observe that it is necessary to exclude the triple (2,7, 3) in the above result since P(2-9-16) = 3.
We give a brief description of the thesis. The thesis is broadly divided into two parts. In Chapter

1, we give a survey on refinements and generalisations of Sylvester’s Theorem. These include the
statements of our new results and the proofs are given in Chapters 4 — 8 in the Part 1 of the thesis.

i



ii INTRODUCTION

In Chapter 2, we give a survey of results on the parity of power of primes greater than k dividing
A including our new results which are proved in the Chapters 9 — 12 in the Part 2 of the thesis.
For proving these results, we require certain estimates on 7 function and other functions involving
primes. In Chapter 3, we collect these results.

We begin with results stated in Chapter 1. First we consider results on the lower bound of
w(A(n, k)). Saradha and Shorey [61, Corollary 3] sharpened (2) by showing

(5) MAme>w%}%EMM]+2ﬁn>k>3

except when (n, k) belongs to an explicitly given finite set. This is best known for 3 < k£ < 18. We
improve % in (5) to % for k£ > 19. We have

THEOREM 1. (Laishram and Shorey [28])

Let k> 3 and n > k. Then w(A(n,k)) > (k) + [37(k)] — 1 except when (n, k) belongs to an
explicitly given finite set.

A more precise statement including the exceptional set is given in Theorem 1.2.1 and a proof is
given in Section 4.1. We observe that w(A(k + 1,k)) = m(2k) and therefore, 2 in Theorem 1 cannot
be replaced by a number greater than 1. We refer to Theorem 1.2.4 and Corollary 1.2.5 for results
in this regard.

An open conjecture of Grimm [20] states that if n,n+1,--- ,n+k—1 are all composite numbers,
then there are distinct primes p;; such that p;;|(n+j) for 0 < j < k. Erdés and Selfridge (see [48])
showed that Grimm’s Conjecture implies that there is a always a prime between two consecutive
squares. The latter result is out of bounds even after assuming Riemann hypothesis. Thus a proof
of Grimm’s Conjecture is very difficult. The best known result on Grimm’s Conjecture is due to
Ramachandra, Shorey and Tijdeman [52]. Grimm’s Conjecture implies that if n,n+1,--- ;n+k—1
are all composite, then w(A(n,k)) > k which is also open. In Chapter 5, we confirm Grimm’s
Conjecture for n < 1.9 x 10'° and for all ¥ and as a consequence, we have

THEOREM 2. (Laishram and Shorey, [31])
Assume that n,--- ,n+k — 1 are all composite and n < 1.9 x 10'°. Then w(A(n,k)) > k.

The next result is on a lower bound for P(A(n, k)).

THEOREM 3. (Laishram and Shorey [30])
We have

P(A(n,k)) > 1.95k for n > k > 2
unless (n, k) belongs to an explicitly given finite set.

We observe from P(A(k+1,k)) < 2k that 1.95 in Theorem 3 cannot be replaced by 2. Section
1.3 contains a more precise statement with an explicit list of the exceptions and some further results
viz., Theorems 1.3.1, 1.3.3 and Corollary 1.3.2. A proof of these results are given in Chapter 6.
Theorem 3 has been applied by Filaseta, Finch and Leidy [18] to prove irreducibility results for
certain Generalised Laguerre polynominals over rationals. We refer to Section 1.3 for results in this
regard. Now we turn to d > 1. We have the following result on w(A).

THEOREM 4. (Laishram and Shorey [29])
Letd > 1. Then
w(A(n,d, k)) = m(2k) — 1
except when (n,d, k) = (1,3,10).
The above result is best possible for d = 2 since w(1-3---(2k — 1)) = 7(2k) — 1. Theorem 4
solves a conjecture of Moree [43]. We refer to Section 1.4 on some more general results, particularly

Theorem 1.4.1 from where Theorem 4 follows. We give a proof of Theorem 1.4.1 in Section 7.4.
On a lower bound for P(A), we have the following result.
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THEOREM 5. (Laishram and Shorey [32])
Letd>2 and k > 3. Then

P(A(n,d,k)) > 2k
unless (n,d, k) is given by given by an explicit finite set.

The case d = 2 for the inequality of Theorem 5 can be reduced to that of d = 1. A more precise
statement with an explicit description of the exceptions is given in Theorem 1.5.1 and a proof is
given in Chapter 8. The assertions of Theorem 1, 3 and 5 are not valid for the exceptions and
therefore, it is necessary to exclude them.

Now we turn to Chapter 2 where we discuss the parity of power of primes greater than k dividing
A(n,d, k). For this, we consider the equation

(6) A(n,d, k) = by>.

with P(b) < k. In Chapter 9, we state the preliminaries and the general Lemmas for the proofs of
the results stated in Chapter 2.

Let d = 1. It is a consequence of some old diophantine results that (6) with k& = 3 is possible
only when n = 1,2,48. Let k > 4. Erd8s [11] and Rigge [55], independently, proved that product
of two or more consecutive positive integers is never a square. More generally, Erd6s and Selfridge
[13] proved that (6) with P(b) < k does not hold under the necessary assumption that the left hand
side of (6) is divisible by a prime greater than or equal to k. The assumption P(b) < k has been
relaxed to P(b) < k by Saradha [60] again under the necessary assumption that the left hand side
of (6) is divisible by a prime exceeding k. We refer to Section 2.1 for details.

Therefore we suppose that d > 1. Let k = 3. There are infinitely many three squares in
arithmetic progression and hence (6) has infinitely many solutions. Therefore we assume from now
onwards that & > 4. Fermat (see Mordell [42, p.21]) showed that there are no four squares in an
arithmetic progression. Euler ([15], cf. [42, p.21-22], [43]) proved a more general result that a
product of four terms in arithmetic progression can never be a square. In Section 10.9, we prove the
following extension of Euler’s result.

THEOREM 6. (Hirata-Kohno, Laishram, Shorey and Tijdeman [25])
Equation (6) with 4 <k <109 and b =1 is not possible.

The case k = 5 is due to Obldth [50]. Independently, Bennett, Bruin, Gyéry and Hajdu [1]
proved Theorem 6 with 6 < k < 11. A general conjecture states that A is divisible by a prime > k
to an odd power unless k = 4,b = 6. In other words,

CONJECTURE 1. Equation (6) with P(b) < k implies that k = 4,b = 6.
A weaker version of Conjecture 1 is the following conjecture due to Erdés.

CONJECTURE 2. Fquation (6) with P(b) < k implies k is bounded by a computable absolute
constant.

In Chapter 2, we give a survey of results on Conjectures 1 and 2.

We now consider Conjecture 1 with k fixed. Equation (6) with k¥ = 4 and b = 6 has infinitely
many solutions. On the other hand, (6) with k¥ = 4 and b # 6 does not hold. Therefore we consider
(6) with k£ > 5. We write

(7) n+id = a;x? for 0<i<k

where a; are squarefree integers such that P(a;) < max(P(b),k — 1) and x; are positive integers.
Every solution to (6) yields a k-tuple (ag, a1, ...,a,—1). We re-write (6) as

(8) m(m —d)---(m— (k—1)d) = by*, m=n+ (k—1)d.
The equation (8) is called the mirror image of (6). The corresponding k-tuple (ax—1,ax—2,.-.,ao)
is called the mirror image of (ag,a1,...,ax—1).

Let P(b) < k. In Chapter 10 (see Section 10.1), we prove the following result.
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THEOREM 7. (Hirata-Kohno, Laishram, Shorey and Tijdeman [25])
Equation (6) with P(b) < k and 5 < k < 100 implies that (ag,a1,...,ax—1) is among the
following tuples or their mirror images.
k=8:(23,1,56,7,2,1),(3,1,5,6,7,2,1,10);
k=9:(23,1,56,7,21,10);
k=14:(3,1,56,7,2,1,10,11,3,13,14,15,1);
k=24:(56,7,21,10,11,3,13,14,15,1,17, 2,19, 5, 21,22, 23,6, 1, 26,3, 7).

(9)

Theorem 7 with k& = 5 is due to Mukhopadhyay and Shorey [45]. A proof is given in Section
10.2. Theorem 7 with k = 6 is due to Bennett, Bruin, Gy6ry and Hajdu [1]. They also showed,
independently, that (6) with 7 < k <11 and P(b) < 5 is not possible.

Let P(b) = k. Then the case k = 5 and P(b) = k in (6) is open. For k > 7, we prove the
following result in Chapter 10 (see Section 10.1).

THEOREM 8. (Hirata-Kohno, Laishram, Shorey and Tijdeman [25])

Equation (6) with P(b) = k and 7 < k < 100 implies that (ag,a1,...,ax—1) is among the
following tuples or their mirror images.

k=17:(23,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10);
k=13:(3,1,5,6,7,2,1,10,11,3,13, 14, 15),
(1,5,6,7,2,1,10,11,3,13, 14, 15, 1);
k=19:(1,5,6,7,2,1,10,11,3,13,14, 15, 1,17, 2,19, 5, 21, 22);
. (5,6,7,2,1,10,11,3,13,14,15,1,17,2, 19,5, 21, 22, 23,6, 1, 26, 3),
(6,7,2,1,10,11,3,13,14, 15,1,17,2,19, 5,21, 22, 23,6, 1, 26, 3, 7).

(10)

Now we turn to (6) with &k as a variable. When d is fixed, Marszalek [40] confirmed Conjecture
2 by showing that k is bounded by an explicit constant depending only on d. This was refined by
Shorey and Tijdeman [76] when w(d) is fixed. They showed that (6) implies that & is bounded by
a computable number depending only on w(d) confirming Conjecture 2 when w(d) is fixed. In fact
they showed that (6) implies

gw(d)
- a log k

which gives
(11) d> k2 loglog k

where ¢; > 0 and ¢z > 0 are absolute constants. Laishram [26] gave an explicit version of this result
by showing

2.25w(d)4* (D if d is even
Hw(d)4“@ if d is odd

for w(d) > 12 whenever (6) holds. Further Laishram and Shorey [33] improved it to
THEOREM 9. (Laishram and Shorey [33])
Equation (6) implies that
k< 2w(d)2@@.

A proof of Theorem 9 is given in Section 11.5.

Let d be fixed. We consider Conjecture 1. Saradha and Shorey [63] solved (6) completely for
d <104 and k > 4, see Section 2.4 for earlier results. The following result confirms Conjecture 1 for
d <10k > 6 and sharpens (11).
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THEOREM 10. (Laishram and Shorey [33])
Equation (6) with k > 6 implies that

d > max(1010, gloglos k),

We give a proof of this theorem in Section 11.6.

Now we turn to Conjecture 1 with w(d) fixed. Let b = 1. Saradha and Shorey [63] proved that
(6) with w(d) = 1 does not hold. In fact they proved it without the condition ged(n,d) = 1. Thus a
product of four or more terms in an arithmetic progression with common difference a prime power
can never be a square. We extend this to w(d) = 2 in the following result.

THEOREM 11. (Laishram and Shorey [33])
A product of eight or more terms in arithmetic progression with common difference d satisfying

w(d) = 2 is never a square.

A proof of Theorem 11 is given in Section 11.7. Further we solve (6) with w(d) < 5 and b =1
completely. We have

THEOREM 12. (Laishram and Shorey [33])

Equation (6) with b= 1 and w(d) <5 does not hold.

A proof of this result is given in Section 10.3. It contains the case w(d) = 1 already proved by
Saradha and Shorey [63].

Let P(b) < k. As stated earlier, equation (6) with ¥ = 6 is not possible by Bennett, Bruin,
Gyéry and Hajdu [1]. Also (6) with P(b) < k does not hold by Mukhopadhyay and Shorey [45] for
k =5 and Hirata-Kohno, Laishram, Shorey and Tijdeman [25] for k = 7. We have no results on (6)
with k € {5,7} and P(b) = k. Therefore we assume k > 8 in the next result. Let &; be the set of
tuples (ag, .. .,ax—1) given by

k=8:(2315,6,7,2,1),(3,1,5,6,7,2,1,10);
k=9:(23,1,5,6,7,2,1,10);
k=13:(3,1,5,6,7,2,1,10,11,3,13,14,15), (1,5,6,7,2,1,10, 11,3, 13,14, 15, 1)

and their mirror images. Further &5 be the set of tuples (ag, a1, ...,ax_1) given by

k=14:(3,1,5,6,7,2,1,10,11,3,13,14, 15, 1);

k=19:(1,5,6,7,2,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22);
k=23:(56,7,2,1,10,11,3,13,14,15,1,17,2,19,5,21,22, 23,6, 1, 26, 3),
(6,7,2,1,10,11,3,13,14,15,1,17,2,19,5, 21,22, 23,6, 1, 26, 3, 7);
=24:(5,6,7,2,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22, 23,6, 1,26, 3,7)

and their mirror images. We have

THEOREM 13. (Laishram and Shorey [33])

(a) Equation (6) with k > 8 and w(d) < 4 implies that either w(d) = 2,k =8, (ag,a1,...,a7) €
{(3,1,5,6,7,2,1,10), (10 1,2,7,6,5,1,3)} orw(d) = 3, (ag,a1,...,ax—1) € &1 is given by an explicit
set of tuples or w(d) = (ao,al, sy ap—1) € 61 U Gs.

(b) Equation (6) wlth w(d) € {5,6} and d even does not hold.

A proof of Theorem 13 is given in Section 11.4.

We now consider an equation more general than (6) when w(d) = 1. Let k > 5,¢ > k — 2 and
M <72 < - <y beintegers with 0 <; < kfor 1 <i <t Thuste{kk—-1,k—2}, v >k—-3
and v, =i —1for 1 <i<tift =k Weput v =k —t. Let b be a positive squarefree integer and
we shall always assume, unless otherwise specified, that P(b) < k. We consider the equation
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in positive integers n,d, k, b, y,t where n and d are not necessarily relatively prime. Thus n and d
need not be relatively prime in Theorem 14 but we always assume that d { n otherwise (12) has
infinitely many solutions. When ¢ = 0, then (12) is the same as (6). Therefore we consider ¢ = 1, 2.

Let 1» = 1. We may assume that v = 0 and 7, = k — 1 otherwise this is the case 1y = 0. It has

been shown in [61] that

6! 5 10!

s = (12,
are the only squares that are products of k—1 distinct integers out of k£ consecutive integers confirming
a conjecture of Erdds and Selfridge [13]. This corresponds to the case b =1 and d =1 in (12). In
general, it has been proved in [61] that (12) with d = 1 and k > 4 implies that (b, k,n) = (2,4, 24)
under the necessary assumption that the left hand side of (12) is divisible by a prime > k. Further
it has been shown in [63, Theorem 4] and [46] that (6) with d > 1, ged(n,d) = 1,w(d) = 1 and
P(b) < k implies that k < 8.

Let ¢ = 2. Let d = 1. Then it has been shown by Mukhopadhyay and Shorey [47, Corollary 3|
that a product of k — 2 distinct terms out of k consecutive positive integers is a square only if it is
given by an explicitly given finite set, see Section 2.6 for a more precise statement. For the general
case, it follows from [47, Theorem 2] that (12) with & > 6 is not valid unless k£ = 6 and n = 45,240
whenever the left hand side of (12) is divisible by a prime > k. We extend it to k¥ > 5 in Theorem
2.6.1. In Section 12.4, we prove the following result for w(d) = 1.

= (720)?

THEOREM 14. (Laishram and Shorey [34])
Let ¢ =2,k > 15 and d t n. Assume that P(b) <k if k =17,19. Then (12) with w(d) =1 does
not hold.

As an immediate consequence of Theorem 14, we see that (2.1.1) with w(d) = 1, v = 0,d 1
n, k> 15, P(b) < prigy+1 if k= 17,19 and P(b) < prr)42 if & > 19 does not hold.






CHAPTER 1

A survey of refinements and extensions of Sylvester’s
theorem

1.1. Sylvester’s theorem

Let n,d and k > 2 be positive integers such that ged(n,d) = 1. For a pair (n,k) and a
positive integer h, we write [n,k, h] for the set of all pairs (n,k),---,(n + h — 1,k) and we set
[n, k] = [n,k,1] = {(n, k)}.

Let W(A) denote the number of terms in A divisible by a prime > k. We observe that every
prime exceeding k divides at most one term of A. On the other hand, a term may be divisible by
more than one prime exceeding k. Therefore we have

(1.1.1) W (A) < w(A) — ma(k).

If max(n,d) < k, we see that n+ (k — 1)d < k? and therefore no term of A is divisible by more than
one prime exceeding k. Thus

(1.1.2) W(A) = w(A) — mq(k) if max(n,d) <k.

We are interested in finding lower bounds for P(A), w(A) and W(A). The first result in this
direction is due to Sylvester [77] who proved that

(1.1.3) PA)>kifn>d+k.
This immediately gives
(1.1.4) w(A) > mg(k) if n>d+k.

We give a survey of several results in this direction. The proofs depend on certain estimates from
prime number theory stated in Chaper 2.

1.2. Improvements of w(A(n,k)) > w(k)

Let d = 1. Let k =2 and n > 2. We see that w(n(n + 1)) # 1 since ged(n,n + 1) = 1. Thus
w(n(n+1)) > 2. Suppose w(n(n+ 1)) = 2. Then both n and n + 1 are prime powers. If either n or
n+ 1 is a prime, then n+ 1 or n is a power of 2, respectively. A prime of the form 22" +1 is called
a Fermat prime and a prime of the form 2™ — 1 is called a Mersenne prime. Thus we see that either
n is a Mersenne prime or n + 1 is a Fermat prime. Now assume that n = p®, n 4+ 1 = ¢° where p, ¢
are distinct primes and o > 1,8 > 1. Thus ¢° — p® = 1 which is Catalan equation. In 1844, Catalan
[2] conjectured that 8 and 9 are the only perfect powers that differ by 1. Tijdeman [78] proved in
1976 that there are only finitely many perfect powers that differ by 1. Catalan’s conjecture has been
confirmed recently by Mihdilescu [41]. Thus n = 8 is the only other n for which w(n(n + 1)) = 2.
For all other n, we have w(n(n + 1)) > 3.

We assume that k& > 3 from now onwards in this section. We observe that

(1.2.1) w(A(n, k) =72k) if n=Fk+ 1.
If k + 1 is prime and 2k + 1 is composite, then we observe from (1.2.1) by writing

2k+1

Ak+2,k)=A(k+1,k) )
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that
(1.2.2) w(Ak+2,k)) = n(2k) —

Let k + 1 be a prime of the form 3r + 2. Then 2k + 1 = 3(2r + 1) is composite. Since there are
infinitely many primes of the form 37 + 2, we see that there are infinitely many k for which k£ + 1 is
prime and 2k + 1 is composite. Therefore (1.2.2) is valid for infinitely many k. Thus an inequality
sharper than w(A(n,k)) > n(2k) — 1 for n > k is not valid.

Saradha and Shorey [61, Corollary 3] extended the proof of Erdds [10] for (1.1.3) to sharpen
(1.1.4) and gave explicit bound of w(A(n,k)) as
1

(1.2.3) w(A(n, k) > (k) + {

37r(/<:)] +2if n >k

unless (n, k) € S; where S is the union of sets
[4,3],[6.3,3], [16,3], [6, 4], [6, 5, 4], [12, 5], [14,5, 3], [23, 5, 2],
(1.2.4) 7,6,2], 15,61, 8, 7,3], [12,7), [14,7, 2], [24,7], [9, 8], [14, 8],
14,13, 3], [18,13], [20, 13, 2], [24, 13], [15, 14], [20, 14], [20, 17].
Laishram and Shorey [28] improved % in (1.2.3) to 2. Define
2 if 3<k<6
S(k) =41 if T<k<16

0 otherwise

so that
3 1
{4ﬂ@41+5%)2[3ﬁ%ﬂ%2
We have
THEOREM 1.2.1. (Laishram and Shorey, [28])
Letn > k. Then
(1.2.5) MA@%»Zw%)%BW®ﬂ1+M@

unless
(TL, k) €51 U8y
where Sy is given by (1.2.4) and So is the union of sets

20,19, 3], [24, 19], [21, 20], [48, 47, 3], [54, 47], [49, 48], [74, 71, 2], [74, 72],
(74,73, 3], 84, 73], [75, 74], [84, 79], [84, 83], [90, 83], [108, 83], [110, 83],
90, 89], [102, 89], [104, 89], [108, 103], [110, 103, 2], [114, 103, 2], [110, 104],
[114,104], [108,107, 12], [109, 108, 10], [110, 109, 9], [111, 110, 7], [112, 111, 5],
(1.2:6) [113,112,3],[114, 113, 7], [138,113], [140, 113, 2], [115, 114, 5], [140, 114],

(116,115, 3], [117, 116], [174, 173], [198, 181], [200, 181, 2], [200, 182],
200, 193, 2], [200, 194], [200, 197], [200, 199, 3], [201, 200], [282, 271, 5],
282, 272], [284, 272, 2], [284, 273], [278, 277, 3], [282, 277, 5], [279, 278],
282, 278, 4], [282, 279, 3], [282, 280], [282, 281, 7], [283, 282, 5],
[284, 283, 5], [204, 283], [285, 284, 3], [286, 285], [294, 293].

We note here that the right hand sides of (1.2.3) and (1.2.5) are identical for 3 < k < 18.
Theorem 1.2.1 is an improvement of (1.2.3) for k& > 19. Therefore we shall prove Theorem 1.2.1 for
k > 19. The proof of this theorem uses sharp bounds of 7 function due to Dusart given by Lemma
3.1.2. We derive the following two results from Theorem 1.2.1. We check that the exceptions in
Theorem 1.2.1 satisfy w(A(n, k)) > 7(2k) — 1. Hence Theorem 1.2.1 gives
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COROLLARY 1.2.2. Letn > k. Then
(1.2.7) W(A(n, k) > min (ﬂ(m + [iw(k)] S50k, m(2k) — 1) .

Further all the exceptions in Theorem 1.2.1 except (n,k) € {(114,109),(114,113)} satisfy

w(A(n, k)) > m(k) + [37(k)] — 1. Thus we obtain the following result from Theorem 1.2.1.

COROLLARY 1.2.3. Let n > k. Then

(1.2.8) w(A(n, k) > m(k) + Ew(k)} -1
unless
(1.2.9) (n,k) € {(114,109), (114,113)}.

The constant in Theorem 1.2.1 can be replaced by a number close to 1 if n > 17k

THEOREM 1.2.4. (Laishram and Shorey, [28])
Let (n,k) # (6,4). Then we have

(1.2.10) w(A(n, k) > w(2k) if n > gk‘

The inequality (1.2.10) is an improvement of (1.2.3) for & > 10. Therefore we shall prove
Theorem 1.2.4 for k > 10. We observe that 12k in Theorem 1.2.4 is optimal since w(A(34,24)) =
m(48) — 1. Also the assumption (n, k) # (6,4) is necessary since w(A(6,4)) = 7(8) — 1. We recall
that there are infinitely many pairs (n, k) = (k + 2, k) satisfying (1.2.2). Thus there are infinitely
many pairs (n, k) with n < 1Tk such that w(A(n,k)) < 7(2k). Let n =k +r with 0 < r < k. We
observe that every prime p with k <n—1<p<n+k—1isa term of A(n,k). Since k > %‘1, we
also see that 2p is a term in A(n, k) for every prime p with k < p < %’“_1 Further all primes < k
divide A(n, k). Thus

wAMm,k)=m2k+r—-1)—n(k+r—1)+n(k+ %) =m(2k) + F(k,r)

where

F(k,r) =72k +r—1) — w(2k) — (w(k+r1)7r(k+r21)>.

We use the above formula for finding some pairs (n, k) as given below when k < 5000 and k < n < 2k
for which w(A(n, k)) < 7(2k):

(A(n, k)) = m(2k) if (n,k) = (6,4), (34,24), (33,25), (80,57)

(A(n, k) = m(2k) if (n,k) = (74,57), (284, 252), (3943, 3880)
w(A(n, k)) = m(2k) — 3 if (n, k) = (3936, 3879), (3924, 3880), (3939, 3880)

(A(n, k)) = m(2k) if (n, k) = (1304, 1239), (1308, 1241), (3932, 3879)

(A(n, k) = m(2k) if (n,k) = (3932, 3880), (3932, 3881), (3932, 3882).

It is also possible to replace 2 in Theorem 1.2.1 by a number close to 1 if n > k and k is
sufficiently large. Let k < n < 17k Then

w(A(n, k) >nmn+k—1)—n(n—1)+ n(k).
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Let € > 0 and k > ko where kg exceeds a sufficiently large number depending only on €. Using the
estimates (¢) and (i¢) of Lemma 3.1.2, we get

n+k—1 n 1.2762n
logln+k—1)—1 logn log®n
n+k—1 n 1.2762n
logn  logn log?n
kE—1 1.2762k
logn  log?k
> (1 —e)m(k).

mn+k—-1)—7n(n—1) >

>

v

Thus w(A(n, k) > (2 — e)m(k) for k < n < Ik which we combine with Theorem 1.2.4 to conclude
the following result.

COROLLARY 1.2.5. Let € > 0 and n > k. Then there exists a computable number ky depending
only on € such that for k > ko, we have

(1.2.11) w(An, k) > (2 — e)m(k).

Proofs of Theorems 1.2.1 and 1.2.4 are given in Chapter 4, see Section 4.1. We end this section
with a conjecture of Grimm [20]:

Suppose n,n + 1,---,n +k — 1 are all composite numbers, then there are distinct primes p;,
such that p;;|(n +j) for 0 < j < k.
This conjecture is open. The conjecture implies that if n,n+1,--- ,n+ k — 1 are all composite,

then w(A(n,k)) > k which is also open. In Chapter 5, we confirm Grimm’s Conjecture for n <
1.9 x 100 and for all k. Let Ny = 8.5 x 10%. We prove

THEOREM 1.2.6. (Laishram and Shorey, [31])
Grimm’s Conjecture holds for n < pn, and for all k.

We observe that py, = 19236701629 > 1.9 x 10'°. As a consequence of Theorem 1.2.6, we have
COROLLARY 1.2.7. Assume that n,n+1,--- ,n+k —1 are all composite and n < py,. Then
(1.2.12) w(A(n, k) > k.

Let g(n) be the largest integer such that there exist distinct prime numbers Py, - - - Py,) with
Pi|n +i. A result of Ramachandra, Shorey and Tijdeman [52] states that

logn 3
> [
9(n) > e (loglogn>
where ¢; > 0 is a computable absolute constant. Further Ramachandra, Shorey and Tijdeman [53]
showed that

w(A(n, k) >k for 1<k< exp(cz(logn)%)

where ¢y is a computable absolute constant. The proof of these results depend on the theory of
linear forms in logarithms. The constants ¢; and ¢, in the above results turns out to be very small.
Therefore the above results are valid only for large values of n. Erdés and Selfridge (see [48]) showed
that Grimm’s Conjecture implies that there is a always a prime between two consecutive squares.
The latter result is out of bounds even after assuming Riemann hypothesis. Thus a proof of Grimm’s
conjecture is very difficult.

We need to prove only Theorems 1.2.1, 1.2.4 (see Chapter 4) and Theorem 1.2.6 (see Chapter
5) from this section.
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1.3. Results on refinement of P(A(n,k)) > k

Let d = 1. We observe that P(A(1,k)) < k and therefore, the assumption n > k in (1.1.3)
cannot be removed. The assertion (1.1.3) was rediscovered and proved by Schur [68] and Erdds
[10] gave another proof. For n > k, Moser [44] sharpened (1.1.3) to P(A(n, k)) > 15k and Hanson
[23] to P(A(n,k)) > 1.5k unless (n,k) = (3,2),(8,2),(6,5). Further Faulkner [16] proved that
P(A(n, k)) > 2k if n is greater than or equal to the least prime exceeding 2k and (n, k) # (8,2), (8, 3).
We sharpen the results of Hanson and Faulkner. Let k = 2. Then we observe (see Lemma 6.1.5)
that P(A(n,k)) > 2k unless n = 3,8 and that P(A(3,2)) = P(A(8,2)) = 3. Thus the estimates
(1.3.1)-(1.3.4) are valid for k = 2 whenever n # 3,8 in the case of (1.3.1) and (1.3.2). Therefore we
assume k > 3 from now onwards in this section. Let

Eyo ={58}; Es= E190U{59}; Es= EgU{60};
Ey = Eg U {12,16,46,61,72,93,103,109, 151, 163};
By = By U{4,7,10,13,17, 19, 25, 28, 32, 38, 43, 47, 62, 73,94, 104, 110, 124, 152, 164, 260}
and Fo;11 = FEy; for 1 <14 < 5. Further let
By = B, U{3,5,6,8,9,11, 14, 15, 18, 20, 23, 26, 29, 33, 35, 39, 41, 44, 48, 50, 53,
56,63, 68, 74,78, 81, 86,89, 95, 105, 111,125, 146, 153, 165, 173, 270}.
Finally we denote Ej
Eo = {(8,3), (6,4), (7,4), (15,13), (16, 13)} U {(k + 1,k) : k = 3,4,5,8, 11, 13,14, 18, 63}.
Then
THEOREM 1.3.1. (Laishram and Shorey, [30])
We have
(1.3.1) P(A(n,k)) > 1.95k for n > k
unless (n, k) € [k + 1,k,h] for k € Ep with1 <h <11 or (n,k) = (8,3).

We observe that P(A(k + 1,k)) < 2k and therefore, 1.95 in (1.3.1) cannot be replaced by 2.
There are few exceptions if 1.95 is replaced by 1.8 in Theorem 1.3.1. We derive from Theorem 1.3.1
the following result.

COROLLARY 1.3.2. We have
(1.3.2) P(A(n,k)) > 1.8k forn >k
unless (n, k) € Ep.

Recently Corollary 1.3.2 has been applied to prove the irreducibility results over rationals for
certain Generalised Laguerre polynominals

i(m+a)(mfl+a)~~(j+l+a)

L) = J(m =)

(—a)

j=0
where m € N and o € R. Schur ([69], [70]) showed that the polynomials LY (2), Ly (x) are
irreducible for all m. Filaseta, Finch and Leidy [18] used Corollary 1.3.2 to give a generalisation
of Schur’s result. They showed that for all integers m > 1 and integers a with 0 < a < 10, the
polynomial

L) (z) is irreducible

unless (m,a) € {(2,2),(4,5),(2,7)}. We find that for each of these exceptional pairs (m,«a), the

polynomial L;,” (z) has the factor  — 6 and hence reducible.
The proofs of Theorem 1.3.1 and Corollary 1.3.2 are given in Sections 6.4 and 6.5, respectively.
However if we replace n > k by stronger conditions, then we obtain better estimates of P(A(n, k)).
In Sections 6.2 and 6.3, we prove the following result.



6 INTRODUCTION

THEOREM 1.3.3. (Laishram and Shorey, [30])

We have
(a)
279
(1.3.3) P(A(n,k)) > 2k for n > max(k + 13, @k)
(b)
(1.3.4) P(A(n,k)) > 1.97k for n > k + 13.

We observe that 1.97 in (1.3.4) cannot be replaced by 2 since there are arbitrary long chains
of consecutive composite positive integers. The same reason implies that Theorem 1.3.3 (a) is not
valid under the assumption n > k + 13. Further the assumption n > 22k in Theorem 1.3.3 (a) is
necessary since P(A(279,262)) < 2 x 262.

When £ is sufficiently large, we obtain sharper estimates of P(A(n, k)). See Shorey and Tijdeman
[73, Chapter 7]. Ramachandra and Shorey [51] proved that

log log k

P(A(n, k) > csklogk ( ) ifn > k?

logloglog k
where ¢4 > 0 is a computable absolute constant. Further it follows from the work of Jutila [24] and
Shorey [71] that

log log k

o f > k2
log loglog k

P(A(n,k)) > csklogk
where c5 is a computable absolute positive constant. If n < k%, it follows from the results on
difference between consecutive primes that A(n,k) has a term which is prime. The proof of the
result of Ramachandra and Shorey depends on Sieve method and the theory of linear forms in
logarithms. The proof of the result of Jutila and Shorey depends on estimates from exponential
sums and the theory of linear forms in logarithms. Langevin [35], [36] proved that for any € > 0,

P(A(n,k)) > (1 —e)kloglogk if n > cg = cg(k,€)

where cg is a computable number depending only on k and e. For an account of results in this
direction, see Shorey and Tijdeman [73, p. 135].

1.4. Sharpenings of w(A(n,d, k)) > mq(k) when d > 1

Let d > 1. The case k = 2 is trivial and we assume k& > 3 in this section. We state Schinzel’s
Hypothesis H [66]:

Let fi(x), -, fr(z) be irreducible non constant polynomials with integer coefficients and the
leading coefficients positive. Assume that for every prime p, there is an integer a such that the
product f1(a)--- fr(a) is not divisible by p. Then there are infinitely many positive integers m such
that fi(m),---, fr(m) are all primes.

We assume Schinzel’s hypothesis. Then 1 + d and 1 + 2d are primes for infinitely many d.
Therefore

(1.4.1) w(A)=mn(k), k=3

for infinitely many pairs (n,d) = (1,d). Let f.(z) = 1+ ra for r = 1,2, 3,4. For a given p, we see
that pt f1(p)f2(p) - - - f4a(p). Hence there are infinitely many d such that 1 +d,1+2d,1+ 3d,1+ 4d
are all primes. Thus

(1.4.2) wA)=n(k)+1, k=4,5

for infinitely many pairs (n,d) = (1,d).
Shorey and Tijdeman [74] proved that

(1.4.3) W(A) > 7(k).



1.4. SHARPENINGS OF w(A(n, d, k)) > mq(k) WHEN d > 1 7

Thus (1.4.3) is likely to be best possible when k& = 3 by (1.4.1). In fact, (1.4.3) is likely to be best
possible for k = 3 when n = 1. Moree [43] sharpened (1.4.3) to

(1.4.4) w(A) > w(k)if k>4 and (n,d, k) # (1,2,5).

If k = 4,5, then (1.4.4) is likely to be best possible by (1.4.2) when n = 1.

Saradha and Shorey [62] showed that for k& > 4, A is divisible by at least 2 distinct primes
exceeding k except when (n,d, k) € {(1,5,4),(2,7,4),(3,5,4), (1,2,5),(2,7,5), (4,7,5), (4,23,5)}.
Further Saradha, Shorey and Tijdeman [65, Theorem 1] improved (1.4.4) to

(1.4.5) W(A) > gw(k) +1fork>6

unless (n,d, k) € Vo where Vj is
{(1,2,6),(1,3,6),(1,2,7),(1,3,7),(1,4,7),(2,3,7),(2,5,7),(3,2,7),
(1,2,8),(1,2,11),(1,3,11),(1,2,13),(3,2,13), (1,2, 14)}.

In fact they derived (1.4.5) from

(1.4.6)

(1.4.7) W(A) > gw(k) —a(k) +1for k> 6

unless (n,d, k) € Vy. It is easy to see that the preceding result is equivalent to [65, Theorem 2|. By
Schinzel’s Hypothesis, we observe that (1.4.5) is likely to be best possible for £ = 6,7 when n = 1.
For k = 8, we sharpen (1.4.7) by showing

(1.4.8) W(A) >k —1—my(k)
except when
n=1,de{23,4,5,7};
(1.4.9) n=2 de{3,5}; n=3, d=2;
n=4,d=3; n="7, de€ {3,5}.

Again by Schinzel’s Hypothesis, (1.4.8) is likely to be best possible for K = 8 when n = 1. A proof
of (1.4.8) is given in Section 7.5.
For k > 9, Laishram and Shorey [29] sharpened (1.4.7) as

THEOREM 1.4.1. (Laishram and Shorey, [29])
Let k> 9 and (n,d, k) ¢ V where V is given by
n=1,d=3, k=910,11,12,19,22, 24, 31;
(1.4.10) n=2 d=3 k=12 n=4, d=3, k=9, 10;
n=2,d=5 k=910, n=1, d=7, k= 10.
Then
(1.4.11) W(A) > 7(2k) — mq(k) — p

where
lifd=2,n<k
p=rld)= {0 otherwise.
When d = 2 and n = 1, we see that
w(A)=m(2k) -1
and
W(A) = 7(2k) — mq(k) — 1

by (1.1.2), for every k > 2. This is also true for n = 3,d = 2 and 2k +1 is not a prime. Thus (1.4.11)
is best possible when d = 2. We see from Theorem 1.4.1 and (1.1.1) that

(1.4.12) W(A) > 7(2k) —p it (n,d,k) ¢ V.
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For (n,d, k) € V, we see that w(A) = w(2k) — 1 except at (n,d, k) = (1,3,10). This is also the case
for (n,d, k) € Vp with k = 6,7,8. Now, we apply Theorem 1.4.1, (1.4.5) for k = 6,7,8 and (1.4.4)
for k = 4,5 to get the following result immediately.

COROLLARY 1.4.2. Let k > 4. Then
(1.4.13) w(A) >m(2k) -1
except at (n,d, k) = (1,3,10).

This solves a conjecture of Moree [43]. The proof of Theorem 1.4.1 is given in Section 7.4.

1.5. Results on refinements of P(A(n,d,k)) >k for d > 1

We observe that P(A(n,d,2)) = 2 if and only if n = 1,d = 2" — 1 with r > 1. Therefore we
suppose that & > 3 in this section. Let d = 2. If n > k, then (1 5.2) follows from Theorem 1.4.1. Let
n < k. Then we observe that P(A(n,2,k)) < 2k implies P(A(n + k,1,k)) < 2k. Therefore the case
d = 2 when considering P(A(n,2,k)) > 2k reduces to considering P(A(n +k,1,k)) > 2k discussed
above in the case d = 1. Therefore we may suppose that d > 2.

Langevin [38] sharpened (1.1.3) to

P(A) > kif n>k.
Shorey and Tijdeman [75] improved the above result as
(1.5.1) P(A) >k unless (n,d, k) =(2,7,3).
We have

THEOREM 1.5.1. (Laishram and Shorey, [32])
Let d > 2. Then
(1.5.2) P(A) > 2k
unless (n,d, k) is given by
k=3 n=1d=4T7
n=2d=3"7,723,79;
n=3,d=61;, n=4,d = 23;
n=>5d=11;, n=18,d =T,
k=4, n=1,d=3,13; n=3,d =11;
k=10,n=1,d=3.

It is necessary to exclude the exceptions stated in Theorem 1.5.1. A proof of Theorem 1.5.1 is
given in Chapter 8. It depends on Theorem 1.4.1 and the theory of linear forms in logarithms.



CHAPTER 2

A survey of results on squares in products of terms in an
arithmetic progression

2.1. Introduction

Let n,d, k,b,y be positive integers such that b is square free, d > 1, k > 2, P(b) < k and
ged(n,d) = 1. We consider the equation

(2.1.1) A(n,d, k) =n(n+d) - (n+ (k—1)d) = by”.

If £ = 2, we observe that (2.1.1) has infinitely many solutions. Therefore we always suppose that
k > 3. Let p > k,p|(n+id). Then p 1 (n+ jd) for j # i otherwise p|(i — j) and |i — j| < k. Equating
powers of p on both sides of (2.1.1), we see that ord,(n + id) is even. From (2.1.1), we have

(2.1.2) n+id = a;x? = A; X7

with a; squarefree and P(a;) < k, P(A;) < kand (X;,[[,;,p) = 1for 0 <1 < k. Since ged(n, d) = 1,
we also have

(2.1.3) (A;,d) = (a;,d) = (X;,d) = (z;,d) =1 for 0 <i<k.

We call (ag—1,ax—2, -+ ,a1,a9) as the mirror image of (ag, a1, as, - ,ar_1).

Let d = 1. We recall that A(n,1,k) = A(n,k). Several particular cases of (2.1.1) have been
treated by many mathematicians. We refer to Dickson [5] for a history. It is a consequence of
some old diophantine results that (2.1.1) with k¥ = 3 is possible only when n = 1,2,48. Let k >
4. As mentioned in the beginning of Section 1.2, there are infinitely many pairs (n, k) such that
P(A(n,k)) < k. Then (2.1.1) is satisfied with P(y) < k for these infinitely many pairs. Therefore
we consider (2.1.1) with P(A(n,k)) > k. This assumption is satisfied when n > k by (1.1.3).
Developing on the earlier work of Erdés [11] and Rigge [55], it was shown by Erdds and Selfridge
[13] that (2.1.1) with n > k? and P(b) < k does not hold. Suppose P := P(A(n,k)) > k. Then
there is a unique ¢ with 0 < ¢ < k such that n+ i is divisible by P. Hence by (2.1.1), n+i is divisible
by P? showing that n + i > (k + 1)? giving n > k2. Thus it follows from the result of Erdds and
Selfridge [13] that (2.1.1) with P > k and P(b) < k does not hold. The assumption P(b) < k has
been relaxed to P(b) < k in Saradha [60].

Therefore we suppose that d > 1. Let £k = 3. Then it follows from infinitude of solutions of
Pell’s equation that there are infinitely many solutions of (2.1.1). Therefore we assume from now
onward that k& > 4. Fermat (see Mordell [42, p.21]) showed that there are no four squares in an
arithmetic progression. Euler proved a more general result that a product of four terms in arithmetic
progression can never be a square. We prove the following result in Section 10.9.

THEOREM 2.1.1. (Hirata-Kohno, Laishram, Shorey and Tijdeman, [25])
Equation (2.1.1) with 4 <k <109 and b =1 is not possible.

By Euler, Theorem 2.1.1 is valid when k¥ = 4. The case when k = 5 is due to Oblath [50].
Independently, Bennett, Bruin, Gyéry and Hajdu [1] proved that (2.1.1) with 6 < k < 11 does not
hold.

We know that (2.1.1) with £ = 4 and b = 6 has infinitely many solutions. A general conjecture
states that A is divisible by a prime > k to an odd power. In other words,

CONJECTURE 2.1.2. Equation (2.1.1) with P(b) < k implies that k = 4,b = 6.
9
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A weaker version of Conjecture 2.1.2 is the following conjecture due to Erdés.

CONJECTURE 2.1.3. Equation (2.1.1) with P(b) < k implies k is bounded by a computable
absolute constant.

Granville (unpublished) showed that Conjecture 2.1.3 follows from Oesterlé and Masser’s abc-
conjecture, see Laishram [27, Section 9.4] for a proof. Now we turn to results towards Conjectures
2.1.2 and 2.1.3.

2.2. Conjecture 2.1.2 with k fixed

Let k be fixed. As already stated, (2.1.1) with ¥ = 4 and b = 6 has infinitely many solutions.
On the other hand, (2.1.1) with £ = 4 and b # 6 does not hold. Therefore we consider (2.1.1) with
k > 5. By (2.1.2), the equation (2.1.1) yields a k-tuple (ag,a1,...,ax—1). We re-write (2.1.1) as

(2.2.1) m(m —d)---(m— (k—1)d) =by*, m=n+ (k—1)d.
The equation (2.2.1) is called the mirror image of (2.1.1). The corresponding k-tuple (ax—1, ar—2, ..., ag)
is called the mirror image of (ag,as,...,ax—1).

Let P(b) < k. In Chapter 10 (see Section 10.1), we prove the following result.

THEOREM 2.2.1. (Hirata-Kohno, Laishram, Shorey and Tijdeman [25])

FEquation (2.1.1) with P(b) < k and 5 < k < 100 implies that (ag,a1,...,ar—1) is among the
following tuples or their mirror images.

k=8:(23,1,56,7,2,1),(3,1,56,7,2,1,10);

k=9:(23,1,56,7,21,10);
k=14:(3,1,5,6,7,2,1,10,11,3,13,14,15,1);
k=24:(56,7,21,10,11,3,13,14,15,1,17,2,19, 5,21, 22, 23,6, 1, 26, 3, 7).

(2.2.2)

Theorem 2.2.1 with k& = 5 is due to Mukhopadhyay and Shorey [45]. A different proof is given in
Section 10.2. Initially, Bennett, Bruin, Gyéry, Hajdu [1] and Hirata-Kohno, Shorey (unpublished),
independently, proved Theorem 2.2.1 with k = 6 and (ag, a1, ....a5) # (1,2,3,1,5,6),(6,5,1,3,2,1).
Next Bennett, Bruin, Gyéry and Hajdu [1] removed the assumption on (ag,ay,...,as) in the above
result. They also showed, independently, that (2.1.1) with 7 < k < 11 and P(b) < 5 is not possible.
This is now a special case of Theorem 2.2.1.

Let P(b) = k. The case k =5 and P(b) = 5 in (2.1.1) is still open. For k& > 7, Hirata-Kohno,
Laishram, Shorey and Tijdeman [25] showed that

THEOREM 2.2.2. (Hirata-Kohno, Laishram, Shorey and Tijdeman [25])

Equation (2.1.1) with P(b) = k and 7 < k < 100 implies that (ag,a1,- - ,ar—1) S among the
following tuples or their mirror images.

k=17:(23,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10);

k=13:(3,1,5,6,7,2,1,10,11,3,13, 14, 15),
(1,5,6,7,2,1,10,11,3,13,14,15,1);
(2:23) k=19:(1,5,6,7,2,1,10,11,3,13,14,15,1,17,2, 19, 5,21, 22);
k=23:(5,6,7,2,1,10,11,3,13,14,15,1,17,2,19,5, 21, 22, 23,6, 1, 26, 3),
(6,7,2,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22, 23,6, 1, 26, 3, 7).

A proof of Theorem 2.2.2 is given in Chapter 10 (see Section 10.1).

2.3. Equation (2.1.1) with k as a variable

Let us now consider (2.1.1) with &k as a variable. When d is fixed, Marszalek [40] confirmed
Conjecture (2.1.3) by showing that k is bounded by a computable constant depending only on d.
This was refined by Shorey and Tijdeman [76] when w(d) is fixed. They showed that (2.1.1) implies
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that k is bounded by a computable number depending only on w(d) confirming Conjecture (2.1.3)
when w(d) is fixed. In fact they showed that (2.1.1) implies

2.3.1 2w(d) -
( ) “ log k&

which gives
(2.3.2) d > ke2loslosk

where ¢; > 0 and cp > 0 are absolute constants. Laishram [26] gave an explicit version of (2.3.1)
by showing

Hw(d)4*@ if d is odd
for w(d) > 12 whenever (2.1.1) holds. Further Laishram and Shorey [33] improved it to

{2.25w(d)4“’(d) if d is even

THEOREM 2.3.1. (Laishram and Shorey [33])
Equation (2.1.1) implies that

k< 2w(d)2@@.
A proof of Theorem 2.3.1 is given in Section 11.5.

2.4. Conjecture 2.1.2 with d fixed

Let d be fixed. We consider Conjecture 2.1.2. For a given value of d, we observe that (2.1.1)
with k € {4,5} can be solved via finding all the integral points on elliptic curves by MAGMA or
SIMATH as in [17] and [63]. Equation (2.1.1) was completely solved for k¥ > 4 and 1 < d < 104
in Saradha and Shorey [63]. For earlier results, see Saradha [59] and Filakovszky and Hajdu [17].
The following theorem confirms Conjecture 2.1.2 for d < 10'° and k > 6.

THEOREM 2.4.1. (Laishram and Shorey [33])

Equation (2.1.1) with k > 6 implies that
d > max(1010, gloglos k),

We give a proof of this theorem in Section 11.6.

2.5. Equation (2.1.1) with w(d) fixed

Let w(d) be fixed. Let b = 1. Saradha and Shorey [63] proved that (2.1.1) with w(d) = 1 does
not hold. In fact they proved it without the condition ged(n,d) = 1. Thus a product of four or more
terms in an arithmetic progression with common difference a prime power can never be a square.
We extend this to w(d) = 2 in the following result.

THEOREM 2.5.1. (Laishram and Shorey [33])
A product of eight or more terms in arithmetic progression with common difference d satisfying

w(d) = 2 is never a square.

A proof of Theorem 2.5.1 is given in Section 11.7. However we solve (2.1.1) with w(d) <5 and
b =1 completely when ged(n,d) = 1. We have

THEOREM 2.5.2. (Laishram and Shorey [33])
Equation (2.1.1) with b =1 and w(d) <5 does not hold.

A proof of this result is given in Section 11.3. Theorem 2.5.2 contains the case w(d) = 1 already
proved by Saradha and Shorey [63].

Let P(b) < k. As stated earlier, equation (2.1.1) with & = 6 is not possible by Bennett, Bruin,
Gyéry and Hajdu [1]. Also (2.1.1) with P(b) < k does not hold by Mukhopadhyay and Shorey [45]
for k = 5 and Hirata-Kohno, Laishram, Shorey and Tijdeman [25] for k¥ = 7. We have no results on



12 2. A SURVEY OF RESULTS ON SQUARES IN ARITHMETIC PROGRESSION

(2.1.1) with k € {5,7} and P(b) = k. Therefore we assume k > 8 in the next result. Let &; be the
set of tuples (ag,...,ar—_1) given by
k=8:(2,3,1,5,6,7,2,1),(3,1,5,6,7,2,1,10);
k=9:(2315,6721,10);
k=13:(3,1,5,6,7,2,1,10,11,3,13,14,15), (1,5,6,7,2,1,10, 11,3, 13,14, 15, 1)
and their mirror images. Further G5 be the set of tuples (ag, a1, . ..,ar—1) given by
k=14:(3,1,56,7,2,1,10,11,3,13,14,15,1);
k=19:(1,56,7,2,1,10,11,3,13,14,15,1,17,2,19, 5, 21, 22);
k=23:(56,72110,11,3,13,14,15,1,17,2,19,5,21,22,23,6,1, 26, 3),
(6,7,2,1,10,11,3,13,14,15,1,17,2,19,5, 21,22, 23,6, 1, 26,3, 7);
k=24:(56,7,2110,11,3,13,14,15,1,17,2,19,5,21, 22, 23,6, 1, 26, 3, 7)

and their mirror images. We have

THEOREM 2.5.3. (Laishram and Shorey [33])
(a) Fquation (2.1.1) with k > 8 and w(d) < 4 implies that either w(d) = 2,k = 8, (ag,a1,...,a7) €
{(3,1,5,6,7,2,1,10), (10,1,2,7,6,5,1,3)} orw(d) =3, (ag,a1,-..,ak—1) € &1 orw(d) =4, (ag, a1,
...,ak_l) € 6, UG6Gs.
(b) Equation (2.1.1) with w(d) € {5,6} and d even does not hold.

A proof of Theorem 2.5.3 is given in Section 11.4. Theorem 2.5.3 contains already proved case
w(d) = 1 where it has been shown in [63] for k£ > 29 and [45] for 4 < k < 29 that (2.1.1) implies
that either k = 4, (n,d,b,y) = (75,23,6,140) or k = 5, P(b) = k. We do not use this result in the
proof of Theorem 2.5.3.

