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Abstract

Recently Bassan and Spizzichino (1999) have given some new concepts of multivariate
aging for exchangeable random variables, such as a special type of bivariate IFR, by comparing
distributions of residual lifetimes of dependent components of different ages. In the same vein,
we further study some properties of concepts of IFR in the bivariate case. Then we introduce
concepts of bivariate DMRL aging and we develop a treatment that parallels the one developed
for bivariate IFR. For both concepts of IFR and DMRL, we analyze a weak and a strong
version, and discuss some of the differences between them.
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1 Introduction

Univariate concepts of aging like IFR (increasing failure rate), NBU (new better than used),
DMRL (decreasing mean residual life) have played an important role in survival analysis,
reliability theory, maintenance policies, operations research and many other areas of applied
probability. They have also been found useful in getting bounds and inequalities on efficiencies
of estimates and tests.

A complex system usually consists of several components which are working under the
same environment and hence their lifetimes are, generally, dependent. In the literature several
attempts have been made to extend the concepts of univariate aging to the multivariate case.
Some important references are Brindley and Thompson (1972), Arjas (1981), Savits (1985),
Shaked and Shanthikumar (1988, 1991), Barlow and Mendel (1993), Barlow and Spizzichino
(1993) and Bassan and Spizzichino (1999), among others. In this paper we consider the case
when the lifetimes of the components have exchangeable joint probability distribution. We
introduce some new notions of multivariate aging and also further discuss the properties of
the ones recently introduced in the literature. We fix our attention only on the bivariate case,
though these ideas can be easily extended to the multivariate case. We shall be assuming that
the random variables under consideration are nonnegative. Absolute continuity will be tacitly
assumed whenever needed.

Both from the technical and conceptual point of view, the interest in the paper is concen-
trated on the conditional distributions of residual lifetimes, given different types of survival
data. In fact, these objects will play a central role both in the formulation of the different
definitions and in the interpretation of related results.

Before we go into the details, let us quickly review some common notions of univariate
positive aging and stochastic orderings of various kinds. We shall denote the density function,
the survival function and the hazard rate function of a univariate random variable X by fX ,
FX and rFX , respectively.

A random variable X is said to be stochastically larger than another random variable Y
(denoted by X ≥st Y ) if FX(x) ≥ F Y (x) for all x. A stronger notion of stochastic dominance
is that of hazard rate ordering. X is said to be larger than Y in hazard rate ordering (denoted
by X ≥hr Y ) if FX(x)/F Y (x) is non-decreasing in x. In the continuous case, this is equivalent
to rFX (x) ≤ rFY (x) ∀x. Finally, X is said to be larger than Y in likelihood ratio ordering
(denoted by X ≥lr Y ) if fX(x)/fY (x) is non-decreasing in x. In case X and Y have a common
left end-point of their supports, we have the following chain of implications among the above
stochastic orders: X ≥lr Y ⇒ X ≥hr Y ⇒ X ≥st Y .

Let X denote the lifetime of a unit with survival function F and let us denote by F t the
survival function of the residual life of a unit surviving at time t, that is,

F t(x) = P [X − t > x|X > t]

=
F (x+ t)
F (t)

.
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Let us denote by Xt, a random variable with survival function F t. A unit with survival
function F ages positively with time if the random variable Xt decreases with time t in some
stochastic sense. That is if,

Xt1 ≥∗ Xt2 ,

for all (t1, t2) in some region A ⊂ {(t1, t2)| 0 ≤ t1 < t2} where ≥∗ can be any of the above one-
dimensional stochastic orderings ≥st, ≥hr, ≥lr or the orderings of the means. Different concepts
of positive aging correspond to different regions A and different stochastic orders between Xt1

and Xt2 for (t1, t2) ∈ A (see the discussion in Spizzichino (2001)). For example, a random
variable X is NBU if and only if X ≥st Xt, ∀0 < t. Furthermore, a random variable X has IFR
distribution if and only if Xt1 ≥st Xt2 , ∀ t1 < t2 and also if and only if Xt1 ≥hr Xt2 , ∀ t1 < t2.

The mean residual life (MRL) of a unit or a subject at age t is the average remaining
life among those population members who have survived until time t. The mean residual life
function (MRLF) is defined as

µF (t) = E[Xt]

= E[X − t|X > t]

=
∫ ∞

0
F t(x) dx

=

∫∞
t F (x) dx
F (t)

.

Like the failure rate function, the MRLF can be used to describe conditional concepts of
aging; however, the MRLF is more intuitive, especially in the health sciences. The review
article by Guess and Proschan (1988) gives a nice summary of the theory of MRL and an
extensive bibliography.

