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Abstract

We consider a stochastic jump flow in an interval (−a, b), where a, b > 0. Each particle
of the flow performs a canonical Brownian motion and jumps to zero when it reaches −a or
b. We study the long term behavior of a random measure µt which is the image of a finite
Borel measure µ0 under the flow. When a/b is irrational, we show that for almost every
driving Brownian path the time averages of the variance of µt converge to zero, and the
Lebesgue measure of the support of µt decreases to zero as time goes to infinity. When a/b is
rational, we show that the Lebesgue measure of the support of µt decreases to its minimum
value in finite time almost surely. In addition, if µ0 is proportional to Lebesgue measure we
show that the number of connected components of the support of µt is a recurrent process,
which assumes every positive integer value with probability 1.

1 Introduction

Let Bt be the one-dimensional Brownian motion on the canonical probability space (Ω,Ft, P )
such that P (B0 = 0) = 1. For x ∈ (−a, b), a, b > 0, we consider a right continuous process
{Xx

t , t > 0}. Each sample path of this process is the trajectory of a Brownian particle, which
starts at x and jumps to zero each time it reaches the boundary of the interval (−a, b). The
particle continues to move in a Brownian fashion between every two consecutive hits. More
precisely, let

τx0 = inf{t ≥ 0 : Bt + x ∈ {−a, b}},

τxn = inf{t > τxn−1 : Bt −Bτxn−1
∈ {−a, b}}, n ∈ N,
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be the stopping times at which the particle hits the boundary of (−a, b). These stopping times
are finite with probability 1. Define

Xx
t =

Bt + x for 0 6 t < τx0 ,

Bt −Bτxn for τxn 6 t < τxn+1, n ∈ N.
(1)

This model was suggested by E. Cinlar at the Seminar on Stochastic Processes 2000. It was
motivated by an optimal control problem in economics, for which the random variable Xx

t

represents the value of an asset held by an agent. If the asset value reaches level b, the agent
sells it and buys a cheaper asset for c dollars. If the asset goes below level −a, the agent sells
it and buys a more expensive one for c dollars, where −a < c < b. In our description we set
c = 0. Further motivation, the formal construction, and main properties of the single particle
process {Xx

t } can be found in [1].

Without loss of generality we assume throughout the paper that

0 < a < b and a+ b = 1. (2)

Let µ0 be a Borel probability measure on (−a, b). We are interested in the long time behavior
of the random measure µt defined by the relation

µt(A) ≡ µ0{x ∈ (−a, b) : Xx
t ∈ A}, (3)

for every Borel subset A of (−a, b). In the case when µ0 is the Lebesgue measure on (−a, b) we
are able to provide detailed information about the structure of the set

X(t) = suppµt. (4)

Let us note that, since Xx
t is a càdlàg process, which almost surely has only finitely many

jumps on a finite time interval, the measure µt is well defined.

Our main results are stated in Section 1.2. We shall begin with some preliminary observations,
examples and definitions.

Notation. For any set A ⊂ (−a, b), we let supA denote the supremum of the set A. We write
δx for the Dirac measure of mass 1 at x and λ for the Lebesgue measure on (−a, b). The set of
all non-negative integers is denoted by Z+.
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1.1 Preliminaries

Invariant measure for the process {Xx
t }. Let the measure µ on (−a, b) be defined by the

density (with respect to the Lebesgue measure)

g(y) =


2

a+ b

(
1 +

y

a

)
, if − a < y 6 0;

2
a+ b

(
1− y

b

)
, if 0 < y < b.

(5)

One can check that µ is an invariant measure for a single particle process Xx
t . It was shown

in [1] that the transition probability densities of the process Xx
t converge to g(y) exponentially

fast as t→∞.

Collisions. Let µ0 = m1δx1 + m2δx2 + m3δx3 , where m1 + m2 + m3 = 1, −a < x1 < 0,
x2 = x1 + a, x3 = x1 + b. Studying µt in this case is equivalent to looking at the trajectories
of three particles of masses m1,m2,m3 started at points x1, x2, x3 respectively and driven by
the same Brownian path. Let τ0 be the first time when one of the three particles hits the set
{−a, b}. Clearly, τ0 = τx1

0 or τ = τx3
0 . In the former case the first and the second particles will

collide at time τ0 and Xx1
t = Xx2

t for all t > τ0, while in the latter case the first and the third
particles will collide and Xx1

t = Xx3
t for all t > τ0. It can be shown (see also Lemma 1.1 for a

more general result) that in this case with probability 1 all three particles collide in finite time.
Therefore, for all t greater than the collision time we have that µt = δXt , where Xt = Xxi

t ,
i = 1, 2, 3. These collisions are the key to understanding the long term behavior of µt.

The above example motivates the following definition. For each x ∈ (−a, b) let

Cx = {z ∈ (−a, b) | z = x+ ka+ lb, k, l ∈ Z}. (6)

We write x ∼ y if Cx = Cy. This defines an equivalence relation on (−a, b), which gives us a
continuum of equivalence classes. If a/b is rational then each class Cx consists of finitely many
points. If a/b is irrational then each class Cx is a dense countable subset of (−a, b).

Lemma 1.1. Let x ∼ y and τcol = inf{t > 0 |Xx
t = Xy

t }. Then

P (τcol <∞) = 1.

A proof of this lemma is given at the end of Section 2 (see also [1] and [2]).

Structure of the set X(t). The next lemma presents a simple fact about the structure of
X(t) in a special case.

Lemma 1.2. Suppose that for some s > 0 the set X(s) is a finite collection of disjoint intervals
of positive length. Then with probability 1 for each t > s the set X(t) is a finite collection of
disjoint intervals of positive length.
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Proof. Since X(t) is the support of a measure, it is closed in (−a, b). Let M(t) = sup X(t)
and m(t) = inf X(t). The number of intervals in X(t) can increase only when either M(t) or
m(t) hits the boundary (these two events can not happen simultaneously except for s = 0).
Since the probability that a Brownian path will cross a given level exactly once is equal to zero
(see [4], p.105), an interval of positive length will detach and jump to zero once M(t) or m(t)
reaches the boundary. This implies that X(t) is a collection of disjoint intervals of positive
length with probability 1.