2.6. Equation A(n,d, k) = by? with w(d) = 1 and at most two terms omitted

We now consider a equation more general than (6). Let £ > 5,t > k—2and y1 < y2 < -+ <y
be integers with 0 < ; < kfor 1 <i <t Thuste {kk—1,k—2},+ >k—3and vy =4—1 for
1<i<tift=%k Weputy =Fk—t Letb be a positive squarefree integer and we shall always
assume, unless otherwise specified, that P(b) < k. We consider the equation

(2.6.1) (n+md) - (n+vd) = by?

in positive integers n,d, k, b, y,t. We shall follow the above assumptions stated in this section when-
ever we refer to (2.6.1). When ¢ = 0, then (2.6.1) is the same as (2.1.1). Therefore we consider
v=1,2.
Let ¢ = 1. We may assume that v; = 0 and s = k — 1 otherwise this is the case ¢ = 0. It has
been shown in [61] that
6! 10!
— = (12)2, = = (720)?
s = (1%, = (120)
are the only squares that are products of k—1 distinct integers out of k consecutive integers confirming
a conjecture of Erdés and Selfridge [13]. This corresponds to the case b =1 and d =1 in (2.6.1). In
general, it has been proved in [61] that (2.6.1) with d = 1 and k > 4 implies that (b, k,n) = (2,4, 24)
under the necessary assumption that the left hand side of (2.6.1) is divisible by a prime > k. Further
it has been shown in [63, Theorem 4] and [46] that (2.1.1) with d > 1, ged(n,d) = 1,w(d) = 1 and
P(b) < k implies that & < 8.
Let ¢»p = 2. Let d = 1. Then it has been shown in [47, Corollary 3] that a product of k — 2
distinct terms out of k£ consecutive positive integers is a square only if it is given by
! ! 10! 11!
6 o 192 o

> == — 7902,
1.5 5.7 17 711 720
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and

3=, =6 gy =2, il — 0, oy =72,

100 _ 1902 100 _ 1gn2 10! _ 9402 10! _ apn2
5367 = 120%, 522 =180%, = = 240°, 1= = 3607,

21! _ 2 14! _ 2 14! _ 2
131.17.19 — 5040 v 2.3.4.11.13 5040 > 2.3.11.13 T 100807

These corresponds to (2.1.1) with b = 1. For the general case, we have

THEOREM 2.6.1.
Let v =2,d =1 and k > 5. Assume that the left hand side of (2.6.1) is divisible by a prime > k.

Then (2.6.1) is not valid unless k = 5,n € {45,46,47, 48,96, 239, 240, 241,
242,359,360} and k = 6, n € {45,240}.

We observe that n +k — 1 > pfr(k)ﬂ > (k + 1)? since the left hand side of (2.6.1) is divisible
by a prime > k. Thus n > k? and the assertion for k > 6 follows immediately from [47, Theorem
2]. Let k = 5. Then n > 7% — 4 = 45. Multiplying both sides of (2.1.1) by b and putting
X =b(n+72),Y = by, we get the elliptic curve

Y2 = X2 b1 + 93 — 292) X2+ 0% (11 — 12) (93 — 12) X.

For each choice of triplets (71,72, v3) with 0 < 1 < 2 < v3 < 4 and for each b € {1,2,3,6,5,10, 15,30},
we check for the integral points on the elliptic curve using MAGMA.. Observing that b|.X, b?|Y and
X = b(n + v2) > 45b, we find that all the solutions of (2.1.1) are given by those listed in the as-
sertion of Theorem 2.6.1. For instance, when (v1,72,73) = (0,2,4) and b = 3, we have the curve
Y? = X3 - 36X and the integral points with X > 45bis X = 294,Y = 5040. Then n+2 = % =98
giving n = 96 and we see that 96 - 98 - 100 = 12(4 x 7 x 10)? gives a solution.

Let d > 1. In Section 12.4, we prove the following result.

THEOREM 2.6.2. (Laishram and Shorey [34])

Let ¢ =2,k > 15. Assume that P(b) <k if k =17,19. Then (2.6.1) with w(d) =1 does not hold.

As an immediate consequence of Theorem 2.6.2, we see that (2.1.1) with w(d) =1, ¢ = 0,d ¢
n,k > 15, P(b) < prigy+1 if k= 17,19 and P(b) < pri)42 if £ > 19 does not hold. For the proof,
we delete the terms, if any, divisibly by primes {k, pru)+1} if & = 17,19 and {pr(r)41, Pr(k)+2}
otherwise. Then the assertion follows from Theorem 2.6.2.

The assumption ged(n,d) = 1 can be replaced by d 1 n in Theorem 2.6.2. Consider Theorem
2.6.2 with ged(n, d) > 1. Let p® =gcd(n,d), n' = o5 and d = p%. Then d’ > 1 since d t n. Now, by
dividing (p”)? on both sides of (2.6.1), we have
(2.6.2) (n' +md)--- (0 +yd) = pb'y?
where y' > 0 is an integer with P(b’) < k, P(V') < k when k = 17 and € € {0,1}. Since p|d’ and
ged(n/,d’) =1, we see that p{ (n' +y1d’) -+ (n' + d’) giving € = 0 and assertion follows.






CHAPTER 3

Results from prime number theory

In this chapter, we state the results from Prime Number Theory and related areas which we will
be using in the proofs in the subsequent chapters.

3.1. Estimates of some functions on primes and Stirling’s formula
We begin with the bounds for w(v) given by Rosser and Schoenfeld, see [58, p. 69-71].

LeEMMA 3.1.1. For v > 1, we have

(i) m(v) < lo;z/ (1 + ZIjgl/>

(1) m(v) > % for v > 67
logv — 35

(iii) [ »* < (2.826)"

p*<v

(iv) [ r < (2763)

p<v
(v) p; > ilogi for i > 2.

The following sharper estimates are due to Dusart [6, p.14; Prop 1.7]. See also [7, p.55], [8,
p.414].

LEMMA 3.1.2. Forv > 1, we have

@ 7)< 2 (1+ 1.2762> o)

<
~ logv log v

(i1) m(v) > Togv —1 =: b(v) for v > 5393
(iii) []p<2.71851".
p<v

The next lemma is on the estimate of > log p due to G. Robin [56, Theorem 6.

P<pi
LEMMA 3.1.3. Fori > 2, we have
Z logp > i(logi + loglogi — 1.076868).
P<pi

The following lemma is due to Ramaré and Rumely [54, Theorems 1, 2].

LEMMA 3.1.4. Let k € {3,4,5,7}, | be a positive integer such that ged(l, k) =1 and
Oz, k1) = Z log p.

p<z
p=l(mod k)

Then for xo < 10'°, we have

Z_(1—¢) for x > 101

k)
3.1.1 O(z, k1) >
( ) (@ ) { z (1 — 6¢(k)) for 1010 > 2 > x4

k) Vo
15

<

©-
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and
Z_(1+¢€) for x > 1010
3 ( =
3.1.2 Oz, k1) <
( ) (@ ) {qb(wk) (1 + Gj%)) for 1010 > 2 > x4

k 3 4 5 7
1.798158 | 1.780719 | 1.412480 | 1.105822
€’ 1 0.002238 | 0.002238 | 0.002785 | 0.003248

where € := e(k) and € = €'(k) are given by
€

In the next lemma, we derive estimates for n(z, k,l) and 7(2z,k,l) — w(z, k,l) from Lemma
3.1.4.

LEMMA 3.1.5. Let k € {3,4,5,7} and l be a positive integer such that gdc(l,k) = 1. Then we
have

x Co
1. > >
(3.1.3) m(x, k1) > og 7 (cl + log”Q“') for x > xg
and
(3.1.4) w(2x, k1) — w(x, k1) < c3 Togz for x > xg

where ¢,,¢,,¢5 and xo are given by

k 3 4 5 7

¢, | 0.488627 | 0.443688 | 0.22175 | 0.138114
¢, | 0.167712 | 0.145687 | 0.0727974 | 0.043768
¢y | 0.527456 | 0.6359475 | 0.3182006 | 0.235598
o | 25000 1000 2500 1500

PROOF. We have

Oz, k,1) = Z logp < w(x, k,1)logx

p<z
p=l(mod k)

so that
O(x, k1)
1. > -
(3.1.5) m(x, k1) > log z
Also,

0z, k,1) < w(g, k1) logg n (ﬂ'(x, k1) — w(g, k, 1)) logz = 7(x, k, 1) log z — w(g, k1) log 2
giving
w(z k1) logz > 0(x, k1) + Tr(g,k‘,l)log 2.

Now we use (3.1.5) for 3 to derive

0(%2 k,1)log2 1
(3.1.6) (k) > — (YR | 06k Dlog ).
logz T T log 5

Let k = 3,4,5,7 and x¢ := 29(k) be as given in the statement of the lemma. Since 2y < 50000 <
(@)2, we have from (3.1.1) that

O(x, k1) > - (1 - EQS\/ECE)) for x > x,
0

(3.1.7) 0 k) > x 1 ep(k) for x >
2T %m LV o
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This with (3.1.6) implies (3.1.3). Further we also have from (3.1.2) that

0(2x,k,1) < % <1 + ij%) for x > xg.

This with (3.1.7), (3.1.6) and
02z, k,1) — 0(x, k,1) > (7 (22, k,1) — w(x, k, 1)) logx

implies
x 2 ed(k) 1 e (k) )
w2z, k1) — w(x, k1) < 1+ — 1-—
@) =wtak) <y (50 + S 50— 02
_ = 1 +(1+\/§)6 <o ”
logz \ o(k) VTo log x
for « > xo, giving (3.1.4). O
The next lemma gives a lower bound for ord,(k — 1)!.
LEMMA 3.1.6. For a prime p < k, we have
k—p log(k—1)
d,(k—1)! > — )
ord,( )z p—1 log p
PRrROOF. Let p" < k —1 < p"*!. Then we have
k—1 k—1
ord,(k— 1) = |—— |+ + [ } .
ok 1) [ P ] p"
Now, we note that [ } > k1 Pij.l =% _ 1 fors>1. Hence
P p P P
k 1 k 1 k
dp(k — 1)1 > AR | - )—h=— %
. Z( ) o1 ph) p—1 p—1ph
Since p" <k —1 < k < p"*!, we have h < % and h < p, which we use in the estimate for
ord,((k — 1)!) above to get the lemma. O

We end this chapter with a lemma on Stirling’s formula, see Robbins [57].
LEMMA 3.1.7. For a positive integer v, we have

_ 1 _ 1
27y e Ve < vl < V2mv e VvV eTer
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extensions of Sylvester’s theorem






CHAPTER 4

Refinement of Sylvester’s theorem on the number of prime
divisors in a product of consecutive integers: Proof of
Theorems 1.2.1 and 1.2.4

In this chapter we prove Theorems 1.2.1 and 1.2.4. For x > k, we write
A=A (z, k)= Az —k+1,k).
4.1. An Alternative Formulation
As remarked in Section 1.2, we prove Theorem 1.2.1 for k& > 19 and Theorem 1.2.4 for k£ > 10.
Further we derive these two theorems from the following more general result.

THEOREM 4.1.1.

(a) Let k > 19, x > 2k and (x,k) ¢ Sz where S3 is the union of all sets [x,k,h] such that
[ — k + 1,k, h| belongs to Sy given by (1.2.6). Let fi < fo < --- < fu be all the integers in [0, k)
satisfying

(4.1.1) Pl = f1) - (o = fy) < .
Then
(4.1.2) nw<k-— [iw(l{)] + 1.

(b) Let k> 10, z > 22k — 1. Assume (4.1.1). Then we have
(4.1.3) w<k— M)
where

3

(4.1.4) M (k) = max(n(2k) — n(k), Lﬂ'(k)} —1).

Thus, under the assumptions of the theorem, we see that the number of terms in A’ = z(x —
1)---(x — k+1) divisible by a prime > k is at least k — p. Since each prime > k can divide at most
one term, there are at least k — p primes > k dividing A’. Thus

w(A") > (k) +k— p.
Putting z = n + k — 1, we see that A’ = A and hence
wA)>7wk)+k—p

and the Theorems 1.2.1 for k£ > 19 and Theorem 1.2.4 for k > 10 follow from (4.1.2) and (4.1.3),
respectively.

We give a sketch of the proof of Theorem 4.1.1. We first show that it is enough to prove Theorem
4.1.1 (a) for k which are primes and Theorem 4.1.1 (b) for k such that 2k —1 is prime. The estimates
of 7 function given in Lemma 3.1.2 have been applied to count the number of terms in A’(x, k)
which are primes and the number of terms of the form ap with 2 < a < 6 and p > k. The latter
contribution is crucial for keeping the estimates well under computational range. It has been applied
in the interval 2k < x < 7k. In fact this interval has been partitioned into several subintervals and it
has been applied to each of those subintervals. This leads to sharper estimates. See Lemmas 4.2.6,
4.2.7, 4.2.9. For covering the range = > 7k, the ideas of Erdés [10] have been applied, see Lemmas
4.2.3,4.2.5,4.2.8.
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22 4. PROOF OF THEOREMS 1.2.1 AND 1.2.4

4.2. Lemmas

LEMMA 4.2.1. We have
3r(k)] -1 if k N
(4.2.1) M(k) = [3m(k) i ken
m(2k) — w(k) otherwise
where K, is given by
&, = {19,20,47,48,73,74,83,89, 107,108, 109, 110,111, 112,113, 114,

4.2.2
(4.2.2) 115,116, 173,199, 200, 277, 278, 281, 282, 283, 284, 285, 293}.

PrOOF. By Lemma 3.1.2 (i) and (ii), we have

3 2k 7 k 1.2762
2k) —mw(k) — |-m(k 1> - = 1 1
m(2k) — (k) [47T( )} = log(2k) —1 4logk ( + log k ) +
for £ > 2697. The right hand side of the above inequality is an increasing function of k and it
is non-negative at k = 2697. Hence m(2k) — w(k) > [3m(k)] — 1 for k > 2697 thereby giving

M (k) = m(2k) — w(k) for k > 2697. For k < 2697, we check that (4.2.1) is valid. O

LEMMA 4.2.2. (i) Let k' < k" be consecutive primes. Suppose Theorem 4.1.1 (a) holds at k'.
Then it holds for all k with k' < k < k”.
(ii) Let ki < ko be such that 2k1 — 1 and 2ke — 1 are consecutive primes. Suppose Theorem 4.1.1
(b) holds at ky. Then Theorem 4.1.1 (b) holds for all k with ky <k < ko, k ¢ R,.

PRrROOF. For the proof of (4.1.2) and (4.1.3), it suffices to show that

(4.2.3) W(A") > Bw(k)] -1
and

(4.2.4) W(A") > M(k),
respectively.

Suppose that Theorem 4.1.1 (a) holds at &’ for k¥’ prime. Let k as in the statement of the
Lemma and x > 2k. Then z > 2k; and A’ =z(z —1)---(z — K + 1)(z — k') --- (x — k+1). Thus

W(A) > Wia—1)- (z - K +1)) > Bw(/«)} - Bw(k)} Y

We now prove (i7). Assume that Theorem 4.1.1 (b) holds at k1. Let &k be as in the statement of the
lemma. Further let z > 22k —1 > 22k, — 1. Since k ¢ &,, we have M (k) = m(2k) — (k) by Lemma
4.2.1. Also w(2k1) = 7(2k1 — 1) = w(2k — 1) = 7(2k). Therefore

)
WA > W(z(z— 1) (x — ki + 1)) > M(ky) > 7(2k1) — w(k1) > 7(2k) — m(k) = M (k).
O

For the next lemma, we need some notations. Let Py > 0 and v > 0 with g1, g2,---g, be all
the integers in [0, k) such that each of z — g; with 1 < ¢ < v is divisible by a prime exceeding Fj.
Further we write

(4.2.5) (—g1) - (x—g)=GH
with ged(G, H) = 1, ged(H, H p) = 1. Then we have

p<Po

3
LEMMA 4.2.3. If x < Py, then

(4.2.6) ('z) < (2.83)P0+\/§.’L‘V G H pordp(k!)
p>FPo
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PRrROOF. We observe that

()£ (2] 15212

Each of the summand is at most 1 if p¥ < z and 0 otherwise. Therefore ord, (i) < s where
p* <z < p*tt. Thus

(4.2.7) () < pf < g,

Therefore

(4.2.8) IT 7@ < I »*< [] » H H p-
p<Po g;fg PSPo 03 p<as

From Lemma 3.1.1 (iii) with v = \/z and v = Py, we get

(4.2.9) H [He]]p- <83V

1 1
p<z 2 p<zi p<zb

eIl eIl e <@s3)

p<Py 1 1
pSP()z pSPQB

and

3 1
respectively. Since x < Py, we have P} > 271 for | > 2 so that the latter inequality implies

(4.2.10) 11 H H P . < (2.83)0

PSR pcad p<at

Combining (4.2.8), (4.2.9) and (4.2.10), we get
(4.2.11) II pdr (i) < (2.83)P0+VE,

p<Fop
By (4.2.5), we have

(4.2.12) I1 o (3) = J;—1_[91) ifd—g;)_

p>Po

Further we observe that
(4.2.13) (x—g1) - (x—gv) <a".
Finally, we combine (4.2.11), (4.2.12) and (4.2.13) to conclude (4.2.6). O

Lemma 4.2.3 with Py = k implies the following result immediately, see Saradha and Shorey [61,
Lemma 3].

COROLLARY 4.2.4. Let z < k?. Assume that (4.1.1) holds. Then
(i) < (2.83)FFVEGR—m,

LEMMA 4.2.5. Assume (4.1.1) and
(4.2.14) >k — M(k)+1
where M(k) is given by (4.1.4). Then we have
(i) @ < k2 fork>T71
(ii) z < k% fork>25
(iii) x < k? for k > 13
(iv) = < ki for k > 10.
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PROOF. Since (z — f1) -+ (z — f,) divides (7)k!, we observe from (4.1.1) and (4.2.7) that

(4.2.15) @—f)-@-f)< ] po () | k1 < [I= | =a"®k

p<k p<k
Also

k H
(= )@= )2 o= ) 2 ks (1 D)
Comparing this with (4.2.15), we get

k H
(4.2.16) k! > grm k) (1 - > :
X

Let £ > 71. We assume that x > k3 and we shall arrive at a contradiction. From (4.2.16), we
have

. 1 \*
4.2.17 k> k3 mm®) (1 - )
( ) N
and since p < k,
3 1\"
4.2.18 k! > k2 (k) (1 — > :
( ) Vk
We use (4.2.18), (4.2.14), (4.2.1) and Lemmas 3.1.2 (i) and 3.1.7 to derive for k > 294 that
1 3 1.2762 1
1> 2.718k2 ez I+ T2 ) (1 — —)
VEk
since exp(M 1%2) > 1. The right hand side of above inequality is an increasing function

of k and it is not valid at k¥ = 294. Thus k < 293. Further we check that (4.2.18) is not valid for
71 < k < 293 except at k = 71,73 by using (4.2.14) with y =k — M (k) + 1 and the exact values of
k! and M(k). Let k = 71,73. We check that (4.2.17) is not satisfied if (4.2.14) holds with equality
sign. Thus we may suppose that (4.2.14) holds with strict inequality. Then we find that (4.2.18)
does not hold. This proves (i). For the proofs of (11) (iii) and (iv), we may assume that z > k% for
25 < k<70, z>k?for13<k<24and x> kT for k = 10, 11, 12, respectively, and arrive at a
contradiction. O

The next four lemmas show that under the hypothesis of Theorem 4.1.1, k is bounded. Further
we show that Theorem 4.1.1 (a) is valid for primes k if # < 23k — 1 and Theorem 4.1.1 (b) is valid
for all £ € K where

(4.2.19) R =R, U{k|k > 10 and 2k — 1 is a prime}.

LEMMA 4.2.6. (a) Let k > 19 be a prime, 2k < x < 2k — 1 and (z,k) ¢ S3. Then Theorem
4.1.1(a) is valid.

(b) Let k > 10,2k — 1 < 2 < 3k. Then Theorem 4.1.1(b) holds for all k € K.

712

PrOOF. Let 2k < z < 3k. We observe that every prime p with k <z — k < p <z is a term of
A’. Since k > m—;k, we also see that 2p is a term in A’ for every prime p with k < p < §. Thus

(4.2.20) WA >na(z)—n(z—k)+7 (g) — (k).

The contribution of 7(§) — 7(k) in the above expression is necessary to get an upper bound for &
which is not very large.

(a) Let 2k < z < 29k — 1 with (z,k) ¢ S3. We will show that (4.2.3) holds. Let (2 +t;)k <z <
(2 + t2)k with 0 < t1 <ty <landty—t < i. Then we have from (4.2.20) that

W(A") > 7n(2k + t1k) — 7(k + tok) + 7(k + %) — (k).
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Hence it is enough to prove

t 3
(4.2.21) (24 t1)k) — (1 +t2)k) + 7 ((1 + 51)]9) —7(k) — {4 ﬂ(k)] +1>0.
Using Lemma 3.1.2 (i), (ii) and
gy _ | loa(y) . log¥ _  1+log()
= 11 =
log Z log Z log Z — 1 logZ -1~

we see that the left hand side of (4.2.21) is at least

2
Zb (2ft1k> —a((1+t2)k) — g a(k) +1
(4.2.22) i=1 !
k

= log@ + 1)k)? {f(k"tl,tz) —g(k,t1,t2) — Z!](k’,tl,O)} +1

for k > 5393, where

2
Pl ) = (1561~ 1 log(2 + 1)k 4

=1

log(341L) 24+¢,\ 1.2762log(3t)
ktyte)=(1+to) [1+ — 2 )(1.2762+1 ( ) + sl
glk.t1,ta)=(1+2) ( log((1 + t2)k) ®\+6 log((1 + t2)k)

(2+t1)(1+log1) 1+logi
i ( 10g((2+t1)k/i)—1)

and

Then we have

. 2
ke =0 =)= 3 (550 (g )

i=1

We write

1 1
1.5t —to + Z = 0.5t1 — (tQ — tl) + 1

to observe that the left hand side is positive unless (t1,¢2) = (0, 1) and we shall always assume that
(t1,t2) # (0, 7).

Let ko = ko(t1,t2) be such that kf'(k,t1,t2) is positive at kq. Since kf’(k,t1,t2) is an increasing
function of k, we see that f(k,t1,t2) is also an increasing function of k for k > ko. Also g(k,t1,t2)
is a decreasing function of k. Hence (4.2.22) is an increasing function of k for k > ko. Let k1 =
k1(t1,t2) > ko be such that (4.2.22) is non-negative at ki. Then (4.2.21) is valid for k > k;. For
k < ki1, we check inequality (4.2.21) by using the exact values of m(r). Again for k not satisfying
(4.2.21), we take x = 2k + r with 1k < r < t2k and check that the right hand side of (4.2.20) is at
least the right hand side of (4.2.3).

Let 2k < x < 35k. Then t; = 0,t3 = 5; and we find k; = 5393 by (4.2.22). For k < 5393 and k
prime, we check that (4.2.21) holds except at the following values of k:

19,47,71,73,83,89,103, 107, 109, 113, 151, 167, 173, 191, 193, 197,
199,269, 271, 277, 281, 283, 293, 449, 463, 467, 491, 503, 683, 709.

Thus (4.2.3) is valid for all primes k except at above values of k. For these values of k, we take
z =2k +r with 0 <7 < £ and show that the right hand side of (4.2.20) is at least the right hand
side of (4.2.3) except at (x,k) ¢ Ss.

We divide the interval [33k, 22k) into following subintervals

49 25 25 13 139 9 19 19 29
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We find k; = 5393 for each of these intervals. For k£ < 5393 and k prime, we check that (4.2.21)
holds except at following values of k for the intervals:

49 25 ) 19,47,67,71,73,79,83,103,107, 109, 113, 131, 151, 167, 181, 199,
1247127 ) © 211,263,271, 277, 293, 467, 683
b k:) {19, 71,83, 101, 103, 107, 113, 179, 181, 199, 257, 281, 283, 467, 633
13
B ,6k) {19737747,61,73,89,113, 197
9
{ =k, 4k> {19,43,61,67,83,89,113, 139,193,197, 199,257, 281, 283
{9]{ 19k) 19,23, 31, 43,47, 61, 79,83, 109, 113, 139, 151, 167, 193, 197, 199,
173 239, 283, 359

and there are no exceptions for the subinterval [wk, fg k) Now we apply similar arguments as in
the case 2k <z < %k to each of the above subintervals to complete the proof.

For the proof of (b), we divide %k — 1 < & < 3k into subintervals (%k -1, %k% [gk, %k),
[%k, %k) and [% k, 3k) We apply the arguments of (a) to each of these subintervals to conclude
that the right hand side of (4.2.20) is at least the right hand side of (4.2.4). Infact we have the

inequality

(4.2.23) w(2+ 0)k) (1 + 82)R) + (1 + 2

analogous to that of (4.2.21). As in (a), using (4.2.1), we derive that k; = 5393 in each of these
intervals. For k < 5393 and k € &, we check that (4.2.23) hold except at the following values of k
for the intervals:
29 51.).
%%2]{714:21;),2 k{)12 {5524,55()55,7507}7 73,79,142},
2 g i) » 94y 99, (U1,
[k, 1Lk): {22,27}
[Lk,3k): {10,12,19,21,22,24,37,54,55,57,59, 70,91, 100, 121, 142, 159}.
Now we proceed as in (a) to get the required result. (Il

)k) = m(k) = M(k) > 0

LEMMA 4.2.7. Let k € R and 3k < x < Tk. Then Theorem 4.1.1 (b) is valid.
We prove a stronger result that Theorem 4.1.1 (b) holds for all k£ > 29000 and for k € R.

PROOF. Let 3k < x < Tk. We show that (4.2.4) holds. Let (s + t1)k < z < (s + t2)k with
integers 3 < s < 6 and t1,t5 € {0, i, %, %, 1} such that to — t; = %. Then A’ contains a term equal
w;k <p < 7 for each ¢ with 1 <7 < s and a term equal to sp for k < p < £. Therefore

to ip with

(4.2.24) W(A") > le <7r (%) — <‘”” - k)) t (g) — (k).

Since x > (s +t1)k and ¢ — k < (s — 1 4 t2)k, we observe from (4.2.24) that

5 55 (n () - () o (2)

Hence it is enough to show

(4.2.25) i <7r (S—:tlk> — (‘HZH?/;)) + (Sttl k) — (k) — M(k) > 0.

i=1
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Using (4.2.1) and Lemma 3.1.2 (i), (ii), we see that the left hand side of (4.2.25) is at least
s 1
-1 t
( <S+t1k> (3 +t2k>> +b (“; 1k> — a(2K)
(4.2.26) =t

S
(1og S—|—t1 {F k S t17t2 ZG ]f S tl,tQ, ) G(k,s,t1,172)}

for k > 5393, where

F(k, st ts) = <Z <1+t1 tQ) +tsl—1) (log(s + t1)k) +

=1
(s+t1) 1+logz) <1 1+logi )
P log((s +t1)k/i) — 1
and
10 (S+t1)i
. S—].-‘r-tg g(sfl+t2
G(k,s,t1,t = — 14—
( y Sy U1, 271) < i ) + log(sil;r&k)
(s+ta)i
1.2762 + lo ( (s + 1)1 ) L27621l0g ({72
‘ B\s =1+t log (*=LHzF)
Then

s—1 s . 2
, . 1+t —ts 7,;1_ (S+t1) 1+10g7,
HE s tt) = (Z( ) 1) 2 \oa(Ge i —1)

i=1

If s = 2, we note that F' and G are functions similar to f and g appearing in Lemma 4.2.6. As
in Lemma 4.2.6, we find K := K;(s,t1,t2) such that (4.2.26) is non negative at k = K; and it is
increasing for k¥ > K;. Hence (4.2.25) is valid for k > K;. For k < K;, we check inequality (4.2.25)
by using the exact values of 7 function in (4.2.25) for k with 2k — 1 prime or primes k given by
(4.2.2). Again for k not satisfying (4.2.25), we take © = sk + r with t1k < r < t2k and check that
the right hand side of (4.2.24) is at least the right hand side of (4.2.4).

Let 3k <z < %k‘. Here t; = 0, to = i and and we find K; = 29000. We check that (4.2.25)
holds for 3 < k < 29000 except at k = 10,12, 19, 22,40, 42, 52, 55, 57,100, 101, 126,127, 142. For
these values of k, putting x = 3k +r with 0 < r < %k , we show that the right hand side of (4.2.24)
is at least the right hand side of (4.2.4). Hence the assertion follows in 3k < z < %k. For x > %k,
we apply similar arguments to intervals (s +t1)k < x < (s + ta)k with integers 3 < s < 6 and

t1,t9 € {0, 411, é, ;u 1} such that to —t; = 7. We find K7 = 5393 for each of these intervals except for
6k < z < 22k where K; = 5500. O

In view of Lemmas 4.2.6 and 4.2.7, it remains to prove Theorem 4.1.1 for x > 7k which we
assume. Further we may also suppose (4.2.14). Otherwise (4.1.3) follows. Now we derive from
Lemma 4.2.5 that < k%. On the other hand, we prove x > k1. This is a contradiction. We split
the proof of z > k1 in the following two lemmas.

LEMMA 4.2.8. Let k € R. Assume (4.1.1), (4.2.14) with x > Tk. Then x > k2.

PROOF. We prove it by contradiction. We assume (4.1.1), (4.2.14) and 7k < = < k?. Then
k > 50. Further by Corollary 4.2.4 and () > (7:), we have

(4.2.27) (7:) < (2.83)F k1 3 (M(K)-1)
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since z < k2. We observe from Lemma 3.1.7 that

(7k‘> . (7k‘)' S \/mexp—ﬂc (7k)7kexp84k71r+1
k k!(6k)! \/ﬂexp*kkkexpﬁ mexpféik(fjk)(skexpﬁ
0.4309

> exp®HTT 7 (17.65)F

Vk

Combining this with (4.2.27), we get

1 7 3,
422 1 log(0.4300%) 4+ ——— — "\ (17.65)%(2.83)~k—*1 p-3M K
( 8) >exp<og(0 309 )+84k+1 72k>( 7.65)"(2.83) 2
Using (4.2.1), Lemma 1(i), (ii) and eXp(log(O'igogk) + 84k12+k - %) > 1, we derive for k > 5393
that

1> 6.2367(2.83)* * p~ w1+ K25+ o
R S
2logk — 2

2762

) (2.83)*k’%k*ﬁ<1+tg%

> 6.2367 exp <2

1.

> 27.95(2.83)F 1 wem SR . (k)

since exp(glog%) > 1 for k > 3. We see that h(k) is an increasing function of k£ and h(k) > 1 at

k = 5393. Therefore k < 5393. By using the exact values of M (k), we now check that (4.2.28) does
not hold for 50 < k < 5393 and k € &. O

LEMMA 4.2.9. Let k € 8. If (4.1.1) and (4.2.14) hold and x > k?, then z > k1.

PROOF. We prove by contradiction. Assume (4.1.1), (4.2.14) and k? < z < k3. We derive from
Lemma 4.2.5 that £ < 70. Let k£ = 10,11,12,13. By Lemmas 4.2.5, 4.2.7 and 4.2.8, we can take
max(7k, k3) < z < k7 for k = 10,11,12 and max(7k, k2) < x < k2 for k = 13. For these values of

z and k, we find that
0 T z—k
W (A > Z) = >
(A)_;l:(w(i) 77< : ))_M(k)
contradicting (4.2.14).

Therefore we assume that k > 14. Let k2 < z < k1s. By Lemma 4.2.7 and 4.2.8, we can take
x > max(7k, k%) so that we can assume k£ > 32. Then

(i) . (max(ﬂ; Uci’b)

where [v]| denotes the least integer > v. From (4.2.7), we have ord,((})) < [log x] < [25 log k} and

log p 16 Tog p
hence

w(k) o (k) o
(i) < H pi[% ok IZ] phn < H pi[%g Tog pk,i] 5 (M(k)—1)
i=1

=1

by (4.2.14). Combining the above estimates for (i), we get

3 (k) gk
max(7k, U{;SD> [%11005 ;] 25 (M (k)—1)
< Pi g k16
(" 1

which is not possible for 32 < k£ < 70. By similar arguments, we arrive at a contradiction for
max(7k, kT6) < z < k16 in 23 < k < 70, max(7k, k1) < 2 < k16 in 17 < k < 70 and max(7k, k16 ) <
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r<kiinl4<k<T70 except at k = 16. Let k = 16 and max(7k, k%) <z< k%. Then we observe

that
W (A) > i <7r (%) o (x - 16)) > 5 = M(16)

i=1

contradicting (4.2.14).

Now we consider = > k%. We observe that k7 > Tk since k > 14. Further we derive from
Lemma 4.2.5 that k£ < 24. We apply similar arguments for 14 < k < 24 as above to arrive at a
contradiction in the intervals k7 <zr< k% except at k = 16, k¥ <z < k15 and kis <z < k2
The case k = 16 and ki <z < k¥ is excluded as earlier. O

4.3. Proof of Theorem 4.1.1

Suppose that the hypothesis of Theorem 4.1.1 (b) is valid and k& > 10. By Lemmas 4.2.6 (b),
4.2.7, 4.2.8 and 4.2.9, we see that Theorem 4.1.1 (b) is valid for all k¥ € & Thus (4.2.4) holds for
all k € R and = > %k — 1. Let k ¢ 8 and k; < k be the largest integer with 2k; — 1 prime. Then
ki >10. For x > 2k — 1 > 29k; — 1, we see that (4.2.4) is valid at (2, k). By Lemma 4.2.2 (i),
(4.2.4) is valid at (z, k) too. Hence Theorem 4.1.1 (b) is valid for all k.

Suppose that the hypothesis of Theorem 4.1.1 are satisfied and &k > 19. We have from Lemma
4.2.6 (a) that (4.2.3) holds for (z,k) with k prime, < 22k — 1 and (z,k) ¢ S3. By Theorem
4.1.1(b), (4.2.4) and hence (4.2.3) is valid for all k and = > 22k — 1. Thus (4.2.3) holds for (z, k)
with k prime and (z,k) ¢ S3. Let k be a composite number and &k’ < k be the greatest prime. Then
k' > 19. Suppose (x,k’') ¢ S3. Then (4.2.3) is valid at (z,%’) and hence valid at (x, k) by Lemma
4.2.2 (7). Suppose now that (z,k’) € S3. Then we check the validity of (4.2.3) at (x,k). We see
that (4.2.3) does not hold only if (z,k) € S3. We explain this with two examples. Let k = 20.
Then k' = 19. Since (42,19) € S3, we check the validity of (4.2.3) at (42,20) which is true. Hence
(42,20) ¢ S3. Again let k = 72. Then k' = 71. Since (145,71) € S3, we check the validity of (4.2.3)
at (145,72) and see that (4.2.3) does not hold at (145, 72) which is an element of S3. This completes
the proof. O






CHAPTER 5

Grimm’s Conjecture for consecutive integers:
Proof of Theorem 1.2.6

In this chapter, we prove Theorem 1.2.6.

5.1. Introduction

We recall that Ny = 8.5 x 108, For the proof of Theorem 1.2.6, it suffices to prove the following.
THEOREM 5.1.1.
Grimm’s Conjecture is valid whenn =py +1 and k = k(N) = py41 —pn — 1 for L < N < Ny.
For the proof of Theorem 5.1.1, we verify the conjecture of Cramer whenever N < Ny. We have
LEMMA 5.1.2. Let k(N) = pny1—pn — 1. Then

(5.1.1) k(N) < (logpn)? for N < No.

We observe that (5.1.1) can be sharpened for several values of N and this is important for the
value of Ny in Theorem 1.2.6. We also apply the following result of Phillip Hall [22] on distinct
representations.

LEMMA 5.1.3. A family § = {S; : i € I} of finite subsets of a set E possesses a system of
distinct representatives if and only if for every finite subset J if I, the number of elements in J does
not exceed the number of elements of in the set UjcS;.

5.2. Proof of Theorem 5.1.1

Let 1< N < Ny. Weput n =py +1and k = k(N) =pyi1 —pnv — 1. We check that Theorem
5.1.1 is valid for N < 9. Thus we may suppose that 10 < N < Ny. Assume that the assertion of
Theorem 5.1.1 is not valid. Now we apply Lemma 5.1.3. Since Grimm’s conjecture is not valid, we
derive from Lemma 5.1.3 that there exists t > 0 and integers py < ng <n; < - - <ng <n+k=
PN+1 with
(5.2.1) w(nony ---ng) <t

Let t = t(N) be minimal in the above assertion. Then P(n;) < k for 0 < ¢ <t and (5.2.1) holds with
equality sign. We apply a fundamental argument of Sylvester and Erdés. For every prime divisor p
of ngny - --ny, we take an n;, such that p does not appear to a higher power in the factorisation of
any element of {ng,n1,--- ,n:} =: S. By deleting all n;, with p dividing ngni ---n; in S, we are left
with at least one n;, € S. If p” is the highest power of a prime p dividing n;,, then p” also divides
n;, and hence it divides |n;, —n;,| < k. Therefore

(5.2.2) PN < ng, < k'
since w(n;,) < t. By Lemma 5.1.2, we get

logpn
loglog p
We see that the left hand side of (5.2.3) is an increasing function of N. For i > 2, let N; be the
largest integer N such that

(5.2.3) 2t(N).

log py

— < 2.
loglog pn
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Then we calculate

(5.2.4) Ny =727, N3 = 1514619, N, = 8579289335.
Let A, and M, be defined by
Ay = H p%, Moy = m(Agr_1).

pr<2r—1<pat1l
Then

LEMMA 5.2.1. Suppose that Theorem 5.1.1 is not valid at N with N > Ma._1. Then k(N) >
2r —1.

PROOF. Assume that k(N) = py4+1 —pn —1 < 2r — 1. Since Theorem 5.1.1 is not valid, (5.2.1)
holds for some ¢ and hence there exists a term 7 such that

py <n < Ay,
This is a contradiction since N > Moy, _. O

We compute Mo, 1 for some values of r :
My, = 368, M3 = 3022, M;5 = 30785, M7 = 58083, M19 = 803484,
Moy = Moz = 12787622, Moy = 250791570.
Let
Sy ={pn +i:Plpy +1i) <k, 1<i<k}

and put t' = t/(N) = |Sn|. We see that ¢’ > ¢ + 1. For the proof of Theorem 5.1.1, it suffices to
find distinct prime divisors of the elements of Sy since a prime > k divides at most one py + ¢ with
1<i<k.

First we consider N < Njy. Let t = 1. Then there are 1 < j <4 < k and a prime p such that
pn +i=p* and py + j = p®. This gives

pv+j=p" <P~ ) =i—j<k=pyny1—py -1

implying 2pny < py+1—1, a contradiction. Let t = 2. Then (5.2.2) holds only when N = 30. We have
Sso = {120,121,125,126} and we choose 3,11,5 and 7 as distinct prime divisors of 120,121,125 and
126, respectively. Therefore the assertion of Theorem 5.1.1 holds for N = 30. Thus t > 3 implying
t' > t+1> 4. Now, by calculating ¢, we see that N = 30,99, 217,263, 327, 367, 457,522,650 and
we verify the assertion of Theorem 5.1.1 as above in each of these values of N.

Hence N > N,. Therefore ¢ > 3 by the definition of Ny and thus ¢ > 4. Next we consider
Ny < N < N3. We divide this interval into the following subintervals:

Iy = (Na, Mus), i3 = (M3, Mys], I1s = (Mas, Mi7], Iir = (Ma7, Myo], I1g = (Mg, N3].
By Lemma 5.2.1, we restrict to those N for which k(N) > 2r—1 whenever N € I5,_; with 6 < r < 10.
Let t = 3. By (5.2.2) and ¢ > 4, we find that N is one of the following;:

757,1183,1229,1315, 1409, 1831, 1879, 2225, 2321, 2700, 2788, 2810, 3302, 3385,

3427,3562, 3644, 3732, 3793, 3795, 3861, 4009, 4231, 4260, 4522, 4754, 5349, 5949,

6104, 6880, 9663, 9872, 10229, 10236, 11214, 11684, 12542, 14357, 14862, 15783,

16879, 17006, 17625, 18266, 19026, 19724, 23283, 23918, 25248, 28593, 31545, 31592,

33608, 34215, 38590, 40933, 44903, 47350, 66762, 104071, 118505, 126172, 141334, 149689.
Let P(Sy) = {P(pn +1) : py + ¢ € Sy}. For the proof of Theorem 5.1.1, we may suppose that
(5.2.5) |P(Sn)| < [SN].
In view of (5.2.5), all above possibilities for N other than the following are excluded:

1409, 1831, 2225, 2788, 3302, 3385, 3562, 3644, 4522,

(5.2.6) 14862, 16879, 17006, 23283, 28593, 34215, 104071.
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Let N be given by (5.2.6). We check that |P(Sy)| = |Sn| — 1. Let (¢,5) with ¢ < j be the unique
pair satisfying P(pn +i) = P(pn +j). We check that w(py +17) > 2. Now we take P, = P(py +p) if
u # i and P; to be the least prime divisor of px +¢. Thus all the possibilities in (5.2.6) are excluded.
Therefore t > 4 implying ¢’ > 5. If py < k%, then N is already excluded. Consequently we suppose
that py > k3. Now we calculate ¢’ to find that N is one of the following:

11159, 19213, 30765, 31382, 40026, 42673, 51943, 57626, 65274, 65320, 80413,
81426, 88602, 106286, 184968, 189747, 192426, 212218, 245862, 256263, 261491,
271743, 278832, 286090, 325098, 327539, 405705, 415069, 435081, 484897, 491237,
495297, 524270, 528858, 562831, 566214, 569279, 629489, 631696, 822210, 870819,
894189, 938452, 1036812, 1150497, 1178800, 1319945, 1394268, 1409075.

By (5.2.5), it suffices to restrict N to
57626, 65320, 80413, 106286, 271743, 415069, 822210.

These cases are excluded as in (5.2.6).
Thus we may assume that N > N3. Then ¢t > 4 by the definition of N3 and ¢’ > 5. We divide
the interval (N3, Np| into the following subintervals:

Jig = (N3, Mas], Joz = (Ma3, No].

By Lemma 5.2.1, we restrict to those N for which k(N) > 2r — 1 whenever N € Jo,_1, 7 = 10, 12.
By calculating ¢/, we find that N is one of the following:

1515930, 1539264, 1576501, 1664928, 2053917, 2074051, 2219883, 2324140,

2341680, 2342711, 2386432, 2775456, 2886673, 3237613, 3695514, 5687203,

6169832, 6443469, 6860556, 7490660, 7757686, 8720333, 9558616, 10247124,

10600736, 10655462, 11274670, 11645754, 12672264, 13377906, 14079145,

14289335, 18339279, 24356055, 28244961, 33772762, 42211295, 53468932,

64955634, 110678632, 118374763, 231921327, 264993166, 398367036.

By (5.2.5), it suffices to consider only the following values of N :
1539264, 2053917, 2775456, 12672264, 110678632
which are excluded as in (5.2.6). This completes the proof of Theorem 5.1.1. g






CHAPTER 6

Refinement of Sylvester’s theorem on the greatest prime
divisor of a product of consecutive integers: Proof of
Theorems 1.3.1, 1.3.3 and Corollary 1.3.2

In this chapter we prove Theorems 1.3.1, 1.3.3 and Corollary 1.3.2. We give a sketch of the
proof. For k = 2,4, we use a particular case of Catalan’s equation to get the assertion. For k = 3
and 5 < k < 8, we use estimates on w(A(n, k) given by (1.2.3). For 9 < k < 16, we first bound n and
the assertion follows by a computational argument. For k > 17, we use arguments similar to that of
proving Theorem 1.2.1 and the number of primes in intervals (X, (1 +6)X] with 0 <8 <e — 1.

6.1. Lemmas

We begin with a well known result due to Levi ben Gerson on a particular case of Catalan
equation.

LEMMA 6.1.1. The solutions of

2¢ — 3% = 41 in integers a > 0,b > 0

are given by (a,b) = (1,1),(2,1),(3,2).

LEMMA 6.1.2. We have
35 for p; < 5591
15 for p; < 1123, p; # 523,887,1069
21 for p; = 523,887,1069
9 for p; <361,p; # 113,139,181,199,211,241, 283,293, 317, 337.

(6.1.1) Piv1 — i <

LEMMA 6.1.3. Let 9 be a positive real number and ko a positive integer. Let T(N, ko) = {i|pi+1—
pi > ko,pi <N}. Then

Pn(n+1)---(n+k—1)) > 2k
for 2k <n <9 and k > ko except possibly when p; <n <n—+k—1<p;41 forie I(M, ko).

PROOF. Let 2k < n < 9 and k > ky. We may suppose that none of n,n+1,--- ,n+k—1
is a prime, otherwise the result follows. Let p; < n < n+k —1 < p;y1. Then i = 7(n) and
Pr(n) <n <N For w(n) ¢ (M, ko), we have

k-1 :n+k717n<p7r(n)+l 7p7r(n) < kO
which implies £ — 1 < kg — 1, a contradiction. Hence the assertion. O

LEMMA 6.1.4. Let X >0 and 0 < 0 < e —1 be real numbers. Forl >0, let

log(1+ 6 2762
Xy — max (f?fi;,exp( og(1+ g+0 76 )> 7
5393 log(1 + ) + 0.2762)
X1 = max , €Xp .
+1 (1 +0 (9 N 127621(3535(1%)) )

Then we have
m((1+6)X)—m(X)>0

35
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for X > X;.
PrOOF. Let { > 0 and X > X;. Then (1 + 0)X > 5393. By Lemma 3.1.2, we have
(146)X X 1.2762
6:= 1+0)X)—7n(X) > — 1
(1 +0)X) = m(X) = log(1+0)X —1 logX log X
log(1 X -1 1.2762
s X [ g les1t0) 1 4 1276
log(l+6)X —1 log X log X

X 1~ log(1 + 6) 1.2762
LS § R R CI LR N
= log(l—i—@)X—l{ N ( log X T Tgx

X
> — — {F(X)+ G(X
% g+ o)X —1 T )+ 0]
where F(X) = ¢ — 28UF0ID2002 ong G(X) = L2TE2LelED) - We see that G(X) > 0 and

decreasing since 0 < 6 < e — 1. Further we observe that {X;} is a non-increasing sequence. We
notice that 6 > 0 if F(X) + G(X) > 0. But F(X)+ G(X) > F(X) > 0 for X > X, by the
definition of Xy. Thus ¢ > 0 for X > Xj. Let X < Xy. Then F(X) + G(X) > F(X) + G(Xp) and
F(X)+ G(Xo) > 01if X > X; by the definition of X;. Hence § > 0 for X > X;. Now we proceed
inductively as above to see that 6 > 0 for X > X; with [ > 2. O

LEMMA 6.1.5. Letn >k and k < 16. Then
(6.1.2) P(A(n,k)) <2k

implies that (n, k) € {(8,2),(8,3)} or (n, k) € [k + 1,k] for k € {2,3,5,6,8,9,11,14,15} or (n, k) €
[k+1,k,3] for k € {4,7,10,13} or (n, k) € [k + 1,k,5] for k € {12,16}.

ProoOF. We apply Lemma 6.1.1 to derive that (6.1.2) is possible only if n = 3,8 when k =
2 and n = 5,6,7 when £ = 4. For the latter assertion, we apply Lemma 6.1.1 after securing
P((n+14)(n+7)) <3 with 0 <i < j <3 by deleting the terms divisible by 5 and 7 in n,n+1,n+2
and n + 3. For k =3 and 5 < k < 8, the assertion follows from (1.2.3).

Thus we may assume that & > 9. Assume that (6.1.2) holds. Then there are at most 1 + [%]
terms divisible by the prime p. After removing all the terms divisible by p > 7, we are left with
at least 4 terms only divisible by 2,3 and 5. Further out of these terms, for each prime 2,3 and
5, we remove a term in which the prime divides to a maximal power. Then we are left with
a term n + ¢ such that n < n+4+1¢ < 8 x9 x5 = 360. Let n > 2k. We now apply Lemma
6.1.3 with 9 = 361,ky = 9 and (6.1.1) to get P(A(n,k)) > 2k for k > 9 except possibly when
pi<n<n+k—1<pi41, p; = 113,139,181,199, 211, 241,283,293, 317, 337. For these values of n,
we check that P(A(n, k)) > 2k is valid for 9 < k < 16. Thus it suffices to consider k < n < 2k. We
calculate P(A(n, k)) for (n,k) with 9 < k <16 and k < n < 2k. We find that (6.1.2) holds only if
(n, k) is given in the statement of the Lemma 6.1.5. O

LEMMA 6.1.6. Assume (4.1.1) and

(6.1.3) w>k—mw(2k) + w(k).
Then we have
(6.1.4) < k3 for k >87; ¢ < k% for k > 40; = < k? for k > 19.

LEMMA 6.1.7. Let k > 57. Assume (4.1.1), (6.1.3) with x > Tk. Then x > k3.

The proofs of Lemmas 6.1.6, 6.1.7 are similar to that of Lemmas 4.2.5, 4.2.8, respectively.

6.2. Proof of Theorem 1.3.3 (a)

Let n > max(k + 13, %k). In view of Lemma 6.1.5, we may take k > 17 since n < k+ 5 for the

exceptions (n, k) given in Lemma 6.1.5. It suffices to prove (1.3.3) for k such that 2k — 1 is prime.
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Let k1 < ko be such that 2k; — 1 and 2ks — 1 are consecutive primes. Suppose (1.3.3) holds at k;.
Then for k1 < k < ko, we have

Pn(n+1)---(n+k—=1)>Pn---(n+k —1)) > 2k

implying P(A(n,k)) > 2ks — 1 > 2k. Therefore we may suppose that k > 19 since 2k — 1 with
k = 17,18 are composites. We assume from now onward in the proof of Theorem 1.3.3 (a) that
2k—1 is prime. We may suppose w(A(n, k)) < 7(2k) otherwise (1.3.3) follows. We put © = n+k—1.
Then A(n, k) =z(z—1)--- (z—k+1) and w(z(z—1)--- (e —k+1)) < w(2k). Let f1 < fo <--- < fy
be all the integers in [0, k) such that (4.1.1) holds. Then

(6.2.1) w>k—m(2k) + (k)

Now we apply Lemmas 6.1.6 and 6.1.7 to get © < 7k for k > 87. Putting back n =z — k+ 1 and
using (6.1.4), we may assume that n < 6k + 1 for £ > 87, n < ki—k+1for 40 < k < 87 and
n<k?—k+1for19 <k < 40.

Let k < 87. Suppose n > 2k. Then 2k < n < kF —k+1ford0<k<87and2k<n<k?®—k+1
for 19 < k < 40. Thus Lemma 6.1.3 with 9t = 877 — 87 + 1,ko = 35 and (6.1.1) implies that
P(A(n,k)) > 2k for k > 35. We note here that 2k < n < 9 for 35 < k < 40. Let k < 35.
Taking M = 342 — 34 + 1,ko = 21 for 21 < k < 34 and M = 192 — 19 + 1,ky = 19 for k = 19,
we see from Lemma 6.1.3 and (6.1.1) that P(A(n,k)) > 2k for & > 19. Here the case k = 20 is
excluded since 2k — 1 is composite. Therefore we may assume that n < 2k. Further we observe that
m(n+k—1)—7n(2k) > 7(2k+13) —m(2k) since n > k+13. Next we check that m(2k+13)—7(2k) > 0
This implies that [2k,n + k — 1] contains a prime.

Thus We may assume that k& > 87. Then we write n = ak + 1 with 272 — 1 < a<6if k> 201

262
and 14 122 < o <6 if k < 201. Further we consider m(n+ k — 1) — m(max(n — 1 ,2k)) which is

=n((a+ 1)k) — w(ak) for a >2

41
> w([%k]) —m(2k) for @ <2 and k> 201

>mw(2k+13) — m(2k) for a < 2 and k < 201.

We check by using exact values of m function that m(2k+13) —7(2k) > 0 for k < 201 and m([351k]) —

m(2k) > 0 for 201 < k < 2616. Thus we may suppose that k > 2616 if a < 2. Also [332k] > ‘;’ggk for

k > 2616. Now we apply Lemma 6.1.4 with X = ak,0 = 1 JA=0ifa > 2andX—2k 0= 131,l =1
ifa < 2toget m(n+k—1)—m(max(n—1,2k)) > 0 for X > Xo = 5393 11392
131

if « < 2. Further when o < 2, we observe that X = 2k > X1 since k: > 2616. Thus the
assertion follows for n < 2k. It remains to consider the case o > 2 and X < 5393(1 + a)

Then 2k <n<n+k—-1=X(1+ é) < 5393. Now we apply Lemma 6.1.3 with 91 = 5393, kg = 35
and (6.1.1) to conclude that P(A(n,k)) > 2k. O

6.3. Proof of Theorem 1.3.3 (b)
In view of Lemma 6.1.5 and Theorem 1.3.3 (a), we may assume that £k > 17 and k < n < gggk
Let X = gggk 0= g‘%g ,{ = 0. Then for k < n < X, we see from Lemma 6.1.4 that
7(2k) —m(n—1)>7(1+6)X)—7n(X)>0
for X > Xo = 5393(1 + 6)~! which is satisfied for k > 2696 since (1 + 6)X = 2k. Thus we may

suppose that & < 2696. Now we check with exact values of 7 function that w(2k) — W(gggk) > 0.