In many applications it is reasonable to assume that the life system is monotonically degen-
erating. This concept has been modelled several ways, of which increasing failure rate (IFR)
is probably the most studied. The somewhat weaker version of decreasing mean residual life
(DMRL), which is implied by IFR, is perhaps more clear conceptually and is easier to explain
to the user.

A random variable X is said to have a DMRL (decreasing mean residual life) distribution if
µF (t) = E[Xt] is decreasing in t. Note that X is DMRL if and only if the function

∫∞
t F (x) dx

is log-concave in t. Kochar, Mukerjee and Samaniego (2000) consider the problem of estimating
the MRLF of a DMRL distribution.

A weaker concept of positive aging is that of new better than used in expectation (NBUE).
A random variable X is said to have NBUE distribution if

µF (t) ≤ µF (0) ∀ t > 0. (1.1)

See Barlow and Proschan (1981) and Deshpande, Kochar and Singh (1986) for the defini-
tions of other concepts of aging.

Let µFX (t) and µFY (t) denote the mean residual life functions of X and Y , respectively.
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Definition 1.1. X is said to be greater than Y according to mean residual life (MRL) ordering
(written as X ≥mrl Y ) if

µFX (t) ≥ µFY (t) ∀t ≥ 0

It is immediate to check that X ≥mrl Y if and only if∫∞
t F (x) dx∫∞
t G(x) dx

is nondecreasing in t.

Note that hazard rate ordering implies mean residual life ordering, but the converse is not
true. For more details on stochastic orderings, see Chapter 1 of Shaked and Shanthikumar
(1994).

The organization of the paper is as follows. In Section 2 we recall the concept of bivariate
IFR aging as introduced by Bassan and Spizzichino (1999) and study some of its new proper-
ties. In Section 3, we introduce the concept of bivariate DMRL distributions for exchangeable
random variables and study its properties. In the Appendix, we review some concepts of de-
pendence that are used in this paper and the readers, who are not familiar with this area, are
advised to read the Appendix before reading the next two sections.

2 Bivariate IFR property

Recalling that a random variable X has IFR distribution if and only if L(X − t1|X > t1) ≥st
L(X − t2|X > t2), ∀ t1 < t2 and also if and only if L(X − t1|X > t1) ≥hr L(X − t2|X >

t2) ∀ t1 < t2, Bassan and Spizzichino (1999) considered the following two extensions of the
concept of univariate IFR aging to the bivariate case.

Definition 2.1. An exchangeable random vector T = (T1, T2) is bivariate IFR (BIFR) if

L(T1 − t1|T1 > t1, T2 > t2) ≥st L(T2 − t2|T1 > t1, T2 > t2) for t1 ≤ t2. (2.1)

Definition 2.2. An exchangeable random vector T = (T1, T2) is said to be bivariate IFR in
the strong sense (s-BIFR) if

L(T1 − t1|T1 > t1, T2 > t2) ≥hr L(T2 − t2|T1 > t1, T2 > t2) for t1 ≤ t2. (2.2)

Notice that (2.1) holds if and only if the joint survival function F (t1, t2) = P[T1 > t1, T2 > t2]
of (T1, T2) is Schur-concave in (t1, t2). For details on Schur-concavity, see Marshall and Olkin
(1979); see also the discussion in Spizzichino (2001) and references therein for the use of Schur-
concavity in multivariate aging.

On the other hand, (T1, T2) is s-BIFR if and only if

R(t) =
F (x+ t, y)
F (y + t, x)

is increasing in t for x < y. (2.3)
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Taking logs and then differentiating both sides, we see that this is equivalent to

rT1|T2
(y + t|T2 > x) ≥ rT1|T2

(x+ t|T2 > y) for t > 0 and 0 ≤ x < y, (2.4)

where rT1|T2
(.|T2 > t2) denotes the hazard rate of the conditional distribution of T1 given

{T2 > t2}.
Unless the random variables T1 and T2 are independent, the two concepts of multivariate

aging as given by Definitions 2.1 and 2.2 are not equivalent. The latter implies the former, but
the converse is not true; see the example presented in Remark 3.6 of Bassan and Spizzichino
(1999), where some properties of these bivariate notions of aging have been studied in detail.

The first aspect that we focus on concerns the (unidimensional) aging properties of the
marginal distributions of the considered bivariate distributions. As it was observed in Bassan
and Spizzichino (1999), the marginals of a BIFR random vector need not be IFR unless the
component lifetimes are independent. They show that, however, under some negative depen-
dence between the components, the marginal distributions are NBU. In the next theorem we
prove that under a suitable negative dependence condition between T1 and T2, the marginals
of s-BIFR random vectors are IFR.