Denote by Σ(t) the number of disjoint intervals in X(t). If M(s) < b then Σ(t) can not be
larger than (Σ(s) + 1) plus the total number of up-crossings and down-crossings of an interval
[M(s), 1] by the Brownian path Ms + Bh−s, s 6 h 6 t. This number is finite with probability
1. Similar argument applies to the case when M(s) = b and m(s) > −a. The situation when
M(s) = b and m(s) = −a can arise only for s = 0. Indeed, the function M(t) −m(t) is non-
increasing and is strictly less than 1 for all t > 0 with probability 1. Assume that M(0) = b and
m(0) = −a. Let X+(0) = X(0) ∩ [0, b) and X−(0) = X(0) ∩ (−a, 0). Then inf X+(0) = 0 < b

and supX−(0) = 0 > −a. Since Σ(t) is less or equal than the sum of the numbers of disjoint
intervals obtained starting from X+(0) and X−(0) separately, the proof is now complete.

Remark. Case when a = b is trivial. Suppose that µ0 is the Lebesgue measure. For all t > 0
the set X(t) is an interval. It is easy to see that there exists a finite stopping time after which
the set X(t) is an interval of length a = b. After this time the density of µt with respect to the
Lebesgue measure is equal to 2 on X(t). Other initial measures µ0 could also be considered.

1.2 Main results

The structure of Cx for x ∈ (−a, b) suggests that the long term behavior of µt and X(t) might
depend on whether a/b is irrational or rational. This is indeed the case.

Denote the expectation and the variance of µt by

X̄t(ω) ≡
∫ b

−a
xµt(dx) =

∫ b

−a
Xx
t µ0(dx) (7)

σ2(t, ω) ≡
∫ b

−a
(x− X̄t)2 µt(dx) =

∫ b

−a
(Xx

t − X̄t)2 µ0(dx). (8)

Theorem 1.1. Assume that a/b is irrational.

(i) For every x ∈ (−a, b) and f ∈ C([−a, b])

1
t

∫ t

0
(f(Xx

s )− f(X̄s))2 ds→ 0 P-a.s. as t→∞. (9)
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(ii) The Lebesgue measure of the set X(t) converges to zero P -a.s as t→∞.

If we set f(y) = y in part (i) and integrate (9) over (−a, b) with respect to µ0, then we obtain
the time averages of the variance σ2(t) of the random measure µt. Theorem 1.1 says that these
averages converge to zero. This implies that the proportion of time, when the most part of µt
is concentrated on a very small interval, approaches 1 as t → ∞. Roughly, this means that
for very large t most of the time an observer would see one heavy “lump” about X̄(t), which
moves like a single particle plus some negligible “dust” on the rest of the interval. In Section
3 we give a simple example, which shows that without the averaging in time the statement of
part (i) does not hold in general .

The proof of Theorem 1.1 is based on the consideration of the distance between two particles
driven by the same Brownian path at the stopping times when one of them hits the boundary
of the interval (−a, b). We obtain an embedded Markov chain on the circle S1 = R/Z and
observe that it is generated by two automorphisms of S1. We describe the invariant measures
of this Markov chain and study its recurrence properties. The statements of Theorem 1.1 are
immediate consequences of the results obtained for the embedded Markov chain.

Theorem 1.2. Assume that a/b = m/n, where m and n are coprime numbers. Set γ = a/m =
b/n = 1/(m+ n).

(i) Let α = λ{x ∈ [0, γ) |Cx ∩ suppµ0 6= ∅}, and ζ = inf{t > 0 |λ{suppµt} = α}. Then
P (ζ <∞) = 1.

(ii) Let µ0 = λ and Σ(t, ω) be the number of connected components of the set X(t). Then with
probability 1 the process Σ(t, ω) assumes every value in N and, moreover, is a recurrent
process.

Figure 1 illustrates a possible behavior of X(t) when µ0 = λ.

If µ0 = λ then part (i) of Theorem 1.2 says that the Lebesgue measure of X(t) will reach γ in
finite time ζ. In other words, all equivalent points will collide by that time. If µ0 is an arbitrary
probability measure then some Cx may not contain points of X(0). Therefore at time ζ the
Lebesgue measure of X(t) attains its minimum value α, which is equal to the Lebesgue measure
of the set of initially “occupied” distinct equivalence classes. From Lemma 1.2 we know that
when µ0 = λ the set X(t) consists of a finite number of disjoint intervals. The second part of
Theorem 1.2 claims that the number of these intervals is a recurrent process, which takes every
positive value with probability 1.

The proof of Theorem 1.2 is accomplished by an explicit path construction. At first, we
present the main ideas by considering the discrete analog of our process driven by the standard
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↑

−a

← →

b

0 t

X(t)↓

Figure 1: A realization of the set X(t) when µ0 = λ.

random walk. Then we explain how to modify the discrete procedure to make it suitable for the
continuous case and obtain the statement of part (i). Part (ii) is proved via a similar explicit
path construction. Main tools that we use in the proof are: a number theoretic Lemma A.1,
the support theorem (see [5], Theorem 6.6 p. 60) and the second Borel-Cantelli lemma.

1.3 Layout of the paper

The rest of the paper is organized as follows. In Section 2 we describe and study an embedded
Markov chain on the circle S1 = R/Z. We classify all its invariant measures when b is irrational
(Lemma 2.2). Using this key result in Section 3 we prove Theorem 1.1. Section 4 starts with the
study of the discrete model driven by the standard random walk. The construction presented
there is then adapted to prove part (i) of Theorem 1.2. The proof of part (ii) of Theorem 1.2 is
given at the end of Section 4. The technical results that we use in Sections 2 and 4 are proven
in the Appendix.