Therefore P(A(n,k)) > P(n(n+41)---2k) > prax). Further we apply Lemma 6.1.4 with X = 1.97k,
0= —7 and [ = 25. We calculate that X; < 284000. We conclude by Lemma 6.1.4 that

w(2k) — w(1.97k) = (1 + 6)X) —n(X) >0

for k > 145000. Let k < 145000. Then we check that 7(2k) — w(1.97k) > 0 is valid for k > 680 by
using the exact values of 7 function. Thus

(6.3.1) Prar) > 1.97k for k > 680.
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Therefore we may suppose that k& < 680. Now we observe that for n > k+13, m(n+k—1)—n(1.97k) >
m(2k + 13) — w(1.97k) > 0, the latter inequality can be checked by using exact values of 7 function.
Hence the assertion follows since n < 1.97k. O

6.4. Proof of Theorem 1.3.1

By Theorem 1.3.3 (b), we may assume that n < k + 13. Also we may suppose that k& < 680
by (6.3.1). For k < 16, we calculate P(A(n,k)) for all the pairs (n,k) given in the statement of
Lemma 6.1.5. We find that either P(A(n,k)) > 1.95k or (n, k) is an exception stated in Theorem
1.3.3 (a). Thus we may suppose that k > 17. Now we check that w(n+k —1) — w(1.95k) > 0 except
for (n,k) € [k + 1,k, h] for k € A, with 1 < h <11 and the assertion follows. O

6.5. Proof of Corollary 1.3.2

We calculate P(A(n, k)) for all (n,k) with k£ <270 and k+ 1 < n < k+ 11. This contains the
set of exceptions given in Theorem 1.3.1. We find that P(A(n,k)) > 1.8k unless (n, k) € Ey. Hence
the assertion (1.3.2) follows from Theorem 1.3.1. O



CHAPTER 7

Refinement of an analogue of Sylvester’s theorem for
arithmetic progressions: Proof of Theorem 1.4.1

In this chapter, we prove Theorem 1.4.1. The proof of Theorem 1.4.1 depends on the sharpening
of the upper bound for B in the fundamental inequality of Sylvester and Erdés, see Lemma 7.1.1.
Further we also give a better lower bound for 3, see (7.3.12). Comparing the upper and lower
bounds for 3, we bound n,d and k. For the finitely many values of n, d, k thus obtained, we check
the validity of (1.4.11) on a computer. When d < 7, we also need to use estimates on primes in
arithmetic progression given in Lemma 3.1.5. We apply these estimates to count the number of
terms of A which are of the form ap where 1 < a < d, ged(a,d) =1 and p > k, see Lemma 7.2.3.

7.1. Refinement of fundamental inequality of Sylvester and Erdés

For 0 <i <k, let
(7.1.1) n+id = B;B;

where B; and B! are positive integers such that P(B;) < k and gcd(B], Hp) =1 Let § C
p<k

{Bo, -+ ,Bg—1}. Let p < k be such that p t d and p divides at least one element of S. Choose
B;, € S such that p does not appear to a higher power in the factorisation of any other element of
S. Let S; be the subset of S obtained by deleting from S all such B;, . Let 8 be the product of all
the elements of Si.

The following lemma gives an upper bound for 9 which is in fact a refinement of fundamental
inequality of Sylvester and Erdés.

LEMMA 7.1.1. Let §,81,B be as above and let a’ be the number of terms in Sy divisible by 2.
Also we denote

ng = ged(n, k — 1)

and
1if 2
(7.1.2) g L1 2no
0 otherwise.
Then
(7.1.3) P < o [porn (520,
ptd
Further for d odd, we have
(7.1.4) P < g—enoga’%rdz([%mHpordp«k—m!),

pf2d
PROOF. Let p < k, p t d be such that p divides at least one element of S. Let r, > 0 be the
smallest integer such that p | n + rpd. Write n + rpd = pn;. Then

k—1-m,

n+rpd,n+rpd+pd, - ,n+ryd+p| |d

are all the terms in A divisible by p. Let B, .,;, be such that p does not divide any other term
of & to a higher power. Let a, be the number of terms in S; divisible by p. We note here that

39
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ap, < [H%} For any B, 4, € S1, we have ord, (B, 4 i) =ordy(n + rpd + pid) <ord,((n + rpd +
pid)) — (n + rpd + pipd)) = 14ord, (¢ — 4,). Therefore

(k1=
p _ 1 _
(7.1.5) ord,(PB) < a, + ord, H (i —1ip) | <ap+ordy, (ip![w - ip]!>
=
Thus
k—1-m,
(7.1.6) ord,(P) < ap + ordy(] ) .
Let ptn. Then r, > 1 and hence a, < [%] From (7.1.6), we have
k—2 k—2
(7.1.7) ord, (P) < [T] + ord,(| ) = ord,((k —2)!).
Let p = 2. Then as = a’ so that
k—2
(7.1.8) ords(P) < @’ + ordy([ 5 .
Let p/n. Then r, = 0. Assume that p{ (k — 1). Then from (7.1.6), we have
k—2
(7.1.9) ord,(B) < a, + ordp([T]!).

Assume p|(k—1) and let i € {0, %} with ¢¢ # i, be such that ord, (n+piod) =min (ord,(n),ord,(k—

1)). If ord,(n) =ord,(k —1), we take 39 = 0 if i, # 0 and iy = % otherwise. From (7.1.5), we have

E—1
ord,(PB) < min(ord,(n),ord,(k — 1)) + ap, — 1 + ord, H (i —ip)
ot
Thus
11—
(7.1.10) ord,(P) < min(ord,(n),ord,(k — 1)) +ap — 1 + ordp((¥)!).

From (7.1.9) and (7.1.10), we conclude

ord, () < min(ord,(n), ord, (k — 1)) + [%} +ord, (E=2

1"
since a, < [%] Thus
(7.1.11) ord,(PB) < min(ord,(n),ord,(k — 1)) 4+ ord, ((k — 2)!).

Now (7.1.3) follows from (7.1.7) and (7.1.11). Let p = 2. By (7.1.9) and (7.1.10), we have in case of
even n that

ordz () < min(ordz(n),ords(k — 1)) — 0 +a’ + ordg([k -

1"
which, together with (7.1.7), (7.1.8) and (7.1.11), implies (7.1.8). O
The following Lemma is a consequence of Lemma 7.1.1.

LEMMA 7.1.2. Let & > 0 and m > 0. Suppose W(A) < m. Then there exists a set T =
{n+ipdl0 < h <t ig <iy <---<it} such that 1 +t:=|%| >k —m —mq(k) satisfying

Hpordp((k—Q)!)

(7.1.12) gt < o __pt

if = ad
Shlati) (et ¢
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and
(n+ipd) - (n+id)

1.1
(7.1.13) o

S 270n020rd2([¥]1) Hpordp((ka)!) if d is odd
pf2d

where a is the number of even elements in X.

PRrROOF. Let a > 0 be given by n = ad. Let & be the set of all terms of A composed of primes
not exceeding k. Then |&| > k — m. For every p dividing an element of &, we delete an f(p) € &
such that

ord,(f(p)) = max ord,(s).

sESG
Then we are left with a set ¥ with 1 +¢:=|%| > k —m — 74(k) elements of &. Let

Po=[[(n+id) > (n+iod)(a +i1) - (o +iy)d".
v=0

We now apply Lemma 7.1.1 with S = & and &1 = ¥ so that p = P. Thus the estimates (7.1.3) and
(7.1.4) are valid for P. Comparing the upper and lower bounds of P, we have (7.1.12) and further
(7.1.13) for d odd. O

7.2. Lemmas for the proof of Theorem 1.4.1 (contd.)

The following lemma is analogue of Lemma 4.2.2 (ii) for d > 1.

LEMMA 7.2.1. Let ky < ko be such that 2k; — 1 and 2ks — 1 are consecutive primes. Suppose
(1.4.11) holds at k1. Then it holds for all k with k1 < k < ko.

PROOF. Assume that (1.4.11) holds at k;. Let k be as in the statement of the lemma. Then
w(2k1) = 7(2k). From A(n,d, k) =n(n+d)---(n+ (kx — 1)d)(n + k1d) - - - (n + (k — 1)d), we have

W(A(n,d, k)) = W(A(n,d, k1)) = w(2k1) — wa(k1) — p = ©(2k) — ma(k) — p
since mq(k) > ma(ky). O
LEMMA 7.2.2. Let max(n,d) < k. Let 1 < r < k with ged(r,d) = 1 be such that
W(A(r,d, k) = m(2k) — p.
Then for each n with r <n <k and n = r(mod d), we have
W(A(n,d, k) > m(2k) — p.
ProoOF. For r < n <k, we write
rir+d) - (r+(k—1d)(r +kd)-- (n+ (k—1)d)

A =
(n,d, ) rr+d) - (n—d)
(r+kd)---(n+ (k—1)d)
() T (=)
We observe that p | A(n,d, k) for every prime p > k dividing A(r,d, k). O

LEMMA 7.2.3. Let d < k. For each 1 < r < d with ged(r,d) = 1, let v’ be such that rr' =
1(mod d). Then
(a) For a given n with 1 <n <k, Theorem 1.2.1 holds if

(7.2.1) Z 77 (W,d, nr') —m(2k)+p>0

r
1<r<d
ged(r,d)=1
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1s valid.
(b) For a given n with k <n < 1.5k, Theorem 1.2.1 holds if

Kd+1) —d+1
(7.2.2) S or <(+)+,d, m'> — w(2k) + w(k, d,n) — 7(1.5k, d,n) > 0
1<r<d T
ged(r,d)=1

is valid.
(¢) For a given n with k < n < 2k, Theorem 1.2.1 holds if

1) — 1
(7.2.3) E T (M,d, nr’) — w(2k) + n(k,d,n) — 7(2k,d,n) > 0
1<r<d "
ged(r,d)=1
is valid.

PrROOF. Let 1 < r < d < k, ged(r,d) = 1. Then for each prime p = nr/(mod d) with
max(k, 21) < p < w, there is a term 7p = n + id in A(n,d, k). Therefore

(724)  WAMdE) > Y (7r ("+<k_1)d,d, m'/) — r(max(k, ”T_l),d, nr')).

1<r<d "
ged(r,d)=1
Since
(7.2.5) Z n(k,d,nr') = ma(k),
1<r<d
ged(r,d)=1

it is enough to prove (7.2.1) for deriving (1.4.11) for 1 < n < k. This gives (a).
Let k < n <k where k' = 1.5k or 2k + 1. Then from (7.2.4) and (7.2.5), we have

W(A(n,d, k) = Z (77 (M,d, nr’) —W(max(la?),d, nr’))

”
1<r<d
ged(r,d)=1
k(d+1)—d+1 /
> Z T (H)—i_,d, m"'> —7n(k —1,d,n) — nq(k) + m(k,d,n)
1<r<d "
ged(r,d)=1

since 7' = 1 for r = 1. Hence it suffices to show (7.2.2) for proving (1.4.11) for ¥ < n < 1.5k or
(7.2.3) for proving (1.4.11) for k < n < 2k. Hence (b) and (c) are valid. O

7.3. Proof of Theorem 1.4.1 for k with 2k — 1 prime

Let
min | 1, % H porde(E=1 ) if 94y
2d
(7.3.1) X =x(n) = 7
min | 20-1, %Hp*(’rdp(kfl) if 2|n
pld
and
E—1
7.3.2 = = mi 1. —= —ordp(k—1)
(732) ¥ = () =min { 1,22

pld
We observe that x is non increasing function of n even and n odd separately. Further x; is a non
increasing function of n. We also check that

(7.3.3) % SX=x1

and x(1) =1, x(2) =201
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We take (n,d, k) ¢ V, n > k when d = 2 so that p = 0. We assume that (1.4.11) is not valid
and we shall arrive at a contradiction. We take m = m(2k) — mq(k) — 1 in Lemma 7.1.2. Then
t > k — m(2k) in Lemma 7.1.2 and we have from (7.1.12) and (7.3.3) that

(k‘ _ 2)!Hp—ordp((k—2)!)
pld

(7.3.4) e ] P PO oy i 75

where n = ad which is also the same as

k—m(2k)
(7.3.5) H (n+id) < x1(n)(k — 2)!Hp—ordp((k—2)!)_
i=1 pld

From (7.3.4), we have
xi(ad)[o]!(k=2) - (o] +k—m(2k)+ )] [p 42" if [a] < 7(2k) - 3,

pld
(7.3.6) dF-m@0) < ¢ xa(ad)] [a] [ [p~ertr 2" if [a] = m(2k) -
pld
ord, (k—2)!
xi(0d) ety L[ ¢ i o] > w(26)

pld

We observe that the right hand sides of (7.3.4), (7.3.5) and (7.3.6) are non-increasing functions
of n = ad when d and k are fixed. Thus (7.3.6) and hence (7.3.4) and (7.3.5) are not valid for
n > ng whenever it is not valid at ng = «aod for given d and k. This will be used without reference
throughout this chapter. We obtain from (7.3.4) and x; < 1 that

(7.3.7) dFTCR) < (B —2) . (k — m(2k) + 1)prordp(k72)!
pld
which implies that

(7.3.8) gerny < § (B =2) (k= m(2k) +1)270r=(=DVif d is even,
- | (k—2)-- (k—m(2k) + 1) if d is odd

and
w(2k)—2 —ordy (k—2)!
(7.3_9) d< (k — 2) == | | p T FreEm
pld
Using Lemmas 3.1.2 (i) and 3.1.6, we derive from (7.3.9) that
(7.3.10)
2log(k—2)( + 12762) 2log(k—2) - s (h2) R
O o — max k—l—p loglk—2) —
d § exXp ! gQI; — l(ng_ 12762) k ‘| Hp & {07( p—1 Tog p )/<k 10g2k(1+ Tog 2k )}
log2k log 2k pld

which implies

210g(k72)(1+1.2762 _2log<k72) ((1 g)logg_log(’;f?))

exp Tog 2k log 2k17 . ( Tz for d even,
7311 d< Tog 2k Tog 2k
( 0. ) > 2log(k—2) (14 1.2762) 2log(k—2)
exp Tog 2’; . 10%21“1 s for d odd.
—Togor (1+T5257)

We use the inequalities (7.3.5)-(7.3.11) at several places.

Let d be odd. Then for n even, 2 | n + id if and only if i is even and for n odd, 2 | n 4 id if and
only if i is odd. Let b=k — m(2k) + 1 — a and ap = min(k — 7(2k) + 1, [*=2+2]). We note here that
a < [W] where 6 is given by (7.1.2). Let n.,d.,n, and d, be positive integers with n. even and
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n, odd. Let n > n. and d < d, for n even, and n > n, and d < d, for n odd. Assume (7.1.13). The
left hand side of (7.1.13) is greater than

1 b
2t T (27;’ + Z) I1 <d +2j — 1> %d’“*“(%)F(a) if n is even
(7.3.12) ' b1

o 1 o . .
ndk*ﬂ'(2k)H <2Tzl + 1 2) H <n + 2]) = ndk 7‘-(2IC)C;(CL) if n is odd.

Let A, := min (ao, [2(k — m(2k)) + & + 1]) and A, := min (ao, [g(k — (2k)) + 25 — ,D By

considering the ratios Fl(,a(l')l) and G('H')l), we see that the functions F(a) and G(a) take minimal

values at A, and A,, respectively. Thus (7.1.13) with (7.3.3) implies that

(7.3.13) d"TCRP(A,) < 279+1x(ne)2°rd2([%1!)Hpordp(k*Q)! for n even
pf2d

since x(n) < x(n.) and

(7.3.14) T G(A,) < x(n,)20 2" Hpord (=2 for n odd
pr2d
since x(n) < x(n,). In the following two lemmas, we bound d if (1.4.11) does not hold.

LEMMA 7.3.1. Let d be even. Assume that (1.4.11) does not hold. Then d < 4.

PROOF. Let d be even. By (7.3.11), d < 6 for k > 860. For k < 860, we use (7.3.8) to derive
that
d<12for k> 9; d <10 for £k =100; d < 8 for k > 57;

d < 6 for k > 255, k # 262,310, 331,332, 342.

Let d be a multiple of 6. Then we see from (7.3.10) that & < 100. Again for k£ < 100, (7.3.7) does
not hold. Let d be a multiple of 10. Then we see from (7.3.15) that £k = 100 and k < 57. Again,
(7.3.7) does not hold at these values of k.

Let d = 8. By (7.3.15), we may assume that k < 255 and k& = 262, 310, 331, 332, 342. Let n < k.
From Lemma 7.2.2, we need to consider only n = 1,3,5,7 and (1.4.11) is valid for these values of
n. Let n = k + 1. Then, we see that (7.3.5) does not hold. Thus (7.3.5) is not valid for all n > k.
Hence d < 4. O

LEMMA 7.3.2. Let d be odd. Assume that (1.4.11) does not hold. Then d <53 and d is prime.

(7.3.15)

PROOF. Let d be odd. We may assume that d > 53 whenever d is prime. Firstly we use (7.3.11)
and then (7.3.8) to derive that d < 15 for k > 2164, d < 59 for k > 9 except at k = 10,12, and
d <141 for k = 10,12.

We further bring down the values of d and k by using (7.3.13) and (7.3.14). We shall be using
(7.3.13) with n. = 2, x(n.) = 2971 and (7.3.14) with n, = 1, x(n,) = 1 unless otherwise specified.
Let k < 2164. We take d. = d, = 59 when k # 10,12 and d. = d, = 141 for k£ = 10,12. Let n be
even. From (7.3.13), we derive that

d <27 for k> 9,k # 10,12,16,22, 24, 31, 37, 40, 42, 54, 55, 57

d < 57 for k = 10,12, 16, 22,24, 31,37, 40, 42, 54, 55, 57;
(7.3.16) d < 21 for k > 100, k # 106,117, 121,136, 139, 141, 142, 147, 159;

d < 17 for k > 387, k # 415,420, 432, 442, 444;

d < 15 for k > 957, k # 1072, 1077, 1081.
Further we check that (7.3.16) holds for n odd using (7.3.14). Let d > 3 with 3 | d. Then k < 1600
by (7.3.10) and k < 850 by (7.3.7). Further we apply (7.3.13) and (7.3.14) with d. = d, = 57 to

conclude that d =9, k < 147, k = 157,159, 232,234 and d = 15, k = 10. The latter case is excluded
by applying (7.3.13) and (7.3.14) with d. = d, = 15. Let d = 9. Suppose n < k. We check that
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(1.4.11) is valid for 1 <n < 9 and ged(n, 3) = 1. Now we apply Lemma 7.2.2 to find that (1.4.11) is
valid for all n < k. Let n > k. Taking n, = 2{%},710 = 2{%1 +1,de =d, =9, we see that (7.3.13)
and (7.3.14) are not valid for n > k.

Let d > 15 with 5 | d and 3 1 d. Then k < 159 by (7.3.16). Now, by taking d. = d, = 55,
we see that (7.3.13) and (7.3.14) do not hold unless k& = 10,d = 25 and n odd. We observe that
(7.3.14) with n, = 3 and d, = 25 is not valid at £k = 10. Thus (n,d,k) = (1,25,10) and we
check that (1.4.11) holds. Let d > 7 and 3 1 d,5 1 d. Then we see from (7.3.16) that d = 49 and
k = 10,12,16,22,24, 31, 37,40,42, 54,55,57. Taking d. = d, = 49, we see that both (7.3.13) and
(7.3.14) do not hold. Thus d < 57 and the least prime divisor of d when d ¢ {3,5,7} is at least 11.
Hence d is prime and d < 53. ([

In view of Lemmas 7.3.1 and 7.3.2, it suffices to consider d = 2,4 and primes d < 53. We now
consider some small values of d.

LEMMA 7.3.3. Let d = 2,3,4,5 and 7. Assume that n < k and (n,d,k) ¢ V. Then (1.4.11)
holds.

PRrROOF. First, we consider the case 1 < n < k and (n,d,k) ¢ V. By Lemma 7.2.2, we may
assume that 1 <n < d and ged(n,d) = 1. Let d = 2. Then

mn+2(k—1),2,1)—7(2k)+1=m(n+2k—2)—1—-m(2k—1)+1>0.

Now the assertion follows from Lemma 7.2.3. Let d = 3,4,5 or 7. We may assume that k is different
from those given by (n,d, k) € V, otherwise the assertion follows by direct computations. By using
the bounds for 7(z,d,l) and m(x) from Lemmas 3.1.5 and 3.1.2, we see that the left hand side of
(7.2.1) is at least

d—1 /d d—1
($— %) ¢, 2 1.2762
3.1 k ~i ik L — 14 ==
for k > 9=1(1+20) at d = 3,5,7 and
(:-4) ¢ 2 1.2762
7.3.18 k 2 ikl - 1
( ) Z.;S log 4k=3 ot log 4£=3 log 2k + log 2k

for k > 3(1 + z9) at d = 4. Here z is as given in Lemma 3.1.5. We see that (7.3.17) and (7.3.18)
are increasing functions of k and (7.3.17) is non negative at k = 20000, 2200, 1500 for d = 3,5 and
7, respectively, and (7.3.18) is non negative at k = 751. Therefore, by Lemma 7.2.3, we conclude
that k is less than 20000, 751, 2200 and 1500 according as d = 3,4,5 and 7, respectively. Further we
recall that n < d. For these values of n and k, we check directly that (1.4.11) is valid. O

Therefore, by Lemma 7.3.3, we conclude that n > k when d = 2,3,4,5 and 7.

LEMMA 7.3.4. Let d = 2,3,4,5 and 7. Assume that k <n <2k ifd # 2 and k <n < 1.5k if
d=2. Then (1.4.11) holds.

PROOF. Let d = 2 and k < n < 1.5k. By Lemma 7.2.3, it suffices to prove (7.2.2). By using
the bounds for m(k) from Lemma 3.1.2, we see that the left hand side of (7.2.2) is at least

i 3 n 1 2 14 1.2762\ 1.5 14 1.2762 _1
log3k—1 logk—1 log2k log 2k log 1.5k log 1.5k

for k > 5393 since m(3k — 1,2,1) = w(3k) — 1. We see that the above expression is an increasing
function of k and it is non negative at k = 5393. Thus (7.2.2) is valid for k > 5393. For k < 5393, we
check using exact values of 7w function that (7.2.2) is valid except at k = 9,10, 12. For these values
of k, we check directly that (1.4.11) is valid since k < n < 1.5k.

Let d = 3,4,5,7 and k < n < 2k. By Lemma 7.2.3, it suffices to prove (7.2.3). By using the
bounds for 7 (x,d, 1), 7(2x,d,l) — w(x,d,l) and 7(k) from Lemmas 3.1.5 and 3.1.2, respectively, we
see that (7.2.3) is valid for k£ > 20000,4000, 2500, 1500 at d = 3,4,5 and 7, respectively. Thus we
need to consider only & < 20000, 4000, 2500, 1500 for d = 3,4,5 and 7, respectively. (The estimate




46 7. PROOF OF THEOREM 1.4.1

(2.4) in [27] should have been replaced by (3.1.4) but it is clear that this causes no problem). Taking
e =2[E2] n, =2[4] +1,d. =d, = d for d = 3,5,7 in (7.3.13) and (7.3.14), and n = k + 1 for
in (7.3.5), we see that
kE <3226 or k = 3501,3510,3522 when d = 3
k <12 or k = 16,22,24,31, 37, 40,42, 52, 54, 55,57,100, 142 when d = 4
k <901 or kK =940 when d =5
k <342 when d = 7.
For these values of k, we check that (1.4.11) holds whenever k¥ < n < 1.5k. Hence we may assume
that n > 1.5k. Taking n. = 2[125], n, = 2[155=1] 4+ 1,d. = d, = d for d = 3,5,7 in (7.3.13) and
(7.3.14), and n = [1.5k| for d = 4 in (7.3.5), we see that
k € {54,55,57} when d =3
k € {10, 22,24, 40,42, 54, 55,57, 70,99, 100, 142} when d = 5
k € {10,12,24,37,40, 42, 54,55,57,100} when d = 7.

For these values of k, we check directly that (1.4.11) holds for 1.5k < n < 2k. O

LEMMA 7.3.5. Let d = 2,3,4,5 and 7. Assumen > 2k if d # 2 and n > 1.5k if d = 2. Then
(1.4.11) holds.

PROOF. Let d = 2 and n > 1.5k. Then we take o = % so that n > ad. Further we observe
that « > w(2k) — 1. Then we see from (7.3.6) and (7.3.2) that

(7.3.19) ok—m(2k) < [-75k]! g—ords (k—1)!
T 15k2(k+ 1)+ ([.75k] + k — m(2Kk))

Now we apply Lemmas 3.1.7, 3.1.6 and 3.1.2 (i) in (7.3.19) to derive that

o< 8./21 exp(—.75k) (.75 (k + 1)) 5*HD+3 exp(L)2m(2R) | 20— RlD
= k2(k + 1)-7k—m(2k)

< <2101g(,‘)2(2kk+1) (1 + }02g726]€2) — 75475 10g75 + # + 1.25 log(k—&-l)—kQ log k,+1.54017>
> CXp Tog(k—1)
2 — g
klog?2
for k > 9. This does not hold for k > 700. Thus k < 700. Further using (7.3.5) with n = [1.5k], we
get k € {16,24,54,55,57,100,142}. For these values of k, taking n = 2k + 1, we see that (7.3.5) is
not valid. Thus n < 2k. Now we check that (1.4.11) holds for these values of k and 1.5 < n < 2k.
Let d = 3,4,5 and 7 and n > 2k. Then we take o = 2’%1 so that n > ad. We proceed as in

the case d = 2 to derive from (7.3.5) that k£ < 70,69, 162 and 1515 for d = 3,4,5 and 7, respectively.
Let d = 3,5 and 7. We use (7.3.13) and (7.3.14) with n, = 2k +2,n, = 2k + 1 and d, = d, = d if
d = 3,5,7, respectively to get d = 5,k = 10 and n even. Let k = 10,d = 5 and n even. We take
ne = 2k+6,d. = 5 to see that (7.3.13) holds. Hence n < 2k+4. Now we check directly that (1.4.11)
is valid for n = 2k + 2,2k + 4. Finally we consider d = 4 and k < 69. Taking n = 2k + 1, we see
that (7.3.5) is not valid. Thus (1.4.11) holds for all n > 2k. O

By Lemmas 7.3.1, 7.3.2, 7.3.3, 7.3.4, and 7.3.5, it remains to consider
11 < d < 53,d prime.
We prove Theorem 1.4.1 for these cases in the next section.
7.3.1. The Case d> 11 with d prime. Our strategy is as follows. Let Uy, Us,--- be sets of

positive integers. For any two sets U and V', we denote U — V = {u € Ulu ¢ V}. Let d be given.
We take d. = d, = d always unless otherwise specified. We apply steps 1 — 5 as given below.
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1. Let d = 11,13. We first use (7.3.10) to bound k. We reduce this bound considerably using
(7.3.7). For d > 13, we use (7.3.16) to bound k. Then we apply (7.3.13) and (7.3.14) with
Ne = né‘” =2,n, = ngo) = 1 to bring down the values of k still further. Let Uy be these
finite set of values of k.

2. For each k € Uy, we check that (1.4.11) is valid for 1 < n < d. Hence by Lemma 7.2.2, we
get n > k.

3. For k € Uy, we apply (7.3.5) with n = k4 1 to find a subset Uy C U.

4. For k € Uy, we apply (7.3.13) and (7.3.14) with n, = nl" = 2[E1] n, = nf = 2[£] 41
to get a subset Uy C U,

5. Let i > 2. For k € U;_1, we apply (7.3.13) and (7.3.14) with suitable values of n, = nt and
n, = n((,i) to get a subset U; C U; 1. Thusfor k € U;_1—U;, wehave k < n < max(ng), n((f))

=

and we check that (1.4.11) is valid for these values of n and k. We stop as soon as U; = ¢.
We explain the above strategy for d = 11. From (7.3.10), we get k¥ < 11500 which is reduced to
k < 5589 by (7.3.7). By taking nt® = 2,715)0) =1, we get
Uy = {k|k <2977,k = 3181, 3184,3187,3190, 3195, 3199}.

We now check that (1.4.11) is valid for 1 < n < 11 for each k € Uy so that we conclude n > k. By
Step 3, we get Uy = {k|k < 252}. Further by step 4, we find

Uy = {9,10,12,16, 21, 22,24, 27, 31, 37, 40,42, 45, 52, 54, 55, 57, 70, 91,99, 100, 121, 142}

Now we take

1.5k 1.5k -1
ng) = 2(—]7 n((f) = (7—‘ +1
2 2
to get Us = {10,22,37,42,54,55,57}. Then we have
(7.3.20) k<n < 1.5k for k € Uy — Us.
Next we take nt> = 2k + 2,n5,3) =2k + 1 to get Uz = {10,22,55} and we have
(7.3.21) k<n<2kfor keU;—Us.

Finally we take n£4) = 4k, ng4) =4k + 1 to get Uy = ¢ and hence
(7.3.22) k <n <4k for k € Us

and our procedure stops here since Uy = ¢. Now we check that (1.4.11) holds for k£ and n as given
by (7.3.20), (7.3.21) and (7.3.22).

We follow steps 1 — 5 with the same parameters as for d = 11 in the cases d = 13,17,19 and
23. Let 23 < d < 53, d prime. We modify our steps 1 — 5 slightly to cover all these values of d
simultaneously. For each of k € Uy, we check that (1.4.11) is valid for 1 < n < min(d, k) and coprime
to d. Thus n > k. Now we apply step 4 with d. = d, = 53 to get U; = {10,12,16,24,37,55,57}. In
step 5, we take n'?) = 2[%—“},7122) =2[2E] 4+ 1,d, = d, = 53 to see that that U, = ¢. Thus

(7.3.23) k<n <3k for ke U.
Now we check that (1.4.11) holds for k and n as given by (7.3.23) for every d with 23 < d < 53 and
d prime. O

7.4. Proof of Theorem 1.4.1

By the preceding section, Theorem 1.4.1 is valid for all k£ such that 2k — 1 is prime. Let k& be
any integer and k; < k < ko be such that 2k; — 1,2k — 1 are consecutive primes. By Lemma
7.2.3, we see that (1.4.11) is valid except possibly for those triples (n,d, k) with (n,d, k1) € V. We
check the validity of (1.4.11) at those (n,d, k). For instance, let k = 11. Then k1 = 10. We see
that (1, 3,10), (4,3,10), (2,5,10),(1,7,10) € V. We check that (1.4.11) does not hold at (1,3,11)
and (1.4.11) holds at (4,3,11),(2,5,11) and (1,7,11). Thus (1,3,11) € V. We find that all the
exceptions to Theorem 1.4.1 are given by V. ]
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7.5. Proof of (1.4.8)

Let k = 8 and (n,d) be different from the ones given by (1.4.9). Suppose (1.4.8) is not valid.
Then

(7.5.1) W(A) <k —2—m4(k).
We apply Lemma 7.1.2 with m = k — 2 — 7w4(k). We see from ¢ > 1 and (7.1.12) that
o —ord, (6!)
7.5.2 d < —6! POV,
(7.5.2) n+ds< l_gp
P

Since ng = 7 if 7|n and 1 otherwise, we observe that 1 +d <n+d < G!Hp_ordp(&). For instance,
pld
we get n+d < 3-15 = 15 when 2|d. For each d with 1 < d < G!prordp(ﬁ!) — 1 and for each n

pld
satisfying (7.5.2), we check that

HPn+id):0<i<T} >7

hold except when (n,d) is given by

d=4, n=21; d="17, n € {3,5,6};
(7.5.3) d=11, n=3; d =17, n = 6;

d=19, n=5; d=23, n=1.
Now we get a contradiction from (7.5.1) since (7.5.1) is not valid for (n, d) given by (7.5.3) and

W(A)=|{P(n+id):0<i<T}—|{P(n+id): P(n+id) <k,0<i<T} >7—muk)

for (n,d) different from (7.5.3). O



CHAPTER 8

Refinement of Sylvester’s theorem on the greatest prime
divisor of a product of terms of an arithmetic progression:
Proof of Theorem 1.5.1

In this chapter, we prove Theorem 1.5.1. The proof of Theorem 1.5.1 depends on Theorem 1.4.1
and the theory of linear forms in logarithms. The cases k = 3,4, 5 involve solving particular cases of
Catalan’s equation and Generalised Fermat’s equation. The cases 6 < k < 11 requires solving some
Thue equations. For 12 < k < 18, we get a bound for n and d by counting the number of terms in
A divisible by a prime < 2k and we check the assertion. When k£ > 19, we follow the arguments in
the proof of Theorem 1.4.1 under certain assumptions which are valid in the present context.

8.1. Lemmas
We begin with
LEMMA 8.1.1. It suffices to prove Theorem 1.5.1 for k such that 2k — 1 is prime.

PROOF. Let (n,d, k) be as in Theorem 1.5.1. Let k; and ko be such that k1 < k < ko and
2k — 1,2ky — 1 are consecutive primes. Assume that (1.5.2) holds at (n,d, k1). Then

Pn(n+d)---(n+ (k—1)d) > P(n---(n+ (k1 — 1)d)) > 2k,

implying P(A(n,d,k)) > 2ks — 1 > 2k. Thus (1.5.2) holds at (n,d, k).

Therefore (1.5.2) is valid except possibly for those triples (n,d, k) with (n,d, k1) as one of the
exceptions in Theorem 1.5.1. We check the validity of (1.5.2) at those (n,d, k). For instance, let
k =11. Then k; = 10. We see that (1,3, 10) is the only exception in Theorem 1.5.1. We check that
(1.5.2) holds at (1,3,11). O

For a proof of the following result, we refer to de Weger [80, Theorem 5.2]. It is a particular
case of Catalan equation which has been solved completely by Mihailescu [41].

LEMMA 8.1.2. Let a,b € {2,3,5} and a < b. Then the solutions of
a® —bY = +£1 in integers x > 0,y > 0
are given by
(a®,b%) € {(2%,3),(2,3), (2%,3%), (2%,5)}.
The next result is due to Nagell [49], see [3].
LEMMA 8.1.3. Let a,b,c € {2,3,5} and a < b. Then the solutions of
a® +bY = ¢ in integers > 0,y > 0,2 >0
are given by
(a®,b¥,c%) € {(2,3,5),(2*,3%,5%),(2,5%,3%),
(2%,5,3%),(3,5,2%),(3%,5,2%), (3,5 27)}.

We shall also need some more equations given by the following. See also de Weger [80, Theorem
5.5].
49
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LEMMA 8.1.4. Let § € {1,—1}. The solutions of
(i) 2°-3Y5*=9
(it) 3" —2Y5° =
(#i1) 5 —2Y3* =0
in integers x > 0,y > 0,z > 0 are given by
(4,1,1,1) for (7);
(z,y,2,0) =< (4,4,1,1),(2,1,1,—-1) for (i4);
(2,3,1,1),(1,1,1,-1) for (ii7),
respectively.

PrOOF. (i) Let § = 1. By 2° = 1(mod 5), we get 4|x. This implies 25 — 1 = 3¥,2% + 1 = 57
and the assertion follows from Lemma 8.1.2. Let 6 = —1. Then 2* = —1(mod 5) and 2* = —1(mod
3) implying 2|x and 2 { z, respectively. This is a contradiction.

(73) Let 6 = 1. By 3® = 1(mod 5) giving 4|z and the assertion follows as in (¢) with § = 1. Let
d = —1. Let y > 2. Then 3* = —1(mod 5) and 3* = —1(mod 4) implying 2|x and 2 { x, respectively.
Therefore y = 1 and we rewrite equation (ii) as 2 - 5% — 3* = 1. We may assume that z > 2 and
further x is even by reading mod 4. Thus 3% = —1(mod 25) giving = 10(mod 20). Then {5 is odd
and

14 9° divides 1+ (9°)% =257,
a contradiction.
(7i) Let 6 = 1. By mod 3, we get = even and the assertion follows as in (¢) with 6 = 1. Let

0 = —1. We may assume that y = 1 by mod 4 and z > 2. Then we derive as in (i7) with 6 = —1
that % is odd by using mod 9 and 1 + 53 divides 1 + 5% = 2 - 3%, a contradiction. ([l

We write p(d) for the least prime divisor of d. We shall use the following computational result.

LEMMA 8.1.5. Assume that p(d) > k if k = 6,7 and p(d) > 2k if k = 9,10,12,15,16. Then
(1.5.2) holds if

n+d<N
where
20-35 if k=6,7,
N=<40-3% if k=09,10,
360 if =12,15,16.

PROOF. For each n with 1 <n < N and P(n) < 2k, we check the validity of max{P(n + (k —
1)d), P(n + (k — 2)d), P(n + (k — 3)d)} > 2k whenever d < N —n and p(d) > k if K = 6,7 and
p(d) > 2k it k > 9. If max{P(n+(k—1)d), P(n+ (k—2)d), P(n+ (k—3)d)} < 2k, then we check the
validity of max{P(n+d), P(n+2d)} > 2k. Then we find that either max{P(n+d), P(n+2d)} > 2k
or

(8.1.1)  (n,d) € {(33,31), (64,31)} if k = 12 and (n,d) € {(3,31), (34,31), (35,43)} if &k = 15.
For (n,d, k) given by (8.1.1), we check that P(A(n,d, k)) > 2k. O

Let n > 1,d > 2 and k > 3. By Lemma 8.1.1, we may restrict to those k for which 2k — 1 is
prime. For (n,d, k) € Vo UV where V) and V are defined in (1.4.6) and (1.4.10), respectively, we
check that P(A(n,d, k)) > 2k. Therefore we assume that (n,d, k) ¢ VoU V. If p(d) < k for k =6,7
and p(d) < 2k for k > 9, then the assertion follows from (1.4.5) and (1.4.12), respectively. Thus
we may suppose that p(d) > k for k = 6,7 and p(d) > 2k for k > 9. Therefore the assumption of
Lemma 8.1.5 is satisfied. We shall follow the assumptions stated in this paragraph throughout this
chapter. We split the proof of Theorem 1.5.1 for k = 3; k = 4; £k = 6,7,9,10; k£ = 12,15,16 and
k > 19 with 2k — 1 prime in sections 8.2, 8.3, 8.4, 8.5 and 8.6, respectively.
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8.2. The case k=3

We assume that P(n(n + d)(n + 2d)) < 5 and (n,d) is different from the exceptions given in
Theorem 1.5.1. Let 51 A. Then either

n=1,14d=2%14+2d=3%orn=2,2+d=3%2+2d = 2%

Assume the first possibility. Then 2°*t! — 3% = 1 implying 2°*! = 4,3° = 3 by Lemma 8.1.2.
Thus d = 1, a contradiction. Now we turn to the second. We get 3% —29~1 = 1. Therefore either
3% =2,2071 =2 0r 3% = 9,271 = 8 by Lemma 8.1.2. The former is not possible since P2kd > 1
and the latter implies that d = 7 which is excluded. Hence 5|A.

Suppose 3 t A. We observe that 5 t n since ged(n + d,n + 2d) = 1. Let 5|n + 2d. Then
n=11+d=2%1+2d =5 implying 2! — 57 = 1 which is not possible by Lemma 8.1.2. Let
5/n+d. Then n = 2" n+d=>5",n+2d = 2% implying n = 2,57 — 2~! = 1. Therefore by Lemma
8.1.2, we get n = 2,d = 3 which is excluded. Hence 3|A.

Let 15|n + id for some i € {0,1,2}. We observe that 15 t n since ged(n + d,n + 2d) = 1. Let
15/n +d. Then n = 2,2 +d = 3%57,2 4+ 2d = 2% giving 2°~! — 3757 = —1 which is not possible by
Lemma 8.1.4 (i). Let 15|n + 2d. Then n = 1,1+ d = 2%,1 + 2d = 3757 giving 20! — 3457 = 1.
Therefore by Lemma 8.1.4 (4), we get n = 1,d = 7 which is excluded. Thus 15 { n+id for i = 0, 1, 2.

Suppose 21 A. Then

n=1,14d=3%°14+2d=5"orn=1,1+d=5",1+2d =3°

which imply 57 —2-3% = —1 or 3% —2.57 = —1, respectively. Therefore (n,d) = (1,2) or (1,4) by
Lemma 8.1.4. This is not possible. Hence 2|A.
Let n = 1. In view of the above conclusions in this section, we have

1+d=2°3%1+2d=5"or 1 4+d=2%"7,1+2d=3°

implying 57 — 21 .30 = —1 or 37 — 2ot1 .57 = _1, respectively, contradicting Lemma 8.1.4
since « > 1. Let n = 2. Then 2+d = 3%,2+2d = 2%57 or 2 +d = 57,2 + 2d = 2°37 implying
3% —2071.57 =1 or 57 —2%1.30 = 1, respectively. By Lemma 8.1.4, the first equation gives
d =79 and the second one gives d = 23 which are excluded. Thus n > 2. Now we have

n=2n+d=3’n+2d=2-5" or n=2n+d=5"n+2d=2-3°
or n=2-3°n4+d=5"n+2d=2% or n=2-5",n+d=3%n+2d=2°
or n=3°n+d=2%n+2d=5"  or n=5",n+d=2%n+2d=3°.
By using the identity
(8.2.1) n+(n+2d)—2(n+d) =0,

we see that the above relations imply equations of the form given by Lemma 8.1.3. Now we use
Lemma 8.1.3 to find all the pairs (n,d) arising out of the solutions of these equation. Finally we
observe that these pairs (n,d) are already excluded. O

8.3. The case k=4

We shall derive Theorem 1.5.1 with & = 4 from the case k = 3 and the following more general
result. We put Ay = n(n+ 2d)(n + 3d) and Ay = n(n + d)(n + 3d). Let

Sq ={(1,13),(3,11), (4,7),(6,7),(6,13), (18,119),(30,17)}
and

542 = {(17 3)7 (]" 5)7 (17 8)’ (17 53)7 (3’ 2)7 (37 5)’ (37 17)7
(3,29), (3,47),(9,7), (9,247), (15,49), (27,23)}.
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LEMMA 8.3.1. We have

(8.3.1) P(Ay) > 7 unless (n,d) € Sy
and
(8.3.2) P(Ay) > 7 unless (n,d) € Syo.

PROOF. First we prove (8.3.1). Assume that (n,d) ¢ S4 and P(A;) < 5. Suppose 51 Aj.
Then either

n=1,142d=3°1+3d=2"orn=6,6+2d = 2%6+ 3d = 3°.
This is not possible by Lemma 8.1.2 since d > 1. Suppose 3  A;. Then either n = 1,1+ 2d =
57,143d =2%or n =22+ 2d = 2% 2+ 3d = 57. This is again not possible by Lemma 8.1.4 (7),
(iii). Suppose 21 A;. Then either n = 1,1+2d =3%,1+3d =5 orn = 3,3+2d = 57,3+ 3d = 3°.
This is not valid by Lemma 8.1.4 (i7), (4i7). Hence 2-3-5| A;.

Let n = 1. Then either 1 + 2d = 3°57,14+3d = 2% or 1 + 2d = 3°,1 + 3d = 2°5". The first
possibility is excluded by Lemma 8.1.4 (i) and second possibility implies d = 13 by Lemma 8.1.4
(ii). Let n = 2. Then 2 + 2d = 2237 2 + 3d = 57 which is not possible by Lemma 8.1.4 (iii). Let
n = 3. Then 3+ 2d = 57,3 + 3d = 2°3” implying d = 11 by Lemma 8.1.4 (4ii). Let n = 6. Then
either 6 4+ 2d = 2°57,6 + 3d = 3% or 6 + 2d = 2%,6 + 3d = 3°57. The first possibility implies d = 7
by Lemma 8.1.4 (i7) and second implies d = 13 by Lemma 8.1.4 (i).

Let n = 4,5 or n > 6. We observe that n = 2957 with §; > 1 or 3%57 with 63 > 1 are not
possible since otherwise P(n+3d) > 5 or P(n+2d) > 5, respectively. Let n = 2913% or n = 2913%257
with d; > 1,62 > 1. Then

Si=1n=2-3°n+2d=2n+3d=3-57
ordy=1,n=3-2%n+2d=2-5,n+3d=3"
if n =2913% and
S1=1,0=1n=6-5",n+2d=2%n+3d=3"
if n = 2913%57, Further
n+2d=2-3%n+3d="5if n=2%
n+2d=>5",n+3d=3-2%if n=3°
n+2d=3°n+3d=2%if n=5".
This exhaust all the possibilities. For each of the above relations, we use the identity
(8.3.3) n+2(n+3d)—3(n+2d)=0

to obtain an equation of the form given by Lemma 8.1.3. Finally we apply Lemma 8.1.3 as in the
preceding section to conclude that (n,d) € Sy, a contradiction.

The proof of (8.3.2) is similar to that of (8.3.1). Here we use the identity 2n+(n+3d)—3(n+d) =
0 in place of (8.3.3). O

Now we turn to the proof of Theorem 1.5.1 for k£ = 4. We assume P(A) < 7. In view of the
case k = 3, we may assume that 7|n +d or 7|n + 2d. Thus P(A;) <5if 7|n+ d and P(Ag) <5 if
7|n+2d. Now we conclude from Lemma 8.3.1 that (n,d) € Sy if 7ln+d and (n,d) € Saz if 7|n+2d.
Finally we check that P(A) > 11 for (n,d) € Sy U Sy2 unless (n,d) € {(1,3),(1,13),(3,11)}. O

8.4. The cases kK =6,7,9,10
We assume P(A) < 2k. Further by Lemma 8.1.5, we may assume that

20-3° ifk=6,7
8.4.1 +d> Y
( ) " {40-36 if k=09, 10.
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There are at most 1 + [%] terms in A divisible by a prime p. After removing all the terms in A
divisible by p > 7, we are left with at least 4 terms divisible by 2,3 and 5 only. After deleting the
terms in which 2, 3,5 appear to maximal power, we are left with a term n+ ipd with 0 < iy < k such
that P(n+ipd) <5 and n+ipd is at most 4-3-5if k=6,7;8-3-5if k=9 and 8-9-5if kK =10. If
10 > 0, we get n+d < 360 contradicting (8.4.1). Thus we may suppose that ig = 0 and the terms in
which 2, 3,5 appear to maximal power are different. Let n + iod and n + i3d be the terms in which
2 and 3 appear to maximal power, respectively. Since 5 can divide at most 2 terms, we see that 5
can divide at most one of n + isd and n + izd. Also 51 n if 5|(n + i2d)(n + i3d). We write

(8.4.2) n 4 igd = 202372572 4 jzd = 292302572

with (y2,73) € {(0,0),(1,0),(0,1). We observe that a3 is at most 2 and 3 if k = 6,7 and k =9, 10,
respectively, and (s is at most 1 and 2 if £ = 6,7,9 and k = 10, respectively. If k = 6,7, then ag > 7
otherwise n +d < n+ipd < 26-3 -5 contradicting (8.4.1). Similarly we derive 33 > 6 if k = 6,7 and
(6) > 8,ﬁ3 > Tifk = 97 10. From i3(n + ’LQd) — ig(n + ’Lgd) = (i3 — ig)n, we get

(8.4.3) 03202302572 _ 529330357 — (i3 —iy)n
Let

_ 1329 B 1930
(8.4.4) « = ords <i220‘3) , B =ords (i3352> .

We show that a« > ao — 6 where 6 = 2 if k = 6,7 and 6 = 3 if & = 9,10. It suffices to

prove ordg(hg—ig) > —4. If orda(is) >orda(ig), then it is clear. Thus we may assume that
ords(i3) <orda(iz). From (8.4.2), we get (ig—iz)d = 2%3(2%2~*30y—O3) with Og, O3 odd. Therefore
ag =ords(ia — i3) since as > ag. Thus ords(iz) = ag. Since iy < k, we get the desired inequality
ordg(héis) > —4. Hence a > ay — § > 5. Similarly we derive 8 > 5.

We obtain from (8.4.3) the equation

(8.4.5) 2% — 30 =t
with
(8.4.6) a>5, 325,

1,7 € {1,5,7,25,35},¢t € {£1,45,£7,+25 +35} and ged(4,j) =ged(i,t) =ged(j,t) = 1. From
Lemmas 8.1.2, 8.1.3 and 8.1.4, we see that equations of the form

20 — 30 = 41, 20 — 30 = 45 425,
20 —5.3° =41, 5.20-3° =41,
20 —95.3% =41, 25.2° -3 =+1

are not possible by (8.4.6). Let the equations given by (8.4.5) be different from the above. Each of
the equation gives rise to a Thue equality

(8.4.7) X3+ AY® =B

with integers X,Y, A > 0, B > 0 given by
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Equation A B X Y
(i) 20 — 30 = 47 203V’ 7.20 +2°5 | £3%5°
(i) |7-20—30=41,45 425| 7.293" | 3¥ 5.3 25.3" | £3%- | £2°%
(ii) |22 —7-30 = £1,45,425 | 7.203Y |2¢ 5.2¢' 95.2¢' | 2%kt | 435
(iv) 25.20 — 36 = 47 5243 3529 +5.2%5 | £3%5°
(v) 20— 25.30 = 47 59243 35 3" +5.3%5 | 125
(vi) 5.20-7.30 =41 | 25.7.20'3Y 25 . 29/ +5.2%5 | £3%%°
.. 8 "ob! Y B+b” a—a
(vii) 7-20-5.30 =41 |25.7.293 253 +5.375 | £2°5
(viii) 20 —5.30 = 47 5.24'3Y 7.20 +2°5 | £3%5°
(iz) 5.29 — 36 = 47 5.24'3Y 7.3Y +35- | 2%
(z) 3520 — 30 = 41 35243 3v £3%5 | £2°%°
(i) 2% —35.30 = +1 35.2%'3Y 20/ +2°5 | £3%5°
(wii) 20 — 36 = 435 20/ 3V 3529 +2°5 | £3%%°
(viii) | 7-20-25.3% =41 | 5.7.20'3" 5.3 +5.3%5 | 125
(ziv) | 2520 —7.3F =41 | 5.7.2¢3Y 5.2¢ +5.2%5 | £3%5°
where 0 < o/, < 3 are such that X,Y are integers. Further
(8.4.8) max{ords(X),ords(X)} > 2, max{ords(Y),ords(Y)} > 1

by (8.4.6). Using Magma, we compute all the solutions in integers X, Y of the above Thue equations.
We find that all the solutions of Thue equations other than (i) and (viii) do not satisfy (8.4.8).
Further we check that the solutions of (i¢) and (viit) satisfy (8.4.8) but they do not satisfy (8.4.6). O

8.5. The cases kK =12,15,16

We assume P(A) < 2k. Let k = 12,15. Then P((n+d)---(n+ (k — 1)d)) < 2k. After deleting
the terms from {n +d,--- ,n+ (k — 1)d} divisible by primes p with 7 < p < 2k, we get at least 4
terms n + id composed of 2,3 and 5 only. This is also the case when k = 16 since 7 and 13 together
divide at most 4 terms. Therefore there exists an 7 with 1 < 4 < k — 1 such that n + ¢d divides
8-9-5. Thus n +d < 360. Now the assertion follows from Lemma 8.1.5. O

8.6. The case k£ > 19 with 2k — 1 prime

It suffices to prove W(A) > 7w(2k) — w(k) + 1 since w(k) = mq(k) by our assumption. We
may suppose that W(A) = n(2k) — w(k) by Theorem 1.2.1. Further we observe that d > 2k since
p(d) > 2k.

By taking m = w(2k) — w(k) in Lemma 7.1.2, we conclude that

(8.6.1) dFmCR L < (] —2) - (k — 7 (2k))
and hence
(8.6.2) 2%k < d < (k — 2)Fr0T,

Using Lemma 3.1.2, we see that

1.2762
k —2m(2k) > (log 2k —4(1 + 70 )) >0

log 2k log 2k

for k > 76. With exact values of 7 function, we see that k > 27(2k) for 60 < k < 76. This implies
m(2k) — 1 < k — w(2k) — 1 for k > 60. Therefore for k > 60, we see that (8.6.2) does not hold.
Thus k£ < 60. From (8.6.1), we see that d < 2k for k > 30,k # 31. Thus it remains to consider
k = 19,21,22,24,27,31. We see that d < 71 if k = 27,31; d < 83 if k = 19,21 and d < 113 if
k = 22, 24.
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The next argument is analogous to (7.3.13) and (7.3.14) where k — 7w(2k) + 1 has been replaced
by k — 7(2k). Let n.,d.,n, and d, be positive integers with n, even and n, odd. For (n,d, k) with
n even, n > ne,d < d., we derive from (7.1.13) with m = 7(2k) — w(k) that

A.—1 n k—m(2k)— A, n b1
e || ( ° o+ z) 11 < + 25 — 1) <min (1, _2-9“) (k—2)!
(8.6.3) i=1 2d. j=1 de fle

% 2ord2([%]!)—ord2((k—2)!)

where A, =min(k — 7(2k), [3(k — 7(2k)) + g5 — 1), 0 = 1if k is odd, 0 otherwise. For (n,d, k)
with n odd, n > n,,d < d,, we have
k—m(2k)—A,—1

Ao
b T (Mo 4y L "o 4 9i) <min (1. 571 (k- 2
J E(MOH 2) II (dom)mm L) o

Jj=1

(8.6.4)

% 20rd2([%]!)—ord2((k—2)!)

where A, =min(k — 7(2k), [2(k — 7(2k)) + s — 57). Here we have used k — m(2k) < [%52] for
the expressions given by A, and A,. We take n, = 2,n, = 1,d. = d, = 83 if k = 19,21,27,31
and n, = 2,n, = 1,d. = d, = 113 if k£ = 22,24. We get a contradiction for k = 27,31 since
d > 2k. Thus we may assume that k € {19,21,22,24}. We obtain d < D, if n is even where
D, =47,47,67 and 61 according as k = 19, 21, 22 and 24, respectively. If n is odd, then d < D, where
D, =53,47,71 and 67 according as k = 19, 21,22 and 24, respectively. By taking n. = 4k, d. = D,
and n, = 4k + 1,d, = D,, we derive from (8.6.3) and (8.6.4) that d < 2k. This is a contradiction.
Thus n < 4k. For these values of n,d and k, we check that P(A(n,d,k)) > 2k is valid. This

completes the proof. |
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CHAPTER 9

Notation, Preliminaries and General Lemmas

In this chapter, we define notation, preliminaries and general lemmas which will used in the

following chapters.

9.1. Notations and Preliminaries

Let n,d, k,b,y be positive integers such that b is square free, d > 1, k > 4, P(b) <
ged(n,d) = 1. Let t < kand 11 < 72 < -+ < vy be integers with 0 < ; < k for 1 <34 <
1) = k —t. We consider the equation

(9.1.1) (n+v1d)--- (n+ ved) = by?.

k and
t. Let

If t = k, we observe that v, =4 — 1 and (9.1.1) coincides with (2.1.1). Assume that (9.1.1) holds.

Then we have
(9.1.2) n+vd= a%xii for 1 <i<t
with a., squarefree such that P(a,,) < k. Also
(9.1.3) n+yd=A, X2 for 1 <i<t
P(A,,) <k and ged(X;, [[,<, p) = 1. Further we write

bi=ay, Bi=A, yi=z,, Yi=X,.
Since ged(n, d) = 1, we see from (9.1.2) and (9.1.3) that

(9.1.4) (bi,d) = (Bi,d) = (yi, d) = (Yi,d) =1 for 1 <i<t.
By taking m = n + yd and v, = vy, — ;, we re-write (9.1.1) as
(9.1.5) (m —71d) - (m —v;d) = by*.
The equation (9.1.5) is called the mirror image of (9.1.1). The corresponding t-tuple (a.;,a;, - - -
is called the mirror image of (a.,,-- ,a.,).
Let

R={b:1<i<t}.
For b; € R, let v(b;) = {j : 1 < j <t,b; =b;}| and
Vo(bi) =[{j: 1 <j <t.b; =0, 21y}, ve(bi) ={j:1<j<tb;=0bi2y;}.
We define
R, ={b€ R:v(b;) =p}, ru=|Rul, v=1|{(i,4):b;i=0bj, bi,b; € Randi> j}|.
Let
T={v:Yi=1L1<i<th Ti={y:Y;>1L1<i<t} Si={B;:v €}

Note that Y; > k for i € T}. For i € T1, we denote by v(B;) = |{y; € Th : B; = B;}|.
Let

(9.1.6) § = min(3,ordz(d)), ¢’ = min(1,ordz(d)),
1 if orde(d) <1

(9.1.7) gL iforda(d) <1,
2 if ordy(d) > 2

=

59
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and

3 if 3|d,
9.1.8 _
(0.1.8) P {1 if 31d.

Let d |d and d” = d—d, be such that ged(d',d”) = 1. We write

" 1 ifordy(d’) <1
d' = didy, ged(dy,dp) = {2 if ordzgdui > 2

and we always suppose that dy is odd if ords(d”) = 1. We call such pairs (dy,ds) as partitions of

d’. We observe that the number of partitions of d" is 2¢(@ ) =01 where

1 if ordy(d’) =1,2

0 otherwise

0y :=0,(d ) = {

and we write 6 for 0;(d). In particular, by taking d’ = 1 and d = d, the number of partitions of d
is 2¢(d)=0,
Let b; = bj,7 > j. Then from (9.1.2) and (9.1.4), we have

( Vi 7]') ! ylZ yJ2 (yl y])(yz yj)
(9 ) bz l// l//

such that gcd(d”,yi -y, Y +y;) =1if d" is odd and 2 if d" is even. Thus a pair (i,4) with ¢ > j
and b; = b; corresponds to a partition (dy,ds) of d such that di | (y; — y;), do | (yi + ;) and

it is unique. Similarly, we have unique partition of d’ corresponding to every pair (i, j) whenever
B; =DBj,i,j €.
Let p; < py < --- be the odd primes dividing d. Let

d—= 2°q,6qq - Qu(dy—1 Hd=12
9192 " du(a) otherwise

where q; < gy <---q,g)—p are prime powers dividing %. By induction, we have

h
d “(d)—0
(9.1.10) Pibo Py S Qe qp < <259)

for any h with 1 < h < w(d) — 6. Further we define
(9.1.11) Ap={B; €T1:B; < 14y}, An = |Anl

for any h with 1 < h < w(d) — 6.
We end this section with the following lemma.

LEMMA 9.1.1. Let ¢ be fized. Suppose that (9.1.1) with P(b) < k has no solution at k = k;
with k1 prime. Then (9.1.1) with P(b) < k has no solution at k with k1 < k < ko where ko is the
smallest prime larger than k.

PROOF. Let k1, ks be consecutive primes such that k1 < k < ks. Suppose (n,d, b, y) is a solution
of

(n+md)- (0 +7d) = by?
with P(b) < k. Then P(b) < k1. We observe that v, —y < k1 and by (9.1.2),
(n+md)--- (n+ v, —yd) = 'y"
holds for some b with P(b’) < ki giving a solution of (9.1.1) at k = ky. This is a contradiction. O
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9.2. Some counting functions

Let p be a prime < k and coprime to d. Then the number of i’s for which b; are divisible by ¢
is at most

Let » > 5 be any positive integer. Define F'(k,r) and F'(k,r) as
(k)
F(k,r)=|{i: P(b;) > p,}| and F'(k,r) = > oy,
1=r+1

Then [{b; : P(b;) > pr}| < F(k,r) < F'(k,r) = Y 0. Let
pld,p>pr

B.={b;: P(b;) <p.}, I, ={i:b; € B} and &, = |I.].

We have
(9.2.1) & >t—F(kyr)>t—F + > o
pld,p>p;

and

(9.2.2) t—|R| =t —[{b; : P(b;) > pr}| — [{bi : P(b;) < pr}

(9.2.3) 2t —F(k,r)—=[{bi: P(b;) < pr}|

(9.2.4) >t—F'(kr)+ Y, op—|{bi:P(b;) <p}|
p|d7p>pr

(9.2.5) >t—F'(k,r)+ Y 0,2
pld,p>pr

We write S := S(r) for the set of positive squarefree integers composed of primes < p,.. Let
§ =min{3,ordy(d)}. Let p = ¢ = 2% or p < ¢ be odd primes dividing d. Let p = ¢ = 2°. Then
b; = n(mod 2?). Considering modulo 2° for elements of S(r), we see by induction on r that

(9.2.6) IB,| <277° =: g5 05 =t gas.

For any odd prime p dividing d, all b;’s are either quadratic residues mod p or non-quadratic residues
mod p. For odd primes p, ¢ dividing d with p < ¢, we consider four sets:

Si(n',r) = 81(6,n',p,q,r) = {s € S: s =n/(mod 2°), (;) =1, (2) =1},

So(n/, 1) = Sy(8,n/,p,q,r) = {s € S : s = n/(mod 2%), (;) =1, (2) = -1},
(9.2.7)

Ss(n',r) = S5(8,n,p,q,r) = {s € S : s = n/(mod 2%), (;) =1, (Cs]) =1},

Si(n', 1) = 84(6,n',p,q,7) = {s € S: s = n/(mod 2°), (;) =1, (2) = —1}.

We take n’ =1if 6 =0,1; ' =1,3if § =2 and n’ =1,3,5,7if § = 3. Then B, C S;(n/,r) for some
n and some j with 1 < j < 4. Let

(9'2'8) Ip,q ‘= g}%q(r) = H}La;X(|81 (nlv T)‘v ‘SZ(n/’ T)|’ |83(’I’L/, ’I“)', |S4(n/’ T)|)
and we write g, = g, . Then

(9.2.9) 1Br}H < 9p,q-
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In view of (9.2.6) and (9.2.9), the inequality (9.2.4) is improved as

(9.2.10) t=[R|>t=F'(kr)+ > op— min{g,,}.
pld,p>pr Pldgl

We observe that ged(s,pq) =1 for s € §;, 1 <1 < 4. Hence we see that S;(n,r + 1) = §;(n’,r)
if p=pr41 or ¢ = p,41 implying

(9.2.11) Ipa(r+1) = gpq(r) if p=pri1 or ¢ =pri1.

Assume that py11 ¢ {p,q}. Let 1 <1 < 4. We write S/(n’,7+1) ={s:s e S, r+1),p41]|s}
Then s = p,418’ with P(s') < p, whenever s € S/(n’,r+1). Let | = 1. Then s’ = n'p,}; = n” (mod

29) wheren” = 1if6 = 0,1;n" =1,3if6 = 2andn” = 1,3,5,7if § = 3. Further (;) - (PT+) and

(%) = (’”%) for s € S;(r+1). This implies S (n/,7 + 1) = pry1Sm(n”,7) for some m,1 < m < 4.
Therefore |S(n',r + 1)| < gp.q(r) by (9.2.8). Similarly |S/(n/,r 4+ 1)| < g, 4(r) for each [,1 <1 < 4.

Hence we get from S;(n/,r + 1) = §(n/,r) US/(n’,r + 1) that

(9.2.12) Ip,a(r +1) < 2gp 4(r).

We now use the above assertions to calculate g, 4.
1) Let 6 =0,r = 3,4 and 2 < p < 220. Then

27"—2 if p< .
(9.2.13) gplry=3- PP
2"+ if p>p,

except when r = 3,p € {71,191} where g, = 2". i) Let 5 < r < 7,p < 547 when § = 0,1;
5<r<7,p<547 when § =2 and 5 <r < 7,p < 89 when § = 3. Then

max(1,2"7%72) if p < p,
max (1,270 if p > p,

(9.2.14) gp(r) = {

except when § = 0,7 = 5,p = 479 where g, = 2";

§=1,r =5,p € {131,421,479}, r = 6,p = 131 where g, = 2" ~°;

§=2,7r=5,p¢€ {41,101,131, 331,379,421, 461,479,499} where g, = 2"7;

§=2,7=6,p€ {101,131}, r = 7,p = 101 where g, = 2"~%;

0=3,r=>5,p=23 where g, = 2r=9-1 =5 p = 41 where gp = 2r=9,

19) Let 5 <r < 7,p<19,¢<193,23 <p<q<97 when § =0 and r =5,6,p < ¢ < 37 when
6 > 1. Then

max(1,27°7%) if p < g <p,
(9.2.15) Gpq(r) = max(1,2"7073) if p<p.<q
max(1,2"7%7%) if p, <p<gq
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except when

r=05, gpg=2""2for (p,q) € {(543),(5,167),(7,113), (7,127),
(7,137), (11,61), (11, 179), (11, 181)};
d=0and {r=

» Opg = 2"=1 for (p,
r =0, gpq=2""7for(p,

€ {(19,139), (23,73), (37,83)};
(7,137);

(37,83);
€ {(5:7), (5, 1)}
r=05, gpg=2""2for (p, (5,37);

q)
q) =
r=0, gpq= 271 for (p,q) =

q)
q) =
r=>5, gpq=2""2for (p,q) € {(13,23),(29,31)};

q) =
q)

1)
q)
q)

q)

r=05, gpg=2"""for (p,
60=1and

r=6, gpq=2""""for (p,

(5, 7);
{(3,19), (5,17), (5,37), (7, 13),
11,19), (11,29), (11,31)};

r=05, gpg=2""%for (p,
(7,23),(7,29), (7,
d=2and S r=5 g,,=2""2for (p,

b

(13 23) (17,37), (29,31)};
(5,

7),(7,13)};
(7,29), (11,31), (13,23)}.

Now we combine (9.2.14), (9.2.15), (9.2.12) and (9.2.11). We obtain (9.2.14) with = replaced
by < for r > 7 and p < 89 and we shall refer it as (9.2.14, <). Further we obtain (9.2.15) with =
replaced by < for » > 7 and either p < ¢ < 97 when § =0 or p = 3,q¢ = 5 when § > 1 and we shall
refer it as (9.2.15, <).

S
(
(p.q) €1
r=6, gpq=2""for (p,q) €
r=6, gpq=2""1for (pq) €

9.3. Lemmas for the upper bound of n + (k —1)d
In this section, we assume that (9.1.1) holds. Let ¢ > j,g > h,0 < i,4,9,h < k be such that

(9.3.1) bi =bj, bg =bn, Yi+7 =Y+
and
(9.3.2) yi —y; = dir1, yi +yj = dara, yg — yn = dis1, Yg + yn = daso

where (di,ds) is a partition of d. We write V(i,4,9,h,d1,ds) for such double pairs. We call
V(i,J,9,h,d1,ds) degenerate if

(933) bl = bg,Tl = §1 Or bi = bg,TQ = S9.
Otherwise we call it non-degenerate. Let g; and g be given by
(9.3.4) bir? — bys3| = quda and |b;r3 — bys3| = qad.

We shall also write V' (i, 7,9, h,d1,d2) = V(i,4,9,h,d1,d2,q1,q2).

Let Q be a set of pairs (4,7) with ¢ > j such that b; = b;. Then we say that Q2 has Property
ND if the the following holds: For any two distinct pairs (¢,j) and (g, h) in © corresponding to
a partition (dj,ds) of d, the double pair V(i,7,g, h,d1,ds) is non-degenerate. We begin with the
following lemma.

LEMMA 9.3.1. Letd = 91(1()—1)2, n= 92(1{?—1)3 with (91 > 0 and 92 > 0. Let V(i,j, g, h, dl, d2, q1, QQ)
be a non-degenerate double pair. Then

1 1 1 01
9.3.5 O < -4 — =+ ——+ —
( ) ? 2 {QND ! (Q1Q2)2 q1492 }

and
01(k—1) d 4(k—1)

9.3.6 4 < L dy <
( ) ! q1(202 + 61) 2 g2
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PrROOF. We have from (9.3.2) that y; = dl”% and y, = MQdm. Further from (9.1.2) and
(9.3.1), we get

1
(i —vg)d = biyf - bgyg == {(bﬂ'f - bgs%)df + (birg - bgsg)dg + 2d(byrire — bgslsg)} .

4
We observe from (9.3.2), (9.3.1) and (9.1.2) that byriry = v; — v;,bgS152 = 79 — Yn. Therefore
(9.3.7) 207+ =79 — m)d = (bir] — bysi)di + (biry — bys3)d3.

Then reading modulo dy, d2 separately in (9.3.7), we have
d2’(bir$ — bys?), dl‘(birg — bys2) if orda(d) < 1
ds 2 dy

5 (birf —bg57)s 5 (bﬂ“% — bgsg) if ordy(d) > 2.

Hence 2¢1, 2g2 are non-negative integers. We see that ¢; # 0 and g # 0 since V (4, 4, g, h,d1,d2, q1, q2)
is non-degenerate. Further we see from (9.1.2) that

(9.3.9) biy; — bayy = (vi = ¥a)d: bjyi — buypy = (v; — m)d.
Therefore, by (9.3.2), we have
0# Fy o= (birf — bg‘s%)d% =bi(yi — yj)2 = by(yy — un)?

(9.3.8)

(9.3.10)
= (v + 7% — Y — n)d — 2(biyiy; — beYgyn)
and
04 F = (b;r2 —b.s2)d2 = b. (y: 2 g 2
(9.3.11) # Fy = (biry — bysz)dy = bi(yi +yj)" = bg(yg +yn)

= (v +75 — v — Wm)d + 2(biyiy; — bgygyn)-
We note here that F; < 0, F5 < 0 is not possible since y; +v; > v + Va.

Let a and b be positive real numbers with a # b. We have 2vab = (a+b)(1 — (Z—jrg)z)%. By

. 1 . (a=b)? (a—b)®
using l —z < (1-2)2 <l-Ffor0<z <1, wegeta+b— -5 <2\/@<a+b—2(a+b).We
use it with @ = n +v;d and b = n + 7;d so that vab = b;y;y; by (9.1.2) and (9.3.1). We obtain

(vi = ;)% (vi = 73)%d?

(9.3.12) 20+ (v +;)d < 2biyiy; < 2n+ (i +y5)d —

20+ (i +)d An 4 2(vi +75)d’

Similarly we get
. (g — h)*d?
4n 4 2(yg +yn)d

(Vg — n)*d?
2n + (v +n)d
Therefore we have from (9.3.4), (9.3.10), (9.3.12) and (9.3.13) that

(9.3.13)  2n+ (v +yn)d — < 2bgygyn < 20+ (Y4 + )

qrddy <(vi +75 =79 — . )d—(2n+(7'+7‘)d)+M
1ad1 i 7 g h % J om + ('7i+'7j)d
('79_'Yh)2d2

- it F1 >0
An + 2(vg +yn)d '

+ (21 + (74 + Y1)d)

and
qrddy <(2n+ (i +7;)d) - 471(172(7% = (2n+ (v + 7))
m — (vt — v —m)dif F1 <0.
Thus
) )2 . N2
x . if F1 <0.

27l+(79 +yn)d T 202(k—1)+0, (’Yg +Yn)
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Similarly from (9.3.4), (9.3.11), (9.3.12) and (9.3.13), we have

61 (vg—n)*

2(% + 75 — Y9 — 7h) + if Fy >0
(9.3.15) gads < Oy 91(17_%)729 ) 205 (k—1)+01 (vg+71) - 2
s 0= o, iy — 20 % — e — ) i F2 <O
Let
01 (i + ;) 07 (vi —75)°
= (k—1)230(k — 1 LA L 3
Mi.j ( ) { 2( )+ 2 2(292(k—1)+91(%+’}/j))
and
01(7g + 1) 03 (v — n)?
= (k—1)2{6s(k—1 g - = -
e R R (Ea ¥ Ty

Then we see from (9.3.12) and (9.3.13) that n;; < biyiy; < 1bi(y; +y;)? and ngp < byygyn <
1bg(yg + yn)?, respectively. Assume Fy > 0. Then from (9.3.4), (9.3.11) and (9.3.2), we have

1 1
n;jquded? < zbi(yi +y;)%bi(ys — y;)* = 1(%‘ —;)2d?
implying
Nij b1 Yi+ 01(vi —5)?
01+ 05 = - E—1— J J
93.16) 1o (k—1)3+k—1< 5 20k —1) 1 6:(n + 7))
o (vi —5)? da .
—_—dy+ O < ——F—— + 01 if F; >0
< 41 (k — 1) 2+01 < A (k—1) +01t 7 >
: : 01 (vi—;)? i—;)° i+ .
by estimating 2(292(k1_(17)+gl()%+%)) < éz%lvi) <2 ZW . Similarly
d
(9.3.17) 0y 40y < ———— 46, if I, <0.

4q1 (k — 1)

We separate the possible cases:
Case I: Let F; > 0, F» > 0. From (9.3.14) and (9.3.15), we have

01(vi — ;)2 { 01(vg — 7n)?
9 k -1 2 < J 2 i + v — _ + g
219261 ) 205(k — 1) + 01 (v +5) 647 =% =) 205(k — 1) + 01(7g + 1)
01(vi — i)

2(v; ) —92 _
292(k—1)+91(%+’}/j){ (v +'73) ('Vg""Yh)""Yg Y}

201 (vi — ;)2 (vi +v5) < 201} < 201 (k —1)3
%05 (k — 1)+ 01(vi + ;) — 205(k — 1)+ 017; — 205(k — 1) + 01 (k — 1)

3
since 292(]5_01% is an increasing function of ~;. Therefore 205 + 67 < ﬁ which gives (9.3.5).

Further from (9.3.14) and (9.3.15), we have

01(vi —5)° - 6177 _ Oi(k—1)
¢1(202(k — 1)+ 01(vi +v4)) @1 (202(k —1) +61v:) — q1(202 + 01)

dy <

and

200 +5) _ Ak 1)
q2 q2

1
dy < qu {207 +5) = 2(vg + ) +79 — W} <

giving (9.3.6).
Case II: Let F; > 0, F, < 0. From (9.3.14), we have

01 (i —7;)? 01(k —1)

dy < < .
! q1(202(k = 1) +01(vi +v5))  q(202 4 61)
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Similarly ds < q%%lg(zk;;l) < % from (9.3.15) and ~; +7; > v + vn. Therefore (9.3.6) follows.
Further

02(k —1)2

O1(k — 1) =d=didp < —L—2—
il ) T 12200 + 0)2

implying (202 + 61)? < qf(lh. Hence (9.3.5) follows.

Case III: Let I} < 0, F; > 0. From (9.3.14) and (9.3.15), we have

01’}/3 01’}/2
207 + 75 — 7g) + J .
B2 — 1)+ 0y |2 ) e T T o,

91(/{3 — 1)2 <

20, (k—1 0172 01 (k—1
Let x(v4) =1— m so that Y9X(Vg) = s5;5=11 5017, < 5D and both x(74) and Y4 x(7,)

are increasing functions of v,. Since y; +v; < 2(k — 1), we have

or( = 17 < 2209 430500 1) —3y) - qx29)) = 02 {3,200 = 1) = ) 492002}

We see that v4(2(k — 1) —7,) is an increasing function of -, since 74 < k — 1. Therefore the right
hand side of the above inequality is an increasing function of ,. Hence we obtain
1 0 01(k —1)2 0 0
- 1 {2(k—1)2+ 1 ) }: 1 {2+ 1 }
(k —1)% q1g2(20 + 61) 202 + 0, q192(202 + 01) 202 + 0,

Thus (26, + 61)? < %. Then we derive

01 <

1 1 0,
< 5+ .
q192 (192)*  q1q2

(292 + 61 —

Thus we get either 265 4+ 60, < ﬁ or205+6, — +— <, /L 4+ & giving (9.3.5). Further from

q192 (€192)® " q1g2
(9.3.14), we have

i < 01(79 —m)° _ k1)
01 (202(k = 1) + 01(7vg + 7))~ @1(202 4 01)
As in Case I, we have dy < %. Thus (9.3.6) follows. O

Let 01,05 be as in as the statement of Lemma 9.3.1.

COROLLARY 9.3.2. We have

3 3
(9.3.18) 0L < —, 01 4+602 <01 +20, < —.
q192 q1492
PROOF. Since 65 > 0, we see from (9.3.5) that either §; < ﬁ or (61 — q11q2)2 (QI;)Q q‘f;
giving 61 < ﬁ. Hence we get from (9.3.5) that
1 1 0 3
01 + 2605 < + 5 + ! < .
0142 (192)* @12~ Q12
Thus (9.3.18) is valid. O

LEMMA 9.3.3. Let b; = b;,b, = by, and (dy,d2) # (7, %) be a partition of d. Suppose that (i, )
and (g, h) correspond to the partitions (di,ds) and (da,dy), respectively. Then

(9.3.19) dy < n(k —1)2 dy <n(k—1)%
Proor. We write
Yi — Y = dir1, yi +y; = dar2, Yy — yn = d2s2, Yy + yn = d151.
with
(9.3.20) biryra = i — 75, bgs152 = Vg — Yh-
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Then as in the proof of Lemma 9.3.1, we get (9.3.7) and (9.3.8). If both b;r} — bys? # 0 and
bir3 — bys3 # 0, we obtain max(dy,ds) < n max(b;r?, bys?, bird, bys3) < n(k — 1) by (9.3.20). Thus
we may assume that either b;r? —b,s? = 0 or b;r3 —bys3 = 0. Note that b;r? —bys? = b;r3 —bys3 =0
is not possible. Suppose b;r? — bys? = bir3 — bys3 = 0. Then b; = by, r1 = s1,72 = s2 implying
Yi = Yg,Y; = Yn. Hence we get v; = 4,7, = vn from (9.1.2) implying (¢,5) = (g, h) which is a
contradiction. Now we consider the case b;7? —bys? = 0 and the proof for the other is similar. From

bir3—bgs3 # 0 and (9.3.7), we obtain 2(v;+v;—vy—vn)d1 = (bir3—bys3)dy implying dy |n(bir3 —bys3)
and d2‘277('yi +7;j =g —7n)- Hence by (9.3.20), d; < n(k—1)%,ds < 2n(k—14+k—2—1) <n(k—1)?
implying (9.3.19). |

For two pairs (a,b), (¢, d) with positive rationals a, b, ¢, d, we write (a,b) > (¢,d) if a > ¢, b > d.

LEMMA 9.3.4. Let (dy,d3) be a partition of d. Suppose that there is a set & of at least zy distinct
pairs corresponding to the partition (dy,ds) such that V(i,j,9,h,d1,ds) is non-degenerate for any
(i,7) and (g, h) in &. Then (9.3.5), (9.3.6) and (9.3.18) hold with (¢1,q2) > (Q1,Q2) where (Q1, Q2)
is given by the following table.

20 | d odd 2[|d 4f|d 8]d
2 | (1,1) (2,1) (3.3) (1, 3) if 2[dy, (5,1) if 2[[da
31(2,2) | (44) or (8,2) (2,2) (2,2)
5| (4,4) (8,4) (2,8) or (8,2) | (2,8) if 2[[d1, (8,2) if 2[|ds

Table 1

For example, (Q1,Q2) = (1,1) if 2o = 2,d odd and (Q1,Q2) = (2,2) if 2o = 3,4||d. If there
exists a non-degenerate double pair V' (i, j, g, h, d1, dz), then we can apply Lemma 9.3.4 with zo = 2.

PRrROOF. For any pair (i,5) € &, we write
(9321) Yi —Y; = Tl(i,j)dl and Yi + Y; = Tg(i,j)dg

where r1 = r1(i, ) and ro = ro(i, ) are integers.

Let d be odd. Then r1 = ro(mod 2) for any pair (¢,7) by (9.3.21) and we shall use it in this
paragraph without reference. We observe that ¢; > 1,¢2 > 1 by (9.3.8), (9.3.4) and the assertion
follows for zg = 2. Let 29 = 3. If there are two distinct pairs (4, j) with b;r1 even, then q; > 2,go > 2
by (9.3.8). Thus we may assume that there is at most one pair (7, j) for which b;r is even. Therefore,
for the remaining two pairs, we see that both b;r1’s are odd and the assertion follows again by (9.3.8).
Let zp = 5. We may suppose that there is at most one (4, j) for which r; is even otherwise the result
follows from (9.3.8). Now we consider remaining four pairs (4, j) for which 7 = 1(mod 4). Out of
these pairs, there are (i1, j1) and (ia, j2) such that b;, = b;,(mod 4) since b’s are square free. Now
the assertion follows from (9.3.8).

Let d be even. We observe that

(9.3.22) 8(y7 — v2) and ged(y; — yj, yi + y;) = 2

for any pair (4,7). Let 2||d. Then d; is odd and ds is even implying r; is even by (9.3.22). Further
from (9.3.22), we have either 4|r1,2 { ro or 2||r1, 2|re. Therefore (q1,¢2) > (2,1) by (9.3.8) since rq
is even and the assertion follows for zo = 2. Let 29 = 3. Then there are two pairs (i1, j1) and (i2, jo2)
such that r9(i1, j1) = ra(is, j2)(mod 2). Assume that 9 is odd. Then 4|r; which implies 8|¢; and

2|g2 by (9.3.8). Now we suppose that ro is even. Then 2||r;. We write r, = 21} and
bilr%(ilvjl) — bi27"%(7;2,j2) = 4(bi17"/12(i17j1) — bi2T/12(i2,j2)) = O(mod 8)
Hence 4|q1, 4|g2 by (9.3.8). Let zp = 5. We choose three pairs (i,j) for which all b;’s = 1(mod 4)
or all b;’s = 3(mod 4). Out of these, we choose two pairs both of which satisfy either 4|r1,2 ¢ o or
2||r1, 2|ra. Now we argue as above and use b;;, = b;,(mod 4) to get the result.
Let 4||d. Then both dy and ds are even. From (9.3.22), we have either 2|ry,2 ¢ 73 or 24 ry, 2|rs.

Since (q1,¢2) > (3, 1) by (9.3.8), the the assertion follows for zg = 2. Let z9 = 3. Then there are
two pairs (i1, /1) and (iz, j2) such that r1 (i1, j1) = r1(i2, j2)(mod 2) and r3(i1, j1) = r2(i2, j2) (mod
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2). Since b; = n(mod 4) for each i, we get from (9.3.8) and (9.3.4) that 2|¢; and 2|g;. Thus
(g1,92) > (2,2). Let zg = 5. Then we get 3 pairs (i, j) for which 2|r1(Z,7),2 t r2(¢, j) or 3 pairs (i, 5)
for which 2 1 r1(i,5),2|r2(4,j). Assume the first case. Then there are 2 pairs (i1, j1) and (iz, j2) such
that r1(i1,71) = r1(i2,j2)(mod 4). This, with b; = n(mod 4) and (9.3.4), implies that 16|g;ds and
4|gody. Hence (g1,g2) > (8,2). In the latter case, we get (q1,¢2) > (2, 8) similarly.

Let 8|d. Then we have from (9.3.21) and (9.3.22) that either 2||d; implying all r1’s are odd, or
2||dg implying all ro’s are odd. Also b; = n(mod 8) for all i. We prove the result for 2||d; and the
proof for the other case is similar. From (9.3.7), we derive

dl d2 2 2 dl ? 2 2 d2 ?
032 2+ = Ourt = bus?) (G )+ Gurd-tusd) ()
where 1 = r1(i1,71),81 = 71(i2,J2), 72 = 72(i1,j1) and sy = ra(ia,j2). Noting that 4ds|d3 and
taking modulo da, we get (q1,¢2) > (1, 3) implying the assertion for zp = 2. Let 29 = 3. Then
there are 2 pairs (i1, j1) and (i2,j2) such that r2(i1,71) = r2(i2, j2)(mod 2). Using this and (9.3.4),
we get 4|gady. Further from b,rime = 7; — 7;, we see that v;, — v, = Vi, — 7V, (mod 2) implying
Yir + Vi = Viy + 7. (mod 2). Now we see from (9.3.23) that 4%2|q1d>. Thus (¢1,¢2) > (2,2). Let
2o = 5. We see that b; = n or n+8 modulo 16 so that b;r3(mod 16) is equal to 0 if 4|rq, 4n if 2||re and
n,n+8if 2t ro. Now we can find 2 pairs (i1, j1) and (iz, j2) such that b;, r3 (i1, j1) = bi,r3(i2, j2)(mod
16). This gives 16|gody by (9.3.4). Further again 2|(y;, +7j, — Vi, — 7j,) and hence 4% |q;d> from
(9.3.23). Therefore (q1,q2) > (2,8). O

LEMMA 9.3.5. (i) Assume that
(9.3.24) n+yid > 0’7
Then for any pair (i,7) with b; = bj, the partition (dn~',n) is not possible.
(ii) Let d = d'd" with ged(d ,d") = 1. Then for any pair (i,5) with B; = B; > d,i,jeTy, the
partition (d//n_l,n) is not possible. In particular, the partition (dn~',n) is not possible.

1

PROOF. (i) Suppose the pair (4, ) with b; = b; correspond to the partition (dn~',n). From

% > % and (9.3.24), we get n + v;d > n?v;7;. Then from (9.1.9), we have
1 1
bi(yi +y;) _ (biy?)? + (bjy3)2 VAT + /T
iy > (:;/77 Y5) 2( ) n(a e %n i) > it

a contradiction.
(ii) Suppose the pair (i,j) with B; = B; > d correspond to the partition (d n~!,n). As in (9.1.9),
we have

d _Yi+Y; 2k
%‘—%’Z(%—%‘)EZ 277 j>?

since Y; > Y; > k. This is a contradiction. The latter assertion follows by taking d=1,d =d O

LEMMA 9.3.6. (i) Assume (9.3.24). Let 1 < iy <t and v(b;,) = p. Let (d1,ds) be any partition
of d. Then the number of pairs (i,j) with b;=b; =b;,,i > j corresponding to (dy,ds) is at most [§].
(ii) Let d = d'd" with ged(d ,d") = 1. Letig € Ty, B, > d and v(B;,) = p. Let (dy,ds) be any
partition of d . Then the number of pairs (4,7) with B;=DBj=DB;,,1 > j corresponding to (di,d2) is
at most [%].

PROOF. (i) Suppose there are p' = [5]+1 pairs (47, ji) with i, > j;,0 < 1 < p’ and b;, = b, = b;,
corresponding to (di,d2). We consider the sets I = {#|0 <l < g’} and J = {50 <1 < p'}. If
[I| < p or |J| < p' or INJ # ¢, then there are [ # m such that

dil(Ys = Yjm)s d2l(ys — vy,,) if i = im
di (Y, — Yi,), do|(yi, — ¥i,,) if Ji = Jm
dil(Ys = Vi, )s d2|(Yj, = Yi,,) i i = Jm.
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We exclude the first possibility and proofs for the others are similar. Without loss of generality, we
may assume that j; > j,,. Then lem(dy, d2)|(yj, — yj,.) so that the pair (j;,jm) correspond to the
partition (dn~!,n). This is not possible by Lemma 9.3.5 (i). Thus |I| = ¢/, |J| = ¢/ and I NJ = ¢.
Now we see that [T U J| = |[I| +|J| = 2u' > p and b; = b;, for every ¢ € I U J. This contradicts
v(biy) = p.

(ii) The proof is similar to that of (i) and we use Lemma 9.3.5 (ii). O

As a corollary, we have

COROLLARY 9.3.7. (i) Assume (9.3.24). For 1 <i <t, we have v(b;) < 2“’(d)

(ii) Let d = d'd" with ged(d ,d") = 1. For B; > d, we have v(B;) < < gutd)- 91. In particular,
I/(BZ) < 2w(d)70.

ProOOF. (i) Let v(b;) = p. Then there are “(“_1) pairs (g,h) with ¢ > h and b, = b, = b;.

Since there are at most 2¢(9~¢ — 1 permissible partltlons of d, we see from Lemma 9.3.6 (i) that
@ < L(2¢(d=0 _1). Hence the assertion follows.
(ii) The proof of the assertion (ii) is similar and we use Lemma 9.3.6 (ii). O

COROLLARY 9.3.8. Let Thy1 = {i €Ty : B; > qydy---a,} and spy1 = |{B; 17 € Thy1}|. Then
h—1
Thsa| > [T1] - Z gu(d)=n=0)  _ gw(d)=h-1-0),
p=1

and

|T1 h—pup
Sh41 2 ow(d)—h—0 ZQL A

where X’s are as defined in (9.1.11).

PrOOF. We apply Corollary 9.3.7 (ii) with d’ = q,q,---q, to derive that v(B;) < gw(d)—pu—0
for B; > q195---4q,,, 4 > 1 since 61 > 6. Therefore

|Th+1| > |T1| _ 2w(d)—0/\1 _ Qu)(d)—l—e(/\2 _ )\1) R 2w(d)—h+1—9(/\h _ /\h—l)-
and the first assertion follows. Further from v(B;) < w(d)=h=0 for § € Th41, we have spy1 >
ﬁiﬂ‘_g and the last assertion follows. O

LEMMA 9.3.9. Assume (9.3.24). There ezists a set Q of at least
t—[Rl+ Y ru=t—|R|

p>1
p odd

pairs (i,7) having Property ND.
ProOF. We have

t= Zpr# and |R| = Zr#.
w

m

Each b;, € R, gives rise to “(“71) pairs (i,j) with ¢ > j such that b, = b; = b;, and each
pair corresponds to a partition of d. By Lemma 9.3.6, we know that there are at most [5] pairs
corresponding to any partition of d. For each 1 < j < [2] = p1, let v; be the number of partitions
of d for which there are j pairs out of the ones given by b;, € R, corresponding to that partition.
Then

(9.3.25) mp—1) i .
.3. 5 =) ju;.
j=1
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For each partition having j pairs with v; > 0, we remove j — 1 pairs. Then we remove in all
iL,(j — 1)v; pairs. Rewriting (9.3.25) as

__1 H1 H1
= —mng > (u1 = j)vj,
Jj=1
we see that we are left with at least
-1 —1 if pis even
Z vy ) 4 Z s ple=1) Jp— L it
2;“ = 2041 I if pis odd

pairs. Let be the union of all such pairs taken over all b;, € R, and for all i > 2. Since |R,,| = 7.,

we have
1] > Z (n—D)ry + Z pry =t —|R[+ Z Tu-
M even pn>1 pu>1
u odd u odd
Further we see from the construction of the set ) that Q) satisfy Property ND. |

COROLLARY 9.3.10. Assume (9.3.24). Let z be a positive integer and h(z) = (z — 1)(2¥(D—0 —
1)+ 1. Let 20 € {2,3,5}. Suppose that t — |R| > b(20). Then there exists a partition (di,ds) of d
such that (9.3.5), (9.3.6) and (9.3.18) hold with (g1, q2) > (Q1, Q2) where (Q1, Q2) is given by Table
1.

PROOF. By Lemma 9.3.9, there exists a set  with at least h(zo) pairs satisfying Property ND.
Since there are at most 2¢(9~% — 1 permissible partitions of d by Lemma 9.3.5 (), we can find a
partition (dy,ds) of d and a subset & C Q of at least zy pairs corresponding to (di,ds). Now the
result follows by Lemma 9.3.4. |

COROLLARY 9.3.11. Assume (9.3.24). Suppose that t — |R| > 2*(D=0=1 4 1 Then there exists
a partition (dy,ds) of d such that (9.3.19) holds.

PROOF. By Lemma 9.3.9, there exists a set Q with at least 2¢(9=0=1 4 1 pairs (i,7) satistying
Property ND. We may assume that for each partition (di,ds) of d, there is at most 1 pair corre-
sponding to (d1,ds) otherwise the assertion follows by zp = 2 in Lemma 9.3.4. We see that there are
2w(d)=0-1 _ 1 partitions (dy,dy) with dy > do, 2¢(D=0=1 _1 partitions (d;, dy) with n < d; < dy and
the partition (1, dn~"'). Since there are at least 2<(9=9=1 1 1 pairs, we can find two pairs (i, ;) and
(g, h) corresponding to the partitions (dy,ds) and (da,d;), respectively. Now the assertion follows
by Lemma 9.3.3. |

LEMMA 9.3.12. Assume (9.3.24).
(1) Let |S1] < |Ti| — H(3). Then (9.3.18) is valid with

144p=1 if 244

(9.3.26) q1g2 > 3 16 if 2||d
4 if 4/d.
(73) Let d be even and |S1| < |T1| — H(5). Then (9.3.18) is valid with
144p~" i 2[|d
(9.3.27) qig2 > { 36 if 4/d and 3+ d
16 if 4|d and 3|d.

PROOF. Let B; = B; with ¢ > j and 4,j € T7. Then there is a partition (di, dz) of d such that
Y, = Y; = dir, Y; + Y; = dorh with v, 7} even, 24p~trir} if d is odd and | even, 12p~!|rir} if
2||d and 3p~ 1|7 if 4|d. Since B;Y;? = b;y? and b; is squarefree, we see that plb; if and only if p|B;
with ord,(B;) odd. Therefore b; = b; implying b? = %’ = % and y; = bY;, y; = bY;. Hence

yi —yj = dibry = diri (i, j) = dary, yi +y; = dobry = dara(i, j) = darg
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with ry = brf,re = brh even, 24p~t|riry if d is odd; r; even, 12p~1|riry if 2||d and 3p~1|ryry if
4|d. Let z € {3,5} and |S1]| < |T1] — h(z). We argue as in Lemma 9.3.9 and Corollary 9.3.10 with ¢
and |R| replaced by |T1| and |S1|. There exists a partition (dy,ds) of d and z pairs corresponding
to (dy,ds) such that V(i,4,g,h,d,ds) is non-degenerate for any two such distinct pairs (¢,7) and
(g,h). Let z = 3. By Lemma 9.3.4 with zy = 3, we may suppose that d is odd. Let 3 {d. Then we
can find two distinct pairs (i1, j1) and (is, jo) both of which satisfy either 3|rq (i1, j1), 3|r1(i2, j2) or
3|ra(i1, j1), 3|ra(iz, j2). Now (9.3.26) follows from (9.3.8) and (9.3.4) since r1,72 are even. Assume
that 3|d. Let 3|dy. Then we can find two distinct pairs (i1, j1) and (iz,j2) both of which satisfy
either 3|rq (i1, 1), 3|r1(i2, ja) or 31 r1(i1,51), 31 r1(ia,j2). Since b; = n(mod 3) and r? = 1(mod 3)
for 3 r, the assertion follows from (9.3.8) and (9.3.4) since 71,792 are even. The same assertion hold
for 3|dy in which case 7 is replaced by 7. This proves (9.3.26) and we turn to the proof of (9.3.27).
Let d be even and z = 5. Let 3 1 d. Out of these five pairs, we can find three distinct pairs (3, j)
for which either 71 (%, j)’s are all divisible by 3 or r2(i,j)’s are all divisible by 3. As in the proof of
Lemma 9.3.4 with d even and zo = 3, we find two distinct pairs (i1, 1) and (iz2, j2) such that 16|g; g2
if 2||d and 4|q1¢o if 4|d. Further 9|q1qo since either r1(i,j)’s are all divisible by 3 or r4(4,5)’s are
all divisible by 3 and hence the assertion. Assume now that 3|d. By Lemma 9.3.4 with zy = 5, we
may suppose that 2||d. Let 3|d;. Then we can find three pairs (i, ) for which either 3 divides all
r1(i,§)’s or 3 does not divide any 71 (%, j). Then for any two such pairs (i1, j1) and (i2,j2), we have
3|(biyr3 (i1, j1) — biyr3(i2, j2)). Therefore by the proof of Lemma 9.3.4 with d even and zy = 3, we
get 3 - 16|q1¢2. The other case 3|d; is similar. O

The next result depends on an idea of Erdés and Rigge.

LEMMA 9.3.13. Let z1 > 1 be a real number, hg > 19 > 0 be integers such that HbieR b, >

zllRl_i°(|R| —ig)! for |R| > hg. Suppose that t — |R| < g and let gy = k —t+ g — 1+ 1i9. For
k > ho + g1 and for any real number m > 1, we have

2 ({—_—1
Klog [ gz [[p7 " 77 | + (k + 4)log(1 - %)

> p<m n
(9.3.28) n log(k —¢g1) — 1+ log 1
(.50 +1)logk —log [ ny* leﬁ“(k’p)
p<m
log(k —g1) — 1 +1log 2
and
2
klog | 37sst 1_[7”2_1 +(k+3)log(1 - %)
<
g1 > =2
(9.3.29) log(k —¢g1) — 1+ log z1
(1.5m(m) — .5¢ — 1)logk + log | ny 'ny Hp'5+ﬁ
p<m
log(k —g1) — 1+ log 21
where
(k) [logh()z;l)] if [loglgz;l)] is even
R, P) = § (log (k= .o rlog(k=1)7
[ gl(()gpl)] —1 if | gjggpl)] is odd,
. p1 26 if 21d
l = <m:p|d}, ng= Ny = 21D and ny =
It < Pld}l. mo E P ! g P ane 2 {1 otherwise.

p<m p<m
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PROOF. Since |R| >t—g+ 1=k — g1 +1ip, we get
(9.3.30) II b == (k=g
b;eR
Let
= ord,, (H b) , 9 =1+ ord,((k — 1)!).
bi€ER

Let h be the positive integer such that p" < k —1 < p"*! and € = 1 or 0 according as h is even or
odd, respectively. Then

k—1 k—1 k—1
(9.3.31) 19;—1:|:p:|+|:p2 :|_|_..._|_|:ph :|
Let ptd. We show that

2k 1
(9.3.32) 9, — ) < (1 )+ 1n(h.p)

2k 1.5logk
9.3.33 _ Fa_ 2
(9.3.33) <1t g TP Tt

where ng = % if p =2 and 0 otherwise. We see that ¥, is the number of elements in {n + y1d,n +
vod, . ..,n+vyd} divisible by p to an odd power. For a positive integer s with s < h, let 0 < ips < p°

be such that p°|n + ipsd. Then we observe that p® divides exactly 1 + [k Loipe

{n,n+d,...,n+ (k — 1)d}. After removing a term to which p appears to a maximal power, the
number of remaining elements in {n,n +d,...,n + (k — 1)d} divisible by p to an odd power is at

most
klz‘p} {k—l—ipz] [k—l—ips} {k—l—z’ph]
— + — e (=1) | —— .
{ p p? P =) ph
Since [p%}—lg [klp%} < [kl} we obtain
k—1 h—1
}—m+(—1)6[ Jre]+ t+e

wr= 5] 3.

This with (9.3.31) implies

] elements in

h—1+4e
2 k—1 k h—1+¢
. w3 (5] )+
j=1
Since [p%} > [p 1> p = ﬁ — 1, we obtain

h— 1+e

9, — 0 < —2k Z —+15(h—1+e)

giving (9.3.32) since n(k,p) = h — 1 + ¢. Further from (9.3.32), k < p"*! and h < }ggf}, we get

2k 1.5logk  2p*>~¢
9, — 9 < — 1.5(e—1
p— U, < p2—1+ Togp +p2—1+ 5(e—1)

giving (9.3.33). For p|d, we get ¥, — 1}, = —1 — ord,, (k — 1)! which together with Lemma 3.1.6 gives
k log k 1

logp p-—1
2k 1.5logk 2 k blogk p—1
< - + +.5+ — - —~ :
p?—1  logp pP—1 p+1 logp 2(p+1)

Wy — 0, < —
p
(9.3.35)
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For m > 1, we have

[T o |- (ITw ) ITp™

bieR p<k p<m

Therefore from Lemma 3.1.2 (#4i), (9.3.35), (9.3.32) and (9.3.33), we have

—k
— 50— _ 2 (1——1 )
9.3.36 by < k=51 [ np! L5n(k,p) 1o 71 (1 et
(9.3.56) 11 nt 1w e
b;eER p<m p<m
and
—k
) 1.57m(m)—.50—1 -1 St Mo =
(9337) H bZ < k'k ‘11 115 H D p2—1 571851 H pr 1
bicR p<m p<m
Comparing (9.3.36) and (9.3.37) with (9.3.30), we get
—1 k
(9.3.38) AR g o [T p*-one») LU | o1 (= ety
" =g 1 P p e
(k= 91)! ot 271851 L1
and
—1 k
9.3.39 k! = 15m(m)+ 5041 [ =1 St “1Mo 75
(9389 k=gt~ mm JT 7 s7isst 1177
p<m p<m

By Lemma 3.1.7, we have
91 7.1 k+3 N g1 g1
#1 k! p— k z1(k—g1) ( 91) 3
s S k— g1)% = (29N (o .
gy ~ e o)™ (g ¢ z
This together with (9.3.38) and (9.3.39) imply the assertions (9.3.28) and (9.3.29), respectively. [

9.4. Lemmas for the lower bound for n + (k — 1)d
We observe that |Sy| > wlg% and n + (k — 1)d > |S1|k%. We give lower bound for |T;]. We
have
LEMMA 9.4.1. Let k > 4. Then
(k—1)log (k — 1) = 3,4 ey max (o, (loplosp _jog(k — 2)) I
log (n+ (k— 1)d) — ma(k) = 1.

PROOF. The proof depends on an idea of Sylvester and Erdés and it is similar to [63, Lemma
3]. Since |T1| =t — |T'|, we may assume that |T| > mq4(k). For a prime ¢ with ¢ < k and ¢1td, let i,
be a term such that ord,(B;,) is maximal. Let 7" = T'\ {i, : ¢ < k,qt d}. Thus |T'| > |T| — ma(k).
Let i € T'. Then n 4 v;d = B; and ordy(n 4 v;d) <ordy(vy; —;,) since ged(n, d) = 1. Therefore

ord,( H (n 4 vid)) < ordg((vi,)!(k =1 —;,)!) <ordg(k — 1)
ieT

L(n+ (k — 1)d) for i > 0, gives

k—1
o (k— 1\ 1711
(- vt (EET)

ordg(k—1)!

(9.4.1) |Ty|>t—

This, with n 4 id >

< [[ (n+d) < (k1)o7
i€T

where o =[] glad . Therefore

(7] = ma(k) — 1) log(n + (k — 1)d)

<(IT') = 1) log(k — 1) + log((k — 1)- - |T"]) — log < (k — 1) log(k — 1) — log o.
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Now the assertion (9.4.1) follows from Lemma 3.1.6. O
LEMMA 9.4.2. Let S C{B;:1<i<t} andéniE%Bi >U. Leth>1and P < Py < --- < Py, be

a subset of odd primes dividing d. Assume that

P -1 P, -1
4.2
9.42) 51> (5 (P57
where Q > 1 is an integer. Then
(9.4.3) g%}éBz >2°QP,--- P, + U

PROOF. For an odd p|d, we have from

(5)-(59)-C)

that B; belongs to at most % distinct residue classes modulo p. If d is even, then B; also belongs
to a unique residue class modulo 2°. Hence, by Chinese remainder theorem, B; belongs to at most

(%) e % distinct residue classes modulo 2°P; - - - P; for each j, 1 < j < h. Assume that

(9.4.3) does not hold. Then
maxA; — (U —1) < 2°QP; --- P,.