2 Embedded Markov chain

In this section we construct a Markov chain {Zi}, i = 0, 1, . . . on the circle S1 = R/Z, whose
properties will be used in the proof of Theorem 1.1. The idea is to consider the trajectories
Xx
t and Xy

t , x, y ∈ (−a, b), of two particles driven by the same Brownian path and record the
changes in the distance between these particles for all t > 0. The distance between the two
particles can change only when one of the them hits the boundary {−a, b}. Since the waiting
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time of the first hit to the boundary is finite with probability 1, we shall assume without loss
of generality that y = 0. Let T0 = 0,

Ti = inf{t > Ti−1 : Xx
t− or X0

t− ∈ {−a, b}}, i ∈ N, (10)

be the hitting times, and
ηi = Ti+1 − Ti, i = 0, 1, . . . , (11)

be the waiting times between two consecutive hits. Denote by N(t) the number of hits of the
boundary up to time t. That is

N(t) =
∞∑
i=1

1{Ti6t}. (12)

The dependence of Ti, ηi, and N(t) on x will not be reflected in the notation. The following
lemma is an easy consequence of standard results about renewal processes, Brownian motion
(see [3], Theorem 4.1 p. 204 and Theorem 5.9 p. 401), and convergence of random series, and
we omit the proof.

Lemma 2.1. Let Ti, ηi, i = 0, 1, . . ., and N(t) be defined by (10), (11), and (12) respectively.
Then

(i) P (N(t) <∞ for all t > 0 and N(t)→∞ as t→∞) = 1;

(ii) With probability 1 the ratio N(t)/t is bounded uniformly in t on the interval t > 0;

(iii) Random variables ηi, i = 0, 1, . . ., are independent and there is a constant K > 0 such
that

∑n
i=0 η

2
i /n 6 K uniformly in n with probability 1.

We will use the above lemma in the next subsection. Notice that either Xx
Ti

= 0 or X0
Ti

= 0.
Let Zxi = Xx

Ti
+X0

Ti
, i = 0, 1, . . .. In other words, Zxi is the position at time Ti of the particle,

which is not at zero, unless they both are at zero, in which case Zxi = 0. The sequence {Zxi },
i = 0, 1, . . ., forms a Markov chain, which starts at x and takes values in the set

Sx = {w ∈ S1 |w = ±x+ nb (mod 1) for some integer n}. (13)

Instead of looking just at one process {Zxi }, i = 0, 1, . . ., we shall look at the collection of such
Markov chains {Zi} for all x ∈ (−a, b). Moreover, we shall identify the ends of the interval
(−a, b) and consider a Markov chain on the circle S1 = R/Z.

Before we write down the transition probabilities for the above Markov chain we would like to
take a closer look at each step. Consider the stopping time Ti. Assume that Zxi 6= 0, which
means that there was no collision before or at Ti. Then there are two possibilities for the
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next step: either the particle, which currently occupies 0, hits the boundary prior to the other
particle or vice versa. The first case corresponds to the transition x→ x+ b (mod 1), and the
second case corresponds to the transition x → b − x (mod 1). Recall that a = 1 − b. If the
particles collided before or at time Ti then the process reached its absorbing state 0, and its
further dynamics are the same as the dynamics for the single particle process.

Taking into account the preceding considerations, define two automorphisms R and Q of the
circle S1 by

Rx = x+ b (mod 1), Qx = b− x (mod 1). (14)

These maps have the following properties:

P1. Both R and Q preserve the Lebesgue measure on S1.

P2. RQRQ = QRQR = Q2 = Id, where Id is the identity map on S1.

P3. If b is irrational, then R is uniquely ergodic.

Properties P1 and P2 are straightforward, and P3 is a standard fact from ergodic theory (see
[6], p. 153).

The transition probabilities for our Markov chain {Zi}, i = 0, 1, . . ., are given by

P (Z1 = 0 |Z0 = 0) = 1;

P (Z1 = Rx |Z0 = x) = p(x) for x 6= 0;

P (Z1 = Qx |Z0 = x) = q(x) = 1− p(x) for x 6= 0; (15)

where

p(x) =

(b− x)/(1− x) if 0 < x 6 b;

(x− b)/x if b < x < 1.
(16)

Notice that 0 is the only absorbing state. The state space S1 splits into a continuum of closed
(in the terminology of Markov chains) sets Sx (see (13)). Main properties of this chain are
summarized in the next two lemmas.

Lemma 2.2. Assume that b is irrational. Let {Zi}, i = 0, 1, . . ., be a Markov chain with the
state space S1 and the transition probabilities (15). Then

(i) The distribution δ0 is the only invariant probability distribution for this Markov chain.
Moreover, every invariant measure µinv of this Markov chain is given by

µinv = Cµc +Dδ0,
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where C and D are non-negative constants, and µc is defined by the following non-
integrable density with respect to the Lebesgue measure on S1:

ρc(x) =

(x(b− x))−1 if 0 < x < b.

((1− x)(x− b))−1 if b < x < 1.

(ii) Let ν0 be an arbitrary probability distribution on S1 and νi, i ∈ N, be defined by νi(A) =
ν0(x ∈ S1 : Zxi ∈ A) for every Borel subset A of S1. Then

1
n

n−1∑
i=0

νi → δ0 as n→∞.

Proof. (i) For convenience we slightly modify our transition probabilities by setting

P (Z1 = Rx |Z0 = x) = p(x) for all x ∈ S1;

P (Z1 = Qx |Z0 = x) = q(x) = 1− p(x) for all x ∈ S1. (17)

The only change from the original set up is that instead of the absorbing state at 0 we have a
closed periodic set {0, b} so that not only b always leads to 0 but also 0 always leads to b.

Let π be an invariant measure of our modified Markov chain. Then π has to satisfy the equation

π = R(pπ) +Q(qπ), (18)

where p is given by (16) and q = 1 − p. Applying Q to both sides of (18) and then adding
the two equations we obtain the equation pπ −QR(pπ) = R(pπ −QR(pπ)). From the unique
ergodicity of R we conclude that

pπ −QR(pπ) = c1λ, (19)

where λ is the Lebesgue measure on S1 and c1 is a constant. Similarly, applying RQ to both
sides of (18), using P2, and then adding the two equations we obtain π−Q(π) = R(π−Q(π)),
which implies that

π −Q(π) = c2λ (20)

for some constant c2. Since R and Q preserve λ, from (19) and (20) we obtain

c1λ = QR(pπ −QR(pπ)) = QR(pπ)− pπ = −c1λ;

c2λ = Q(π −Q(π)) = Q(π)− π = −c2λ.

Thus, c1 = c2 = 0 and the invariant measure π satisfies the equations

π = Qπ; (21)

R(pπ) = Q(pπ). (22)
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It is easy to check that the function h(x) = |b−x|(1−|b−x|) defined on S1 solves the equation

h(Rx)p(x) = h(x)p(Qx). (23)

We can use (22), (23), and (21) to conclude that

h(x)R(pπ(dx)) =h(x)Q(pπ(dx)) = h(x)p(Q−1x)Qπ(dx) =

h(x)p(Qx)Qπ(dx) = h(Rx)p(x)π(dx).

Therefore,
h(Rx)p(x)π(dx) = h(x)R(pπ(dx)) = R(h(Rx)p(x)π(dx)),

which by the property P3 implies that

h(Rx)p(x)π(dx) = Cλ(dx) (24)

for some non-negative constant C. Notice that

h(Rx)p(x) =

x(b− x) if 0 6 x 6 b;

(1− x)(x− b) if b < x < 1.

From (24) we see that π(dx) can have at most two components: the absolutely continuous (with
respect to the Lebesgue measure) component Cρc(x)dx and the discrete component supported
on the set {0, b}. The latter one, obviously, has to be of the form D(δ0 + δb) for some non-
negative constant D. Thus, we obtained all invariant measures for the modified chain. Notice
that we only modified the chain at 0. This implies the statements of part (i).

(ii) The space of probability distributions on (S1,B), where B is the Borel σ-algebra on S1,
is weakly compact. Therefore the sequence

∑n−1
i=0 νi/n has a weakly convergent subsequence.

But the limit point of such a subsequence has to be an invariant distribution for our Markov
chain. By part (i) the distribution δ0 is the only invariant distribution, therefore the sequence∑n−1

i=0 νi/n converges weakly to δ0.

Corollary 2.1. If b is irrational then for every x ∈ S1 and f ∈ C(S1)

1
n

n−1∑
i=0

f(Zxi )→ f(0) a.s. as n→∞.

Proof. Set ν0 = δx in part (ii) of Lemma 2.2.

Lemma 2.3. For every x ∈ S0 the absorption probability is equal to 1. Every state x ∈ Sz,
z 6= 0, is positive recurrent if b is rational and null recurrent if b is irrational.
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Proof. Let b be rational. Then the set S0 is a finite closed set. Moreover, the probability to
reach 0 from any state x ∈ S0 is positive. This implies that every x ∈ S0 reaches 0 in finite
time with probability 1. Every set Sz, z 6= 0, is a finite irreducible closed set. Therefore each
state in Sz, z 6= 0, is positive recurrent.

Assume now that b is irrational and x ∈ S0, that is x = nb (mod 1) for some integer n. Since
0 is the absorbing state and b leads to 0 with probability 1, we can assume that x 6∈ {0, b}.
Re-enumerate the states of the chain by setting (k + 1)b 7→ −k and −kb 7→ k for k ∈ N.
Then we obtain a Markov chain with the state space Z, and 0 will be the absorbing state. In
Appendix A we prove a lemma (Lemma A.2) about the absorption probabilities for a class of
Markov chains, which includes our chain. According to this lemma, to prove that absorption
probabilities are equal to 1 it is enough to show the divergence of the series

∑∞
k=1 βkq−k, where

q−k = 1− p((k + 1)b) and

βk =
k∏
j=1

p(−jb)
p((j + 1)b)

.

In our case q−k, k ∈ N, are bounded below by (1− b). We shall show that there is a positive ε
such that βk > ε for infinitely many values of k. This will finish the proof of the first statement
of the lemma. By (23)

βk =
k∏
j=1

p(−jb)
p(R(−jb))

=
k∏
j=1

h(−jb)
h(T (−jb))

=
h(−kb)
h(0)

Since b is irrational, for any ε < 1/(4h(0)) there are infinitely many values of k, for which βk

exceeds ε.

Each set Sz, z 6= 0, is an irreducible closed set. The recurrence of each state x ∈ Sz for
z 6= 0 can be shown exactly the same way as we proved the absorption. The null recurrence
follows from the uniqueness of the invariant distribution for our Markov chain (see part (i) of
Lemma 2.2).

Proof of Lemma 1.1. Consider the first time when one of the trajectories hits the boundary.
This stopping time is finite with probability 1. At that time we are in the setting of Section 2.
The relation x ∼ y implies that we start our Markov chain Z from some state in S0. By
Lemma 2.3 the absorption probability is equal to 1. Also the waiting times between two
consecutive hits are almost surely finite. The last two assertions imply the statement of the
lemma.
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3 Irrational Case

Proposition 3.1. Let a/b be irrational. Then for each x, y ∈ (−a, b)

1
t

∫ t

0
(Xx

s −Xy
s )2 ds→ 0 P-a.s. as t→∞.

Proof. If x ∼ y then by Lemma 1.1 there is nothing to prove. Without loss of generality
we may assume that x 6∼ y, x ∈ (−a, b) and y = 0. The proof is based on Lemma 2.1 and
Corollary 2.1 from Section 2.