B;eS
Therefore
20QP,---P, (P —1 P,—-1
|S‘ S Q 1 h 1 . h
2P ... P, 2 2
contradicting (9.4.2). O

COROLLARY 9.4.3. Let SC{B;:1<i<t}. Leth>1and P, < P, <--- < Py be a subset of
odd primes dividing d. For |S| > (£52) -+ (£271), we have

2°0(|S| = 1)+ 1 if h =1,2|d or 3|d
(9.4.4) maxB; > 32h+01 5| if 3¢d,h > 1if 2|d
' 99h+9| 8| if 3|d,h > 1.

PROOF. The assertion (9.4.4) with h = 1,2|d or 3|d follows by taking residue classes modulo 2°

and 3. Thus we suppose h > 2 if 2|d or 3|d. We have |S| = Q (£52) +e with @ > 1,0 <e < L

if h=1and|S|=Q(&52) - (B51) + Q (&572) - (Ph*;‘l) +e with Q > 1,0 < Q' < -1
and 0 < e < (B1). (%) if h > 1. If ¢ > 0, then we take Qn, = Q,Q), = Q', &) = & if
£=0,Q >0, wetake Q, = Q, Q) = Q' — 1,6, = (1) .. (Ph;‘l). Ife =0,Q =0, then Q > 2
and we take Q, = Q — 1,Q), = P’gl,eh = (Plgl) (P’“}l_l). We write
5] Q1 (P1271)+51 if h=1

Tl (B (B 4 Q4 (B (B e it A1,
We arrange the elements of S in increasing order and let S(lh) C S be the first ¢}, elements. Further

for h > 1, let S?, consist of the first Q, (Pl*l) (Ph’l_l) + ¢y, elements of S. By taking modulo

(9.4.5)

(h) 2 2
29 and p, we get max B; > 2°p(e;, — 1) + 1 for B; € S(lh).
Let h = 1 and ged(d,6) = 1. Then we see from Lemma 9.4.2 with U = e;, h=1 and Q = @,
that

maxB; > P +e;.
max i > Q1P 1

Now we observe from e; < £2=1 and (9.4.5) that (9.4.4) is valid.
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Thus h > 1. If Q" > 0, we apply Lemma 9.4.2 with S = S(Qh), U=2p(en,—1)+1,Q=Q) to
derive

max B; > 2°Q, P\ Py Pr_1+2°p(e, — 1)+ 1:=Uy.
BieSy,

The same assertion is also valid when Q' = 0. Now we apply Lemma 9.4.2 in S with U = Uy,Q = Qy,
to get

maxB; > XQuPPy - Py + 2 Q) PiPy -+ Puoy + 2p(en — 1) +1:= U
i€

Let 3 '|' d. Since en < (P12_1) te (P}Lal_l) and (Ph—l — 1)(Ph — 1) < Ph—lph — 2]Dh_17 for deriving
(9.4.4), it suffices to prove

QnPr-- Py +QpPr--- Ppq > %{thl"'Ph +(2Q), +2 = 2Qn)Pr--- Py}
This follows from
(9.4.6) QP +6(Qn —1) —2Q}, >0
which is true since @ > 1 and @), < %.
Thus 3|d. Then P; = 3. Let h=2. Then e =1 since 1 <& < % and it suffices to prove
QuPr+ @ 2 2 {Qu(Py— 1) +2Q} +2)

From Qp > 1,Q), < 2 , we see that Qn P + 3(Qn —2) — 2Q), > 0 if either @, > 1 or Q) < P22_1.
Therefore we may suppose that Qn, = 1 and Q}, < % implying |S| = 2(%) + 1. Now we
get from Lemma 9.4.2 that Max B; > 2°-3-2P, + 1 for B; € S. Now the assertion follows since

|S| = P2| + 1 and P, > 5. Hence h > 2. To derive (9.4.4), it is enough to prove

3
QnPr- Py +QpPa- - Ppq > Z{QhPQ"'Ph“F (2Q), +2—2Qn) Py Pp1} .
As in 31 d, it follows from (9.4.6) which is true since Q, > 1 and @, < £2-1. O

COROLLARY 9.4.4. We have \; < 3q1 if 21d,31d and A\ < st 1 otherwise. For h > 2, we
have

L if 2¢d,31d
A < | 3 it 24d,3|d
el if 2|d,31d

min(9Lode 1 oy it 6.

PROOF. Let 21 d and 3§ d. If Ay > T8 then A, > Gt Gl > Bl Butl g

2
qy-dp > max B; > 32"\, by (9.4.4) with S = Aj,. This is a contradiction.
16 h

Let 2|d or 3|d. Then we derive from Chinese remainder theorem that Aj, < qlqu’ + 1. Thus we
may suppose that h > 2. Further we may also assume that h > § + 1 when 6]|d.

Let 2 1 d and 3|d. Suppose A, > 9}2';;9’;. Then q; > p; = 3 implying A\, > C|22—1 qh;l >
pl_l p2—1 . ph_l . Therefore qy - -~ qj, > 22"~1\;, by (9.4.4) with S = Aj,. This is a contradiction.

Let 2|d and 3 {d. Suppose A\ > = ZH,EI Then q, > 7 since h > 2 implying q’ := max(qy,,2°) >
7 implying

2" 1q p =1 ppa—l_dp 1 Pl g =1 ppa -l

hZ g s g 2 T 6 2 2 2 2
Now we apply (9.4.4) with S = A, to get a contradiction.
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Let 6|d. Suppose A\j, > 4 2hq Let 2||d or 4]|d. Then Ay > Gt I 5 > pl_l p22—1 P

since q,q; > 9 and p; = 3. Now we apply (9.4. 4) with § = Ah to get a contradlctlon Thus it

remains to consider 8|d. Then \;, > Cl22 c 5 Z p12—1 p22—1 . 21

since

2h2q19'py -1 ppo—1 _p—1 pyo—1
A > 19 P ) 1 o Ph2 T
h="g gh—2 "9 S 2

where q’ := max(q;,8). Now we apply (9.4.4) with S = A}, to get a contradiction. O

Let ¢, denote the v-th odd squarefree positive integer. We recall here s, is the v-th squarefree
positive integer. The next lemma gives a bound for s, and t,.

LEMMA 9.4.5. We have

(9.4.7) s; > 1.60 for i>178
and
(9.4.8) ti > 24i for i>5l.

Further we have

(9.4.9) Hsz_ (1.6)1! for 1> 286
and
l
(9.4.10) [1t =o't for 1= 200.
1=1

PRrROOF. The proof is similar to that of [63, (6.9)]. For (9.4.7) and (9.4.8), we check that
s; > 1.61 for 78 < ¢ < 286 and t; > 2.47 for 51 < i < 132, respectively. Further we observe that
in a given set of 144 consecutive integers, there are at most 90 squarefree integers and at most 60
odd squarefree integers by deleting multiples of 4,9,25,49,121 and 2,9, 25,49, respectively. Then
we continue as in the proof of [63, (6.9)] to get (9.4.7) and (9.4.8). Further we check that (9.4.9)
holds at [ = 286 and (9.4.10) holds at [ = 200. Then we use (9.4.7) and (9.4.8) to obtain (9.4.9) and
(9.4.10), respectively. O

LEMMA 9.4.6. Let X > 1 be a positive integer. Then

(9.4.11) D240 < (X)X log X
where
1 if X =1
X—
w(z
(9.4.12) vi=p(X)= Z
; g X if 1< X <248

0.75 if X > 248.

PROOF. We check that (9.4.11) holds for 1 < X < 11500. Thus we may assume X > 11500.
Let s; be the largest squarefree integer < X. Then ¢ > 78 and hence by Lemma 9.4.5, we have
1.6j < s; < X so that j < [£5]. We have 2000 = >_eli ln(e)]. Therefore

PIEES S IR ol e [CEICETI SR 5+

i=1 eli 1<e<X 1<e<X i=1
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We check that there are 6990 squarefree integers upto 11500. By using (9.4.7), we have

6990 6990 (5]
1 1 1 1
2wl < x - = Z
Z Z 6 Z -
=1 =1 =1
. 69907_i69901+i o x
= 24716 $16
3 41.1658 4 1
<2XlogX {2 S
=y {3 g X 3 6}
implying (9.4.11). O

LEMMA 9.4.7. Let ¢ > 0 be such that c2°D=3 > 1, > 2 and

. 020k
C,={B;:ieT, v(B;)=up, B; 32w(d)}
Then
(9.4.13) c=Y HE "7 M= e < p(c22(D=3Y90(d) ()= _ 1) (Jog 2%(4)=3),
n>2
PrROOF. Let i1 > iz--- > i, be such that B;, = B;, = --- = B;,. These give rise to (”2 )

pairs of (4,7),% > j with B; = B;. Therefore the total number of pairs (¢, j) with 4,5 € T1,7 > j and
s .
B; = B; > 2k is €.

We know that there is a unique partition of d corresponding to each pair (4,5),¢ > j such
that B; = B;. Hence by Box Principle, there exists at least W pairs of (i,7),i > j with
B; = B; and a partition (di,dz) of d corresponding to these pairs. For every such pair (i,7), we
write Y; — Yj = diryj, Y; +Y; = dysy;. Then ged(Y; — Y}, Y; +Y;) = 2 and 24|(Y;? — V7). Hence

2—45|rijsij. Let /. = 7'24 and s/, = —=4 g0 that v} s, = — 02 ri;jSi;. Then
P2 U ged(rigsZ5) i ged(sij, 25) ij%ij — 24
2 2 .
r/s/:pi?rs:ﬁy; 7Y; :LQ(SZ_‘7<p26k < 2w(d) 3
AR 24 WY 24 d 24 B; 24 B;

caw(d—=3_
since B; > 3L 2w(d> There are at most Z 2¢() possible pairs of (r
i=1
number of possible pairs of (r;;, s;;). By Lemma 9.4.6, we estimate

/
71, 5i;), and hence an equal

CQw(d)—S_l

Z 20.)(2) S @(CQw(d)_S)Czw(d)_g(log C2w(d)_3).

i=1
Thus if we have

¢

W > <p(02w(d)_3)62w(d)_3(10g c2w(d)—3)7

then there exist distinct pairs (4,5) # (g,h),s > j,g > h with B; = B;, B; = By, such that
Tij = TghySij = Sgh giving

)/i_}/j Zdl’l”ij ZYg—Yh anin+Yj ngsij :}/g—FYh.
Thus Y; =Y,,Y; =Y} implying (7,7) = (g9, h), a contradiction. Hence

Weel < (2D 3) 24D =3 (log (D)

implying (9.4.13). O
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9.5. Estimates on the general upper bound of v(a) for a € R
In this section, we give upper bound of v(a) with a € R which are independent of w(d).
Let f(z) = [z]| — [@] for 2 > 0 and Ko = 5 for a € R. We have

LEMMA 9.5.1. Let a € R and p be a positive integer. Let p,q be distinct odd primes.
(i) Let fo(k,a,d) = f(Ka),

-1
p—15%= -, K. _ K.
fl(kaaapv M,y 6) = 9 f(ng_]_) + f(ﬁ)
=0
and
p—1:=~(qg-1, K K K
Falk,a,p,q,1,8) = ( F( e )+f_(l“)>+f(“)-
9 s 9 p2ltig p2ltig2 p2H
Then
fo(k,a,(S)
(9.5.1) vo(a) < 4 fi(k,a,p,p,6) if ptd

fQ(k,CL,p’(L/J’(S) lfp+d7q+d
(ii) Let d be odd. Let

- Ka k
(k,a, 1) Ef(ﬁ + F):
p—1 2 2
p—1 - K - K
gl(kva,pvu):T Zf(W)JFZf(szgu)
1=0 j=1 j=1
and
—1 2
p 15 q—17 Ka - Ka - K
g2k a.p.0.1) > (15 ey + Fiaartnp)) + 2 i)
=0 j=1 j=1
Then
go(kaaaﬂ)
(952) Ve(a’) S gl(k7 a,p, /1“) if p f d

gQ(kaa7p7qa/J/) 1fpfd7Q1/d

PROOF. Let Z C {i : a; = a} and 7|(i — j) whenever i,j € Z. Let 7/ be the lem of all 7
such that 7|(¢ — j) whenever 4,j € Z. Then 7|7’ and a|r’ since a|(i — j) whenever ¢,j € Z. Let
19 = r_ni? 1, N = %iod and D = %d. Then we see that az? with i € Z come from the squares in

1€
the set {N,N+D,--- /N + (f@] —1)D}. Dividing this set into consecutive intervals of length 4
) k—ig k. _

and using Euler’s result, we see that there are at most [@] — [Q] < [%1 - [Q] = f(%) of
them which can be squares. Hence |Z| < f(£) < f(%) since 7|7’

Let Z° ={i:a; = a,2t z;} and Z¢ = {i : a; = a,2|z;}. Then v,(a) = |Z°| and v.(a) = |Z¢|.

First we prove (9.5.1). For i, j € Z°, we observe from z?, x? = 1(mod 8) and (i—j)d = a(z? —x?)
that a23~°|(i — j). Therefore |Z°| < f(K,) = fo(k,a,d).

For a prime p/, let

m
Qy={m:1<m<yp, (p’) =1}.
Let ptd. Let
TP ={i € T°: p'||z;} for 0 <1 < p and I, ={i €I p'|z;}.
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Then a23~9p%|(i — j) whenever i,j € 7, giving |Zj| < f_(z’f;;) For each [,0 <! < p and for each
m € Qp, let

Then a23~°p?*+1|(i—j) whenever i, j € Z?,, giving |Z,,| < f(péclﬁ) Therefore |7 =}, ,cq_ 1Z5,] <
5L f(Ker). Hence |T°| = |Zo| + 3150 |Z7] < fi(k, a,p, 1, 6).

Thus we may assume that p f d and ¢ { d. For each [ with 0 <1 < u, m € 9, and for each
u € Qg, let

T8, = {i € If,, : 7 = u(mod q)} and T, = {i € If,, : qla)}.

Then a23~9p?+1q|(i — 7) for 4,5 € I¢,,,, and a23~°p?'*1¢?|(i — j) for 4,5 € If, , implying |Z7,..| <
f(%) for v € Q4 and |7} | < f(pm’iiﬁqz,) Now the assertion v,(a) < fa(k,a,p,q, i, 9) follows
from

p—1
|Ilom| S |Ilom0| + Z |Ilomu|a |Il0| = Z ‘Ilom|7 and |IO| = |IZ| + Z |Il0|
u€, me, =0

Now we turn to the proof of (9.5.2). Let
7 = {i € 7°: 2Y|a;} for 1 <1< pand I = {i € I : 2"|a;}.

Since %4 is odd, we get a2%"3|(i — j) whenever i,j € Z° implying |Z¢| < f(5e) for 0 <1 < .
Further a2%#|(i — j) for 4, j € T° giving |Z°| < f(-2%:). Now the assertion v.(a) < go(k, a, 1) from
IZ¢] = 2] + e 17

For the remaining proofs of (9.5.2), we consider Z¢' = {i € Z¢ : 2||x;}, T¢® = {i € T° : 4|x;}
so that |Z¢| = |Z¢| + |Z°?|. Then 32a|(i — j) for i,j € Z¢' and 16al|(i — j) for i,j € Z°2. We now
continue the proof as in that of (9.5.1) with Z¢', Z°2 in place of Z° to get v.(a) < g1(k, a, p, 1) when
p{dand Ve(a)SQQ(kaavpaQMU) Whenp'i'd,qud. U

From Lemma 9.5.1, we derive

LEMMA 9.5.2. Fora € R, let

1 if k<a239

F(Ka) if k> a2379,3|d,5|d

F(Ea) + F(Ea) if k>a2%79,31d,5/d

f(Ka) if 2379 <k <2a2%79,3|d,51d
s = | ) I SR

FE) + F(5e) if a2 <k <24a2°7°3td,51d

2(F(5e)+F(5) +

FEa) 4 F(Ea) + f(£2) if 2402370 < k < 324a2%7°,31d,51d

2 (f(5e) + F(35) + F(55)) +

FEe) + flEe) + f(&=) + F(Ky) if k> 324a2379,31d,51d
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and

g3(k,a) =

)
7
I
g
W=
U‘Q
S~—
_|_
!
I
“\ﬁ
—~
[V}
“H
NJ
ot
N—

Jj= J-5
Yo zlilf(%)
22] 12[ 1 (2] 32l 15)+
ZJ 121 1 (m)+2j 1f(2381)
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if kK <4a

if 4a < k < 32a

k > 32a,3|d,5|d

if k> 32a,31d,5|d

32a < k < 64a,3|d,51d

if k> 64a,3|d,51d

if 32a < k <576a,31d,51d

if k> 576a,31d,51%d.

Then for a € R, we have

VO(CL) S f3(k?aa5)? Ve(a) S 93(k7a)

and

1 ifk<a

f3(ka a, 5)

f3(ka a, 0) + 93(ka a)
PROOF. Since a|(i — j) whenever a; = a; = a, we get v(a) < 1, vo(a) <1, ve(a) <1 for k < a.

In fact v,(a) < 1 for k < 2379 and v.(a) < 1 for k < 4a. Thus we suppose that & > a. We have

v(a) = vo(a) + ve(a). Tt suffices to show v,(a) < f3(k,a,d) for k > a237% and v.(a) < g3(k,a) for

k > 4a since v.(a) = 0 for d even. From (9.5.1), we get the assertion v,(a) < f3(k,a,d) for k > a2379

since

v(a) < Fy(k,a,0) := if k> a and d even

if k> a and d odd.

folk, a, ) if 15|

filk,a,3,1,0) if 34d,5/d
vo(a) < < min(fo(k,a,d), f1(k,a,5,1,0)) if 3|d,5td

min(fy(k, a,3,1,8), fa(k, a,3,5,2,0),

a2k, a,3,5,3,6)) if 31d,51d.

The assertion v.(a) < gs(k,a) for k > 4a follows from (9.5.2) since ve(a) < go(k, a,2) for 4a < k <
32a and

go(k, a,2) if 15/d
Ve(a) S gll(kaa,37]-)) lf 3+d,5|d
min(go(k, a,2), g1(k,a,5,1)) if 3|d,51d
min(g1 (k, a,3,1), g2(k,a,3,5,2)) if 31d,5¢d
for k > 32a. 0

We observe that there are £ = L distinct quadratic residues and 252 5 L distinct quadratic non-residue
modulo an odd prime p. The next lemma follows easily from this fact.

LEMMA 9.5.3. Assume (2.1.1) holds. Let k be an odd prime. Suppose that k td. Then v(a) <
% for any a € R.



CHAPTER 10

Extensions of a result of Euler:
Proof of Theorems 2.1.1, 2.2.1 and 2.2.2

10.1. Introduction

For the convenience of the proofs, we consider Theorems 2.2.1 and 2.2.2 together. Therefore we
formulate

THEOREM 10.1.1.

Let d > 1,P(b) < k and 5 < k < 100. Suppose that k # 5 if P(b) = k. Then (2.1.1) does not
hold except for the (ag,a1,--- ,ax—1) among (2.2.2), (2.2.3) and their mirror images.

It is clear that Theorem 10.1.1 implies Theorems 2.2.1 and 2.2.2. In fact the proof of Theorem
10.1.1 provides a method for solving (2.1.1) for any given value of k. We have restricted k up to 100
for keeping the computational load under control. We begin by proving the assertion for k = 5.

10.2. The case k=5

Let k = 5. We show that (2.1.1) with P(b) < k does not hold.
Assume that n(n + d)(n + 2d)(n + 3d)(n + 4d) = by* where b € {1,2,3,6}. Then

(n+2d)*{(n + 2d)* — d*}{(n + 2d)?* — 4d*} = b'y"*
where (n+2d)by? = b'y2, V' is the squarefree part of b(n+2d) and further ¥’ € {1,2,3,6}. Multiplying
/. 2 12,1
both sides by }(’TGS and putting X = b’%, Y = b;;f’ , we obtain the elliptic equation
V2= X(X —0)(X —4b) = X® - 50/ X? + 4 X.

For b € {1,2,3,6}, we check using MAGMA that the above curves have rank 0. Further the torsion
points are given by

b=1:(X,Y)=(0,0),(1,0),(4,0),
¥ =2:(X,Y)=(0,0),(2,0),(8,0),
¥ =3:(X,Y)=(0,0),(3,0),(12,0),
bV =6:(X,Y)=1(0,0),(6,0),(24,0)
We observe from Y > 0 that the above torsion points do not give any solution for (2.1.1). O

From now on, we may suppose throughout this chapter that £ > 5.

10.3. A Covering Lemma

In this section, we give a lemma central to the proof of Theorem 10.1.1.
Let q1, g2 be distinct primes and

Ai(q1,q2) = {p <97: (p) £ (p) 1.
T q2
We write A(q1,q2) = A(q1, 92, k) = {p € Ai(q1,¢2) : p < k}. We compute

LEMMA 10.3.1. We have
81
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(Q1»(J2) A1(Q1»(I2)
(5,11) {3, 19,23,29,37,41,47,53,61, 67, 79,97}
(7,17) {117 13,19,23,29,37,47,59,71,79, 83, 89}

( ) [ 15, 17,29, 31, 37,43, 47, 59, 61, 67, 71, 79, 89, 97}
( ) | {7,17,19,23,29,31,37, 41, 47, 67, 79,89, 97}

( ) | {13,19,23,31,37,41,53,59, 67, 71, 73, 83, 89}
( ) {11,13,17,43,47,53,59,61, 67, 71, 73}

( ) | {13,19,29,31, 37,47, 59, 61, 67, 79,89, 97}

( ) {11,13,29,41,43,53,59, 61, 71, 79, 89}

( ) {7.11,17, 19, 41, 53,59, 73, 79}

(37,83) {17,23,29, 31,47, 53,59, 61, 67, 71, 73}
( )

( )

( )

( )

( )

( )

( )

{11,13,19, 37, 43,59, 61, 67,89, 97}
{7,23,29, 31,37, 41,67, 79, 83,89}
{11,13,19,29, 31,37, 41, 53, 71, 73, 79, 89, 97}
{7,11,13,19, 23,43, 71, 73,83, 97}
{7,13,17,29,47, 53,71, 73,79, 83, 97}
{11,19,23,31,37, 41, 43,47, 53,67, 71}
{13,17,19, 23, 31,47,53, 71,83}

Let P be a set of primes and Z C [0,k) N Z. We say that 7 is covered by P if, for every j € Z,
there exists p € P such that p|a;. Further for ¢ € Z, let
(10.3.1) i(P) =|{p € P :p divides a;}|.

For a prime p with ged(p,d) = 1, let 4, be the smallest ¢ > 0 such that p|n + id. For Z C [0,k) N Z
and primes p1, pe with ged(p1p2,d) = 1, we write

' =Z(p1,p2) =T\ U?Zl{zpj +pji:0<i< {p—]}
j
LEMMA 10.3.2. Let Py be a set of primes. Let p1,pa be primes such that ged(p1p2,d) = 1. Let
(11,12) = (ipy+9py),Z C [0,k) NZ and T' = Z(p1,p2) be such that i(Po N A(p1,p2)) is even for each
1 €T1'. Define

et (G0) = (5 v mmtier: (52) £ (50

Let P = A(p1,p2) \ Po. Let £ be the number of terms n + id with i € T' divisible by primes in P.
Then either

|Z:| < ¢, Iy is covered by P, Io = {i € Z' : i(P) is even}
or

|Zo| < 4, Iy is covered by P, Iy = {i € Z' : i(P) is even}.

We observe that £ <3 p [%]
PRrROOF. Let i € I'. Let Uy = {p : pla;}, Uy = {p € Uy : p & Ap1,p2)}, U ={p €Uy : p €

Po N A(p1,p2)} and Us = {p € Uy : p € P}. Then we have from a; = [, p that

az‘) - 11 (P) I (P) I (P) — (il T <p> — (~1)iP) (‘”)
(pl petty \PY/ ey, NP1/ ey, \P1 petty P2 b2
since [Us| = i(Po N A(p1,p2)) is even. Therefore

(10.3.2) ,uzﬁezu(g)¢<2)}=ﬁef:wwmow}

In particular £ is covered by P and hence
(10.3.3) L] < ¢
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We see that ( ) = (”;r;d) = (ifij) (p%) fori € 7/ and j = 1,2. Therefore L = 7; or 75 according

a;
pj pj

as (pil #* (p%) or (pil = (z% , respectively. Now the assertion of the Lemma 10.3.2 follows from
(10.3.2) and (10.3.3). |

Let P consist of one prime p. We observe that p|n + id if and only if p|(i —i,). Then Z; or Ty
is contained in one residue class modulo p and p t a; for ¢ in the other set.

COROLLARY 10.3.3. Let p1,pa2,i1,i2, Po, P,Z,Z',Z1,Z5 and £ be as in Lemma 10.3.2. Assume
that

1
(10.3.4) l< 5\1’|.
Then |Z1| # |Zo|. Let
I, if |T T
(10.3.5) M= B <
Z> otherwise
and

(10.3.6) B= {IQ if L <%

7, otherwise.
Then (M| < £, M is covered by P and B = {i € T'|i(P) is even}.

PRrROOF. We see from Lemma 10.3.2 that min(|Z; |, |Zz|) < £ and from (10.3.4) that max(|Z1], |Z2|) >
£|Z’| > £. Now the assertion follows from Lemma 10.3.2. O

We say that (M, B,P,{) has Property $ if |M| < £, M is covered by P and i(P) is even for
ieB.
10.4. Lemmas for the Proof of Theorem 10.1.1 (contd.)

We recall that (2.1.1) is the equation (9.1.1) with ¢ = k and v; = ¢ — 1 so that (9.1.2) and (9.1.3)
give (2.1.2) and (9.1.4) is (2.1.3). Further we have R = {a; : 0 < i < k}. For the proof of Theorem
10.1.1, we use the following Corollary which follows from Lemma 9.5.2.

COROLLARY 10.4.1. For a € R, let

1 if k<a2379
fa(k,a,0) =< f(Ka) if k> a2379,3|d
FEe)+ f(Be) if k> a2%3¢4d
and
1 if k<4da
[Ee] +1 if 4a < k < 32a
ga(k,a) = % K : -
{(TG) + Ji(Ta) i i if k> 32a,3|d
FE + f5e) + f(5e) + f(5e) if k> 32a,31d.

Then we have

vo(a) < fa(k,a,d), ve(a) < gs(k,a)
and
1 ifk<a
v(a) < Fi(k,a,9) := < fi(k,a,d) if k> a and d even
fa(k,a,0) + ga(k,a) if k> a and d odd.
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LEMMA 10.4.2. Let k be a prime with 7 < k <97 and assume (2.1.1). For k > 11, assume that
Theorem 10.1.1 is valid for all primes ky with 7 < k1 < k. For 11 < k < 29, assume that k { d and
kEtn+id for0<i<k—Fk and k' <i <k where k' <k are consecutive primes. Let (q1,q2) = (5,7)
ifk="17;(5,11) if k = 11; (11,13) if 13 < k < 23; (19,29) if 29 < k < 59; (59,61) if k = 61; (43,67)
if k=67,71; (23,73) if k =73,79; (37,83) if k = 83; (79,89) if k =89 and (23,97) if k = 97. Then
q1|d or go|d unless (ag,a1,- -+ ,ax—1) is given by the following or their mirror images.

k=17:(23,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10);

k=13:(3,1,5,6,7,2,1,10,11,3,13,14,15),(1,5,6,7,2,1,10,11,3,13, 14,15, 1);

k=19:(1,5,6,7,2,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22);

k=23:(56,7,2,1,10,11,3,13,14,15,1,17,2,19,5, 21, 22, 23,6, 1,26, 3),
(6,7,2,1,10,11,3,13,14,15,1,17,2,19,5, 21, 22, 23,6, 1, 26,3, 7).

We shall prove Lemma 10.4.2 in Section 10.5.

LEMMA 10.4.3. Let k be a prime with 29 < k < 97 and Qo a prime diwviding d. Assume (2.1.1)
with k1 d and ktn+id for 0 <i < k—k and k' <i <k where k' < k are consecutive primes.
Then there are primes Q1 and Qo given in the following table such that either Q1|d or Q2|d.

k Qo | (Q1,Q2) k] Qo (Q1,Q2)
0 <k<B59[19 | (7,17) | 73,79 23 (53,67)
3I<k<50|20| (7,17) | 79 |73 (53, 67)
61 59 | (11,61) | 83 |37 (23,73)
67,71 | 43 | (53,67) | 89 | 79 (23.73)

1 67 | (43,53) || 97 | 23 | (73,97), (37,83)

The proofs of Lemmas 10.4.2 and 10.4.3 depend on the repeated application of Lemma 10.3.2
and Corollary 10.3.3. We shall prove Lemma 10.4.3 in section 10.6. Next we apply Lemmas 10.4.1,
9.5.3 and 10.4.3 to prove the following result.

LEMMA 10.4.4. Let k be a prime with 7 < k < 97. Assume (2.1.1) with k t d. Further for
k > 29, assume that k{n+id for 0 < i < k—Fk" and ¥ < i < k where k' < k are consecutive
primes. Let (q1,q2) be as in Lemma 10.4.2. Then g1 1d and g2 1 d.

The Section 10.7 contains a proof of Lemma 10.4.4. Assume that 3 1 d and 5 { d. We define
some more notation. For a subset J C [0, k) N Z, let

1§ = 2(7) = (i € Tl = iatmod 3}, Tf = T5(7) o= (i€ 71 (5] = 1)

7, ~5@) =i a1 (552) =1

and
i —is

I =15(J) = {i ejl( 5 > =1}, I; =Z; (J) = {i € J| <i_i5> =-1}.

)
Assume that a; € {1,2,7,14} for i € Z,7 UZ; . Then either a; € {1,7} for i € T, a; € {2,14} for
i €Iy or a; € {2,14} for i € I, a; € {1,7} for i € I;. We define (Z3,Z3) = (Z{,Z; ) in the
first case and (Z3,72) = (Z; ,Z5) in the latter. We observe that i’s have the same parity whenever
a; € {2,14}. Thus if i’s have the same parity in one of Z;” or Z; but not in both, then we see that
(I3,72) = (Z),Z;) or (Z;,Z5) according as i’s have the same parity in Z; or Z;, respectively.
Further we write

Nh=TNIL, Bo=T3NT;, Js=T5NT, Th=T501I;
and a, = {a;i € J,} for 1 < < 4. Since () = (&) =1 and (2) = (£) = —1, we see that

(10.4.1) (a1, 02,03, a0) € ({1}, {7}, {14},{2}) or ({7}, {1}, {2},{14})
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where (a1, az,a3,a4) € (S1,S52,55,54) denotes a, € S, 1 < p < 4. We use 7|(¢i — ') whenever
a;,a;y € {7,14} to exclude one of the above possibilities.

10.5. Proof of Lemma 10.4.2

Let k' < k be consecutive primes. We may suppose that if (2.1.1) holds for some k > 29, then
ktdand kfa; for 0 <i<k—Fk and k' <i <k, otherwise the assertion follows from Theorem
10.1.1 with & replaced by k’. The subsections 3.1 to 3.10 will be devoted to the proof of Lemma
10.4.2. We may assume that ¢; 1 d and go 1 d otherwise the assertion follows.

10.5.1. The case k = 7. Then 5t d. By taking mirror images (2.2.1) of (2.1.1), there is no loss
of generality in assuming that 5|n + isd, 7|n + i7d for some pair (i5,i7) with 0 < i5 < 5,0 < iy < 3.
Further we may suppose iy > 1, otherwise the assertion follows from the case £ = 6. We apply
Lemma 10.3.2 with Py = 0, p1 = 5,p2 = 7, (i1,42) = (i5,97), Z = [0,k) NZ, P = A(5,7) = {2} and
</t = f%] to conclude that either

|Z1| < 41, Iy is covered by P, I = {i € T'|i(P) is even}
or
|Zo| < 41, Iy is covered by P, I; = {i € T'|i(P) is even}.

Let (i5,i7) = (3,1). Then Z; = {0,2,6} and Zo = {4,5}. We see that Z; is covered by P and hence
i(P) is even for i € Zy. Thus 2 { a; for i € Zy. Therefore ayq,a5 € {1,3} and ag,as,as € {2,6}.
If ap = 6 or ag = 6, then 3 agas so that ay = a5 = 1. This is not possible by modulo 3. Thus

ap = ag = 2. Since (%") (%2) = (%ﬁ) = —1, we get ag = 6. Hence a4 = 1. Further
as = 3 since (%) (%) = (%ﬁ) = —1. Also 5|as and 7|aj, otherwise the assertion follows

from the results [45] for K = 5 and [1] for kK = 6, respectively, stated in Section 7.2. In fact
ay = 7,a3 = 5 by ged(ajas, 6) = 1. Thus (ag, a1, as,as, a4, as5,a6) = (2,7,6,5,1,3,2). The proofs for
the other cases of (i5,i7) are similar. We get (ag,- - ,a¢) = (1,5,6,7,2,1,10) when (i5,i7) = (1,3),
(ag, -+ ,a6) = (1,2,7,6,5,1,3) when (i5,i7) = (4,2) and all the other pairs are excluded. Hence
Lemma 10.4.2 with k = 7 follows. O

10.5.2. The case k = 11. Then 5t d. By taking mirror images (2.2.1) of (2.1.1), there is no
loss of generality in assuming that 5|n + isd, 11|n + i11d for some pair (i5,411) with 0 <i5 < 5,4 <
ill S 5. We appl‘y Lemma 10.3.2 with 7)0 = @,pl = 5,])2 = 117 (il,ig) = (i5,’i11), I = [O,k‘) N Z,
P =A(5,11) = {3} and £ < ¢; = [£] to derive that either

|Z1| < 41, Iy is covered by P, I = {i € T'|i(P) is even}
or

|Zo| < 41, Iy is covered by P, I; = {i € Z'|i(P) is even}.
We compute 77, 7> and we restrict to those pairs (is,411) for which min(|Z1], |Z2|) < ¢; and either 7,
or I, is covered by P. We find that (is,i11) = (0,4), (1,5). Let (i5,411) = (0,4). Then Z; = {3,9}
is covered by P, i3 = 0 and i(P) is even for i € o = {1,2,6,7,8}. Thus 31 a; for i € Z. Further
p € {2,7} whenever pla; with ¢ € Z,. Therefore a; € {1,2,7,14} for i € Zo. By taking J = I, we
have T = Z9UZ{ UZ; and I, = 7 UZ; with

I3 = {6}, I ={1,7}, Iy ={2,8}, I ={1,6}, 7, ={2,7,8}.
Let (Z3,72) = (Z5,Z5 ). Then
\71 = {]-}7'.72 = {7}7t.73 = @7\74 = {278}

The possibility (a1, a2,a3,a4) C ({7}, {1}, {2}, {14}) is excluded since 7|(i — i’) whenever a;,a; €
{7,14}. Therefore a; = 1,a7 = 7,a2 = ag = 2. Further ag = 1 since 6 € Z and a; = 1,a7 = 7.
This is not possible since 1 = (%) (%) = (%) = —1. Let (Z},7%) = (Z;,Z5 ). Then we argue

as above to conclude that as = ag = 1, a1 = 2, a7 = 14 which is not possible since n + 2d and n + 8d
cannot both be odd squares. The other case (i5,411) = (1,5) is excluded similarly. O
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10.5.3. The cases 13 < k < 23. Then 11 { d and 13 { d. There is no loss of generality in
assuming that 11|n + i11d, 13|n + 413d for some pair (i11,413) with 0 < i1 < 11,0 < i13 < % and
further i13 > 2 if k = 13. We have applied Lemma 10.3.2 once in each of cases k = 7 and k = 11 but
we apply it twice for every case 13 < k < 23 in this section. Let Py = 0, p1 = 11,p2 = 13, (i1,42) =
(iv1,113), T = [0,k) N Z, P = Py := A(11,13) and € < ¢; where {; = 3 if k = 13; ¢, = [£] + [£]
if k> 13. Then (1 < 1|T'| since |Z'| > k — [£] — [&]. By Corollary 10.3.3, we derive that I’ is
partitioned into M =: M; and B =: B such that (M1, By, P1,¢1) has Property $). Now we restrict
to all such pairs (i11,413) satisfying |[M;] < ¢; and M; is covered by P;. We check that |[M| > 2.
Therefore 5 t d since M; is covered by P;. Thus there exists i5 with 0 < i5 < 5 such that 5|n + isd.

Now we apply Lemma 10.3.2 with p; = 5,ps = 11 and partition B;(5,11) into two subsets.
Let Py = A(11,13) U {11,13}, (i1,i2) = (is,i11),Z = By, P = Py := A(5,11) C {3,19,23} and
¢ < fy where €5 =5,6,8,11 if k = 13,17, 19, 23, respectively. Hence B is partitioned into Z; and Z,
satisfying either

|Z1| < €9, T, is covered by Po, Iy = {i € I'|i(P2) is even}
or
|Zo| < la, Iy is covered by Pa, Z7 = {i € Z'[i(P2) is even}.

We compute 71,7, and we restrict to those pairs (i11,413) for which min(|Z1|, |Z2|) < €2 and either
Ty or I, is covered by Py. We find that (i11,i13) = (4,2),(5,3) if & = 13; (0,0),(5,3) if &k = 17,
(0,0),(0,9),(7,5),(7,9),
(8,6),(9,7), (10,8) if k = 19 and (0,0), (0,9), (1,10), (2, 11), (4,0, (5,1), (5,7), (6,2), (6,8), (7,9), (8, 10), (9, 11)
if k= 23.

Let (i11,413) be such a pair. We write M for the one of Z; or Z which is covered by P, and B
for the other. For i € B), we see that p{a; whenever p € Py since 17|a; implies 5|a;. Therefore

(10.5.1) i(P2) is even for i € B and p{ a; for ¢ € B whenever p € Py,

since B C Bj. Further we check that |M]| > 1 if k # 23 and > 3 if k = 23 implying 3 1 d.

By taking J = B, we get B=ZJUZ; UZ; and B =ZJ UZ; . Then p € {2,7} whenever p|a;
with i € Z7 UZ; by (10.5.1). By computing Z; , Z; , we find that i’s have the same parity in exactly
one of Z; ,Z; . Therefore we get from (10.4.1) that

(a1, 02,03, a4) © ({1}, {7}, {14}, {2}) or ({7}, {1},{2},{14}).

Let k = 13 and (411,413) = (4,2). Then we have M; = {0,5,10}, i5 = 0, M = {3,9,12} and
B = {1,6,7,8,11} since the latter set is not covered by Py = {3}. Further i3 = 0, ZJ = {6},
I: =7y = {811}, 72 = I = {1,7}, I = {1,6,11},Z; = {7,8}, 1 = {11}, = {8},
jg = {1},j4 = {7} Therefore ayj; = 1,&8 = 7,(11 = 14,(17 =2or aj; = 77(18 = 1,&1 = 27(17 = 14.
The second possibility is excluded since a1; = 7,a7 = 14 is not possible. Further from (10.5.1), we
get ag = 1 since 2 f ag and 7t ag. Since 13|n + 2d and 7|n + d, we get (52) = (%%) = (%) and
- (%) = (a";ﬁ) = (“—7‘) We observe that 13|n+2d, 11|n+4d, 7|n+d, 5n, 3|n, 2|n+d, 5|a; for i € M
and 3|a; for i € M;. Now we see that ag € {5,15} and ag = 5 is excluded since (2) # — (5*). Thus
ap = 15. Next a; = 14,a2 = 13 and a3 = 3. Also a4 € {1,11} and a4 # 1 since (%) = (12—3) = —1.
Similarly we derive that a5 = 10,a6 = 1,a7 = 2,a3 = 7,a9 = 6,a19 = 5,a11 = 1 and a12 = 3. Thus
(ag,a1,- - ,a12) = (15,14,13,--- ,5,1,3). The other case (i11,i13) = (5,3) is similar and we get
(a0, a1, ,a1z) = (1,15,14,--+ ,5,1).

Let k =17 and (411,413) = (0,0). Then we have M; = {5,10,15} and i5 = 0. We see from the

assumption of Lemma 10.4.2 with k = 17, k¥’ = 13 that 4 < 417 < 13. Hence, from 417 € p*SL_ljl 13{2',,—1—

pj:0<j< {g]}, we get i1y € {5,10,11}. Further M = {3,6,12},B = {1,2,4,7,8,9,14,16}, i3 =
0, 79 = {9}, I3 = {1,4,7,16}, 72 = {2,8,14}, T} = {1,4,9,14,16},Z; = {2,7,8}, J1 = {1,4,16},
jg = {7}, jg = {14} and j4 = {2,8} Therefore a; = a4 = 16 = 1,(17 = 7, A14 = 14, a9 = ag = 2.
Thus ag = 1 by (10.5.1) and 2t ag, 71 ag. Now we see by Legendre symbol mod 17 that a; = a4 =
ag = aig = 1 is not possible. The case (i11,413) = (5,3) is excluded similarly.
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Let k = 19 and (411,413) = (0,0). Then we have My = {5,10,15,17}, i5 = 0 17 =0, M =
{3,6,12}, B = {1,2,4,7,8,9,14,16,18} and i3 = 0. We see from 419 € . 11 s 17{ +pj

0 <j < [%]} and 2 <19 < 17 that i19 € {3,5,6,9,10,11,12,13,15}. Further 79 = {9,18},
T1 = {1,4,7,16}, T2 = {2,8,14}, T = {1,4,9,14,16}, Ty = {2,7,8,18}, J1 = {1,4,16}, 7> = {7},
Js = {14} and Jy = {2,8}. Therefore a; = a4 = a1 = 1 which is not possible by mod 19. The
case (i11,413) = (7,5) is excluded similarly. Let (i11,¢13) = (0,9). Then M; = {2,5,7,12,17},
is = 2,i17 = 5, M = {1,3,10,16}, B = {4,6,8,13,14,15,18}, i3 = 1 and i;9 = 3. We now
consider (n + 6d)(n + 7d)---(n + 18d) = b'y’?. Then P(V') < 13. By the case k = 13, we get
(ag,ar, -+ ,a18) = (1,15,---6,5,1) since 5|ary and 3|ajg. From 19|n + 3d, we get (%) = (algﬁ) =
— (%5) which together with 13[n + 9d,11|n,7|n + d,2|n, 5|as,17|as, 3la; implies ag € {2,22},
a1 € {3,21}, az = 5,a3 = 19,a4 = 2 and a5 = 17. Now from (%) = (%) = (52), we get
ap = 22,a; = 21. Thus (ag,a1, - ,a18) = (22,21,---,6,5,1). The case (i11,413) = (7,9) is similar
and we get (ag, a1, - alg) (1,5,6,---,21,22). For the pair (i11,713) = (10,8), we get similarly
(ag, a1, -+ ,a18) = (21,5,---,6,5,1,3). This is excluded by considering (n+3d)(n+6d) - -- (n+18d)
and k = 6. For the pairs (zn, i13) = (8,6),(9,7), we get i19 = 0, 1, respectively, which is not possible
since i19 > 2 by the assumption of the Lemma.

Let £ = 23 and (ill,ilg) = (0,0) Then M1 = {5, 10, 15, 17,20}, i5 = O,i17 = O, M =
{3,6,12,19,21}, B = {1,2,4,7,8,9,14,16,18}, i3 = 0 and 19 = 0 since 23 { ajg. We have iz €
{5,6,9,10,11,12,13,15,17,18} since 4 < i3 < 19. Here we observe that 23 t ajg and 4 < is3 < 19
in view of our assumption that k t a; for 0 < i < k — k¥ and k' < i < k with k = 23,k = 19.
Further 79 = {9,18}, T} = {1,4,7,16}, 72 = {2,8,14}, 7" = {1,4,9,14,16},7; = {2,7,8,18},
Jr=1{1,4,16}, o = {7}, T3 = {14} and T, = {2,8}. Therefore a1 = a4 = a156 = l,a7 = T,a14 =
14,a5 = ag = 2. This is not possible since (%) = (%) = (%‘) = (;—g) = (%) = 1. The cases
(ill, i13) = (O, 9), (1, 10), (2, 11), (4, 0), (7, 9), (8, 10), (9, 11) are excluded similarly. Let (ill, i13) =
(5,1). Then M; = {7,10,12,17,22}, i5 = 2,417 = 10, M = {0,3,4,6,8,15,21}, B = {9,11,13, 18,
19,20} and i3 = 0. This implies either 23|a4, 19]ag or 23|ag, 19]ay. Further Z9 = {9,18}, 71 =
(11,20}, 72 = {13,19}, 7" = {11,13,18}, T = {9,19,20}, Ji = {11}, = {20}, J5 = {13}
and Jy = {19}. Therefore a1 = 1,a20 = 7,a13 = 14,a19 = 2. Further from (10.5.1), we get ag €

{1,2},a15 = 1 since 7J[a9a18,2fa18 However ag =2 as 9 € I ,18 € /. Since (%) = (%) =1,

we see that 23|ay, 19]as. By using (;) = (“;%) = (%)7 we get (%) = — (%),

(%71) = - (il’f’), (a—;) = - (%) and (%) = (%) Now from 23|ay, 19|as, 17]a10, 13|n + d,11|n +
5d,T|n 4 6d,5|n + 2d, 3|n,2|n + d, M; is covered by {5,17}, M is covered by {3,19,23}, we derive
that (ag,a1,---,a22) = (3,26, -++,6,5). The pairs (i11,%13) = (5,7), (6,2), (6,8) are similar and we
get (ag, a1, -+ ,a22) = (6 7, ,3,7),

(7,3,-+-,7,6),(5,6,7,---,3), respectlvely O

10.5.4. Introductory remarks on the cases k& > 29. Assume ¢; t d and ¢2 1 d. Then, by
taking mirror image (2.2.1) of (2.1.1), there is no loss of generality in assuming that ¢;|n+i4, d, g2|n+
igyd for some pair (iq,,iq,) With 0 < ig, < ¢1,0 < ig, < %51 and further ig, > k — k' if ¢o = k.
For k = 61, by taking (n + 8d)---(n + 60d) and k = 53, we may assume that max(isg,ig1) > 8 if
is9 > 2. Let Py = 0,p1 = q1,p2 = q2, (’il,ig) = (iquiqz) [0 kKYNZ, P =P;:= Aq1,q) and
E<bi=3% cp, [ |. We check that ¢, < 3|7’ since |T'| > k— [ ] {q%} By Corollary 10.3.3, we
get M =: M, and B =: By with (M1, By, P1,£1) having Property . We now restrict to all such
pairs (iq,tq,) for which |M;| < ¢, and M, is covered by P;. We find that there is no such pair
(g1,%q,) When k = 97.



88 10. PROOF OF THEOREMS 2.1.1, 2.2.1 AND 2.2.2

10.5.5. The cases 29 < k < 59. As stated in Lemma 10.4.2, we have ¢; = 19,¢, = 29 and
Py = A(19,29) C {11,13,17,43,47,53,59}. Then the pairs (iq, ,44,) are given by

k=29:(0,9),(1,10),(2,11), (3,12), (4, 13), (15,5), (16,6), (17,7), (18, 8);
k=31:(0,0),(0,9),(1,10), (2,11), (3,12), (4,13), (11, 1),

(12,2), (13,3), (14,4), (15,5), (16,6), (17, 7), (18, 8);
k=37:(0,0),(0,9), (1,10),(2,11), (3,12), (4,13), (17,7), (18,8);

k=41:(0,0),(2,11),(3,12), (4, 13);

k=43:(0,0),(1,1),(3,12), (4,13), (5, 14), (6, 15), (7,16), (8, 17);

k =47:(0,0),(1,1),(7,16), (8,17), (9, 18), (10, 19), (11, 20),
(12,21), (13,22), (13,23), (14, 23);

k=53:(0,0),(1,0),(1,1), (13,22), (13,23), (14, 23), (14, 24),
(15, 24), (15, 25), (16, 25), (16, 26), (17, 26);

k=59 (0,0),(0,28),(1,0), (1,1), (2, 1), (3,2), (17, 27), (18, 28).

(
Let k = 31 and (i19,729) = (0,9). We see that P; = {11,13,17}, My = {4,5,12,16,

21,25,27} and B; = {1,2,3,6,7,8,10,11, 13,14, 15,17, 18, 20, 22, 23, 24, 26, 28, 29, 30}. Since M is
covered by Py, we get 11 divides as, a16, az7; 13 divides a2, ass and 17 divides a4, a1 so that i1 =
5,i13 = 12,417 = 4. We see that ged(11-13-17,a;) = 1 for i € By. Now we take Py = P; U {19, 29},
P11 = 11,])2 = 13, (il,ig) = (i117i13) = (5,12),1 = Bl, P = PQ = A(ll,l?))\Po = {5,31}
and £ < by = 3 p {ﬂ = 8 Thus |Z'| = |B1| = 21 > 2¢3. Then the condition of Corollary
10.3.3 are satisfied and we have M =: My, B =: By and (Mg, By, P, l2) has Property $. We
get My = {1,3,7,8,18,23,28}. This is not possible since My is not covered by Pz. Further the
following pairs (i19,429) are excluded similarly:

k=29:(0,9),(1,10),(2,11),(3,12), (4,13), (15,5), (16,6), (17,7), (18, 8);
k=31:(1,10),(2,11),(3,12), (4, 13), (18,8).

Thus k > 29.

Let k = 59 and (i19,i29) = (0,0). Then we see that P; = {11,13,17,43,47,53,59}, M; =
{11,13,17,22, 26,33, 34,39, 43,44, 47,51,52,53,55}, By = {1,2,3,4,5,6,7,8,9, 10,12, 14, 15, 16, 18,
20,21, 23, 24,25, 27, 28, 30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 48, 49, 50, 54, 56}, i11 = 13 = i17 = 0,
{43,47,53} is covered by {43,47,53,59} =: P;. Let p|a; for i € By and p € P;. Then we show that
i€ {4,6,10}. Let 59|ass. Then {47,53} is covered by {43,47,53}. Let 43|ayr. If 43|a; with i € By,
then ¢ = 4 and 43 - plagq with p € {47,53} since i(P;) is even. This implies either 53|ass, 43 - 47|a4
or 47|ass,43 - 53Jay. Similarly we get ¢ € {4,6,10} by considering all the cases 59]ay3, 59|as7 and
59 t agzaq7as3. We observe that 59 1 as3 since 6 < i59 < 53. Hence we conclude that p { a; for
i€ B\ {4,6,10} and p € P;. Further we observe that

(10.5.2) iso € My U{19,29,38} U {6,10}.

Now we take P() = Pl U {19,29}, pP1 = ll,pg = 13, (Z'1,7;2) = (0,0),I = 61 \ {4,6,10}, P =
P = A(11,13) \ Po = {5,31,37} and £ < b = 35 p [E] = 16. Thus [Z'] = [Bi] — 2 >
2¢5. Then the conditions of Corollary 10.3.3 are satisfied and we have M =: My, B =: By
with (Mg, By, Pa, £2) having Property $. We get My = {5,15,20,30,31,35,37,40,45}, By =
{1,2,3,7,8,9,12, 14, 16, 18, 21, 23, 24, 25, 27, 28, 32, 36, 41, 42, 46, 48, 49, 50, 54, 56}, i5 = 0, 31|as1, 37|asy
or 31|asr,37]as;. Now we take Py = Py U Po U {19,29},p1 = 5,p2 = 11, (i1,42) := (0,0),Z = Ba,
P = Ps = AB,11) \ Py = {3,23,41} and ¢ < €3 = 3 p [%]. Then by Lemma 10.3.2,
we see that M = {3,6,12,21,23,24,27,41,42,46,48,54} is covered by Ps and i(Ps) is even for
i€ B=1{1,2,7,8,9,14,16, 18,28,32,36,49,56}. Thus i3 = ia3 = iy; = 0 and p € {2,7} whenever
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pla; with i € B. Putting J = B, we have B =7 UZi UZ3 and B =T} UZ; with
79 ={9,18,36}, Zs = {1,7,16,28,49}, 77 = {2,8,14,32,56}
and
T+ ={1,9,14,16,36,49,56}, I, = {2,7,8,18,28,32}.
so that
Jr ={1,16,49}, Jo = {7,28}, J5 = {14,56}, J, = {2,8,32}.