Using the notation of Section 2 we obtain

1
t

∫ t

0
(Xx

s −Xy
s )2 ds 6

1
t

N(t)∑
i=0

|Zxi |2ηi

6
N(t)
t

 1
N(t)

N(t)∑
i=0

η2
i

1/2 1
N(t)

N(t)∑
i=0

|Zxi |4
1/2

. (25)

By Lemma 2.1 we have that on a set of full measure the first two terms in the right-hand side
of (25) are bounded uniformly in t for all t > 0. The last term in the right-hand side of (25)
goes to zero almost surely by Corollary 2.1.

Suppose that we start our measure-valued process µt(dx, ω) from some probability distribu-
tion µ0(dx). Recall that we denoted the expectation and the variance of µt by X̄t and σ2(t)
respectively (see (7) and (8)).

The next result is the key to the long term behavior of µt. It follows from Proposition 3.1 by
the integration over (−a, b)× (−a, b) with respect to the product measure µ0(dx)×µ0(dy) and
by the Cauchy-Schwartz inequality.

Corollary 3.1. Let a/b be irrational. Then

1
t

∫ t

0
σ2(s) ds→ 0 P-a.s. as t→∞.

Remark. Without the time averaging the statements of Proposition 3.1 and Corollary 3.1
are false in general. This can be easily seen from the following example. Let µ0 = (δx +
δ0)/2, where x 6∼ 0. Consider two trajectories Xx

t and X0
t and the embedded Markov chain

discussed in Section 2. We start our chain from x 6∈ S0. By Lemma 2.3 every x 6∼ 0 is null
recurrent. Therefore, the stopping time T when the process returns to the state, where one of
the trajectories is at 0 and the other one is at x, is finite with probability 1. Then |Xx

T−X0
T | = x

and σ2(T ) = x2/4. This implies that P (σ2(t)→ 0 as t→∞) = 0.
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Proof of Theorem 1.1 (i) Choose an arbitrary ε > 0. Let M = max[−a,b] |f |. Since f is
continuous on [−a, b], there exists a δ > 0 such that |f(x1)− f(x2)| < ε whenever |x1−x2| < δ

and x1, x2 ∈ [−a, b]. We have

1
t

∫ t

0
(f(Xx

s )− f(X̄s))2 ds =
1
t

∫ t

0
(f(Xx

s )− f(X̄s))21{s:|Xx
s−X̄s|<δ} ds

+
1
t

∫ t

0
(f(Xx

s )− f(X̄s))21{s:|Xx
s−X̄s|>δ} ds

6 ε2 +
4M2

tδ2

∫ t

0
|Xx

s − X̄s|2 ds

6 ε2 +
4M2

tδ2

∫ t

0

∫ b

−a
(Xx

s −Xy
s )2 µ0(dy) ds,

where we used the uniform continuity of f on [−a, b], Chebyshev’s inequality, and the Cauchy-
Schwartz inequality. From Proposition 3.1 we immediately obtain the statement of part (i).

(ii) It is enough to prove the result in the case when µ0 = λ, where λ is the Lebesgue measure
on (−a, b). At first, notice that the Lebesgue measure of suppµt is a non-increasing function
of t. Therefore, it has a (possibly random) limit as t → ∞, which we denote by ξ. Since by
Lemma 1.2 the set X(t) is a finite collection of intervals, we observe that µt(dx) = gt(x, ω) dx,
where gt takes only non-negative integer values. For an arbitrary ε > 0 we obtain

σ2(t) =
∫ b

−a
(x− X̄t)2gt(x) dx >

∫
(−a,b)∩{gt>1}

(x− X̄t)2 dx

> ε2λ{x ∈ (−a, b) : gt(x) > 1, |x− X̄t| > ε} > ε2(ξ − 2ε).

By Corollary 3.1

ε2(ξ − 2ε) 6
1
t

∫ t

0
σ2(s) ds→ 0, as t→∞ P-a.s.,

which implies that ξ = 0 with probability 1.

4 Rational Case

Throughout this section we will assume that a/b is rational. Before we turn to the proof of
Theorem 1.2, we shall discuss a simple discrete analog of our model driven by the standard
random walk. This discussion will illustrate the idea of the proof of Theorem 1.2 in a very simple
setting. The main point is that a similar construction can be carried out for the continuous
case as well.
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4.1 Discrete model

Let m and n be coprime numbers, 0 < m < n, and {Wi, i ∈ Z+} be the standard symmetric
random walk with W0 = 0. We define a discrete time process {Y x

i , i ∈ Z+} on the finite set
K = {−(m− 1),−(m− 2), . . . , 0, . . . , n− 1}. For x ∈ K let

ζx0 = min{i ≥ 0 : Wi + x ∈ {−m,n}},

ζxj = min{i > ζxj−1 : Wi −Wζxj−1
∈ {−m,n}}, for j ∈ N.

and

Y x
i =

Wi + x for i < ζx0 ;

Wi −Wζxn for ζxn 6 i < ζxn+1.

Initially we place a particle at each x ∈ K and let each of the particles be driven by the same
path. It is a simple consequence of Lemma 2.3 that with probability 1 the set Yi = {Y x

i : x ∈ K}
collapses to a single point in finite time. Observe also that for any initial configuration of
particles the number of occupied sites decreases to 1 in finite time almost surely.

Below we describe the construction of the path, which ensures that all particles collide before
some finite time M , which does not depend on the initial configuration of particles. This
construction will be adapted later for the continuous case. The main technical difficulties in
the continuous case are that we have to “thicken” the explicit path to allow the Brownian
motion to stay within that “thickened” path with positive probability, and that we have to
deal not with a finite number of particles but with the supports of probability measures on
(−a, b).

Assume that initially there is a particle at each x ∈ K.

Preliminary step. For i ≤ n− 1 let the random walk jump downward, so that at time n− 1
the set of occupied sites is {−(m− 1),−(m− 2), . . . , 0}.

Choosing the “jumping particle”. Suppose that two particles are separated by a distance
d < m. Designate one of these two as the “jumping particle”. By driving the random walk
upward whenever the “jumping particle” is above its partner and downward whenever it is
below its partner we could make the “jumping particle” leap repeatedly from the boundary to
zero while the other particle would never make such a leap. Lemma A.1 guarantees that we can
always choose one of the particles as the “jumping particle” in such a way that the particles
collide before they find themselves in adjacent sites, but in the opposite orientation from how
they began (see Figure 2). In the continuous case we have a “jumping interval” instead of a
“jumping point”, and Lemma A.1 will ensure sufficient space between this interval and the
remainder of the set.
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(A)
• is the “jumping particle”

(B)
∗ is the “jumping particle”

Figure 2: Illustrating the two possibilities with m = 3, n = 5 and k = 1. Down (up) arrow
indicates that the random walk is moving down (up) until the “jumping particle” leaps to 0. In
case A, the particles land in adjacent positions in opposite orientation. In case B, the particles
collapse onto each other. Therefore, we would choose the “∗” as the “jumping particle” for the
next step.

Iterative step (k=m, m-1,. . . , 2). Now suppose that the set of occupied sites is a single
block of k consecutive sites. We view the highest and lowest points of that block as the
two particles considered in the paragraph above and we choose the jumping particle to be
whichever is indicated by Lemma A.1. The remaining portion of the block will be referred to
as the “main body”. Drive the walk downward or upward depending on whether the jumping
particle is below or above the “main body”. The “jumping particle” will thus undergo a series
of leaps from the boundary to zero, while no particle in the “main body” will undergo such a
leap. Lemma A.1 guarantees that, after the particle is detached, it will collide with the “main
body” before re-attaching itself to the opposite end of the block. Therefore, at the end of this
step the set of occupied sites is a single block of (k − 1) consecutive sites. Repeat this step
until only 1 occupied site is left.

Construction of the path. LetM be the time, which is necessary to complete the preliminary
step, and (m− 1) repetitions of the iterative step. These steps define a sequence of down and
up jumps for the random walk, which ensures the collapse to one point for an arbitrary initial
configuration of particles. By the Markov property and the second Borel-Cantelli all particles
collide in finite time with probability 1.
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4.2 Proof of Theorem 1.2

For given ε > 0, r > 0, and a continuous function ϕ, such that ϕ(0) = 0, set

Φ(s, s+ r) = {ω ∈ Ω : |Bs+t −Bs − ϕ(t)| 6 ε for 0 6 t 6 r}. (26)

Let S be a finite stopping time for Brownian motion. We repeatedly use the support theorem
(see [5], Theorem 6.6, p. 60), which says that P (Φ(S, S + r)) > c > 0, where c depends only on
r, ε and the modulus of continuity of ϕ.

Part (i) of Theorem 1.2 is an easy consequence of the following proposition.

Proposition 4.1. Let m, n, and γ be defined as in the statement of Theorem 1.2 and µ0 = λ.
Define τ = inf{t > 0 : X(t) is an interval of length γ}. Then P (τ <∞) = 1.

Proof. Recall that a + b = 1 and γ = 1/(m + n). Since we start with µ0 = λ, the Lebesgue
measure of X(t) can never be less than γ.

We describe a construction of a set of paths A on a time interval [0,Mc(ω)], such that P (A) > 0,
the random time Mc is bounded uniformly on A by some deterministic M , and for every
Brownian path in A the set X(Mc) is a single interval of length γ. Then we let A(0) = A and
A(i) = {ω ∈ Ω : B·+Mi(ω) ∈ A}, i ∈ N. It follows from the Markov property of Brownian
motion that the events A(i), i = 0, 1, . . ., are independent. Moreover, P (A(i)) > c for some
positive c, which does not depend on i. By the second Borel-Cantelli lemma at least one of the
events A(i) occurs with probability 1. This will imply the statement of Proposition 4.1.

The set A is essentially built around segments of a piece-wise linear function ϕ(t) with slopes
±1. Each segment of ϕ is obtained by the interpolation of the appropriate random walk path
from the discrete model. The construction is presented in a sequence of steps. At the end of
each step we use a simple stopping time argument, which “aligns” X(t) to allow us to use the
discrete framework.

The construction takes only a finite number of steps and at each step every point makes only
finitely many leaps to zero. Let ε be small enough so as to satisfy the conditions imposed by
each of the steps below.

Preliminary step. Let ϕ(t) = −t for 0 6 t 6 σ0 = b+ ε. Then P (Φ(0, σ0)) > 0 and for any
path in Φ(0, σ0) the set X(σ0) is an interval of length a, X(σ0) ⊂ (−a, 2ε], and sup X(σ0) > 0.

Alignment. Let τ0 = inf{t > σ0 : sup X(t) = γ/2}. Set

A0 = Φ(0, σ0) ∩ {τ0 − σ0 6 1}.

16



Clearly, P (A0) > 0 and X(τ0) = [γ/2− a, γ/2] (recall that a = mγ) for each path in A0.

Iterative step (k=m,m-1,. . . ,2). Let τm−k, Am−k be defined in the previous step and
X(τm−k) = [γ/2 − kγ, γ/2] for each path in Am−k. We view X(τm−k) as the union of k
symmetric intervals of length γ around the particles located at (1− k)γ, (2− k)γ, . . . , 0. These
particles can be thought of in terms of the embedded discrete process on the lattice Kγ =
{−(m− 1)γ, . . . , (n− 1)γ}.