Hence (Cl17Cl2,Cl3,Cl4) - ({1},{7},{14}7{2}) by (1041) Thus a; = A1 = Q49 = 1, a7 = ag8 =
7,a14 = ase = 14, a2 = ag = azo = 2. Further we get ag = azg = 1 and a5 = 2 since 9,36 € Ig' and
18 € Z; . Since

(10.5.3) (%9) =1 for a; € {1,7},
we see that (&) =1 for i € {1,7,9,16,28,36,49} which is not possible by (10.5.2).

Let k = 41 and (i19,429) = (2,11). Then we see that P; = {11,13,17}, M; = {1,6,7,14,18,23,27,
20}, By = {0,3,4,5,8,9,10,12,13,15, 16, 17, 19, 20, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
i11 = 7,413 = 1,417 = 6. Further ged(a;,11-13-17) =1 for 4 € By. Now we take Py = Py U {19, 29},
p1 = 11,py = 13, (i1,42) = (7,1),7 = By, P = Py := A(11,13) \ Py = {5,31,37} and ¢ < {5 =
D e, [%] = 13. Then |Z'| = |B1| > 2¢3. Thus the conditions of Corollary 10.3.3 are satisfied
and we get M =: My and B =: By such that (Mg, By, Py, ) has Property $. We have My =
{0,3,5,9,10,20,25,30,35}, By = {4,8,12,13,15, 16,17, 19, 22, 24, 26, 28, 31, 32, 33, 34, 36, 37, 38, 39},
i5 = 0. Further 31 - 37]azag, 31 { azs. We take Py = Py U Pe U {19,29},p1 = 5,p2 = 11,
(i1,42) == (0,7),7 = B, P = P3 := A(5,11) \ Po = {3,23,41}, £ < > p. [ﬂ and apply
Lemma 10.3.2 to see that M = {13,16,17,19,28,34,37} is covered by Ps, i3 = 1, i(P3) is even
fori € B = {4,8,12,22,24,26,31, 32,33, 36, 38,39}. Further ins = 17, is; € {2,11,21}UM; UM, U
MU {4,22,31} or vice-versa. Here we observe that i4; exists since 41 { d. Thus 23 - 41| [] a; where i
runs through the set {2,11,21} U M; U My U {4,22,31}. Therefore a; € {1,2,7,14} for i € 73 UZ3
where B =79 UZ} UZ2, B = 7 UZS with

79 = {4,22,31)}, I3 = {12,24,33,36,39}, 72 = {8,26,32,38}
and
T+ = {4,24,26,31,36,39}, Z; = {8,12,22,32,33,38}
by taking J = B. We get
T = {24,36,39}, Jo = {12,33}, J5 = {26}, Ju = {8,32,38},

and g4 = A36 = A39 = 1, a12 = a3z = 7, ase = 147a8 = Qa32 = asg = 2 by (1041) Since
(10.5.4) (%) =1 for a; € {1,2},

we see that (Z—l) =1 for i € {8,24, 32,36, 38,39} which is not valid by the possibilities of i4;.
All other cases are excluded similarly. Analogous to (10.5.3) and (10.5.4), we use (%) =1 for

a; € {1,7} if k=37,53,59; a; € {1,2} if k = 31,41,47; a; € {1,14} if k=43
to exclude the remaining possibilities. O

10.5.6. The case k = 61. We have ¢ =59, ¢2 = 61 and P; = {7,13,17,29,47,53}. Then the
pairs (iq,,44,) are given by (8,6),(9,7), (10,8),(11,9), i.e. (i +2,i) with 6 <7 <9.

Let (is9, 1) = (8,6). Then Py = {7,13,17, 29,47, 53}, M, = {2,4,9, 11, 14, 15, 16, 20, 25, 28, 32,
33,38, 39, 41,46, 50, 53, 54,60}, B, = {0,1,3,5,7,10,12,13,17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31,
34,35,36,37,40,42,43,44,45,47,48,49, 51,52, 55,56, 57, 58,59}, i7 = 4,415 = 2,417 = 16,439 = 9
and a4, ag are divisible by 47,53. Further ged(p,a;) = 1 for i € By and p € P;. Let Py = Py U
{59,61},p1 = 7,p2 = 17, (i1,49) := (4,16), T = By, P = Pa := A(7,17)\ Py = {11,19,23,37} and ¢ <
lo=3 " cp, [£] = 15. Then 2(, < |T’| = |By| — 1. By Corollary 10.3.3, we get M =: Mo, B =: B,

p
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and (May, Ba, Po, £2) has Property $. We find that My = {1,10, 12,21, 23,29, 30, 34, 44, 45, 48,56},
By = {0,3,5,7,13,17,19, 22, 24, 26, 27, 31, 35, 36, 37, 40, 42,

43,47, 49,51,52,55,57, 58, 59}, i11 = 1,i19 = 10, i23 = 21,i37 = 30. Now we take 730 = Pl @] Pg U
(59,61}, p1 = 11,py = 59, (i1,iz) == (1,8), T = By, P = P3 := A(11,59) \ Py = {31,41} and
C< Uty =3 cp, {%] = 4. Then 2¢3 < |Z'| = |Bz|. By Corollary 10.3.3, we get M =: M3 and
B =: Bs such that (Mg, Bs, Ps,¢3) has Property $. We get M3 = {0,5,26,36} which cannot be
covered by Ps. This is a contradiction. The remaining cases are excluded similarly. ]

10.5.7. The cases k = 67,71. We have ¢; = 43,92 = 67 and P; C {11,13,19,29,31, 37,41,
53,71}. Then the pairs (iq,,i4,) are given by

k=067:(i,1),6 <1i<33;
k=71:(i,i),0 <i<35,i% 24,25 and (24,0), (25, 1), (26,2), (27, 3).

Let k = 71 and (i43,767) = (27,3). We see that P; = {11,13,19,29,31,37,41,53,71}, M; =
{4,5,8,12,13,15,17,18, 26,29, 31,32, 33,37,39,41,44,48,51,57,59}, B; = {0,1,2,6,7,9,10, 11, 14,
16,19, 20, 21,22, 23,24, 25,28, 30, 34, 35, 36, 38, 40, 42, 43, 45, 46, 47,49, 50, 52, 53, 54, 55, 56, 58, 60, 61,
62,63, 64,65,66,67,68,69}, i17 = 4,413 = 5,419 = 13. Therefore {8,12,17,29,33,39,41} is covered
by 29,31,37,41,53,71 implying either ia9 = 12 or ig9 € {17,29,33}, i5y = 8. Let i € By and pla;
with p € P;. Then there is a ¢ € P; such that pg|a; since i(Py) is even. Next we consider the case
131 = 8. Then {12,17,29,33,41} =: M/ is covered by 29,37,41,53,71 and ia9 # 12. For 29 € M/,
we may suppose that either 29|aqg,41|a17,29 - 41|ass or 29|agg, 41|as1, 29 - 41|ag. Thus 0 or 58 in B
correspond to 29. We argue as above that for any other element of M}, there is no corresponding
element in B;. For the first case, we derive similarly that 31|ass, 37|asg, 31-37|ag or 37|a17,37-71|as,
or 37|agg, 37 - Tl|agz or 41|ay7,37 - 71]ass. Therefore

29-31-37-41-53-71 | H(n+id) for i € My U{3,27,70} U B}
where B} = {2,54,58,63} if ia9 = 12 and {0, 58} otherwise. Further
(1055) i71 € M1 U {27} U Bll and 471 7é 32.

For each possibility isg € {0,4,12,17}, we now take Py = P; U {43,67}, p1 = 19,p2 = 29,
(i1,42) = (13,i0),T = By \ B}, P = Py = A(19,29) \ Py = {17,47,59,61} and { = (5 =
> pePs [%] = 11. Then |Z'| = |By| — 4 > 2¢3. Thus the conditions of Corollary 10.3.3 are
satisfied and we get M =: My and B =: By with (Ma, Bs, Po,f2) having Property $. We
check that |[Ms| < ¢3 only at iz9 = 12 in which case we get My = {9,11,19,23, 36,53}, By =
{0,1,6,7,10,14, 6,20, 21, 22, 24, 25, 28, 30, 34, 35, 38, 40, 42, 43, 45, 46, 47, 49, 50, 52, 55, 56, 60, 61, 62,
63,64, 65,67,68,69}, i17 = 2, {9, 11,23} is covered by 47,59,61. Thus 47-59-61 | agaiiass. Further
pta; for i € By and p € Po. We now take Py = Py U Py U {43,67}, p1 = 11,p3 = 13, (i1,42) =
(4,5),T = Ba, P ="P3 := A(11,13) \ Py = {5} and £ = {3 = [£]| = 15. Then |Z’| = |By| > 2(5. By
Corollary 10.3.3, we get M =: M3 and B =: Bjs such that (Ms, Bs, P3, £3) has Property $. We calcu-
late M3 = {0,10,25, 30, 35, 40, 50, 55, 60, 65}, Bs = {1,6,7, 14, 16,20, 21, 22, 24, 28, 34, 38, 42, 43, 45,
46, 47,49, 52, 54,56, 58,61, 62, 63, 64, 66,67,68,69}, i5 = 0 and further 5 t agpaqs. Lastly we take
Po=PrLUPyUP3U {43,67}7 p1 = 5,p2 =11, (il,iQ) = (074),:[ =B3, P =Py := A(5, 11) \P() =
{3,283 and =Ly =" p, {g}. By Lemma 10.3.2, we see that M = {16, 22, 24,28, 43, 46, 47,49, 64,67}
is covered by Pu, iz = iss = 1, B = {1,6,7,14,21,34,38,42,52,56,61, 62, 63,68, 69} and hence
3 t arazsassae) and possibly 3 - 23]a;. Therefore a; € {1,2,7,14} for i € B\ {1}. By taking
J = B\ {1}, we have B\ {1} = ZQ UT} UT; =7 UZ; with

79 = {7,34,52,61}, I3 = {6,21,42,63,69}, Z; = {14,38,56,62,68}
and
T+ = {6,14,21,34,56,61,69}, Z, = {7,38,42,52,62,63,68}.
Therefore
Ji=1{6,21,69}, Jo = {42,63}, Js = {14,56}, Js = {38,62,68}.
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and hence ag = a1 = Qg9 = 1,&42 = a3 = 7,(114 = Q56 = 14,0,38 = Qa2 = A8 = 2 by (1041)
Further we get azq4 = ag1 = 1 and aso = 2 by taking residue classes modulo 5. Since (%) = (72—1) =1,
we see that (%) =1 for i € {6,21, 34,38,52,61,62,68,69} which is not valid by the possibilities of
i71 given by (10.5.5).

Let k = 67 and (is3,i67) = (9,9). We see that P, = {11,13,19,29,31,37,41,53}, M; =
{20, 22, 28, 31, 35, 38, 40, 42, 46,47, 48,50, 53,61, 62, 64,66}, B; = {0,1,2,3,4,5,6,7,8,10,11,12,13, 14,
15,16,17,18, 19,21, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37, 39,41, 43, 44, 45,49, 51, 54, 55, 56, 57, 58,
59,60, 63,65}, i11 = i3 = 19 = 9 and {38,40,46,50,62} is covered by 29,31,37,41,53. Fur-
ther p t a; for i € By and p € Py except possibly when 29|asg,41|ag2,29 - 41]jaz;. Now we
take Po = Pl U {43,67}, pP1 = 11,p2 = 13, (i1,i2) = (9,9),Z = Bl \ {21} and P = PQ =
A(11,13) \ Py = {5,17,47,59,61}. If 5 1 d, we observe that there is at least 1 multiple of
5 among n + (i + 11i)d, 0 < i < 5and £ < > 5 [ﬂ — 1 = 23. Thus we always have
¢ < 23 = {3. Then |Z'| = |B1] —1 > 2{y since |By| = 48. Thus the conditions of Corol-
lary 10.3.3 are satisfied and we get M =: Mo, B =: By and (Ma, Ba, P2, l2) has Property $.
We have My = {0,1,2,3,5,6,7,8,14, 19, 24, 26,29, 39,43, 44,49, 54, 56,60} which cannot be cov-
ered by Py. This is a contradiction. The cases k = 67, (i43,i67) = (i,4) with 9 < ¢ < 28 and
k = 71, (i43,167) = (i,1) with 13 < i < 28,4 # 24,25 are excluded similarly as in this paragraph.
The remaining cases are excluded similarly as k = 71, (i43,%67) = (27,3) given in the preceding
paragraph. O

10.5.8. The cases k = 73,79. We have ¢; = 23,92 = 73 and P; C {13,19,29, 31, 37,47,
59,61,67,79}. Then the pairs (iq,,44,) are given by

k=13: (672)v (77 3)7 (8v4>’ (975)7
k=179: (070), (1, 1), (2, 2), (7, 3), (8,4), (9, 5), (1076), (11, 7), (12,8),
(13, 9), (14, 10), (15, 11), (16, 12), (177 13), (187 14), (19, 15).

These pairs are of the form (i 4 4,14) except for (0,0), (1,1),(2,2) in the case k = 79.

Let k = 79 and (i3, i73) = (8,4). We see that Py = {13, 19,29, 31, 37, 47,59, 61,67, 79}, M; =
{1,3,10,12, 15, 16,18, 19, 20, 25, 30, 38, 39, 40, 46, 48, 51, 58, 64, 78}, By = {0,2,5,6,7,9,11,13, 14,17,
21,22,23,24, 26,27, 28,29, 32,33, 34, 35, 36, 37, 41, 42, 43, 44, 45, 47,49, 50, 52, 53, 55, 56, 57, 59, 60, 61,
62,63,65,66,67,68,69,70,71,72,73,74,75,76}, i13 = 12,419 = 1 and {3, 10, 15, 16, 18, 19, 30, 40, 46, 48,
78} is covered by 29,31, 37,47, 59, 61,67, 79. Thus

29-31-37-47-59-61-67-79 | H(n +14d) for i € {3,10,15, 16,18, 19, 30,40, 46, 48, 78}.
Further we have
(10.5.6) i79 € {10, 15,16, 18,19, 30, 40, 46, 48}

and either isg = 19 or ig9 € {1,10, 16,18}, i1 = 15, i3y = 3,i59 = 19. Also for p € P;, we have
p 1t a; for i € By since i(Py) is even for ¢ € B;. For each possibility iog9 € {1,10,16, 18,19}, we now
take PO = Pl @] {23, 73}, pP1 = 19,p2 = 29, (il,iz) = (1,i29),I = Bl, P = 732 = A(19,29) \P() =
{11,17,43,53, 71} and L = by = 3 p, [%] =19. Then |Z’| > |B1|—2 > 2{5. Thus the conditions of
Corollary 10.3.3 are satisfied and we have M =: My, B =: By and (Ma, By, Pa, {2) has Property $
implying is9 = 19 in which case we get My = {0,6,9, 11,22, 24,26, 33, 34,43, 44,55,60,66}, By =
{2,5,7,13,14,17, 21, 23,27, 28,29, 32, 35, 36, 37, 41, 42, 45, 47, 49, 50, 52, 53, 56, 57, 59, 61, 62, 63, 65, 67,
68,69,70, 71,72, 73, 74,75, 76}, i11 = 0,417 = 9, {6, 24,34} is covered by 43,53, 71. Thus 43-53 - 71 |
agagqasy. Further p {1 a; for i € By and p € Py. We now take Py = P; U Pe U {23,73},
p1 = 1l,py = 13, (iy,i) == (0,12),T = By, P = Py := A(11,13) \ Py = {5} and ¢ = ¢35 =
[%] = 16. Then |Z'| = |Bs| > 2¢3. By Corollary 10.3.3, we get M =: M3 and B =: B3 with
(M3, B3, Ps, £3) having Property $). We calculate My = {7,17,32,37,42,47,57,62,67,72}, By =
{2,5,13,14, 21, 23,27, 28, 29, 35, 36, 41, 45, 49, 50, 52, 53, 56, 59, 61, 63, 65, 68, 69, 70, 71, 73, 74, 75, 76},
i5 = 2 and 5 ¢ a; for ¢ € Bs. Lastly we take Py = Py U P U P53 U {23,73}, p1 = 5,p2 = 11,
(i1,49) := (2,0),Z = B3, P = Py := A(5,11) \ Py = {3,41} and £ = 44 = 3 [%]. By Lemma

10.3.2, we see that M = {23,29,35, 36,50, 53,56,65, 71,74} is covered by Py, i3 = 2,iy7 = 36,
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B ={5,13,14,21,28,41, 45,49, 59, 61, 63,
68,69,70,73,75,76} and hence a; € {1,2,7,14} for i € B. By taking J = B, we have B =
TYUTIUZ; =T UZ; with

79 = {5,14,41,59,68}, I3 = {13,28,49,61,70,76},Z;, = {21,45,63,69,75}
and
T+ = {13,21,28,41,61,63,68,73,76}, Z; = {5, 14,45,49,59,69,70,75}.
Thus
Ji ={13,28,61,76}, Jo = {49,70}, J3 = {21,63}, Jy = {45,69,75}.

and hence a13 = Ag8 = Qg1 = Q76 = 1, a4q9 = 70 = 7, a21 = A3 = 14, 45 = A9 = Q75 = 2 by (10.4.1).
Further we get as; = ags = 1 and a5 = asg = 2 by residue modulo 5. Since (&) = () =1, we see
that (%) =1 for i € {5,13,28,41,45,59,61,68,69, 75,76} which is not valid by the possibilities of

i79 given by (10.5.6). The other cases are excluded similarly. O

10.5.9. The case k = 83. We have ¢; = 37,¢2 = 83 and P; = {17,23,29, 31,47, 53,59,61,67, 71,
73}. Then the pairs (i, ,14,) are given by

(13,4), (14,5), (15,6), (16,7), (17,8), (18,9), (19, 10),
(20,11), (21,12), (22,13), (23, 14), (24, 15), (25, 16), (26, 17).

These pairs are of the form (i +9,4) with 4 <i < 17.

Let (ig7,is3) = (13,4). We see that Py = {17,23,29,31,47,53,59,61,67,71, 73}, My = {0, 2, 14,
16,18, 19, 20, 25, 26, 28, 29, 34, 36, 40, 41, 53, 56, 58, 64, 70}, By = {1,3,5,6,7,8,9,10,11,12,15,17, 21,
22,23,24,27,30,31,32,33,35,37,38,39,42,43, 44, 45, 46, 47, 48,49, 51, 52, 54, 55, 57, 59, 60, 61, 62, 63,
65, 66,67,68,69,71,72,73,74,75,76,77,78,79,80,81,82}, i17 = 2,i93 = 18,429 = 0, 431 = 25 and
{14, 16, 20, 26, 28, 34,40} is covered by 47,53,59,61,67,71,73. Further p{a; for i € By and p € P;.
For each possibility iz3 € {14, 16,20, 26, 28,34, 40}, we take Py = P; U {37,83}, p1 = 23,p2 = 73,
(i1,72) = (18,i73), T = By, P = Py := A(23,73) \ Po = {13,19,79} and £ = o = _ ., [g] = 14.
Then |Z'| = |B1| > 2¢5. Thus the conditions of Corollary 10.3.3 are satisfied and we get M =: M,
B =: By and (Mg, Bs, Pa, {s) has Property $ which is possible only if i73 = 14. Then My =
{8,9,11,22,30,35,48,49,61,68,74}. Therefore i13 = 9,419 = 11 and i7g = 8. This is not possible by
applying the case k = 73 to (n + 9d) - - - (n 4 81d). Similarly for (iz7,is3) = (14,5), we get i73 = 15,
i79 = 9 and this is excluded by applying the case k = 73 to (n + 10d) - -- (n + 82d). For all the
remaining cases, we continue similarly to find that Ms is not covered by Ps for possible choices of
i73 and hence they are excluded. O

10.5.10. The case k = 89. We have g1 = 79,¢> = 89 and P, = {13,17,19,23, 31,47, 53,71, 83}.
Then the pairs (iq,,1%4,) are given by (16,6), (17,7), (18,8), (19,9), (20, 10), (21,11). These pairs are
of the form (i + 10,4¢) with 6 <4 < 11.

Let (iro, ig9) = (16,6). We see that P, = {13,17, 19,23, 31,47, 53, 71,83}, M, = {0,1,2,3,4, 10,
12,17, 19,24, 26, 27, 30, 33, 38, 42, 43, 44, 48, 49, 56, 57, 61, 64, 69, 72, 76, 78,82}, By = {5,7,8,9,11,13,
14,15, 18,20, 21,22, 23, 25, 28,29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 45, 46, 47, 50, 51, 52, 53, 54, 55, 58, 59,
60,62, 63, 65, 66, 67, 68, 70, 71, 73, 74,75, 77,79, 80, 81, 83, 84, 85, 86, 87, 88}, i13 = 4, i17 = 10,419
0,i23 = 3,i31 = 2, 447 = 1 and {12,24,42} is covered by 53,71,83. Further p { a; for 4
B; and p € P;. Now we take Py = Py U {79,89}, p1 = 31,p2 = 89, (i1,i2) := (2,6), T
By and P = Py := A(31,89) \ Py = {7,11,41,59,73}. 1If 7 { d, we observe that there is at
least 1 multiple of 7 among n + (i13 + 13i)d, 0 < ¢ < 6 and ¢ < fy = Zpe% {%] -1 =
28. Thus in all cases, we have ¢ < ¢y and |Z'| = |B1| > 2¢y. Therefore the conditions of
Corollary 10.3.3 are satisfied and we get M =: My and B =: By with (May, By, Pa, ¢3) having
Property . We find My = {7, 11,13, 22, 25, 29, 32, 36, 39, 40, 51, 53, 54, 60, 62, 67, 73, 74, 81, 84, 88},
By = {5,8,9,14, 15,18, 20, 21,23, 28, 31, 34, 35, 37, 41, 45, 46, 47, 50, 52, 55, 58, 59, 63, 65, 66, 68, 70, 71,
75,77,79,80,83,85,86,87}, iy = 4,411 = 7,441 = 13 and {22,36} is covered by 59,73. Further for
p € Pa, pta; fori € By \ {18}, We take Py = Py UP2U{79,89}, p1 = 41,py = 79, (i1,142) := (13,16),

I m Il
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T =B\ {18}, P = P3 := A(41,79) \ Py = {37,43,61,67} and £ = 3 = 3 . [g] = 10. Then
|Z'] = |Z] = |Bz2] —1 > 2¢5. Thus the conditions of Corollary 10.3.3 are satisfied and we have
M =: M3, B =: B3 and (Ms, B3, Ps, {3) has Property $. We get M3 = {9,21,28,34,52,58}, B3 =
{5,8,14,15,20, 23, 31, 35, 37, 41, 45, 46, 47, 50, 55, 59, 63, 65, 66, 68, 70, 71, 75, 77, 79, 80, 83, 85, 86, 87},
ig7 = 21,443 = 9 and {28, 34} is covered by 61, 67. Therefore p € {2,3,5,29} whenever p|a; for i € Bs.
Now we take 730 = 731 U Pg U Pg U {79,89}, pP1 = 7,p2 = 17, (il,ig) = (4, 10), 7= 83, P = P4 =
A(7,17) \ Po = {29} and £ = ¢4, = [£] = 4. Then |I’| = |Bs| — 1 since 46 € B3 and |Bs| — 1 > 2/.
By Corollary 10.3.3, we get M =: My and B =: B, with (My, By, P4, £4) having Property $. We find
My = {8,37,66}, By = {5,14,15, 20,23, 31, 35, 41, 45, 47, 50, 55, 59, 63, 65, 68, 70, 71, 75, 77, 79, 80, 83,
85,86,87}, iag = 8 and P(a;) < 5 for i € By. Now we get a contradiction by taking k = 6 and
(n+47d)(n+55d)(n +63d)(n+ 71d)(n + 79d)(n + 87d) = b'y%. Similarly the pair (izg,is9) = (17,7)
is excluded by applying k = 6 to (n + 48d)(n + 56d)(n + 64d)(n + 72d)(n + 80d)(n + 88d). For all
the remaining cases, we continue similarly to find that M3 is not covered by P53 and hence they are
excluded. |

10.6. Proof of Lemma 10.4.3

Assume that Q1 t d and Q2 1 d. Then, by taking mirror image (2.2.1) of (2.1.1), there is no loss
k=1 )

of generality in assuming that 0 < ig, < Q1,0 <ig, < min(Qz — 1,%5=). Further ig, > k — &’
if Qg = k Let Po = {Qo},pl = Ql,pg = QQ,(il,ig) = (in,iQ2), 7T = [O,k) ﬂZ and ’P = 7)1 =

A(Q1,Q2)\Py. Then |Z'| > k— {&w - (%W and £ < (q where (1 =} p {%w In fact we can take

0= ep, [5] = Lif (K, Qo) = (79,23) or (k, Qo) = (59,29) with iz < 2 by considering multiples
of 13,11 or 19,7, 11, respectively.

Let (k, Qo) # (79,73). Then {1 < 1|Z’|. We observe that i(Py) = 0 for i € Z’ since Qo|d and by
Corollary 10.3.3, we get M =: My, B =: By and (M, By, P1,¢1) has Property $. We now restrict

to all such pairs (ig,,iqg,) with |[M;] < ¢, and M, is covered by P;. These pairs are given by

k Qo (Q1,Q2) | (iq,,ig,) k| Qo | (Q1,Q2) (1Q,,1Q,)
29 19 (7,17) | (0,0),(0,11) || 59 | 29 | (7,17) (1,1),(1,6)
37| 190r29 | (7,17) (0,0),(1,2) || 71| 43 | (53,67) (0,0)
47 29 (7,17) |(0,0),(4,12) || 89| 79 | (23,73) | (0,0),(19,15)
Let (k,Qo) = (79,73) and (Q1,Q2) = (53,67). We apply Lemma 10.3.2 to derive that either
|Z1| < 41,74 is covered by Py, i(P1) is even for i € Iy or |Zs| < £1,Z5 is covered by P1, i(Py) is even
for i € Z;. We compute Z1,Zs and we find that both Z; and Z, are not covered by P; for each pair
(i53,167) With 0 < isg < 53,0 < igy < 551

Let (k‘,Qo) = (37, 29),(@1,@2) = (7, 17) and (i7,i17) = (1,2). Then Pl = {11,13, 19,23,37}.
We find that M = {3,7,10,13,14, 17, 23,25}, By = {0,4,5,6,9, 11,12, 16, 18,20, 21, 24, 26, 27, 28, 30,
31,32,33,34,35}, i11 = 3, 413 = 10 and {7,13,17} is covered by 19,23,37. Further p { a; for
p € P1, i € By. Now we take Py = P U {7,17,29}, p1 = 11,ps = 13, (i1,i2) := (3,10),
IT=08,P="P:=AL13)\Py = {531} and £ = lo = 3 p [%] = 10. Thus |7'| =
|Z| = |B1] = 21 > 2¢5. Then the conditions of Corollary 10.3.3 are satisfied and we have M =:
My, B =: By and (Ms, Ba, P, l2) has Property $. We get My = {5,6,16,21,26,31}, By =
{0,4,9,11,12, 18,20, 24, 27, 28, 30,32, 33, 34,35}, i5 = 1, 3l|as and 5 { ai;. Also P(a;) < 3 for
i € By and P(az1) = 5. Thus P(asoas1 ---ass) < 5 and this is excluded by the case k = 6. The
other cases for k = 29, 37,47 are excluded similarly. Each possibility is excluded by the case k = 6
after showing P(ajas---ag) < 5 when (k,Qo) € {(29,19),(37,19),(37,29), (47,29)}, (i7,i17) =
(0,0), P(a22a23 N 'CL27) S 5 when (k,QQ) = (29,19)7 (i7,i17) = (0, 11), P(a30a31 < ~a35) S 5 when
(k,Qo) = (37, 19),(i7,’i17) = (1,2) and P(a40a41~~~a45) S 5 when (k‘,Qo) = (47,29),(i7,i17) =
(4,12).

Let (k, Qo) = (59,29), (Q1,Q2) = (7,17) and (i7,417) = (1,1). Then Py = {11,13,19,23, 37,47, 59}.
We find that M; = {0, 12, 14, 20, 23, 24, 27, 30, 34, 38, 39, 40, 45, 47, 48, 53,56, 58}, By = {2,3,4,5,6,7,9,
10,11,13,16,17,19, 21,25, 26, 28, 31, 32, 33, 37, 41, 42, 44, 46,49, 51, 54,55}, i11 = i13 = i19 = a3 = 1,
{30, 38,48} is covered by 37,47,59. Further p { a; for p € Py, i € By. Now we take Py = P; U
{7,17,29}, p1 = 11, py = 13, (iy,i2) == (1,1), T = By, P = Py := A(11,13)\ Py = {5,31,43} and £ =
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la=3,cp, [£]. By Lemma 10.3.2, we get M = {6,11,16,21,31,32,41,44,46}, i5 = 1, 31-43|as20.4
and i(Py) is even for i € B = {2,3,4,5,7,9,10, 13,17, 19, 25, 26, 28, 33, 37, 42, 49, 51, 54, 55}. Further
for p € Pa, p t a; for i € B. Finally we apply Lemma 10.3.2 with Py = P; U Py U {7,17,29},
p1 = 5,p2 = 11, (i1,42) := (1,1), Z = B and P = P3 := A(5,11) \ Py = {3,41,53}. We get
My = {4,7,13,25,28,42,49,54,55} which is covered by Ps, i3 = 1, {42,54} is covered by {41, 53}
and i(P3) is even for i € By = {2,3,5,9,10,17,19,33,37}. Hence P(a;) < 2 for ¢ € B;. Since
(‘2’—9) = (219) and ( ) # 1, we see that a; = 1 for i € By. By taking J = Bj, we derive that either
T =0 or Z; = () which is a contradiction. The other case (i7,i17) = (1,6) is excluded similarly.

Let (k‘,Qo) = (71,43),(@1,@2) = (53,67),@53,%7) = (0,0) Then 'Pl = {7,11,13, 19,23, 71}
We get My = {7,11,13, 14, 19, 21, 22, 23, 26, 28, 33, 35, 38, 39, 42, 43, 44, 46, 52, 55, 56, 57, 63, 65, 66, 69,
70}, By = {1,2,3,4,5,6,8,9, 10,12, 15, 16, 17, 18, 20, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 40, 41, 45, 47,
48,49, 50,51, 54, 58,59, 60, 61, 62, 64, 68}, i7 = i11 = i13 = i19 = ing = 0, ir1 = 43. Further, for p €
Py, pta; for i € By. Now we take Py = Py U{43,53,67}, p1 = 11, pa = 13, (i1,42) := (0,0),Z = By,
P =Py :=A11,13)\ Py = {5,17,29,31,37,47,59,61} and £ = (5 = ZP% m By Lemma, 10.3.2,
we see that M = {5,10,15,17,20,29, 30, 31, 34, 37, 40, 45, 47, 51, 58,59, 60, 61, 62, 68} is covered by
P, i(Py) is even for i € B = {1,2,3,4,6,8,9,12,16, 18, 24, 25,27, 32, 36, 41, 48, 49, 50, 54, 64}. We
get i5 = i17 = 99 = i31 = 0, and {37,47,59,61} is covered by 37,47,59,61. Thus 37 - 47 - 59 -
61|asrasraseaer. Further p 1 a; for i € B and p € Pa. We take Py = Py U Py U {43,53, 67}
pP1 = 5,p2 = 11, (il,ig) (0 O) 7= BQ, P = P3 = A 5 11)\7)0 = {3 41} and ¢/ = £3 ZpGPg [ —I
By Lemma 10.3.2, we see that My = {3,6,12,24,27,41,48,54} is covered by Ps, i(Ps3) is even for
i€ By =1{1,2,4,8,9,16,18,32,36,49,64}. Thus i3 = 0 implying 4417 = 0 and p = 2 whenever p|a;
for i € By. By taking J = By, we have By = Z;7 UZ; with

TS ={1,4,9,16,36,49,64}, T, = {2,8,18,32}.

Thus a; = 1 for 7 € I;' and a; = 2 for i € Z7 since a; € {1,2} for i € By. This is a contradiction
since 43|d, (%) = (5) and (55) # (%)

Let k = 89, Qo = 79, (Q1, Q2) = (23, 73), (ing, ir3) = (19,15). Then P, = {13,19, 29, 31, 37, 47, 59,
61,67,79,89}. We find that M; = {1,9,10,12, 14,21, 23, 26, 27, 29, 30, 31, 36, 41, 49, 50, 51, 57, 59, 62,
69,75}, By = {0,2,3,4,5,6,7,8,11,13, 16, 17, 18, 20, 22, 24, 25, 28, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45,
46, 47,48, 52, 53, 54, 55, 56, 53, 60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85,86,87}, i13 = 10,i19 = 12,499 = 1, 4337 = 26,i3y = 14 and {9,21,27,29,41} is covered by
47,59,61,67,89. Thus igg € {9,21,27,29,41}. Further for p € Py, p 1 a; for i € B;. Now we take
Po = 731 U {23,73,79}, P11 = 19,p2 = 29, (il,ig) = (12,1),1 = Bl, P = PQ = A(19,29) \PQ =
{11,17,43,53,71} and £ = €, = ¥, [£] = 22 Thus [7'| = [Z| = [Bi| > 26 By Corol-
lary 10.3.3, we have M =: My, B =: By and (Mg, Ba, P, ¢3) has Property $. We get My =
{0,2,3,11,17, 20, 22, 33, 35, 37, 44, 45, 54, 55, 66, 71, 77}, Bo = {4,5,6,7,8,13,16, 18, 24, 25, 28, 32, 34,
38,39, 40,43, 46, 47, 48, 52, 53, 56, 58, 60, 61, 63, 64, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85,
86,87}, 111 = O,i17 = 3,i43 = 2 and {17, 35} is covered by 53, 71. Further P 1’ a; for i € Bg
and p € Pa. We take Py = Py U P2 U{23,73,79}, p1 = 11,p2 = 13, (i1,i2) := (0,10),Z = Bo,
P =Py = A1L,13)\ Py = {5} and £ = €5 = 3,cp, [£] = 18. Thus 7] = 17| = Bal > 2%,
Then the conditions of Corollary 10.3.3 are satisfied and we have M =: M3, B =: Bs with
(M3, Bs, Ps, {3) having Property $. We get M3 = {8,18,28,43,48,53,58,68,73,78,83}, By =
{4,5,6,7,13,16, 24,25, 32, 34, 38, 39, 40, 46, 47, 52, 56, 60, 61, 63, 64, 67, 70, 72, 74, 76, 79, 80, 81, 82, 84,
85,86,87}, i5 = 3. Lastly we take Py = Py U Py U P3 U {23,73,79}, p1 = 5,p2 = 11, (i1,42) :=
(3,0, = B3, P = Py = A(5,11) \ Py = {3,41} and £ = £y = 3 p [%]. By Lemma
10.3.2, we see that M = {4,6,34,40,46,47,61,64,67,76,82,85} is covered by Py, i(P4) is even
for i € B = {5,7,16,24,25,32,39,52,56,60, 70, 72, 74,79, 80,81, 84, 86,87}. Thus i3 = 1,is = 6
and p € {2,7,83} whenever p|a; for i € B. Since 79|d, we see that a; € {1,2,83,2 83} or
a; € {7,14,7 - 83,14 - 83} for i € B. The latter possibility is excluded since 7 1 (i — i) for all
i,i’ € B. By taking J = B, we have B = 7.7 UZ; with

T ={7,24,32,39,52,72,74,79,84,87}, I = {5, 16,25, 56, 60, 70, 80, 81, 86}.
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Then we observe that either a; € {1,2-83} for i € Z; and a; € {2,83} for i € Iy or vice-versa.
This is not possible by parity argument. The other case (ia3,i73) = (0,0) is excluded similarly. O

10.7. Proof of Lemma 10.4.4

Let 7 < k < 97 be primes. Suppose that the assumptions of Lemma 10.4.4 are satisfied. Assume
that g1|d or go|d and we shall arrive at a contradiction. We divide the proof in subsections 5.1 and
5.2

10.7.1. The cases 7 < k < 23. We take r = 3 in (9.2.1). We may suppose that 5|d if k = 7,11
and 11|d if k = 13. Let 5|d. Then

(10.7.1) B, C {1,6} or B, C {2,3}

according as (%) = 1 or —1, respectively. Thus (10.7.1) holds if £ = 7,11. Let 11|d. Then

(10.7.2) B, C {1,3,5,15} or B, C {2,6,10,30}

according as () = 1 or —1, respectively. Let 13|d. Then

(10.7.3) B, C {1,3,10,30} or B, C {2,5,6,15}

according as ({5) = 1 or —1, respectively. Thus either (10.7.2) or (10.7.3) holds if 13 < & < 23.
We have

F'(k,3) if k=711
F(k,r) <ty =4 F'(k,3)—2 if 13<k <23
F'(k,3) -3 if k=23.
For the last expression, we observe that 7 and 11 together divide at most six a;’s when k = 23.
Therefore we get from (9.2.1) that
(10.7.4) &>k —t)

We divide the proof into 4 cases.
Case I. Let 21d and 3 {d. From (10.7.1), (10.7.2), (10.7.3) and Corollary 10.4.1, we get

6 <ty = max(fs(k,1,0) + f1(k,6,0), f1(k,2,0) + fa(k,3,0)) + [E] if k=711,
TSI falk 1,0) + fa(k, 3,0) + fa(k,5,0) + fa(k, 15,0) + [£] if k> 11

since fy(k,a,d) is non-increasing function of a and Y, pve(a) < [£]. We check that t; + ¢} < k
contradicting (10.7.4).

Thus we have either 2|d or 3|d. Let k = 7,11. If 2|d, then B, C {1} or B, C {3}. If 3|d, we have
B, C {1} or B, C {2}. By Lemma 9.5.3, we get & < £51. We check that £5% +#{ < k contradicting
(10.7.4). From now on, we may also that suppose that 13 < k < 23.
Case II. Let 2|d and 3 1 d. Then B, C {1,3,5,15} if 11|d and B, C {1,3} or B, C {5,15} if 13|d.
Let 2||d. From Corollary 10.4.1 with 6 = 1, we get

57’ S Fl(k,l,].) +F1(]€,3,1) +F1(k,5,1) +F1(k,15,1) = t2.

Let 4||d. From a; = n(mod 4), we see that B, C {1,5} or B, C {3,15} if 11|d and either S = @) or
S ={1},{3},{5} or {15} if 13|d. Therefore

& < Fi(k,1,2) + Fi(k,5,2) =: t3.
by Corollary 10.4.1 with 6 = 2. Let 8|d. Then a; = n(mod 8) and Corollary 10.4.1 with é = 3 imply
67‘ < Fl(k7 173> = t4'

Thus &, <max(ta,t3,t4). This contradicts (10.7.4).
Case III. Let 21 d and 3|d. From a; = n(mod 3), we see that either S = () or S = {1},{2},{5} or
{10} if 11|d and B, C {1,10} or B, C {2,5} if 13|d. By Corollary 10.4.1, we get

gr S Fl(k7170) +F1(k7570)7

contradicting (10.7.4).
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Case IV. Let 2|d and 3|d. Then B, C {1}, {5}. By Lemma 9.5.3, we get & < £, We check that
=L 4 ¢ < k. This contradicts (10.7.4).

10.7.2. The cases k > 29. Let 29 < k < 59 and 19|d. Then by Lemma 10.4.3 with Q¢ = 19,
we get 7|d or 17|d. Thus we get a prime pair (Q,Q) = (7,19) or (Q,Q") = (17,19) such that
QQ'|d. Similarly we get (Q,Q’) = (7,29) or (Q,Q") = (17,29) with QQ’|d when 31 < k < 59 and
29|d. Let k = 71. Then we have either 43|d, 67|d or 43|d,67 1 d or 43  d,67|d. We get prime pair
(Q,Q) = (43,67) with QQ’|d if 43|d,67|d. If 43|d,67 1 d, we get from Lemma 10.4.3 with Qy = 43
that 53|d and we take (Q, Q") = (43, 53) such that QQ’|d. If 43 1 d, 67|d, we get from Lemma 10.4.3
with Qo = 67 that 53|d and we take (Q,Q’) = (53,67) such that QQ'|d. Similarly we get prime
pairs (@, Q") with QQ'|d for each 61 < k < 97 are given in the table below. For r < 7, we see that

k
F(k,r)< Y [=] <F'(kr) —th
pP>pr p
p#Q,Q7

where t§, = 2,4,7 according as 29 < k < 61,61 < k < 97,k = 97, respectively. Therefore we get
from (9.2.1) that

(10.7.5) &> k+ty — F'(k,r).

Case I. Let 21 d and 31d. We take r =5 if k = 71, (Q, Q') = (43,67) and r = 4 otherwise. Then
B, C S;(1,r) =8;(0,1,Q,Q",r) for some some j with 1 < j < 4 where S;(1,r) is given by (9.2.7).
For each value of k, we give below a table for (Q,Q’) and S;(1,r) for 1 < j < 4.

k (Q7Q/) 81(1,7’),82(1,7‘),83(1,7‘),54(1,7“)

29< k<59 (7,19),(7,29) {1,30},{2,15}, {3, 10}, {5, 6}

29 < k <59 | (17,19), (17,29) | {1, 30, 35, 42}, {2, 15, 21, 70}, {3, 10, 14, 105}, {5, 6, 7, 210}
61 (11,59) {1,3,5,15},{2,6, 10,30}, {7, 21, 35, 105}, {14, 42, 70, 210}

67,71 (43,53) {1,6,10, 15}, 12,3,5,30}, {7, 42,70, 105}, {14, 21, 35,210}

71 (43,67) See (10.7.6)
71 (53,67) {1,6,10, 15}, 12,3, 5,30}, {7, 42,70, 105}, {14, 21, 35, 210}
73 (23,53) {1,6,70,105}, {2, 3, 35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}
73 (23,67) {1,6,35,210}, {2, 3,70,105}, {5, 7, 30, 42}, {10, 14, 15, 21}
79 (23,53), (53,73) | {1,6,70,105}, {2, 3,35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}
79 (23, 67),(67,73) {1,6,35,210}, {2, 3,70,105}, {5, 7, 30, 42}, {10, 14, 15, 21}
83 (23,37), (37,73) | {1,3,70,210},{2,6,35,105}, {5, 14, 15, 42}, {7, 10, 21, 30}
89 (23,79), (73,79) | {1,2,105, 210}, {3,6,35, 70}, {5, 10, 21, 42}, {7, 14, 15,30}
97 (23,37),(23,83) | {1,3,70,210}, {2,6,35, 105}, {5, 14, 15,42}, {7, 10, 21, 30}

For k=171, (Q,Q') = (43,67), we get from r = 5 that

(10.7.6)
Si(1,7) = {1,6,10, 14, 15,21, 35,210}, S (1, 7) = {2, 3,5, 7, 30, 42, 70, 105}

Ss(1,7) = {11,66, 110,154, 165,231, 385,2310}, S4(1,7) = {22, 33, 55,77, 330, 462, 770, 1155}
From Corollary 10.4.1, we get
& <ts:= max{ Z Fi(k,s,0).

tsjsd seS;(1,r)
We check that t5 + F'(k,r) — t§, < k contradicting (10.7.5).
Case II. Let 2|d and 3 1 d. We take r = 4 for 2||d,4||d and r = 5 for 8|d. Let 2||d. Then

B, € {1,3,5,7,15,21,35,105} =: B, From Corollary 10.4.1 with § = 1, we get

&< Y Fulkb1) =it

beB(2)
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Let 4||d. Then we see that either B, C {1,5,21,105} =: B“Y or B, C {3,7,15,35} =: B3 From
Corollary 10.4.1 with § = 2, we get
¢, < max > Fi(k,b,2) = tr.
beB(4i)

Hence, if 8 1 d, then &, <max(ts,t7). We obtain max(ts,t7) + F'(k,r) — t5, < k. This contradicts
(10.7.5).

Let 8/d. Then we see from a; = n(mod 8) that B, C {1,33,105,385} =: B®Y or B, C
{3,11,35,1155} =: B®3) or B, C {5,21,77,165} =: B® or B, C {7,15,55,231} =: BE"). Then

gr < iqu’g‘?é,? Z Fl(k7 ba 3) =:tg.
beB(81)

by Corollary 10.4.1 with § = 3. We check that tg + F’(k,r) — t, < k contradicting (10.7.5).
Case III. Let 2 t d and 3|d. We take r = 5. Then by modulo 3, we get either B, C {1, 7, 10, 22, 55, 70,
154,385} =: BGY or B, C {2,5,11,14,35,77,110,770} =: BG?). By Corollary 10.4.1, we get

&, < max > Fi(k,b,0) = to.
beB(31)
This together with (10.7.5) implies t9 + F'(k,5) — ¢, > k. This is contradiction.
Case IV. Let 2|d and 3|d. Let 2||d. We take r = 4. Then we see that either B, C {1,7} or
B, C {5,35}. By Corollary 10.4.1, we get &. < Fy(k,1,1) + Fy(k,7,1) which contradicts (10.7.5).
Let 4||d. We take r = 6. From a; = n(mod 12), we see that
B, C B €% :={{1,13,385,5005}, {5, 65,77, 1001}, {7, 55,91, 715}, {11, 35, 143, 455} }.
Then
<
gr = lg}g% Z Fl(k7b7 2)
beB’
contradicting (10.7.5).
Let 8|d. We take r = 7. From a; = n(mod 24), we see that B, C B’ = {1,385,1105,17017} or
B, C B € B, where B is the union of sets
(5,77,221, 85085}, {7, 55,2431, 7735}, {11, 35, 1547, 12155}, {13, 85, 1309, 5005},
(17,65, 1001, 6545}, {91, 187, 595, 715}, {119, 143, 455, 935}.

Let B, C B' e B,. Then

» < max Fi(k,b,3) =1
§ B//E%lbezl;’ 1( ) =:tio

by Corollary 10.4.1. Let B, C B’. By Lemma 9.5.3, we get v(1) < % This together with
v(1105) + v(17017) < 1 by 13 - 17|ged(1105,17017) and ©(385) < 1 by Corollary 10.4.1 gives &, <
E=L 4 2. Therefore & <max(tio, £5% + 2). Now we get a contradiction from (10.7.5). O

10.8. Proof of Theorem 10.1.1

Let k = 7. By the case k = 6, we may assume that 7 { d. Now the assertion follows from Lemmas
10.4.4 and 10.4.2. Let k = 8. Then by applying the case k = 7 twice to n(n +d) - -- (n + 6d) = b’y
and (n+d)---(n+7d) = b"y"?, we get

(U'Oa e 7a6)7 (ala e ,(l7) € {(2, 3, 17 57 63 77 2)7 (Sa 1; 9, 67 77 23 1)7 (17 5a 6a 77 27 17 10)7
(2,7,6,5,1,3,2),(1,2,7,6,5,1,3),(10,1,2,7,6,5,1)}.

This gives (ag, - ,a7) = (2,3,1,5,6,7,2,1),(3,1,5,6,7,2,1,10) or their mirror images and the
assertion follows. Let k = 9. By applying the case k = 8 twice to n(n +d)---(n + 7d) = b'y"
and (n +d)---(n+8d) = b"y"?, we get the result. Let k = 10. By applying k = 9 twice, we get
(ap,a1,- - ,as), (a1, a2, -+ ,as,a9) € {(2,3,---,1,10),(10,1,---,3,2)} which is not possible.
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Let k > 11 and k' < k be consecutive primes. We suppose that Theorem 10.1.1 is valid with
k replaced by k. Let k|ld. Then (%) = (%) for all 0 < i < k. By applying the case k = & to
n(n+d)--- (n+(k'=1)d) = b'y'? with P(b') < k’, we get k' < 23 and 1,2,3,5 € {ag,a1,a2, -+ ,ap_1}
in view of (2.2.2) and (2.2.3). Therefore (2) = (2) = (2) =1 which is not possible.

Thus we may assume that k { d and k|n + id for some 0 < i < £51 by considering the mirror
image (2.2.1) of (2.1.1) whenever Theorem 10.1.1 holds at k. We shall use this assertion without
reference in the proof of Theorem 10.1.1.

Let £ = 11. By Lemmas 10.4.4 and 10.4.2, we see that 11|n + id for 0 < ¢ < 3. If 11|n, the
assertion follows by the case k = 10. Let 11|n + d. We consider (n + 2d)--- (n + 10d) = b'y"? with

P(V) <7 and the case k =9 to get (az,as, - ,a10) € {(2,3,1,5,6,7,2,1,10),(10,1,2,7

,6,5, 1,3,2)}. The first possibility is excluded since 1 = (1) = (aﬁ”) = (38) = —1. For the
second p0551b111ty, we observe P(ag) < 5 since ged(ag, 7 - 11) = 1 and this is excluded by the case
k = 6 applied to n(n+2d)(n+4d)(n+6d)(n+ 8d)(n+ 10d). Let 11|n + 2d. Then by the case k = 8,
we have (a3, a4, ,a10) € {(2,3,1,5,6,7,2,1),(3,1,5,6,7,2,1,10), (1,2,7,6,5,1, 3,2),
(10,1,2,7,6,5,1,3)}. The first three possibilities are excluded by considering the values of Legendre
symbol mod 11 at as,as; as,as and as, as, respectively. If the last possibility holds, then ag = 1

since ged(ap,2-3+5-7-11) = 1 and this is not possible since 1 = (%) = <(7121)2) = —1. Let

11jn + 3d. We consider (n + 4d)---(n + 10d) = b'y’? with P(b') < 7 and the case k = 7 to get
(as, - ,a10) € {(2,3,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10), (2,7,6,5,1,3,2),
(1,2,7,6,5,1,3),(10,1,2,7,6,5,1)} which is not possible as above. This completes the proof for
k = 11. The assertion for k = 12 follows from that of k = 11.

Let k£ = 13. Then the assertion follows from Lemmas 10.4.4, 10.4.2 and the case k = 11. Let
k = 14. By applying k = 13 to n(n +d) --- (n+12d) = b'y’? and (n +d)--- (n+ 13) = by, we get
the assertion. Let k = 15. Then applying k¥ = 14 both to n(n+d) - - - (n+13d) and (n+d) - - - (n+14d)
gives the result. Now k& = 16 follows from the case k = 15.

Let k = 17. Then 17|n + 2d or 17|n + 3d by Lemmas 10.4.4, 10.4.2 and the case k = 15. Let
17|n+2d. Then by applying the case k = 14 to (n+3d) - - - (n+16d) = b'y'? with P(b') < 13, we get
(as,aq, -+ ,a16) € {(3,1,---,15,1),(1,15,--- ,1,3)}. The first possibility is excluded by Legendre
symbol mod 17 at as,as. For the second, we observe that ged(aq,7-11-13-17) = 1 which is not
possible by the case k = 6 applied to (n+d)(n+4d)(n+7d)(n+10d)(n+13d)(n+16d). Let 17|n+3d.
By considering (n + 4d) - - - (n + 16d) = b'y’? with P(b’) < 13, it follows from the case k = 13 that
(a1, - ,a16) € {(3,1,-- ,14,15),(1,5,--- ,15,1),(15,14,--- ,1,3),(1,15,--- ,5,1)}. The first three
possibilities are excluded by considering Legendre symbol mod 17 at a4, as. If the last possibility
holds, we observe that a; = 1 since ged(as,[[,<;7p) = 1 and then 1 = (ugs) = (%ﬁ) =1,
a contradiction. The assertion for k = 18 follows from that of k = 17.

Let £ = 19. Then the assertion follows from Lemmas 10.4.4, 10.4.2 and the case k = 17. By
applying k = 19 twice to n(n+d) --- (n + 18d) and (n +d) - - - (n + 18d)(n + 19d), the assertion for
k = 20 follows and this implies the cases k = 21, 22.