Detachment of “jumping interval”. Consider the particles at 0 and at (1− k)γ (the midpoints
of the highest and the lowest intervals). Either 0 or (1 − k) satisfies the “jumping particle”
condition stated in the discrete construction. Suppose that it is 0. (The other case is similar
and will be omitted.) We drive Brownian motion upward until the interval of length at least γ
detaches, and then drive downward to get away from the boundary. Define

ϕ
(0)
k (t) =

t for 0 6 t 6 b+ ε+ γ/2;

2(b+ ε+ γ/2)− t for b+ ε+ γ/2 < t 6 t0 = b+ 2ε+ γ.

Then for each path in Am−k ∩Φ(τm−k, τm−k + t0) the set X(τm−k + t0) consists of two disjoint
intervals: the interval of length between γ and γ+ 2ε (the “jumping interval”) located between
−(γ/2+3ε) and γ/2+ε and the rest of X(τm−k+t0) (the “main body”). The distance between
the “jumping interval” and the “main body” is at least γ.

Collapse onto the “main body”. We view the “jumping interval” as an interval around 0 and the
“main body” as the union of disjoint intervals around the points (n−k)γ, (n−k+1)γ, . . . , (n−
1)γ (recall that b = nγ). At τm−k the set {0, (n−k)γ, (n−k+1)γ, . . . , (n−1)γ} will serve us as
a new set of reference particles. The particle at 0 will be referred to as the “jumping particle”.
We know that there is a random walk path, which ensures the collapse of the “jumping particle”
onto the “main body” (which would be the set {(n − k)γ, (n − k + 1)γ, . . . , (n − 1)γ} for the
embedded discrete process). Let L be the number of up and down jumps of such a random
walk. For j = 1, 2, . . . , L define ϕ(j)

k by the following formulas. If the random walk is to go
down in the j-th step then

ϕ
(j)
k (t) =

t for 0 ≤ t ≤ γ/2 + 3ε

2(γ/2 + 3ε)− t for γ/2 + 3ε ≤ t ≤ 2γ + 6ε

If the random walk is to go up in the j-th step then

ϕ
(j)
k (t) =

−t for 0 ≤ t ≤ γ/2 + ε

t− 2(γ/2 + ε) for γ/2 + ε ≤ t ≤ 2γ + 2ε

The definition of ϕ(j)
k needs an explanation. There are moments when the random walk switches

the direction. For example, it goes down after going up in the previous step (which occurs only
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if the “jumping particle” makes a leap to 0). If this is the case, then we need to continue
driving the Brownian path up until all of the “jumping interval” makes the designated leap. If
there is no change in the direction then the above formulas for ϕ(j)

k still work.

Define ϕk to be a continuous, piece-wise linear function, which is the concatenation of all ϕ(j)
k ,

j = 0, 1, . . . , L. Let Φk(s, s + r) be given by (26), where ϕ is replaced by ϕk. The domain of
ϕk is a finite interval [0,Mk], and P (Φk(τm−k, σm−k+1)) > c > 0, where σm−k+1 = τm−k +Mk.
Notice that X(σm−k+1) is a single interval of length at most (k − 1)γ (except, possibly, for
k = 2; see the end of the proof).

Alignment. Define τm−k+1 = inf{t > σm−k+1 : sup X(t) = γ/2} if inf{t > σm−k+1 : sup X(t) =
b or inf X(t) = a} > inf{t > σm−k+1 : sup X(t) = γ/2} and τm−k+1 = +∞ otherwise. Set

Am−k+1 = Am−k ∩ Φk(τm−k, σm−k+1) ∩ {τm−k+1 − σm−k+1 6 1}.

Then P (Am−k+1) > 0. The length of X(τm−k+1) can be less than (k − 1)γ (except for k = 2),
but without loss of generality we may assume that X(τm−k+1) = [(1− k)γ + γ/2, γ/2] (this is
the “worst” case).

We execute the preliminary step and iterative steps for k = m,m− 1, . . . , 2.

Case k=2. At time τm−1, we have finished the case k = 2, the interval X(τm−1) has a length
between γ and γ + 2ε. Without loss of generality we may assume that the length of X(τm−1)
is γ + 2ε. We take a pair of interior points belonging to the same equivalence class, apply
a procedure similar to iterative step one final time and obtain the stopping time τm and the
set Am, which ensure that X(τm) is a single interval of length γ. We define A = Am and
Mc = τm. The set A and the interval [0,Mc(ω)] have the properties stated at the beginning of
the proof.

Proof of Theorem 1.2 (i). Let µ0 be an arbitrary probability measure on (−a, b). From
Proposition 4.1 it follows that suppµτ is contained in an interval of length γ. Let Λ be any
interval of the form [y, y + γ) ∈ (−a, b). Then

λ{x ∈ Λ : Cx ∩ suppµτ 6= ∅} = λ{x ∈ [0, γ) : Cx ∩ suppµτ 6= ∅}

= λ{x ∈ [0, γ) : Cx ∩ suppµ0 6= ∅} = α.

Therefore ζ 6 τ and P (ζ <∞) = 1.

Proof of Theorem 1.2 (ii). Let l > 1 be an integer. Proposition 4.1 gives the result for
l = 1. Without loss of generality we may assume that X(0) = [−γ, 0]. We will exhibit an
explicit path ϕ(t), 0 6 t 6 T , that breaks the interval into 2l disjoint intervals (and therefore
necessarily achieves each positive number of components less than 2l in the process). We shall

18



describe a path, which detaches intervals of length γ/l and then divides each of them into two
pieces. It will be obvious from the construction that all these intervals will be disjoint, and that
an application of the support theorem and the Borel-Cantelli lemma will complete the proof.

Set δ = γ/2l and t1 = b. Let Xϕ(t) denote the process driven by ϕ(t) (as opposed to X(t)
which is driven by Bt).

Preliminary step. Let ϕ(t) = t for 0 6 t 6 t1. Then Xϕ(t1) = [b− γ, b) ∪ {0}.

Iterative step (k=1,2,. . . ,l). At first, break off an interval of length 2δ from the top by
setting

ϕ(tk + t) = ϕ(tk) + t for 0 6 t 6 2δ.