Let k = 23. We see from Lemmas 10.4.4, 10.4.2 and the case k = 20 that 23|n+ 3d. We consider
k=19 and (n+4d)--- (n+ 22d) = b'y'? with P(¥') < 19 to get (aq,as, - ,a22) = (1,5, ,21,22)

r (22,21,---,5,1). By considering the values of Legendre symbol mod 23 at as and a5, we may
assume the second possibility. Now P(a2) < 11 and this is not possible by the case k = 11 applied to
(n+2d)(n+4d)---(n+22d). Let k = 24. We get (ag, a1, -+ ,a23) = (5,6,---,3,7),(7,3,---,6,5)
by considering k = 23 both to n(n+d)--- (n+ 22d) and (n+d) - - - (n + 23d). Further the assertion
for 25 < k < 28 follows from k = 24.

Let k > 29. First we consider k = 29. We see from Lemmas 10.4.4, 10.4.2 and the case k = 25
that 29|n+4d or 29|n+5d. Let 29|n+4d. Then considering k = 24 and (n+5d)(n—|—6d) (n—|—28d) we

get (as,aq, - ,as) = (5,6,---,3,7) or (7,3,---,6,5). Byobservingl—(@): 25 —(12):
—1, we may assume the second possibility. Then a; = 1 implying 1 = a2a8 (
a contradiction. Let 29|n + 5d. Now by conslderlng k = 23 and (n + 6d) n + 28d), we get

(ag, a7, ,ass) € {(5, ,26,3), (6,7, ,3,7),(3,26,--- ,6,5),



10.9. PROOF OF THEOREM 2.1.1 99

(7,3,---,7,6)}. Then we may restrict to the last possibility by considering the Legendre symbol

mod 29 at the first two entries in the remaining possibilities. It follows that a3 = 1 implying
1= (%) = ((_2%))4> = —1, a contradiction. This completes the proof for k = 29. We now proceed
by induction. By Lemmas 10.4.4 and 10.4.2, the assertion follows for all primes k. Now Lemma
9.1.1 completes the proof of Theorem 10.1.1. O

10.9. Proof of Theorem 2.1.1

Observe that for all tuples in (2.2.2) and (2.2.3), the product of the a;’s is not a square. Hence,
by Theorem 10.1.1, we may assume that 101 < k& < 109. Assume (2.1.1) with b = 1. Then
ordy(apas - - - ak—1) is even for each prime p. Let 101 < k < 105. Then P(a4as - - - a100) < 97. Now
the assertion follows from Theorem 10.1.1 by considering (n + 4d) - - (n 4+ 100d) and k = 97. Let
k = 106,107. Then P(a4as - --ajo2) < 101. We may suppose that P(asas) = 101 or P(ajo1a102) =
101 otherwise the assertion follows by the case k = 99 in Theorem 10.1.1. Let P(asas) = 101.
Then P(ag---aj02) < 97 and the assertion follows by k& = 97 in Theorem 10.1.1. This is also
the case when P(ajg1a192) = 101 since P(ayq---a190) < 97 in this case. Let k = 108,109. Then
P(ag---a1p2) < 101. Thus either P(agay) = 101 or P(aip1a102) = 101. Let P(agay) = 101. Then
P(CLS < '0102) S 97. We may assume that 97‘@8(190,100,11 or 97‘0,97 c++a1010102- Let 97|a8a9a10a11.
Then P(aj2a13- - a102) < 89 and the assertion follows by the case k = 91 of Theorem 10.1.1. Let
97)agr - - - a1p2. Then P(agag - - - agg) < 89 and the assertion follows from the case k = 89 of Theorem
10.1.1. When P(aj01a102) = 101, we argue as above to get the assertion. O






CHAPTER 11

Equation (2.1.1) with with w(d) <6 or d < 10':
Proof of Theorems 2.3.1, 2.4.1, 2.5.1, 2.5.2, 2.5.3

In this chapter, we prove Theorems 2.3.1, 2.4.1, 2.5.1, 2.5.2 and 2.5.3. From now on, we take
t=k. Thus b; =aj_1,B; =A;_1,y; =x;—1 and Y; = X;_; for 1 <j <k in (9.1.2) and (9.1.3).

By using Theorem 10.1.1, we take k > 100. As in [76], the proof of our theorems depend on
showing that the upper bound and lower bound for n 4+ (k — 1)d are not consistent whenever it is
possible to find a non-degenerate double pair. A lower bound for n + (k — 1)d is obtained by using
lemmas stated in Section 9.4 and Lemma 11.1.3. Further by using the lemmas stated in Section 9.3,
we give an upper bound for n+ (k — 1)d whenever it is possible to find a non-degenerate double pair.
This is always the case whenever k — |R| > 2(D=¢ Tf we do not have this, we use Lemmas 9.3.13
and 11.1.2 depending on an idea of Erdds to give an upper bound for k. Thus there are only finitely
many possibilities for £ and we use counting arguments given in Section 9.2 and computational
lemmas in Section 11.1 to exclude these possibilities. For example, we show in Lemma 11.1.1 that &
is large whenever d is divisible by two small primes. This is very useful in our proofs and increases
considerably a lower bound for d in Theorem 2.4.1.

11.1. Computational Lemmas

LEMMA 11.1.1. Let k > 101. Assume (2.1.1).
(a) Let d be odd and p < q be primes such that pq|d with p < 19,q < 47. Then k > 1733.
(b) Let d be odd and p < q be primes such that pq|d with 23 < p < q < 43,(p,q) # (31,41). Then
k > 1087.
(¢) Let d be even such that p|d with 3 < p < 47. Then k > 1801.

PrOOF. We shall use the notation and results of Section 8.2 without reference. By Lemma

9.1.1, it suffices to prove Lemma 11.1.1 when k is a prime. Let Py be the largest prime < k such
that Py t d. Then (2.1.1) holds at kK = Fy. Therefore Py > 101 by Theorem 10.1.1 with k& = 97.
Thus there is no loss of generality in assuming that k1 d for the proof of Lemma 11.1.1.
(a) Let d be odd and p,q be as in (a). Assume k < 1733. It suffices to consider 4 cases, viz
(1) 5<p<q,31d,51d; (i1) p=3,9>5,51d; (i4i) p=5,¢ > 5,31d and (iv) p=3,g=5. We
take r > 7. We see that B, is contained in one of the four sets S, = S, (1,7) with 1 < p < 4. Let
S, = {s €S, :5 <2000} with 1 < p < 4. We have v(s) < Fy(k,s,0) by Lemma 9.5.2. Further
v(s) <1 for s > k and hence for s € S, \SL Observe that 1 € §] C ;.

Assume that 1 ¢ R in the case (iv). For the case (i), we take r = 7 for 101 < k < 1087
and r = 8 for 1087 < k < 1733. For all other cases, we take r = 7 for 101 < k < 941,
r = 8 for 941 < k < 1297 and r = 9 for 1297 < k < 1733. Then &, < maxzsesM v(s) <

max (gp’q —|Sul + > ses F(k, 570)) < gpg+maxd s (Fo(k,s,0) — 1) =: & where the maximum
" "

is taken over 1 < p < 4 and we remove 1 from S C §; when the case (iv) holds. We now check that

0 if p<qg<p,
(11.1.1) k—F'(kr) =& > —[%] ifp<p,<q

k k]
This contradicts (9.2.1) by using the estimates for g, , and & > &,
101
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Thus it remains to consider (iv) with 1 € R. Then (%) = (%) =1 for all a; € R. Suppose
that p’ { d for some prime p’ € P = {7,11,13}. We take r = 9. We have B, C S;. Further
S1| = 32 and 8! = {1,19, 34,46, 91, 154, 286, 391, 646, 874, 1309, 1729, 1771}. We get from (9.5.1)

that v,(a) < min(fo(k,a,0), f1(k,a,p’,1,0)) < min(fo(k,a,O),mea%{fl(k,a,p’,1,0)}) = G1(k,a).
p/
Similarly we get from (9.5.2) that v.(a) <min(go(k,a,2), mg%{{gl(k,a,p’,l,O)} := Ga(k,a). Let
p/

G(k,a) = 1if k < a and G(k,a) = Gi(k,a) + Ga(k,a) if k > a. Then v(a) < G(k,a) implying
& <32+ ZSQS{(G(k, s) — 1) =: &, as above. We check that

(11.1.2) k—F'(k,r)—& > 0.

This contradicts (9.2.1). Thus p’|d for each prime p € P. Now we take r = 14. Since 1 € R,
we have (%) =1 for all a; € R and for each p with 3 < p < 13. Therefore B, C {s € S(r) :

(%) = 1,3 <p <13} = {1,1054} US" where |S”| = 14 and s > 2000 for each s € S . Hence
& < wv(l)+v(1054) 4+ 14 < v(1) + 16 since v(1054) < 2 by Lemma 9.5.2. From (9.5.1) and (9.5.2)

with g = 3, we get v(1) < fo(k,1,0) + go(k,1,3). Therefore &, < fo(k,1,0) + go(k,1,3) + 16 =: &,
and we compute that (11.1.2) holds contradicting (9.2.1).

(b) Let d be odd and p,q be as in (b). Assume k < 1013. By (a), we may assume that 3
d,5 t d. We continue the proof as above in the case (i) of (a). We take r = 7 and check that
k—F'(k,r)—& + (ﬁ + [ﬂ > 0. This contradicts (9.2.1).

(¢) Let d be even and p be as in (¢). Assume k < 1801. For any set W of squarefree integers, let
W' =W'(0) ={seW:s< 2%} We consider four cases, viz (i) p >5,31d,51d; (ii) p=15,31d;
(#31) p = 3,5t d and (iv) 15|d. We take r > 7. Assume that (i), (i7) or (#i) holds. Then from (9.2.7)
with p = ¢, we get 2° sets U1 << 29 given by Sy (n’,r),Ss(n’, 7). Without loss of generality, we
put Si(1,7) = Uy. Further |U,| < g, for 1 < pu < 2. Assume (iv). We take p =3,¢ =5 in (9.2.7).
We get 2°F1 sets V,,, 1 < pu < 2°*! given by S;(n’,r),1 < j < 4 and we put S;(1,7) = V4. Further
[V,| <270 for 1 < pu < 2°+1. We define ¢’ by ¢’ = 2"°~* if (iv) holds and g’ = g, otherwise.
Further let W, with 1 < u < 20+1 be given by W, =V, if (iv) holds and W, = U, for 1 < u < 20
W, = 0 for p > 2° if (i), (i4) or (iii) holds. We see from Lemma 9.5.2 that v(s) < Fy(k,s,d) and
v(s) <1 for s € W, \ W,. Observe that 1 € Wy C Wj.

Assume that 1 ¢ R in the cases (i4), (#ii) or (iv). We take r = 8 for 101 < k < 941, r = 9 for
941 < k < 1373 and r = 10 for 1373 < k < 1801 in the case (i) with 8|d. For all other cases, we
take r = 7 for 101 < k <941, r = 8 for 941 < k < 1373 and r = 9 for 1373 < k < 1801. Then
& <max} oy F(k,s,6) < g’ + max ZseW; (Fy(k,s,6) — 1) =: & where maximum is taken over

1 < p < 2% and we remove 1 from W] C W; when (i4), (iii) or (iv) holds. We check that

—[£] if () holds with p > p,

0 otherwise.

k—F'(k,r)—§& > {

This contradicts (9.2.1).
Thus it remains to consider the cases (ii), (4i7) or (iv) and 1 € R. Then a; (mod 2%)

=1
and (%) = 1 for all p|d whenever a; € R. Let Py = {5},{3},{3,5} when (i), (i), (iv) holds,

respectively. Then (%) =1 for p e Pp.

Assume that 7 t d when 8|d, 15|d. Let P = {7} if 8|d, 3|d,5 1 d; P = {7,11,13,17,19} if 4||d, 15|d;
P = {11,13,17,19} if 8|d, 15|d and P = {7,11,13} in all other cases. Suppose that p’ t d for some
prime p’ € P. Let r be given by the following table:

0, G2 ATd | ), G, 8 [ o2l [ o), 411,514
8 for k <941 10 for £ <941
9 for k> 941 11 for £ > 941

9 11
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We get B, C Wy. For s € W1, we get from (9.5.1) that v(s) = v,(s) < G(k, s,9) := min(fo(k, s,d), G1,G2)
where
fi(k,s,3,2,8), max,yep fa(k,s,3,p',2,0)) when (i¢) holds, 8td
fi(k,s,5,1,8), max, cp fo(k,s,5,p',1,6)) when (i) holds, 81d
fi(k,s,3,1,3), maxpep fo(k,s,3,p',2,3)) when (i) holds, 8|d

( ) ( ) (i

(

_ )
(GlaGQ) - (
(f1(k,s,5,1,3), maxyep f2(k,s,5,p',2,3)) when (i4i) holds, 8|d

and when (iv) holds, G1 = G2 = maxyep fi1(k,s,p',1,0)if2||dor 4||d, G1 = G2 = maxyep fa(k,s,7,0,1,3)
if 8|d. Therefore &, < ¢’ + Zsew{(G(k, $,0) —1) =: &. Now we check (11.1.2) contradicting (9.2.1).
Thus p’|d for each prime p’ € P. Let r and g; be given by the following table:

Cases: | (1), (@), 2]|d | (id), (@), 4|d | (id),8]d | (iv), 2]|d | (iv),8]d
(r, g1) (12,8) (12,4) (15,16) | (13,4) | (17,4)

Suppose that one of the above case hold. Then B, C {s € S(r) : s = 1(mod 2°%), (ﬁ) =1,p €

PUPy} = {1} UW" with [W'| =g, —1and s > 209 for s € W". Therefore & < v(1) + g1 — 1.
From (9.5.1), we get v(1) < G(k) where G(k) = f1(k,1,3,2,9) if (i) holds; fi1(k,1,5,2,9) if (i)
holds, 8 1 d; G(k) = fo(k,1,1) if (4v) holds with 2||d and G(k) = f1(k,1,7,2,3) if (v) holds with 8|d.
Therefore &, < G(k) + g1 — 1 =: & and we compute that (11.1.2) holds. This contradicts (9.2.1).
Thus either (A) : (v) holds, 4||d or (B) : (i%i) holds, 8|d. Assume that p’ { d with p’ € P; where
Py ={23,29,31,37},{11,13,17,19} when (A), (B) holds, respectively. In the remaining part of this
paragraph, by ’respectively”, we mean “when (A), (B) holds, respectively’. We take r = 18,11,

respectively. Then B, C {s € S(r) : s = 1(mod 2%), (i) =1,p) € PUP} C {1,1705} UW" with

P
W' =gy and s > 5992 for s € W where g; = 3,14, respectively. Hence &, < v(1)+v(1705) + g1 <
G(k) 4+ 2+ g1 = & where v(1) < G(k) = maxyep, fi(k,1,p',1,2), maxyep, fa(k,1,5,p',1,3),
respectively by (9.5.1). We check (11.1.2), contradicting (9.2.1). Thus p’|d with p’ < 37 if (A) holds
and p'|d with p’ < 19,p" # 5 if (B) holds. Now we take r = 22, 16, respectively to get B, C {I}UW”
with [W"| = g, and s > 2000 for s € W' where go = 0,3, respectively. From (9.5.1), we get
v(1) < G(k) with G(k) = fo(k,1,2), f1(k,1,5,2,3), respectively. Hence &, < G(k) + g» =: & and
we compute that (11.1.2) holds. This contradicts (9.2.1).
Thus it remains to consider the case (iv) with 8|d and 7|d. Then

11.1.3 a; = 1(mod 8) and & =1forp=3,57
p

whenever a;, € R. Let k < 263. By taking r = 12, we find that B, C {s € S(r) : s =
1(mod 8), (i) = 1,2 < j < 4} = {1,6400,9361, 12121, 214489, 268801, 4756609, 59994649}. Then

pj
by Lemma 9.5.3, v(1) < %51 since k { d by our assumption. Further v(6409) + v/(268801) +
v(4756609) + 1(59994649) < [r5] < 1, v(9361) + 1/(214489) < [1f-] < 1 and v(12121) < 1.

Therefore &, < 551 43 = &.. We check (11.1.2) contradicting (9.2.1). Thus k > 263. By (11.1.3),
we see that a; is not a prime < 89. Hence for a; € R with P(a;) < 89, we have w(a;) > 2. Further
by (11.1.3), a; = p’q’ with 11 < p’ < 37 and 41 < ¢’ < 89 is not possible. For integers P;, P, with
P < P, let

I(P,Py) ={i:p'qla;, P <p' <q <P}

Then [Z(P1, P2)| < X p <preg<p, [ﬁ}. Suppose that p; 1 d for some prime j € {5,6}. Then
I/(l) < Go(k) = maxX;=56 fl(k71,pj,2,3) by (951) We take r = 23. For P, € {11,13}, let
A(Py) = {a; : a; = Pop’ with Py < p’ < 37 or a; = Pyp'q’ with Py < p’ < 37,41 < ¢’ < 83}. Then
from (11.1.3), we get A(11) C {6721, 8569, 25201} and A(13) C {17329, 17641, 27001}. Therefore we
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get from
I.C{i:a; =1} UZ(17,37) UZ(41,83)U
{i:a; € A1) UA13)}U {i:11-13p'|a;, 17 < p' < 37}
that
&<Gok)+ > i 1+ {L1 +54+34+34+6=¢
- p'q 41 -43

17<p’'<q’' <37

since p'q’ > k for 41 < p’ < ¢’ < 83 except when p’ = 41,¢' = 43. Now we compute that (11.1.2)
holds contradicting (9.2.1). Thus p,|d for j < 6. Assume that p; { d for some j with 7 < j < 9.
Then v(1) < Gi(k) = maxr<;<g fi(k,1,p;,1,3) by (9.5.1). We take r = 24. Then I, C {i :
a; = 1} UZ(17,37) UZ(41,89). Therefore & < Gi(k) + Y irepcqasr |5 | + |15 | + 65 = &
and we check (11.1.2). This contradicts (9.2.1). Thus p,|d for j < 9. Suppose that p; { d for
some j with 10 < j < 14. Then v(1) < Ga(k) := maxio<;j<14 f1(k,1,p;,1,3) by (9.5.1). We take
r = 21. Then B, C {s € S(r) : s = 1(mod 8) and (F) = 1,i < 9} = {1,241754041} giving
& < Ga(k) +1 =: &. Now we check (11.1.2) contradicting (9.2.1). Hence p;|d for j < 14. Suppose
that Pj )[ d for some j with 15 S ] S 22. Then V(l) S Gg(k') = INaxi5<;<22 fl(kj,l,pj,l,3) by
(9.5.1). We take r = 26. Then B, C {1} as above giving & < Ga(k) =: §. We compute that
(11.1.2) holds contradicting (9.2.1). Thus p;|d for j < 22. Finally we take r = 32. Then B, C {1}

as above giving &, < v(1) < % =: & by Lemma 9.5.3. We check (11.1.2). This contradicts

(9.2.1). O
LeEMMA 11.1.2. We have
(11.1.4) k—|R| > g for k > ko(g)

where g and ko(g) are given by

(4)

g 9 14 | 17 | 29 | 33 | 61 65 129 | 256 | 2° withs>9,s€Z
ko(g) | 101 | 299 | 308 | 489 | 556 | 996 | 1057 | 2100 | 4252 s25+1

(i1) d even:

g 18 | 29 | 33 | 61 | 64 | 128 | 256 | 512 | 1024
ko(g) | 101 | 223 | 232 | 409 | 430 | 900 | 1895 | 4010 | 8500

(idi) 4]|d:
g 26 | 32 | 33 | 61 | 64 | 128 | 256 | 512 | 1024
ko(g) | 101 | 126 | 129 | 286 | 303 | 640 | 1345 | 2860 | 6100
(iv) 8|d:
g 33 | 61 | 64 | 128 | 256 | 512 | 1024
To(g) | 101 | 209 | 220 | 466 | 990 | 2110 | 4480
(v) 3|d:

g 26 | 32 | 33 | 64 | 125 | 128 | 256 | 512
ko(g) | 101 | 126 | 129 | 351 | 720 | 735 | 1550 | 3300

(vi) p|d with p € {5,7} :

g | 33 64 [128] 256
%o(g) | 240 | 460 | 930 | 1940

Further we have ko(128) = 1200 if p|d with p <19 and ko(256) = 2870 if p|d with p < 47.
(vii) Further ko(256) = 1115 if pq|d with p € {5,7,11}; ko(256) = 1040 if 2p|d with p € {3,5};
koo (512) = 1400 if 105|d; ko(512) = 1440 if 30|d and ko(512) = 1480 if 8p|d with p € {3,5}.
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PROOF. (i) Let g be given as in (¢). Assume that k > ko(g) and k — |R| < g. We shall arrive at
a contradiction.

Let g # 9. From (9.4.9), we have [[, cpa; > (1.6)/FI(|R|)! whenever |R| > 286. We observe
that (9.3.28) and (9.3.29) hold with ig = 0, hg = 286, 21 = 1.6,91 = g — 1, m =min(89, v/ko(g)),¢ =
O,ng=1,ny =1and ny = 2% for k > g1 + 286 and thus for k& > ko(g).

Let g = 2% with s > 9. Then % < szzﬁ < % and we get from (9.3.29)

Clk—CQIng—Cg Clk—03+6210g64

11.1.5 2% —1 = —
( ) > log c4k log c4k 2

where

1.6 2 1
=log | 5—er] =1 | 4log(l — — =15 -1
T 2.71851}11’ +log(1 — 1), €2 = L5m(m) 1,

1 2 1 1 .
cg =log | 2% HP'HPLl - §log(1 - T8)’ cy = —
e

p<m

Here we check that c1k—calogk—c3 > 0 at k = 9-210 and hence (11.1.5) is valid. Further we observe
that the right hand side of (11.1.5) is an increasing function of k. Putting k = ko(g) = s2°F1, we

get from (11.1.5) that
¢, — C3=c2 1SOgC4 1
28{ 2 1}<0.

10g2 + log(iczls)

The expression inside the brackets is an increasing function of s and it is positive at s = 9. Hence
(11.1.5) does not hold for all k > ko(g). Therefore k — |R| > g = 2° whenever s > 9 and k > s25+1.

Let g € {14,17,29, 33,61, 65,129,256} and k;(g) = 299, 316, 500, 569, 1014, 1076, 2126, 4295 ac-
cording as g = 14,17, 29, 33,61, 65, 129, 256, respectively. We see that the right hand side of (9.3.29)
is an increasing function of k and we check that it exceeds g1 at k = k1(g). Therefore (9.3.29) is
not possible for k > k1(g). Thus g # 14 and k < k1(g). For every k with ko(g) < k < k1(g), we
compute the right hand side of (9.3.28) and we find it greater than g;. This is not possible.

Thus we may assume that ¢ = 9 and k& < 299. By taking r =4 for 101 < k<18l and r =5
for 181 < k < 299 in (9.2.3) and (9.2.5), we get k — |R| > k — F'(k,r) — 2" > 9 for k > 101
except when 103 < k < 120,k # 106 where k — |R| > k — F(k,r) — 2" > k — F'(k,r) — 2" = 8. Let
103 < k < 120,k # 106. We may assume that k—|R| = 8 and hence F'(k,r) = F'(k,r). Thus for each
prime 11 < p < k, there are exactly o, number of ¢’s for which p|a; and for any 4, pq { a; whenever
11 < q < k,q # p. Now we get a contradiction by considering the i’s for which a;’s are divisible by
primes 17,101;103,17;13,103;53,13;107,53;11,109; 37,11;19,113;23,19; 29, 23; 13,29; 59, 13; 17, 59
when k = 103,104, 105,107,108, 111,112,115, 116, 117, 118, 119, 120, respectively; 107,53, 13,103, 17
when k = 109, 109,107, 53 when k = 110; 37, 11,109, 107 when k = 113 and 113,37, 11 when k = 114.
For instance let k = 113. Then 37|a; for i € {0,37,74,111} or i € {1,38,75,112}. We consider the
first case and the other case follows similarly. Then 11|a; for ¢ € {2+ 115 : 0 < j < 10} and 109]a;
for i € {1,110}. Now o197 = 2 implies that 107|a;a;1107 for i € {j : 0 < j < 5}, a contradiction.
The other cases are excluded similarly.
(74) Let d be even and g be given as in (ii). Assume that k > ko(g) and k — |R| < g. From (9.4.10),
we have [[, cpai > (2.4)IFI(|R|)! whenever |R| > 200. By taking ig = 0, hg = 200, m = +/ko(9),
2 = 24,0 =1, ng = 25,1, = 26 and ny = 1, we observe that (9.3.28) and (9.3.29) are valid for
k> g—1+200. Let g € {33,61,64,128,256,512,1024}. Thus (9.3.28) and (9.3.29) are valid for k >
ko(g). Let k1(g) = 232,414, 435,904, 1907, 4024, 8521 according as g = 33,61, 64, 128,256,512, 1024,
respectively. We see that (9.3.29) is not possible for k > k;1(g). Therefore g # 33 and k < k1(g). For
every k with ko(g) < k < k1(g), we check that (9.3.28) is contradicted. Therefore g € {18,29} and
we may assume that k < 232. We take r = 5 for 101 < k < 200 and r = 6 for 200 < k < 232. From
(9.2.10) and (9.2.6), we get k—|R| > k—F'(k,r)—2"~1. We compute that k—F’(k,r)—2""1 > 18,29
for k > 101,217, respectively. Hence the assertion (i7) follows.
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(1), (iv) Let g be given as in (i44), (4v). Suppose that k > ko(g) and k — |R| < g. We have
[lo,crai = (2°)FI=Y(|R| — 1)! since a; = n(mod 2°). We take z; = 4 if 4||d and z; = 8 if 8|d.
We observe that (9.3.28) and (9.3.29) are valid for k > ko(g) with ig = 1,ho = 1, m = /ko(g),
21=20=1,n9=23,n =26 and np = 1.

Let 4||d and g € {61,64, 128,256, 512,1024}. Let ki (g) = 288, 306, 640, 1350, 2870, 6100 accord-
ing as g = 61,64, 128,256,512, 1024, respectively. We see that (9.3.29) is not possible for k > k1(g).
Therefore g # 128,1024 and k < k1(g). For every k with ko(g) < k < k1(g), we check that (9.3.28)
is contradicted.

Let 8|d and g € {61, 64,128, 256,512, 1024}. Let ki (g) = 210,221,468, 994, 2111, 4485 according
as g = 61,64,128,256,512,1024, respectively. We see that (9.3.29) is not possible for k& > k1(g).
Therefore k < k1(g). For every k with ko(g) < k < k1(g), we check that (9.3.28) is contradicted.

Thus we may assume that g € {26,32,33},k < 286 if 4||d and g = 33,k < 209 if 8|d. By taking
r =6 for 101 < k < 286, we get from (9.2.10) and (9.2.6) that k — |R| > k — F'(k,7) —2"=% > g for
k > ko(g). Hence the assertions (ii7) and (iv) follows.

(v) Let 3|d. Suppose that k > ko(g) and k — [R| < g. We have [[, cpa;i > 3IR-1(IR] — 1)!
since a; = n(mod 3). We observe that (9.3.28) and (9.3.29) are valid with ip = 1,hg = 1,m =

ko(g), z1 = 3, = 1, ng = 37, ny = 37 and ny = 26. Let g € {64,125,128,256,512} and
k1(g) = 354,720,737,1556,3300 according as g = 64,125,128,256,512, respectively. We see that
(9.3.29) is not possible for k > ki(g). Therefore g # 125,512 and k < ki(g). For every k with
ko(g) < k < ki1(g), we check that (9.3.28) is contradicted.

Thus it remains to consider g € {26, 32,33} and k < 351. We take r = 6 for 101 < k < 351. We
get from (9.2.10) and (9.2.14) with p = 3 that k — |R| > k — F'(k,r) — 2772 > g for k > ko(g).

(vi) Suppose g € {33,64,128,256}, k > ko(g) and k — |R| < g. By (i7) and (v), we may assume that
2{dand 3{d. We observe that [[, cpa; > (zfpl)“%‘_p%1 (IR| — 25+)! since the number of quadratic

p

residues or quadratic non-residues mod p is 25*. Let p|d with p < p'. Then (%)\R\*%(uﬂ _

b)) > (%)‘R‘_P = (|R| — ”/2—71) We take p’ = 7,19 and 47 in the first, second and third case,

respectively. Then (9.3.28) and (9.3.29) are valid with 2 = 227 ig = ho = 2572, m = \/ko(g), £ = 1,
ny = plp’lj, n; = 53 and ny = 25. We find that (9.3.29) is not possible for k > ko(g) + 24 and
(9.3.28) is not possible for each k with ko(g) < k < ko(g) + 24. This is a contradiction.

(vii) Let (z1,140,¢,n,n}) be given by

pqld, p,q € {5,7,11} | 2%p|d, 6 € {1,3},p € {3,5} 105]d 30|d
i) (7T 15) @ 15,2) (Z.6) (15,2)
A 2 2 3 3
116 22(7)22(11) 22(2)22(5) 22(3)22(5)22(7) 22(2)22(3)22(5)
n 23(5)23(7) 23(2)23(3) 23(3)23(5)23(7) | 23(2)23(3)23(5)
n 26 1 25 L

L ,
where 2 (p) = pﬁ,zg,(p) = p2i0 . We observe that [lo,crai > z‘lR‘ﬂO(|R\ —ip)! with (21,140) given

above. Suppose g € {256,512}, k > ko(g) and k—|R| < g. We see that (9.3.28) and (9.3.29) are valid
for k > ko(g) with hg = ig, m = \/ko(g), £ = €', ng = nj, n; = nj and ny = n),. We find that (9.3.29)
is not possible for k > ko(g) + 2 and (9.3.28) is not possible for each k with ko(g) < k < ko(g) + 2.
This is a contradiction. O

LEMMA 11.1.3. We have
(11.1.6) |T1| > ak for k > K,

where a and K, are given by

Q
w

. 35| 4| 42
101 | 203 | 710 | 1639

=
Q
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PROOF. Let k > K,. Thus k > 101. From Theorem 1.5.1, we have n + (k — 1)d > 4k?. We see
from (9.4.1) that

(T4 + ma(k) >k —1 — (k—1)logk k 1 {(k—l)logQ _1} S g

2log 2k _§+§ log 2k

Therefore n + (k — 1)d > (£ log £)? by Lemma 3.1.2 (v).
For 0 < B < 1, let

(11.1.7) n+ (k—1)d > (Bklog Bk)>.

We may assume that # > 1. Put X3 = Xg(k) = Blog(Bk). Then log(n+(k—1)d) > 2log Xs+21log k.
From (9.4.1), we see that

(k—1)logk k 1 log Xz
T k) Sk—1— S ST I (VI T A
ITil + ma(k) > 2log X5 + 2logk 2 F )\ T o X, + log R

k 1 1
25 <1 — k‘) <1 + H_logk) =: gg(k')k =: gﬂk

log X

(11.1.8)

By using 74(k) < 7(k) and Lemma 3.1.2 (i), we get from (11.1.8) that

1.2762
logk /)~

k
11.1. T — 1
(11.L9) il > gk o (14

Let B = % We observe that

Moo (14 Jogk L2762y (14 1 N, o, (L2762 127623
3% log X5 gk )~ \13 logx,) ® logk ' log X5

is an increasing function of k and it is positive at k = 2500. Therefore

1 13 1 < 1.2762

> J—
1+ lgzg)?ﬁ 14 log k log k

) for k > 2500

which, together with (11.1.9) and (11.1.8), implies

T 11 1 1.2762 13
Il 11 ! 1542} > 42 for k > 2500
k2 2k 28logk \' | loghk % o=

since the middle expression is an increasing function of k. Thus we may suppose that k& < 2500.
From (11.1.8), we get |T1| + mq(k) > g1k =: Bik. Then (11.1.7) is valid with (3 replaced by 5 and
we get from (11.1.8) that |T1| + mq(k) > gp, k =: B2k. We iterate this process with § replaced by
B2 to get gs, =: B3 and further with O3 to get |T1| + mq(k) > gg,k =: Bsk. Finally we see that
|T1| > Bak — (k) > ak for k > K,. O

11.2. Further Lemmas

We observe that (9.3.24) is satisfied when k& > 11 by Theorem 1.5.1. We shall use it without
reference in this section.

LEMMA 11.2.1. Let d be odd and p,q be primes dividing d. Let w(d) < 4 and k < 821. Assume
that g, 4(r) < 279D for r = 5,6. Then (2.1.1) with k > 101 has no solution.

PROOF. Suppose equation (2.1.1) has a solution. Let r = 5 if 101 < k < 257 and r = 6 if
257 < k < 821. From (9.2.9), v(a;) < 2@ and (9.2.1), we get k — F'(k,7) < &, < 29(dg, <27,
We find k& — F'(k,r) > 2" by computation. This is a contradiction. O

LEMMA 11.2.2. Fquation (2.1.1) with k > 101 and w(d) < 4 is not possible.
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PrOOF. We may assume that k is prime by Lemma 9.1.1. Let d be even. For k — |R| >
h(5) = 4(2°(D= — 1) 4 1, we get from Corollary 9.3.10 with z = 5 that n + (k — 1)d < &k with
Q = 32 if 2||d and 16 if 4|/d. Let w(d) < 3. Since k — |R| > §(5) by Lemma 11.1.2 (%), (iii), (iv) and
|S1] > QW(d)I 7 > g k- by Lemma 11.1.3, we get & Sk > n+(k—1)d > 2°(5 3k —1)k?, a contradiction.
Thus w(d) = 4. Let k > 710. Then k — |R| > h( ) by Lemma 11.1.2 and |S;| > zw(d)‘ 7 > 244’“
Lemma 11.1.3. Hence we get % >n+(k—1)d > 25( Ak )k?, a contradiction again. Therefore
k < 710. By Lemma 11.1.2, we get k — [R| > h(3) implying d < k2 if 2||d and d < 3k? if 4|d
by Corollary 9.3.10 with zy = 3. However d > 2° .53 .59 - 61 by Lemma 11.1.1 (¢). ThlS is a

contradiction.
Thus d is odd. Suppose |S1| < |T1| — h(3). By Lemma 9.3.12, we have

(11.2.1) d < ﬁkZ, n+ (k—1)d < ﬁkS.

Let k > 710. Since v(a;) < 2¢(9, we derive from Lemma 11.1.3 that |S;| > JIth > <2k — (25,

Therefore max A; > p(.025k—1) giving n+(k—1)d > p(.025k—1)k? which contradicts (11 2 1). Thus
€51
k < 710. We see from Lemma 11.1.3 that |T1| > .3k. For w(d) < 3, we have max A; > p(% -1)
€51

giving n + (k — 1)d > p(2% — 1)k? which contradicts (11.2.1). Let w(d) = 4. By Lemma 11.1.1 (a),
we see that d >min(3-53-59 - 61,2329 -31-37) > 2k? contradicting (11.2.1).
Hence |S1| > |T1| — 6(3) + 1. Therefore

(11.2.2) n+ (k—1)d > p(|T1| — h(3))k?

Let k — |[R| > (5). By Corollary 9.3.10 with zg = 5, we get n+ (k — 1)d < ->k* which, together
with |T1| > .3k by Lemma 11.1.3, contradicts (11.2. 2) when w(d) < 2. Further k < 133,275 when
w(d) = 3,4, respectively. Thus either

(11.2.3) k—|R| < b(5)
or
(11.2.4) w(d) > 2; k<131 if w(d) = 3; k <271 if w(d) = 4.

We now apply Lemma 11.1.2 (7) to get w(d) > 2 and k < 293,487,991 for w(d) = 2, 3,4, respectively.
Let 3|d. Then we have from Lemma 11.1.2 (v) that w(d) > 2 and k < 131 350 when w(d) = 3,4,

respectively. By Lemma 11.1.1, we get p, > 53 and hence 53 < p, < (i) D=1 . By Corollary 9.3.10
with zp = 3 if w(d) = 3, 20 = 2 if w(d) = 4 and Lemma 11.1.2 (v), we get d < 3k? if w(d) = 3 and
< 3k? if w(d) = 4. Therefore 53 < p, < & < 67 if w(d) = 3 and 53 < p, < k3 < 3505 < 53 if
w(d) = 4. Therefore w(d) = 3 and 53 < p, < 61. Now we get a contradiction from Lemma 11.2.1
with (p,q) = (3,p,) and (9.2.15).

Thus we may assume that 3 1 d. Therefore k < 293,487,991 for w(d) = 2, 3,4, respectively,
as stated above. Let w(d) = 4 and k < 308. From k — |R| > 9 by Lemma 11.1.2 (i) and by
Corollary 9.3.11, there exists a partition (dy,ds) of d such that max(dy,ds) < (k—1)2. Thus pypy <
max(dy,ds) < (k—1)? giving p; < k—1. By taking r = 5 for 101 < k < 251, 7 = 6 for 251 < k < 308,
we get from (9.2.10) and gp < 2" by (9.2.14) with p = p; that k — |R| > k- F'(k,r) —2""' > 16.
Now we return to w(d) = 2,3,4. By Lemma 11.1.2 (i), we get k — |R| > 2¢(9). Then we see from
Corollary 9.3.10 with zg = 2 that there is a partition (dy, ds) of d with dy < k—1,ds < 4(k—1). Thus
p; < k. We take r = 5 for 101 < k£ < 211 and r = 6 for 211 < k < 556 for the next computation
and we use Lemma 11.1.2 () for k& > 556. From (9.2.10) with p =q =p; and (9.2.14) with p = p,,

and since Zp|d1p>pr p—9gp, 222" Lifp; > p,. and > —2""2if p; < p,., we get

20 for k> 101
(11.2.5) E—|R|>k—F'(k,r)+2—-2""1>{29 fork>211
33 for k> 251.
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Therefore we get from (11.2.3), (11.2.4) that w(d) > 2 and k < 199,991 when w(d) = 3,4, respec-
tively.

Let w(d) = 3. By Corollary 9.3.10 with zy = 3, there is a partition (dl,dg) with di < %
and dy < 2(k —1). Thus p,p, <max(di,d2) < 2(k — 1) giving p; < /2(k < /2198 and
hence p; < 19. Further the possibility p; = 19 is excluded since 19 - 23 > 2(k —1). Also py, <
79,53,31,29,23 for p, =5,7,11,13,17, respectively. Now we apply Lemma 11.1.1 (a) to derive that
either p; = 5,53 < py, <79 or p; = 7,p, = 53. Further from 5-53 < 2(k — 1), we get k > 134. Thus

—|R| <28 by (11.2.3) and (11.2.4). Now we take r = 6 for 134 < k < 199 in the next computation.
We get from (9.2.10) and (9.2.15) with (p,q) = (py, p) that k—|R| > k— F'(k,r) —27=2 > 29. This
is a contradiction.

Let w(d) = 4. By Lemma 11.1.1 (a), (b), we get d >min(5-53-59-61, 23-47-53-59, 31-41-47-53) =
953735. Further by Corollary 9.3.10 with 2o = 2 if k < 251, 29 = 3 if kK > 251 and (11.2.5), we
obtain d < 3k? if k < 251 and d < %k2 for k£ > 251. This is a contradiction since k£ < 991. O

LEMMA 11.2.3. Assume (2.1.1) with w(d) > 12. Suppose that

3 2 3.3

(11.2.6) d<16k,n+(k—1)d<16k.
Then k < w(d)4«(®.

2
1

PROOF. Assume that k > w(d)4“(?. Then from 40 - ()™ < (12)712% and w(d) > 12, we get

2\ o 2 2
(%) " <k __ This together with g9y < (2%) wih=0 < ( )11 by (9.1.10) and (11.2.6) gives

— 40-2¢(d)
q19, < W. Hence we derive from Corollary 9.3.7 (i7) with d’ = q,q, that
k
(11.2.7) v(A;) < 2°@D=279 whenever 4; > 0. 95@
Let
1) — gy Ny (2) — 1

(1128) T —{ZETl c A > 6. 2w(d)} T Tl\T

and

(11.2.9) S = {A;:ieTW}, 8@ = {A;:ie TP

Then considering residue classes modulo 2°p, we derive that

20 pk

> A; > 29p(|S®@ +1
6 o@ 2 Jmax Ai 2 2o - 1) +

so that [S®] < o +1 < £ 4+ 1. We have from (11.2.8), (11.2.9) and (11.2.7) together with
v(A;) <29 by Corollary 9.3.7 (i) that

k k k
@<« ¥ gwld _ w(d)—2
|T | 40 - 2w(d) 2 + <6 . 9w(d) 40 - 2w(d) + 1> 2

< Eo1 (k k ) 4 9u(d)—2 < k 3k k k

IA

=071\ 10 =92 160 T80 T 16

since k > w(d)4“® and w(d) > 12. By Lemma 11.1.3 and k > 1639, we have
k
T0| > 71| — [T®)] > A2k — 1 = 3575k

Let €, €, be as in Lemma 9.4.7 with ¢ = 2. Then .3575k < [TW| = |SW)| + Z#>2(
D[, < [SD]+¢ < |SW] + 30e2,(4)4«@ by Lemma 9.4.7. Now we use 2262 < L to get
3575k < |SW| + L implying |SM| > 0.2259k. Therefore n + (k — 1)d > ( max )Ai)kQ > 0.2259k3

' A;es0
contradicting (11.2.6). O

LEMMA 11.2.4. Assume (2.1.1) with w(d) > 5. Then there is no non-degenerate double pair.



110 11. PROOF OF THEOREMS 2.3.1, 2.4.1, 2.5.1, 2.5.2, 2.5.3

PROOF. Assume (2.1.1) with w(d) > 5. Further we suppose that there exists a non-degenerate
double pair. Then we derive from Lemma 9.3.4 with zy = 2 that

(11.2.10) d < Xok?, n+ (k—1)d < Xok®
where
3
(11.2.11) Xy =3, 2 12,6 if 21 d,2||d,4||d, 8|d, respectively.

This with d > 29 Hf:(g)ﬂ_‘sl p; implies k2 > %H:J:(rll) p;. Therefore we get from Lemmas 3.1.1 (v)
and 3.1.3 that

k logw(d) + loglog w(d) — 1.076868 log w(d) log 6
M V> —log?2 — _
log(Zgyze@) = “(d) { 2 82 = 1) 2

The right side of the above inequality is an increasing function of w(d) and hence k > 9w(d)2+(4)
for w(d) > 12. We find from Xpk? > d > 20 [[*D1= p, that k > 3.2w(d)2@ if w(d) = 10, 11.
Further k& > 2.97w(d)2*?) if w(d) = 8,9 when d is odd. Also k > 2542,12195 when w(d) = 8,9,
respectively if 2||d or 8|d and k > 1271,6097 when w(d) = 8,9, respectively if 4]|d.

Suppose k < 1733. Then w(d) < 8 if 4||d and w(d) < 8 otherwise. By Lemma 11.1.1 (a), (c),
we get d >min(3-53-59-61-67,23-29-31-37-41) if d is odd and d > 29.53-59-61-67 if d is even.
This is not possible since d < Xok?. Hence k > 1733.

Let d be even and w(d) = 8,9. Since k > 1733, we get k — |R| > h(3) by Lemma 11.1.2
(i1), (idi), (iv) implying d < k2, 2k* if 2||d, 4|d, respectively, by Corollary 9.3.10 with zo = 3.
Therefore k > 2.48w(d)2*(D if 4||d and k > 3.2w(d)2*(¥) otherwise.

Therefore for w(d) > 8, we have

2.48w(d)2<(D if 4||d
(11.2.12) k> < 2.97w(d)2¢@ if dis odd, w(d) = 8,9
3.2w(d)2¢@  otherwise

Suppose that |S1]| < |T1| — H(3) if d is odd and |S1| < |T1| — §(5) if d is even. We put

£ if ordy(d) <1

X =<4 if ordy(d) >2,31d
2 if ordy(d) > 2,3|d.
Then
(11.2.13) d< Xk*n+(k—1)d< Xk®

by Lemma 9.3.12. Therefore k < w(d)4*(?) for w(d) > 12 by Lemma 11.2.3.
Let w(d) > 19. Then

3 w(d)?(16)~“ @ if ordy(d)

9
, <1
2 ]pi ) 205 <d< XB? <W:=( B N
( 117 > (29) = 2(d)2(16)@ if ordy(d) > 2.

Therefore

1
o(d)

29 2 -
4 , 9 2
16 < (6 i|_|3p1> 29°w(d)

We see that the right hand side of the above inequality is a non-increasing function of w(d) and
the inequality does not hold at w(d) = 26. Thus w(d) < 25. Further we get a contradiction from

20 H;d:(g)ﬂiy p; < d < W since w(d) > 19.
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Thus w(d) < 18. We get from (9.1.10) and d < X'k? that

_h_ - _2h_
(4%) w<d: k@ if d is odd
R S 2h
L)@ fo(a)—1 if 2||d
T ik PN
(i) S 4d,31d
(1) “@~° k=t0=2  if 4|d,3|d

for 1 < h < w(d) — 0. Further from Xk% > d > 2%p, -- “Pus(dy—s» W get

2 D= i g1

k' > kl = ‘); i:(3)+2_6/ ’L
ZILL ™ ps i 34d.
Thus
(11.2.14) ke > kg = max(1733, k1)
Further we derive from (11.2.13) that
h—1
2\ ol —1=57 .
Pl b=l g, T f’;s) R 11
Lic S i h = .
2 2 F (Z2)" if 34d

for 1 <h <w(d)—4d".
We take r = [%] if disodd and r = [#] —1if dis even. By Corollary 9.3.8 and |T1| > .42k
by Lemma 11.1.3, we have

42k 1y e
(11.2.15) Sr41 2 So@rg 2N, — 2"\ — Z 27N,
pn=2
This with Corollary 9.4.4 and q;q, - - - q;, < X7 gives (11.2.13) gives
X/ r—1 ort2 Xk .
2(‘;?3)19—7" - 3.27"1*3 - ZM:1 2T2271“ lf 2 * d73 + d
xr — r— r+3-6 YH .
Qw(‘d4)2fkefr — 3gaw — 2 1(% +1) - ZM:12 : 5o if 2|d,3 1d
— 4 r— r— r+3-6" xH .
Sril 2 Mg i= Qe L ool ) oy 2T S if 31d,84d
g2k 9(5h+1) = Y2 (G + 1) if 8|d,3|d,r < 3
(s I3 r— 42 H .
Fhe ~ s~ L 2 G+ ) - iy Ty i 8ld3ldr 2 4
Ay— X7

By observing that is an increasing function of k and is positive at k = ko except when
w(d) = 7,d odd and 3|d in which case it is positive at k = 11500. Let k > 25500 when w(d) = 7,d
odd and 3|d. Then s,11 > X3 > X > % e % Therefore by Lemma 9.4.3 with S = {4, :i €
Tri1}, S| = $p41,h =7 and (11.2.13), we get

3210 Xy k2 if 31d

Xk > k—1)d> X4k? =
n-l—( ) = 4 {Z2T+6_1X3k2 1f3|d

This is a contradiction by checking that % — X > 0 except when d odd, 3|d and w(d) = 6,8,9.
Thus we may assume that d is odd, 3|d,6 < w(d) < 9 and k < 25500 if w(d) = 7. Also we check
that % — X > 0 for k = 5000,62000,350000 according as w(d) = 6,8,9, respectively. Thus we
may assume that k& < 5000, 25500, 62000, 350000 whenever w(d) = 6,7,8,9, respectively. If q; > 7,
then we get a contradiction from d < Xk? = Lk? and —5r s > 1,23,23 - 25,23 - 25 - 29
for w(d) = 6,7,8,9, respectively. Thus q; € {3,5}. Further we get q; < 5,9, < 7 if w(d) = 6,
q4; < 5,49, < 7,093 <1l if w(d) = 7,8 and q; = 3,9, = 5,93 = 7 if w(d) = 9. Thus p; = 3 and

py € {5,7} if w(d) = 6, py,psy € {5,7,11} if w(d) > 6. Since (a;) - (g) for p|d, we consider

Legendre symbols modulo 3,q;,q, to all squarefree positive integers < ¢q; and < g;q5 to obtain
A1 <1, A2 < 3. Further for w(d) > 6, we consider Legendre symbols modulo 3, q;, q, and q5 if q5 # 9
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to all squarefree positive integers < q;q50q5 to get Az < 17. Therefore we get from (11.2.15) and
Corollary 9.4.4 that

A2k 8 if w(d) =6
Srp1 > Xy = iy — 44 if w(d)=7,8
4
A%k L(L)9kS — 54 if w(d) = 9.
We check that s,41 > &5 > &Y > pl—z_l e % by observing ngxg is an increasing function of k
and is positive at k& =max(1733,k1). Therefore by Lemma 9.4.3 with h = r and (11.2.13), we get
%kz3 >n+(k—1)d> %27'X5k2. This is a contradiction since % - 18%? > 0.

Thus |S1| > Xs using |T1| > .42k by Lemma 11.1.3 where X = .42k — h(3) + 1 if d is odd and
Xs = .42k — h(5) + 1 if d is even. Since there exists a non-degenerate double pair, we apply Lemma
9.3.4 with zg = 2 to get a partition (dy,ds) of d with
pipo - 'p[u(d)+1] < max(dl,dg) <4k if 2 )[ d
p1p2p[%] Smax(dl,dg) < 4k if 2||d
2p1p2p[ml Smax(dl,dg) <8k if 4|d
2

Let w(d) > 7+ &'. Then we see from (11.2.12) that |Si| > X > & > p12—1 p42—1' We now apply
Lemma 9.4.3 with h = 4 to get Xpk > n+ (k — 1)d > %24+5){6k2 > 3. 20k3 since Xg > %. This
contradicts (11.2.11). Thus w(d) < 6+ ¢" and k > 1733 by (11.2.12).

Assume that k — |R| > §(3). Then from Corollary 9.3.10 with zgp = 3, we get n+ (k — 1)d <
Xrk? where X; = £ if 2||d and 3 otherwise. If 2|d or 3|d, then n + (k — 1)d > 3(Xs — 1)k? if
3|d and n + (k — 1)d > 2°(Xs — 1)k? if 2|d contradicting n + (k — 1)d < A7k3. Thus d is odd,
3t dand w(d) = 5,6. By Corollary 9.3.10 with zy = 3, there is a partition (di,ds) of d with

p1pops <max(di,d2) < 2(k —1). Now we get & > %%% Further we check X5 > &

4
implying [S1] > X > %%% Therefore we derive from Lemma 9.4.3 with A = 3 that
3k = X7k3 > n+ (k — 1)d > 6Xgk* > 2k3, a contradiction. Hence k — |R| < h(3). By Lemma
11.1.2 (i) — (iv), we get d odd, w(d) = 6 and 1733 < k < 2082. Further from Lemma 11.1.2 (v), (vi),
we get p; > 11. Now 11-13-17-19-23-29 < d < 3k2 by (11.2.10) and (11.2.11). This is a
contradiction. g

COROLLARY 11.2.5. Equation (2.1.1) with w(d) > 5 implies that k — |R| < 2+(4)=0,

PROOF. Assume (2.1.1) with w(d) > 5 and k—|R| > 2¢(D=¢ By Lemma 9.3.9, there exists a set
Q with at least 29(9 =9 pairs satisfying Property ND. Since there are at most 2¢(9~¢ —1 permissible
partitions of d by Lemma 9.3.5 (¢), we can find a partition (d;,ds) of d and a non-degenerate double
pair with respect to (di,dz). This contradicts Lemma 11.2.4. O

LEMMA 11.2.6. Equation (2.1.1) with d odd, k > 101 and 5 < w(d) < 7 implies that k — |R| <
2w(d)—1.