Then force the path downward and break off an interval of length δ from the bottom:

ϕ(tk + 2δ + t) = ϕ(tk + 2δ)− t for 0 6 t 6 a+ δ.

Notice that at time tk + a + 3δ we have 2k + 1 disjoint intervals (one “large” interval and 2k
intervals of length δ), except for k = l, when we have 2l disjoint intervals (the “large” interval
has disappeared), as required.

Next we go up until the topmost point of Xϕ(t) reaches b:

ϕ(tk + a+ 3δ + t) = ϕ(tk + a+ 3δ) + t for 0 6 t 6 a+ δ.

If k ≤ l then define tk+1 = tk + 2a+ 4δ. If k + 1 6 l then we repeat the procedure.

Define T = tl+1 = b+ 2l(a+ 2δ). At time T , Xϕ(T ) will have 2l disjoint intervals of length δ.
More precisely, if D1 = [δ, 2δ] ∪ [3δ, 4δ] ∪ · · · ∪ [γ − δ, γ] then Xϕ(T ) = D1 ∪ {D1 + a− δ}.

Explicit Path for X. We apply the preliminary step and then the iterative steps as indicated.
Let ε < δ/4. For each path in Φ(0, T ) we have that X(T ) is a union of 2l disjoint intervals of
some random length strictly between 0 and 2δ. Since P (Φ(0, T )) > 0, we can argue exactly
the same way as in the proof of part (i) to say that with probability one Σ(t, ω) assumes every
value in N, and Σ(t, ω) is recurrent.

A Appendix

In this section we state and prove two technical lemmas, that we used in Sections 2 and 4.

Lemma A.1. Let m and n be coprime numbers, d be an integer, 1 6 d < m < n. Consider
two sequences F0 = {jm, j = 1, 2, . . . ,m+ n− 1} and Fk = {d+ jm, j = 1, 2, . . . ,m+ n− 1}
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in Z/(m + n)Z. Then either in the sequence F0 the remainder d occurs prior to (d + 1) or in
the sequence Fd the remainder 0 occurs prior to −1.

Remark. To apply this lemma to our discrete model it is convenient to identify the boundary
points −m and n and consider the random walk on the circle Z/(m+ n)Z. Since we are only
interested in the location of the two particles with respect to each other, we may choose to
keep the particles, where they are, say, at 0 and d, and let the boundary point to perform the
random walk. When the boundary point hits one of the particles that particle jumps and its
coordinate increases by m. If the boundary point always hits the particle, which was originally
at 0 (d respectively), then this particle consecutively occupies the sites listed in the sequence
F0 (Fd respectively). Therefore, the statement of the lemma implies the claim that for each
d we can choose the “jumping” particle and a path for the random walk in such a way that
the particles will collide before they land in adjacent sites in the opposite orientation from how
they began.

Proof of Lemma A.1. We write i ≡ j whenever i = j (mod (m+ n)). For l = 0, 1 define

αl = min{j ∈ N : jm ≡ d+ 1− l};

βl = min{j ∈ N : d+ jm ≡ l − 1}.

We want to show that either α1 < α0 or β1 < β0. Clearly, α0 6= α1, β0 6= β1 and αl, βl < (m+n),
l = 0, 1. Observe that (αl + βl)m ≡ 0, which implies that αl + βl = m + n for l = 0, 1. Since
(α1 − α0) + (β1 − β0) ≡ 0, we conclude that either α1 − α0 < 0 or β1 − β0 < 0.

Now we prove a lemma about absorption probabilities that was required in Section 3. Consider
a Markov chain on Z with the transition probabilities

Pij =



1 if i = j = 0,

pi if j = i− 1, |i| > 1,

qi if j = −i, |i| > 1,

0 otherwise

where pi, qi ∈ (0, 1) and pi + qi = 1 for all i ∈ Z \ {0}. This chain is irreducible, state 0 is the
only absorbing state. Let a(i) be the absorption probability starting from i.

Lemma A.2. For k ∈ N the absorption probabilities for the above Markov chain are given by

a(k) =
βkp−k +

∑∞
i=k βiq−i

1 +
∑∞

i=1 βiq−i
and a(−k) =

∑∞
i=k βiq−i

1 +
∑∞

i=1 βiq−i

where βk =
∏k
j=1

pi
p−i

.

In particular, a(i) = 1 for all i ∈ Z if and only if the series
∑∞

k=1 βkq−k diverges.
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Proof. Fix a large N ∈ N, and make the state −N into the absorbing state. Let aN (i), be
the probability starting from i (−N 6 i 6 N − 1) to reach state 0 before −N . Then for
k = 1, 2, . . . , N − 1 we have the system of equations

aN (k) = pkaN (k − 1) + qkaN (−k) (27)

aN (−k) = p−kaN (−k − 1) + q−kaN (k) (28)

Adding (27) and (28), simplifying, and incorporating the initial data aN (0) = 1, aN (−N) = 0
yields

aN (k)− aN (−k − 1) =
pk
p−k

(aN (k − 1)− aN (−k)) = . . .

= βk(aN (0)− aN (−1)) = βk(1− aN (−1)). (29)

Solving (28) for aN (k) and substituting into (29) we obtain

aN (−k − 1) = aN (−k)− βkq−k(1− aN (−1)),

which leads to the equation

aN (−k − 1) = aN (−1)− (1− aN (−1))
k∑
i=1

βiq−i.

Using the fact that aN (−N) = 0 we find that

aN (−1) =
∑N−1

i=1 βiq−i

1 +
∑N−1

i=1 βiq−i
,

and

aN (−k) =
∑N−1

i=k βiq−i

1 +
∑N−1

i=1 βiq−i
,

aN (k) =
βkp−k +

∑N−1
i=k βiq−i

1 +
∑N−1

i=1 βiq−i

Clearly, a(i) = limN→∞ aN (i), which implies the statement of the lemma.
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