PROOF. Let d be odd. Assume (2.1.1) with 5 < w(d) < 7 and k — |R| > 2¢(@~1 + 1. By
Corollary 11.2.5, we may suppose that k — |R| < 2¢(9. Further by Lemma 11.1.2 (i), we obtain
k < 555,1056,2099 when w(d) = 5,6, 7, respectively. Since k — |R| > 2¥(®~1 4 1, we derive from
Corollary 9.3.11 that there exists a partition (dq,dz) of d such that D19 :=max(dy,dz2) < (k — 1)%.

Let w(d) = 5. Then p;pops < D12 < (kK — 1)? implying p; < 61 since 67 - 71 - 73 > 5552, Also

py < f/_pll By taking r = 6 for 208 < k < 547, we get from (9.2.10) and (9.2.14) with p = p;
that k — |R| > k — F'(k,7) + min(—2""2,0¢; — 2""1) > 32 if k > 208. Thus k < 208. Further

p; < 29 since 31 -37-41 > 208% If p; > 17, then we obtain from Lemma 11.1.1 (a), (b) that
207% > 15 >min(17-53 - 59, 23 - 47 - 53), a contradiction. Therefore p; < 13 and hence 53 < p, < k
by Lemma 11.1.1 (a). By taking r = 6, we get from (9.2.15) with (p, q) = (py,p») that gp p, = 2r—3
if K <127 and gp = 22 if k > 127 by (9.2.14) with p = p;. From (9.2.10) and op, > 2, we have
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k—|R|>k—F'(kyr)+2-2"2if k<127 and k — |R| > k — F'(k,r) +2 — 2"~ 2 if k > 127 giving
k —|R| > 32, a contradiction.

Let w(d) = 6. Then pypsp, < D12 < (k—1)? implying p; < py < 97 since 101-103-107 > 10552
By taking r = 7 for 384 < k < 1039, we get from (9.2.10) and (9.2.15) with (p,q) = (py,p5) that
k—|R| > k—F'(k,r)—2"% > 64 if k > 384. Thus k < 384. Further p, < 43 since 475359 > 3832.
Then we derive from Lemma 11.1.1 (a), (b) that p; = 31,p, = 41,p5 > 47. Also k > 319 since
41-47-53 > 3192, By taking r = 7 for 319 < k < 384, we obtain from (9.2.10) and (9.2.15) with
(p,q) = (31,41) that k — |R| > k — F'(k,r) + 031 + 041 — 2”2 > 64. This is a contradiction.

Let w(d) = 7. Suppose p; < 19. By Lemma 11.1.2 (v), (vi),vii), we get k < 735,930,1200
according as p; = 3,p; € {5,7},p; > 11, respectively. By Lemma 11.1.1 (a), we obtain p, > 53.

Now 53-59-61 < % < %52, 93502, % according as p; = 3,p; € {5,7},p; > 11, respectively. This
1

is not possible. Thus p; > 23. Further p; < 41,p, < 53 from pypopspy < D12 < (k — 1)% < 20982
By taking r = 9, we get from (9.2.10) and (9.2.15) with (p,q) = (py,p,) that kK — |R| > k —
F'(k,7) + min(—=2"73 + 053, —2"72 + 041 + 053) > 128 for k > 1007. Therefore k < 1007. Now
10072 > D15 >min(23 - 47 - 53 - 59,31 - 41 - 47 - 53) by Lemma 11.1.1 (b). This is not possible. O

COROLLARY 11.2.7. Assume (2.1.1) with w(d) > 5. Then k < 308,556, 1057,2870 and 2(w(d) —
0)2¢( D=0 for w(d) = 5,6,7,8 and > 9, respectively. In particular k < 2w(d)2*(?.

PrROOF. By Corollary 11.2.5 and Lemma 11.2.6, we derive that k — |R| < 2¢(9=% and k — |R| <
2¢()=1if d is odd, 5 < w(d) < 7. By Lemma 11.1.2 (3), (i), we get k < 2(w(d) — 6)2*(D=? for
w(d) > 940, k <4252 if w(d) = 8 and k < 308,556, 1057 according as w(d) = 5,6, 7, respectively.
Now it remains to consider w(d) = 9 if 2||d,4||d and w(d) = 8. By Lemma 11.1.2 (i%), it suffices
to consider d odd and w(d) = 8. Further k < 4252 and k — |R| < 256. Suppose k > 2870. Then
k—|R| > 129 by Lemma 11.1.2 (¢) and we derive from Corollary 9.3.11 that there exists a partition
(dy,ds) of d with max(dy,ds) < (k—1)2. Let p; > 53. Then 4252% > d > 53-59-61-67-71-73-79-83,
a contradiction. Thus p; < 47. Now we obtain from Lemma 11.1.2 (vi) that k — |R| > 256, a
contradiction. g

LEMMA 11.2.8. (¢) Let d be odd and w(d) = 5,6. Suppose that d is divisible by a prime < k
when w(d) = 5. Further assume that there exist distinct primes p and q with pq|d, p < 19,9 < k
when w(d) = 6. Then (2.1.1) with k > 101 has no solution.

(#3) Let d be even and 5 < w(d) < 6+ 6. Assume that p|d with p < 47 when w(d) = 7. Then (2.1.1)
with k > 101 has no solution.

PROOF. By Lemma 11.2.5, we may suppose that k — |R| < 2«()~¢,

(¢) Let d be odd. From Corollary 11.2.7, we get k < 308,556 when w(d) = 5, 6, respectively. Let
w(d) = 5. By taking r = 5 for 101 < k < 308, we get from (9.2.10) and (9.2.14) with p = p, that
k—|R| >k — F'(k,r) — 2"~ > 17 which is not possible by Lemma 11.2.6.

Let w(d) = 6. Then 53 < p, < k by Lemma 11.1.1 (a). We take r = 6. Let p; < 13. Then
we get from (9.2.15) with (p,q) = (py,p,) that gp p, = 273 if k < 127 and Ip, = 2r=2if k > 127
by (9.2.14) with p = p;. From (9.2.10) and op_ > 1, we have k — [R| > k — F'(k,7) + 1 — 2r=3 if
k<127 and k — |R| > k — F'(k,7) + 1 —2""2 if k > 127 giving k — |R| > 33. This contradicts
Lemma 11.2.6. Thus p; € {17,19}. We get from (9.2.15) with (p,q) = (py,po) that gp p =272 if
k <193 and gp = 2"""if k > 193 by (9.2.14) with p = p;. From (9.2.10) and op +op_ > 019 + 1,
we get k — |R| > 33, a contradiction.

(73) Let d be even. Then from Lemma 11.1.2 (i%), (i4), (iv), we get w(d) = 6,k < 252 and
w(d) = 7,k < 430 if 2||d; w(d) = 6,k < 127 and w(d) = 7,k < 303 if 4||d; w(d) = 6,k < 220 if 8|d.
By Lemma 11.1.1, we obtain w(d) = 6, k < 252 and p; > 53. Further by Lemma 11.1.2, we get
k—|R| > 29()=0=1 4 1. This with Corollary 9.3.11 gives max(dy,dz) < (k — 1) for some partition
(d1,ds) of d. Since max(dy,d2) > p;paps > 533 > 4302, we get a contradiction. O

LEMMA 11.2.9. Equation (2.1.1) with k > 101 implies that d > 101°.
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PROOF. Assume (2.1.1) with k£ > 101 and d < 10'%. By Lemma 11.2.2, we have w(d) > 5.
Further we obtain from Corollary 11.2.5 that k — |R| < 2¢(¥~¢ which we use without reference in
the proof.

Let d be odd. Then w(d) < 9 otherwise d > Hlliz p; > 100, By Lemma 11.2.8 (i), we see that
d > k% > 100 if w(d) = 5. Thus w(d) > 6.

Let w(d) = 6. If p; <19, then d > k® > 10'° by Lemma 11.2.8 (i). Therefore p; > 23. Also
p; < 37 otherwise d > 41-43-47-53-59-61 > 10'°. Further k < 556 by Corollary 11.2.7. Therefore
by Lemma 11.1.1 (b), we obtain d >min(23 - 47 - 53 - 59 - 61 - 67,31 - 41 - 47 - 53 - 59 - 61) > 1010

Thus w(d) > 7. Then p; < 13 otherwise d > H;‘;pl > 10'9. Further k > 1733 otherwise
d > 3-53% > 101° by Lemma 11.1.1 (a). By Corollary 11.2.7, we obtain w(d) > 8.

Let w(d) = 8. Then p; < 7. Now Lemma 11.1.2 (v), (vi) gives p; € {5,7}. Further p, < 11
since 5 H;iﬁ p; > 100, This is not possible by Lemma 11.1.2 (vii) since k > 1733.

Let w(d) = 9. Then p; = 3,p, = 5 and p; = 7. This is not possible by Lemma 11.1.2 (vii) since
k > 1733.

Let d be even. Then w(d) < 10 otherwise d > Hllil p; > 100, Further w(d) < 9 for 4|d since
AT1;2, pi > 10'°. By Lemma 11.2.8 (ii), we have w(d) > 7. Further k > 1801 by Lemma 11.1.1 (¢)
since 2[4 pi > 10'°. Now we use Lemma 11.1.2 (i), (iii), (iv) to obtain either 2||d,w(d) = 9,10
or 8|d,w(d) = 9.

Let 2||d. Let w(d) = 9. Then p; < 5 otherwise d > 2][2, p; > 10'°. Then k — |R| > 256 by
Lemma 11.1.2 (vii), a contradiction. Let w(d) = 10. Then p; = 3,p, = 5 and hence k — |R| > 512
by Lemma 11.1.2 (vid). This is not possible.

Let 8|d and w(d) = 9. Then p; <5 since 8]_[1.1;4]91- > 1019 By Lemma 11.1.2, we get k — |R| >
512 which is a contradiction. ]

11.3. Proof of Theorem 2.5.2

Suppose that (2.1.1) with b = 1 has a solution. By Theorem 2.1.1, Lemmas 11.2.2, 11.2.6
and Corollary 11.2.7, we get w(d) = 5,d odd, k — |R|] < 16 and 110 < k < 308. We ob-
serve that ord,(apai ---ax—1) is even for each prime p. Therefore the number of i’s for which

a; are divisible by p is at most 01’, = (ﬁ or [%1 — 1 according as [%] is even or odd, respec-
tively. Let r = 4. Then from (9.2.3), we get k — |R| > k — F(k,r) = 2" > k— Y o}, — 2"

pP>pr
which is > 17 except at k = 110,112,114, 116, 118,120, 122,124 where k — |R| > 16. Therefore
k = 110,112,114,116,118,120, 122,124 and k — |R| = 16. Further we may assume that for each
prime 11 < p < k, there are exactly o, number of i’s for which pla; and for any 4, pq { a; when-
ever 11 < q < k,q # p. By considering the ¢’s for which a;’s are divisible by primes 109,107
when k& = 110; 37,109,107 when k& = 112; 113,37,109,107 when k = 114; 23,113,37,109, 107
when k = 116; 13,23,113,37,109,107 when k = 118; 17,13,23,113,37,109,107 when k = 120;
11,17,13,23,113,37,109, 107 when k = 122 and 41, 11,17, 13,23, 113,37, 109, 107 when k = 124, we
get P(ag,ag+1 - ag,1105) < 103 where ¢, = 2+ #1109, This is excluded. For instance let k = 124.
Then P(agam s ~a114) < 103. This giVGS 1032\ajaj+103 for _] S {9, 10, 11} Let 1032|a9a112. Then
101%|ajaj4101 for j € {10,12,13} so that P(ajqass---aii0) < 97. This is excluded by considering
by Theorem 10.1.1 with k = 97. If 1032|a;a114, We obtain similarly that P(a13a14 - - - a100) < 97 and
it is excluded. Thus 103%|ajpai1s. If 101%ajaj4101 for j € {11,13}, we get P(arqais - - a110) < 97
and is excluded. Hence 1012|agai1o implying P(ajiaia---aipr) < 97 and it is excluded again. O

11.4. Proof of Theorem 2.5.3
By Theorem 10.1.1 and Lemmas 11.2.2; 11.2.8 (ii), we may suppose that d is odd, either
w(d) = 3,(ag,a1, -+ ,ax-1) € &3 or w(d) < 2,(ag,a1, -+ ,ax-1) € &1 U Gy, (ag,a1,---,ar) #
(3,1,5,6,7,2,1,10) or its mirror image when k = 8, w(d) = 2. For p|d, we observe from (;’f) =1 for

q € {2,3,5,7} that p > 311 and therefore d > 311¢(®) . Further we observe from Theorem 1.5.1 that
(9.3.24) is valid.
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Let w(d) = 1. If k —|R| > 2, we get d = do < 4(k — 1) by Corollary 9.3.10 with zy =
2, a contradiction since d > 311. Therefore it remains to consider £k = 8 and (ag, - ,a7) =
(3,1,5,6,7,2,1,10) or its mirror image. We exclude the possibility (ag,--- ,a7) = (3,1,5,6,7,2,
1,10) and the proof for excluding its mirror image is similar. We write

n=3x3 nt+d=2a% n+2d=>5r3 n+3d= 6z
n+4d = Tz3, n+5d =222, n+6d =22, n+7d=1022.

Then we get 5d = 22 — 22 = (w6 — z1)(w6 + 1) implying either z6 — vy = 1,26 + 71 = 5d
or ¢ —x1 = b,x6 + 1 = d. We apply Runge’s method to arrive at a contradiction. Suppose
26 — 21 = 1,26 + o1 = 5d. Then 5d = 2x1 + 1 and x; > 14. We obtain (125 - 6z¢z325)% = (25(n +
d) —25d)(25(n+d)+50d)(25(n+d)+100d) = (2527 —10x1 —5) (2522 +20x; +10) (2522 +407, +20) =
1562528 4 3125025 + 2062524 — 300023 — 1075022 — 60002, — 1000 =: E(x1). We see that

(12523 4 12522 + 20z, — 32)% > E(z1) > (12525 + 12527 4 20z, — 33)%

This is a contradiction. Let g — 21 = 5,26 + 1 = d. Then we argue as above to conclude that
d=2x1+ 5,21 > 66 and

(23 + 522 + 421 — 32)2 > Ey (1) > (25 + 522 + 4a; — 33)?

where E(z1) = 2§ + 1025 + 332} — 2423 — 43022 — 12002, — 1000 is a square. This is again not
possible.

Thus w(d) > 2. Let k& > 13 and (ag, a1, - ,a12) # (3,1,5,6,7,2,1,10,11,3, 13,14, 15) or its
mirror image when k = 13. Let g = 3,4,5 if k = 13,14, > 19, respectively. Then from v(1) = 3
and Lemma 9.3.9, we get a set Q of pairs (i,7) with |Q| > k — |R| 4+ r3 > g having Property ND.
Therefore there exists a non-degenerate double pair for k& > 14 when w(d) = 2. Further there are
distinct pairs corresponding to partitions (dy, ds), (d2,d1) for some divisor d; of d for k > 13 when
w(d) =2 and for k > 19 when w(d) = 3.

Suppose that there is a non-degenerate double pair. Then we get from Lemma 9.3.4 with zg = 2
that d < 3k* < 3 - 242 contradicting d > 3112, Thus there is no non-degenerate double pair
corresponding to any partition. Again, if there are pairs (7,7), (g, h) corresponding to partitions
(d1,ds), (d2,dy) for some divisor d; of d, then we derive from Lemma 9.3.3 that d < (k — 1)%. This
is not possible since 3112 < d < 12* when w(d) = 2 and 311% < d < 23* when w(d) = 3. Therefore
there are no distinct pairs corresponding to partitions (dy,ds), (d2,d1) for any divisor d; of d. Thus
it remains to consider k = 14 when w(d) = 3 and either k = 8,9 or k = 13, (ap, a1, -+ ,a12) =
(3,1,5,6,7,2,1,10,11,3,13,14,15) or its mirror image when w(d) = 2. Also we may suppose that
there is a pair (4, j) with a; = a; corresponding to the partition (1,d) for each of these possibilities.

Let ¥ = 8 and w(d) = 2. We exclude the possibility (ag,a1,---,a7) = (2,3,1,5,6,7,2,1)
and the proof for excluding its mirror image is similar. We see that either the pair (0,6) or (2,7)
corresponds to (1, d) and we arrive at a contradiction as in the case k = 8, w(d) = 1 and (ag,--- ,a7) =
(3,1,5,6,7,2,1,10). Let the pair (0, 6) corresponds to (1,d). Then either x6—x9 = 1,26+29 = 3d or
Te—To = 3,xg+xo = d. Suppose rg—xg = 1, xzg+x9 = 3d. Then we obtain 3d = 2x¢+1, z9 > 100 and
(3z9w7)% = (3n+6d)(3n+21d) = (623 +4x0+2) (623 +14x0+7) = 36x4+108x3 +11022+5670+14 :=
tha(xg) is a square. This is a contradiction since (623 + 9z¢ + 3)2 > ¥a(xg) > (623 + 9z0 + 2)%
Let x¢ — x9 = 3,26 + 9 = d. Then we argue as above to conclude that d = 2x¢ + 3,29 > 100
and 4z + 3623 + 1123 + 168z + 126 := E3(z0) is a square. This is again not possible since
(222 4 920 + 8)2 > E3(x0) > (223 4 920 + 7). The other possibility of the pair (2,7) corresponding
to (1,d) is excluded similarly.

Let k =9 and w(d) = 2. Then (2.1.1) holds with ¥ = 8 and (ag,--- ,a7) = (2,3,1,5,6,7,2,1)
or its mirror image. This is already excluded. The case k = 13,w(d) = 2 and (ag,- - ,a12) =
(3,1,5,6,7,2,1,10,11, 3, 13,

14,15) or its mirror image is excluded as above in the case k = 8.

Let k = 14 and w(d) = 3. Let (ag,- - ,a13) = (3,1,5,6,7,2,1,10,11,3,13,14,15,1). Then one

of the pairs (0,9), (1,6), (1, 13), (6, 13) corresponds to the partition (1, d). This is excluded as above in
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the case k = 8, w(d) = 2. The proof for excluding the mirror image (1, 15,14,13,3,11,10,1,2,7,6,5,1, 3)
is similar. ]

11.5. Proof of Theorem 2.3.1
Theorem 2.3.1 follow immediately from Theorem 2.5.3 and Lemma 11.2.7. |

11.6. Proof of Theorem 2.4.1

First we show that d > 10'°. By Lemma 11.2.9 and Theorem 10.1.1, it suffices to consider the
case k = 7 and (ag, a1, -+ ,aq) given by

(11'6'1) (2’3717576’ 7’2)7 (37 1’5’6)7727 1)’ (175767772’ 1’]‘0)

or their mirror images. Then for p|d, we have (%) =1 for q € {2,3,5,7}. Suppose that d < 101°.
Since w(d) > 2, we have p; < 10°. For X > 0, let

Po=Po(X) ={p<X: (g) =1, ¢=23,57}

We find that that Po(10°) = {311,479, 719,839,1009, - -- }. Thus p; > 311 by p; € Py(10°). Since
311 - 479 - 719 - 839 > 10'°, we have w(d) < 3. Further from 3112 - 479% > 1019 we get either
w(d) = 2,d = pyps, pTpa, p1p3 or w(d) = 3,d = pypaps.

Consider (ag, a1, ,a6) = (2,3,1,5,6,7,2). From d =n+d —n = 327 — 223, 31 xq, 4 { 071,
we get d = —2 = 1(mod 3) and d = 3 — 2 = 1(mod 8) giving d = 1(mod 24). Again from
2(x3 —23) = n+6d —n = 6d = 6d1da, we get x6 — 19 = 71d1, 76 + Tog = T2ds With Tiry = 3,
ridy < rods and (ridy, rods) € D3 with

{(1,39192), (3,9102), (a1, 3d2), (341, 92), (d2,341)}  if w(d) =2
D3 = {(1,3p10203), (3, p1P2P3), (P1, 30203), (301, Pabs),
(P2, 3p1P3), (3P2, P1P3), (3, 3p1P2), (3ps, pib2)}  if w(d) = 3.

Then zg = W giving 22 = n+2d = 223 +2d1dy = %{(r1d1)2+(r2d2)2—2d1d2} a square. Now
we see from 3z = n+d = 2% +d = ${(r1d1)? + (rod2)? — 4d1ds} that §{(r1d1)? + (rod2)? — 4dydy}
is an square. For each d = g,q5, we first check for d = 1(mod 24) and restrict to such d. Further for
each possibility of (r1dy, rad2) € D3 with r1dy < rads, we check for %{(r1d1)2+(r2d2)2—2d1d2} being
a square and restrict to such pairs (r1dy,72dz). Finally we check that %{(1"1d1)2 +(rode)? —4dyds} is
not a square. For example, let d = 1319-4919. Then q; = 1319, g, = 4919. We check that d = 1(mod
24). For each choice (r1dq,rads) € D3 with r1dy < rads, we check for %{(r1d1)2 + (rad2)? — 2dydo }
being a square which is possible only for (r1dy,rad2) = (1319,3 - 4919). However we find that
%{(rldl)Q + (r2d2)? — 4dyda} is not a square for (ridy,r2ds) = (1319, 3 - 4919).

Next we consider (ag, a1, - ,a6) = (3,1,5,6,7,2,1). From d = n + 6d — (n + 5d) = 2% — 222,
3t x5,3|22 and 2 1 g, 4|22, we get d = 1(mod 24). Again from 22 —2? = n+6d— (n+d) = 5d = 5d1d>
we get Teg — X1 = ’/’1d1,$6 +x = Tzdg with r1ro = 5, ’/’1d1 < 7"2d2 and

{(1,59192), (5,4192), (41, 502), (541, d2), (d42,5q,)}  if w(d) =2
D5 = {(1,5p1p2p3), (5, p1P2b3), (P15 5p2Ps3), (5p1, P2bs),
(p27 5p1p3)7 (5p2> plp?))? (p?ﬂ 5p1p2)7 (5p37 p1p2)} lf w(d) =3.

Thus 2 = 2923719 giving 202 = n+5d = 22 —d = +{(r1d1)? + (rod2)? + 6d} implying 3{(r1d1)? +
(rads)? + 6d} is a square. Further from 723 = n+4d = n+6d — 2d = 22 — 2d = +{(r1d1)? +
(roda)? + 2dyds}, we get 1{(r1d1)? + (rad2)? + 2didz} is a square. For each d = q,q,, we first
check for d = 1(mod 24) and restrict to such d. Further for each possibility of (r1dy,rods) € D5
with r1d; < rods, we check for %{(rldl)Q + (rada)? + 6d} being a square and restrict to such pairs
(ridy,r2dz). Finally we check that :{(rid1)* + (rod2)? 4+ 2d} is not a square. Further the case
(ag,a1,--- ,a¢) = (1,5,6,7,2,1,10) is excluded by the preceding test.
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The case (ag,a1, -+ ,a¢) = (2,7,6,5,1,3,2) is similar to (ag,a1, -+ ,a6) = (2,3,1,5,6,7,2)
and we obtain d = —1(mod 24), 1{(rid1)?* + (rod2)* + 2d} and ${(r1d1)? + (r2d2)? + 4d} are
squares for each possibility of (r1dy,rad2) € D3 with r1d; < rode. This is excluded. The cases
(ao, ai, .- ,a6) = (1, 2, 7, 67 5, 1, 3), (107 1, 2, 7,

6,5,1) are also similar to that of (ag,a1,---,a6) = (3,1,5,6,7,2,1),(1,5,6,7,2,1,10) and is ex-
cluded. Thus d > 101°.

Now we show that d > kl°glogk  Since kloslosk < 1010 for k < 22027, we may assume that k >
22027. By Corollary 11.2.7, we obtain w(d) > 9 and k < 2(w(d) —0)2°(@D =0 =: Uy(w(d)—6). Further
we derive from 22027 < k < 2w(d)2%® that w(d) > 11. Tt suffices to show that logd > (log W (w(d)—
0))(loglog Uy (w(d) — 0)) =: ¥ (w(d) — ). Let ¥o(l) = l(log! + loglog! — 1.076868) for I > 1. From
d>20 Hf:(g)ﬂ_é/ p; and Lemma 3.1.3, we get logd > Wo(w(d) + 1) —log 2, ¥s(w(d)) + (6 — 1) log 2
when 2 1 d, 2|d, respectively. It suffices to check for w(d) > 11 that ¥s(w(d)+1)—log2—T(w(d)) >0
it 2t1d, Uy(w(d)) — 1 (w(d) —1) > 0if 2||d,4||d and Y2 (w(d)) +log4d — Uy (w(d)) > 0 if 8|d. This is
the case. ]

11.7. Proof of Theorem 2.5.1

Suppose Theorem 2.5.1 is not true. Then (2.1.1) is valid with & > 8,b =1 and w(d) = 2 but n
and d are not necessarily coprime. Let n’ = and d' = de,d)' Now, by dividing ged(n, d)*
on both sides of (2.1.1), we have
(11.7.1) /(' +d) - (0 + (k= D)d') = ppy7yt
where y; > 0 is an integer and 67, d5 € {0,1}. We may assume that k is odd and (d1,d2) # (0,0) by
Theorem 2.5.2 with w(d) = 2. Let d = 1. Then we see from (1.2.3) for k # 13,17 and Corollary
1.2.3 for kK = 13,17 that the left hand side of (11.7.1) is divisible by at least three primes > k.
Therefore there exists a prime p with p # py,p # Py, p > k such that it divides a term on the left
hand side of (11.7.1) to power at least 2. This implies n’ > k2. Now we see from [47, Theorem
2] that the left hand side of (11.7.1) is divisible by at least three primes > k to odd powers. This
contradicts (11.7.1). Thus d’ > 1 implying (d1,d2) # (1,1) by ged(n’,d’) = 1. Now we may assume
that (01,02) = (1,0). Then d’ is a power of p,. Further we may suppose that p; > k by Theorem
2.5.3. Let n+iod with 0 < ¢y < k be the term divisible by p; on the left hand side of (11.7.1). Then

n' (0 + (o — )d) (0 + (ig + 1)d') -+ (0 + (k= 1)d') = b'y5

where P(V') < k and y2 > 0 is an integer. Now k = 8 by [46, Theorem 1]. This is not possible since
k is odd. 0

_n
ged(n,d)






CHAPTER 12

Equation (2.6.1) with ¢t > k — 2 and w(d) = 1:
Proof of Theorem 2.6.2

12.1. Introduction

We shall prove Theorem 2.6.2 in this chapter. From now on, we assume (9.1.1) is valid with
¥ = 2, w(d) = 1 and we shall suppose it without reference. Let d = p®. Then (1,2) is the only
partition if d = 2 and (2, 2) is the only partition if d = 4. For d # 2,4, we see that (n, %) and (%, )
are the only distinct partitions of d.

In view of Lemma 9.1.1 with ¥ = 2, there is no loss of generality in assuming that k is prime
whenever k£ > 23 in the proof of Theorem 2.6.2. Therefore we suppose from now onward without
reference that k is prime if & > 23.

12.2. Lemmas
We apply Theorem 1.4.1 and Lemma 9.4.1 to derive the following result.
LEMMA 12.2.1. Let k> 9. Then we have

(12.2.1) |Ty| > 0.1754k for k > 81.
and
(12.2.2) n+yd > k.

PROOF. We observe that 7(2k) — w(k) > 2 since k > 9. Therefore P(A) > k by Theorem 1.4.1.
Now we see from (9.1.1) that

(12.2.3) n+vd > k*.
By (9.4.1),t > k — 2, mg(k) < 7(k) and Lemma 3.1.2 (), we get
(k—Vlogh k(12762
2log k log k logk )

Since the right hand side of the above inequality exceeds 0.1754k for k > 81, the assertion (12.2.1)
follows.

Now we turn to the proof of (12.2.2). By (12.2.3), it suffices to consider d = 2% with a > 1.
From Theorem 1.4.1 and (9.1.1), we have n + (k — 1)d > pfr(%)ﬁ. Now we see from (9.4.1) that

(k—1)log(k — 1) — (k — 3)log 2 + log(k — 2)
2log Pr(2k)—2

Ty >k —3—

(12.2.4)  |Th| + 7a(k) — w(2k) >k — 3 —

— (2k)

and

T3]+ ma(k) — 7(2K) >k_3_(k—l)logk—(k—3)log2+logk 2k < 1.2762)

2logk  log 2k log 2k

by Lemma 3.1.2 (7). When k > 60, we observe that the right hand side of the preceding inequality
is positive. Therefore |1} |+ m4(k) > 7(2k) implying n + y:d > 4k? for k > 60. Thus we may assume
k < 60. Now we check that the right hand side of (12.2.4) is positive for k > 33. Therefore we may
suppose that k < 33 and n + (k — 3)d < n + y:d < 4k%. Hence d = 2% < %. For n,d, k satisfying
k< 33,d< &5 n+ (k—3)d < 4k and n+ (k — 1)d > p? 4,
119

_o, we check that there are at least
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three 7 with 0 < ¢ < k such that n + id is divisible by a prime > k to the first power. This is not
possible. (Il

LEMMA 12.2.2. We have

5 for k > 81

5 —4q) for k > 55

4 —qp for k > 28,k # 31
3 — 1 for k = 31.

(12.2.5) t—|R| >

PROOF. Suppose t — |R| < 5 and k > 292. Then |R| > 286 since t > k — 2 and [[, cpbi >
(1.6)IEI(|R|)! by (9.4.9). We observe that (9.3.29) hold for k > 292 with ig = 0,hg = 286, 21 =
1.6,91 = 6, m = 17,/ = 0O,np = I,n; = 1 and ny = 25. We check that the right hand side
of (9.3.29) is an increasing function of k and it exceeds g1 at k = 292 which is a contradiction.
Therefore t — |R| > 5 for k& > 292. Thus we may assume that &k < 292. By taking r = 3 for
k <50, r =4 for 50 < k < 181 and r = 5 for 181 < k < 292 in (9.2.3) and (9.2.5), we get
t—|R| > k—t—F'(kyor)—2">7—14,5—1,4—1 for k > 81,55,28, respectively except at
k = 29,31,43,47 where t — |[R| > k — ¢ — F(k,r) — 2" > k —¢ — F'(k,r) — 2" = 3 — 1. We may
suppose that k = 29,43,47, t — |R| = 3 — ¢ and F(k,r) = F'(k,r). Further we may assume that
for each prime 7 < p < k, there are exactly o, number of i’s for which p|b; and for any 4, pg t b;
whenever 7 < ¢ < k,q # p. Now we get a contradiction by considering the i’s for which b;’s are
divisible by primes 7,13;7,41; 23,11 when k = 29,43, 47, respectively. For instance let £ = 29. Then
7)b; for i € {0,7,14,21,28}. Then 13|b; for i € {h + 135 : 0 < j < 2} with h = 0,1,2. This is not
possible. O

LEMMA 12.2.3. Let 9 < k < 23 and d odd. Suppose thatt —|R| > 3 for k=23 andt — |R| > 2
for k < 23. Then (9.1.1) does not hold.

PROOF. Suppose (9.1.1) holds. From (12.2.2) and Lemma 9.3.5, the partition (n,dn~') is the
only permissible partition for any pair (¢, j) with b; =b;. Let Q =2 if k =23 and Q =1 if k < 23.
We now apply Lemma 9.3.10 with zy = 3 for k = 23 and zg = 2 for k < 23 to get d < %(k - 1),
01 < guyy and

1 1 4 1 4
91+92<2{6224-%_1)"‘\/(244‘623(]{:_1)}_16(147—1).

Further from (1.4.11), we have n+ (k —1)d > n+y:d > pi(%)_T Therefore p* = d < %(k —1) and
p72r(2k)—2 <n+(k—1)d < (k—1)30(k — 1). For these possibilities of n, d and k, we check that there
are at least three ¢ with 0 < ¢ < k such that n + id is divisible by a prime > k to an odd power.
This contradicts (9.1.1). O

12.3. Equation (2.6.1) implies ¢ — |R| <1
LEMMA 12.3.1. Fquation 9.1.1 with k > 9 implies that t — |R| < 1.

PROOF. Assume that k¥ > 9 and ¢t — |R| > 2. Let d = 2,4. Then |R| < ¢t — 2 contradicting
|R| =t by (12.2.2) and Lemma 9.3.7. Thus d # 2,4. Further by (12.2.2) and Lemma 9.3.7, we have
v(biy) < 2 and v(B,,) < 2. Also by Lemma 9.3.5, the partition (eta,dn™') is the only permissible
partition for any pair (i,7) with b; = b;.

Let k > 81. Then ¢t — |R| > 5 by Lemma 12.2.2. Now we derive from Lemma 9.3.10 with zy = 5

to get d < k — 1 giving 6; < ﬁ and hence

- (k—1)% [ 1 1 1 1
n+(k—1)d(01+92)(k—1)‘°’<2{16+k_1+\/(16)2+16(k—1)}
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from (9.3.5). On the other hand, we get from (12.2.1) and v(B;,) < 2 that n+ (k—1)d > 21754k g2 >
0.1754%. Comparing the upper and lower bounds of n + (k — 1)d, we obtain

1 1 1 1
1754 — <0.144
0175 <{16+k—1+\/(16)2+16(k—1)}_O

since k > 81. This is a contradiction.

Thus k < 81. Let d be even. We see from v(a;) < 2 and (9.2.6) that & < 2gps < 2772, Let
r = 3. From (9.2.1), we get k —2 — F/(k,r) < & < 2772 We find k — 2 — F'(k,r) > 2772 by
computation. This is a contradiction.

Therefore d is odd. Since t —|R| > 2, we get from Lemmas 12.2.2 and 9.3.10 with zo = 2,3 that
d<2(k—1)ifk>55and d < 4(k — 1) if k < 55. Since g,(r) < 271 for r = 4,p < 220 by (9.2.14),
we get from (9.2.10) with r = 4 that t — |R| > k — 2 — F'(k,r) — 2"~! which is > 5 for k > 29 and
> 3 for k = 23.

Let £ > 29. Then we get from Lemma 9.3.10 with zg = 5 that d < kK — 1. By taking r = 3
for k < 53 and r = 4 for 53 < k < 81, we derive from (9.2.9), (9.2.14), v(a;) < 2 and (9.2.1) that
k—2—F'(k,r) <& <2g, <2". We check by computation that k —2 — F'(k,r) > 2". This is a
contradiction.

Thus k£ < 23. Then t — |R| > 3 for k =23 and ¢t — |R| > 2 for k < 23. By Lemma 12.2.3, this is
not possible. (|

COROLLARY 12.3.2. Let k > 9. Equation (9.1.1) implies that either k < 23 or k = 31. Also
P(d) > k.

PrROOF. By Lemmas 12.2.2 and 12.3.1, we see that either £ < 23 or £ = 31. Suppose that
P(d) < k. Since gp(g)(r) < 2"71 for r = 3 by (9.2.14), we get from (9.2.10) with » = 3 that
t—|R| >k—2—F'(k,r)—2""! > 2 except at k = 9 where ¢t — |R| > 1. This contradicts Lemma
12.3.1 for k > 9. Let k = 9. By taking r = 4, we get from gp4)(r) < 272 by (9.2.14) and (9.2.10)
that t — |[R| > k — 2 — F'(k,4) — 2472 > 2. This contradicts Lemma 12.3.1. O

COROLLARY 12.3.3. Let ¢» = 0. Equation (9.1.1) with P(b) < k implies that k < 9.

PRrROOF. Let k > 10. By Corollary 12.3.2, we see that either k£ < 23 or kK = 31. Let £ = 10. Then
we get from (9.2.5) with r = 2 that t — |R| > k— F'(k,r) — 2" = 2 contradicting Lemma 12.3.1. Thus
(2.1.1) does not hold at k = 10. By induction, we may assume k € {12,14, 18,20} and further there
is at most one ¢ for which pla; with p = k — 1. We take r = 2 for k = 12,14 and r = 3 for k = 18, 20.
Now we get from [{b; : P(b;) > p.}| < F'(k,r)—1 and (9.2.2) that t — |R| > k—F'(k,r)+1-2" > 2.
This contradicts Lemma 12.3.1. |

12.4. Proof of Theorem 2.6.2

Suppose that the assumptions of Theorem 2.6.2 are satisfied and assume (2.1.1) with w(d) = 1.
By Corollary 12.3.2, we have P(d) > k and further we restrict to k¥ < 23 and k = 31. Alsot—|R| <1
by Lemma 12.3.1. Further it suffices to prove the assertion for k € {15, 18,20, 23,31} since the cases
k=16,17; k =19 and k = 21, 22 follows from those of k = 15,18 and 20, respectively.

We shall arrive at a contradiction by showing ¢ — |R| > 2. For any prime p, let o, = [{a; : pla; }|.
Then o, < 0,,. We use some notation and terminologies as in Section 9.2.

For any subset Z C [0,k) N'Z and primes p; and py, we have the sets Z; and Z defined in

Lemma 10.3.2. Then from (%) = (%) (%), we see that either (%) # (;—;) for all i € 7; or

(;—;) #+ (%) for all ¢ € Zy. We define (M, B) = (Z;,Z5) in the preceding case and (M, B) = (Z2,Z;)
in the latter case. We call (I1,Z2, M, B) = (Z¥, Ik M*, B¥) when Z = [0,k) N Z. Then for any
Z C[0,k)NZ, we have

I, CIy,I, CI5,M < M*, B C B
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and
(12.4.1) |M| > |M*| - (k- |Z|), |B| > |B*| - (k- |Z]).

12.4.1. The case k = 15. Then o5 = 3 implies that 7|ay; for j = 0,1,2 and o} < 2 if
7 1 aparays. Similarly of3 = 2 implies 13|ag, 13]a13 or 13|ag, 13|a14 and of5 < 1 otherwise. Thus
[{a; : T|a; or 13|a;}| < 4. Tt suffices to have

(12.4.2) {a; : pla; for 5 <p <13} <7

since then t — |R| > k—2— [{a; : pla; for 5 <p < 13}| —4 > 2 by (9.2.2) with r = 2, a contradiction.

Let p1 =11, po = 13 and Z = {7, 72, -+ ,V:}. We observe that P(a;) < 7 for i € M U B. Since
(15—1) + (15—3) but (1‘1—1) = (%) for a prime ¢ < k other than 5,11, 13, we observe that 5|a; whenever
i € M. Since 05 < 3 and |Z| = k — 2, we obtain from (12.4.1) that |[MF¥| < 5 and 5|a; for at least
|MPF| — 2 i’s with i € M¥. Further 51 a; for i € B.

By taking the mirror image (9.1.5) of (2.1.1), we may suppose that 0 < i35 < 7. For each
possibility 0 < 4;; < 11 and 0 < i3 < 7, we compute |Z¥|, |Z¥| and restrict to those pairs (i11,713)
with min(|ZF|, |Z5|) < 5. We see from max(|Z¥|, |Z5|) > 6 that M¥ is exactly one of I} or Z§ with
minimum cardinality and hence B is the other. Now we restrict to those pairs (i11,413) for which
there are at most two elements i € MF¥ such that 51 a;. There are 31 such pairs. By counting the
multiples of 11 and 13 and also the maximum multiples of 5 in MF¥ and the maximum number of
multiples of 7 in B¥, we again restrict to those pairs (i11,%13) which do not satisfy (12.4.2). With
this procedure, all pairs (i11,413) are excluded other than

(12.4.3) (0,6), (1,3), (2,4), (3,5), (4,6), (5,3).

We first explain the procedure by showing how (i11,713) = (0,0) is excluded. Now M* = {5,10}
and B* = {1,2,3,4,6,7,8,9,12,14}. Then there are 3 multiples of 11 and 13, at most 2 multiples of
5 in M* and at most 2 multiples of 7 in B* implying (12.4.2). Thus (i11,413) = (0,0) is excluded.

Let (i11,i13) = (5,3). Then M* = {1,6,11} and B* = {0,2,4,7,8,9,10,12,13,14} giving
i5 = 1 and 5lajaga;;. We may assume that 7]a; for ¢ € {0,7,14} otherwise (12.4.2) holds. By
taking p; = 5,p2 = 11 and T = B*, we get 7; = {4,10,13} and Z» = {0,2,7,8,9,12,14}. Since
(2) = (&), (L) = (&) and (2) # (), we observe that 3|a; for i € Zy N B and 31 a; for i € I, N B.
Thus a; € {3,6} for i € Z; N B and a; € {1,2,7,14} for i € T, N B. Now from (%) = (=2) (£)
and (%) = (g), we see that at least one of 4,10,13 is not in B implying ¢ ¢ B for at most one
i € Iy. Therefore there are distinct pairs (i1,42) and (ji,j2) with i1,149, j1, 42 € Zo N B such that
A, = @iy, 01 > 9 and aj, = aj,,j1 > j2 giving t — |R| > 2. This is a contradiction. Similarly, all
other pairs (i11,413) in (12.4.3) are excluded.

12.4.2. The case k = 18. We may assume that of;, = 1 and 17 { apaiazai5a16a17 otherwise
the assertion follows the case k = 15. If |{a; : P(a;) = 5}| = 4, we see from {a; : P(a;) = 5} C
{5,10,15,30} that a;, a;, 15ai;+100is+15 = (150)? implying (n+isd)(n+ (is+5)d)(n+ (i5 +10)d)(n+
(i5 + 15)d) is a square, contradicting Eulers’ result for k = 4. Thus we have |[{a; : P(a;) = 5}| < 3.
Further for each prime 7 < p < 13, we may also assume that 0‘; = o, and for any ¢, pg { a; whenever
7<q<17,q#potherwise t — [R| >k —2—>,_ ~1;0,—3—4>2by (9.2.2) with r = 2.

Let p1 = 11, po = 13 and Z = {y1,72,--,%}. Since (F) # (%) and (}—I) #* (%) but
(&) = (5%) for ¢ < k,q # 5,17,11,13, we observe that for i € M, exactly one of 5|a; or 17|a; holds.
Thus 5 - 17 { a; whenever ¢ € M. For i € B, either 5t a;,17 1 a; or 5|a;, 17|a;. Thus for i € B, we
have P(a;) < 7 except possibly for one ¢ for which 5-17|a;. Since o5 < 4 and o}, < 1, we obtain
|MP¥| < 7 and 5|a; for at least |M*| — 3 4’s with i € M*. Hence |M¥| = 7 implies that either

(12.4.4) {a+5j:0<j<3}CTyor {b+5j:0<j<3}CIy

for some a,b € {0, 1, 2}.

Since o}, = 2 and o}5 = 2, we may suppose that 0 < i;; <6 and 0 < ¢33 < 4. Further 417 # 413
and i11 + 11 # i13 + 13. We observe that either min(|Z¥|, |Z5|) < 6 or |ZF| = |Z§| = 7. For pairs
(i11,413) with |ZF| = |Z§| = 7, we check that (12.4.4) is not valid. Thus we restrict to those pairs
satisfying min(|Z¥|,|Z5|) < 6. There are 16 such pairs. Further we see from max(|Z¥|,|Z5|) > 8
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that MP* is exactly one of Zf or 7§ with minimum cardinality and hence B* is the other one.
Now we restrict to those pairs (i11,713) for which 5|a; for at least 3 elements i € MP* otherwise
t — |R| > k—-2— Z7<p<170';) —2—4 > 2 by (9.2.2) with » = 2. We find that (ill,ilg) €
{(1,3),(2,4), (4,0), (5,1)}. For these pairs (i11,413), we check that there are at most 4 multiples a;
of 5 and 17 with ¢ € M* U B*. Thus if [{i : i € B,7|a;}| < 2, then t — |R| > 2 by (9.2.2) with
r = 2. Therefore we may assume that |{i : i € B,7|a;}| = 3 and hence |{i : i € B* 7|a;}| = 3.
We now restrict to those pairs (i11,i13) for which |[{i : i € B¥ ,7|a;}| = 3. They are given by
(i117i13) € {(274)7 (4’ 0)}

Let (i11,413) = (2,4). Then by taking p; = 11 and ps = 13 as above, we have M* = {1,6,8,11}
and B* = {0,3,5,7,9,10,12,14, 15,16} giving i5 = 1 and 5|ajasa;;. We may assume that 17|ag
since 17 { a;6. Hence P(a;) < 7 for i € B. Consequently P(a;) < 7 for exactly 8 elements i € B*
and other 2 elements are not in B. Further 7|a; for ¢ € {0,7,14} and 0,7,14 € B. Now we take
p1 =5,p2 =11 and T = B* to get Z; = {0,5,7,9} and Z, = {3,10,12,14,15}. Since (%) = (&),
(I) = (&) and (2) # (&), we observe that either 3|a; for i € Iy N B or 3|a; for i € I, N B. The
former possibility is excluded since 0,7 € Z; N B and the latter is not possible since 14 € ZoNB. The
other case (i11,413) = (4,0) is excluded similarly.

12.4.3. The case k = 20. We may assume that 0}y = 1 and 19 { apa19 otherwise the assertion
follows from the case k = 18. Also we have [{a; : P(a;) = 5}| < 3 by Eulers’ result for k = 4.
Further for each prime 7 < p < 17, we may also assume that o;, = 0}, and for any 4, pq { a; whenever
T<p<g<19otherwiset —|R| >k —2—} 1,0, —3—4>2by (9.2.2) with r = 2.

Let p1 =11, po = 13 and Z = {y1,72, - - ,f;t}i. Then as in the case k = 18, we observe that for
i € M, exactly one of 5|a; or 17|a; holds but 5-17 { a;. For ¢ € B, either 51 a;,17{ a; or 5|a;, 17|a;.
Since o5 < 4 and 017 < 2, we obtain [M*| < 8 and 5|a; for at least | M*| —4 i’s with i € M*. Hence
|MP¥| = 8 implies that either

(12.4.5) {a+5j:0<j<3}CIFor{b+5j:0<;<3}CIy

for some a,b € {0,1,2,3,4}.

Since o}, = 2 and o}5 = 2, we may suppose that 0 < i;; < 8 and 0 < ¢33 < 6. Further 417 # 413
and 417 + 11 # 13 + 13. We observe that either min(|Z¥|,|Z5|) < 7 or |Z¥| = |Z§| = 8. For pairs
(i11,713) with |ZF| = |Z§| = 8, we check that (12.4.5) is not valid. Thus we restrict to those pairs
satisfying min(|Z¥|, |Z§|) < 7. There are 40 such pairs. Further we see from max(|Z¥|, |Z5|) > 8
that MP* is the one of ZF or ZF with minimum cardinality and hence B* is the other. Now we
restrict to those pairs (i11,413) for which 5|a; for at least 3 elements i € M* otherwise ¢t — |R| >
k—=2-1-=3%,c170, —2—4 > 2by (9.2.2) with r = 2. We are left with 22 such pairs.
Further by (12.4.1) with |Z| = k — 2, we restrict to those pairs (i11,413) for which there are at least
|MPF| — 2 elements i € M* such that 5|a; or 17]a;. There are 12 such pairs (i11,413) and for these
pairs, we check that there are at most 4 multiples a; of 5 and 17 with i € M* U B¥. This implies
t—|R[ > k—=2-1-4-3"),,c130,—4>2by (9.2.2) with r = 2. For instance, let (i11,413) = (3,5).
Then M* = {2,7,9,12} and B*¥ = {0,1,4,6,8,10,11,13,15,16,17,19}. Since 5|a; for at least three
elements i € M*, we get 5|a; for i € {2,7,12} giving i5 = 2. Further 17|ag or 5 - 17|a;7 giving 4
multiples a; of 5 and 17 with i € M* U B*. Thus t — |R| > 2 as above.

12.4.4. The case k = 23. We may assume that o5y = 1 and 23 { a; for 0 < ¢ < 2 and
20 < i < 23 otherwise the assertion follows from the case k = 20. We have o1, = 3 if 11|ay1; with
j=0,1,2 and o7; < 2 if 11 { agar1aze. Also o = 4 implies that 7|az; or T|ai47; with 0 < j <3
and o} < 3 otherwise. Thus |{a; : 7|a; or 11]a;}| < 6. Further by Eulers result for £ = 4, we obtain

{ai:plai,5<p<23} <44+ > o,—-1-2=15
7<p<23
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then we get from (9.2.2) with r = 2 that ¢t — |[R| > k —2— 15 —4 = 2, a contradiction. Therefore we
have

(12.4.6) 4+ Y op—2<{a;:pla,5<p<23} <4+ Y o,— L
7<p<23 7<p<19

Let py = 11, po = 13 and Z = {71,792, -+ ,7:}. Then as in the case k = 18, we observe that
for i € M, exactly one of 5|a; or 17|a; holds but 5- 17 { a;. Further for i € B, either 51 a;,17 1 a;
or 5-17|a;. Since o5 < 5 and 017 < 2, we obtain |M*| < 9 and 5|a; for at least |M*| — 4 i’s with
i€ MF.

By taking the mirror image (9.1.5) of (2.1.1), we may suppose that 0 < i;; < 11and 0 < ¢33 < 11.
For each of these pairs (i11,i13), we compute |Z¥|, |Z5| and check that max(|Z¥|,|Z5|) > 9. First
we restrict to those pairs (i11,413) for which min(|Z¥|, |Z5|) < 9. Therefore M* is exactly one of
ZF or 7§ with minimum cardinality and hence B* is the other set. Now we restrict to those pairs
(i11,113) for which there are at least |M*| — 2 elements i € MF¥ such that either 5|a; or 17|a;. There
are 31 such pairs. Next we count the number of multiples of 11,13, maximum multiples of 5,17 in
MPF U BF and 7,19 in B* to check that (12.4.6) is not valid. This is a contradiction. For example,
let (i11,413) = (0,2). Then M* = {4,6,9,18,19,20} and B* = {1,3,5,7,8,10,12,13, 14,16, 17,21}
giving 5|a; for i € {4,9,19}, i5 = 4. Further 17|a; for exactly one i € {6,18,20} and other two
i’s in {6,18,20} deleted. Thus 5-17 { a14 so that (12.4.6) is not valid. For another example, let
(i11,413) = (4,0). Then M* = {6,9,11,16,21} and B* = {1,2,3,5,7,8,10,12,14,17, 18,19, 20,22}
giving 5|a; for i € {6,11,16,21}, i5 = 1. Further we have either 17]ag, ged(5 - 17,a1) = 1 or
9¢ M,5-17|a;. Now T|a; for at most 3 elements i € B* so that (12.4.6) is not satisfied. This is a
contradiction.

12.4.5. The case k =31. Fromt—|R| > k—2—-3 7 3, 0,-8>k—-2-3",_ _3,0,—8=1
by (9.2.2) and (9.2.5) with 7 = 3, we may assume for each prime 7 < p < 31 that 0, = 0, and
for any 4, pg t a; whenever 7 < p < ¢ < 31. Let Z = {v1,72, -+ ,¥}. By taking the mirror image
(915) of (211) and 019 = 099 — 2, we may assume that 2'29 =0and 1 S ilg S 11,i19 # 10.
For p < 31 with p # 19,29, since (&) # (Z) if and only if p = 11,13,17, we observe that for
i € M, either 11]a; or 13|a; or 17|a;. Since 11 + 013 + 017 < 8, we obtain |MF¥| < 10 and p|a; for
at least |MPF| — 2 elements i € M* and p € {11,13,17}. Now for each of the pair (i1g,429) given
by i29 = 0,1 < ij9 < 11,419 # 10, we compute |Z¥|, |Z§|. Since max(|ZF|,|Z5|) > 14, we restrict to
those pairs (i19,729) with min(|Z¥|, |Z5|) < 10. Then we are left with the only pair (i19,i29) = (1,0).
Further noticing that M¥* is exactly one of ZF or Z§ with minimum cardinality, we get M* =
{3,5,6,7,11,14,15,19, 24,25} and B* = {2,4,8,9,10,12, 13,16, 17, 18, 21, 22, 23, 26, 27, 28, 30}. We
find that there are at most 7 elements i € MF¥ for which either 11|a; or 13|a; or 17|a;. This is not
possible. O
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