Theorem 2.1. Let (T1, T2) be s-BIFR and let T1 be right tail decreasing in T2. Then the
marginal distribution of T1 is IFR.

Proof. Since (T1, T2) being s-BIFR is equivalent to (2.4), taking x = 0 in it, we get for y >
0 , t > 0,

rT1(y + t) ≥ rT1|T2
(t|T2 > y)

≥ rT1(t) by the RTD property.

This proves the required result.

Now we give an example of an s-BIFR distribution which satisfies the conditions of the
above theorem.

Example 2.1. Let the joint distribution of (T1, T2) be

F (x, y) = exp{1− exp(x2 + y2)} x ≥ 0, y ≥ 0. (2.5)

It is easy to see that

R(t) =
F (x+ t, y)
F (y + t, x)

= exp{ex2+(y+t)2 − ey2+(x+t)2}

is increasing in t for x ≤ y. Hence (T1, T2) is s-BIFR.
Also T1 is right tail decreasing in T2 since

F (t, y)
F (t, 0)

= exp[et
2 − et2+y2

] (2.6)
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is clearly decreasing in t for y > 0.
Hence this bivariate distribution satisfies the conditions of the above theorem. It is s-BIFR

and its marginals are also IFR.

An interesting fact in the literature and in applications of unidimensional aging notions
(see e.g. the review by paper Shaked and Spizzichino (2001) and references therein; for a
recent contribution, see Finkelstein and Esaulova (2001)) is that mixtures of distributions with
some property of positive aging do not necessarily maintain the same property. Then one can
be generally interested in finding conditions on the mixtures under which one-dimensional or
multivariate aging properties are preserved.

We consider here conditionally i.i.d pairs of lifetimes. In this case, both the joint law and
the marginal law can be written as mixtures. It may be interesting to notice that bivariate
aging properties may be preserved under mixtures, whereas the opposite may hold for one-
dimensional properties. For example, consider two i.i.d. IFR lifetimes. All the conditional
joint laws are Schur-concave (BIFR), and hence so is the unconditional joint law, since Schur-
concavity is preserved under mixtures (see Barlow and Mendel (1992) for a discussion on this
issue). On the other hand, the marginal law is a mixture of IFR laws, and hence it need not
be IFR.

In the next theorem we give sufficient conditions under which the joint law of conditionally
i.i.d. IFR random variables is s-BIFR. First, since we shall deal repeatedly with conditionally
i.i.d. random variables, we single out the relevant assumptions and notations.

Hypotheses 2.1. Θ is a random variable taking values in a set L, Π is its (prior) distribution
and, when existing, π is its (prior) density. Given Θ, T1 and T2 are conditionally i.i.d. random
variables with a common conditional survival function G(·|θ). The joint survival function is
then given by

F (t1, t2) =
∫
L
G(t1|θ)G(t2|θ)dΠ (θ) . (2.7)

Theorem 2.2. Let Hypotheses 2.1 be satisfied, with L ⊂ R. Assume also the following:

1. the mapping (t, θ) 7→ Ḡ(t|θ) is log-concave (this implies, in particular, that all the condi-
tional laws are IFR) and TP2.

2. the mixing distribution Π has a log-concave density π

Then, for t1 < t2, and letting D = {T1 > t1, T2 > t2}, we have

L (T1 − t1|D) ≥hr L (T2 − t2|D) .

For the proof, we prefer to single out two simple lemmas which will be helpful in the next
section as well.
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Lemma 2.1. Let

• (x, z) 7→ φ (x, z) be (jointly) log-concave and TP2

• (x, y) 7→ ψ (x, y) be TP2

• z 7→ ψ (y, z) be log-concave, ∀ y

• z 7→ h (z) be log-concave

Then

1. (x, y) 7→ ψ (x, y)h (y) is TP2

2. (x, z) 7→ φ (x, z)ψ (y, z)h (z) is log-concave, ∀ y

3. (x, y) 7→
∫
φ (x, z)ψ (y, z)h (z) dz is TP2

4. x 7→
∫
φ (x, z)ψ (y, z)h (z) dz is log-concave, ∀ y.

Proof. It is a simple matter to check that the first and the second claim hold. The third claim
follows from the basic composition formula (Karlin (1968)), and the fourth one from Prékopa’s
Theorem (Prékopa (1973)).

Lemma 2.2. Let (x, y) 7→ H (x, y) be TP2, and let x 7→ H (x, y) be log-concave, ∀ y. Then,
for x < y, the mapping

t 7→ R (t;x, y) :=
H (x+ t, y)
H (y + t, x)

is increasing.

Proof. Write R (t, x, y) = R1(t, x, y)R2(t, x, y), with

R1(t, x, y) =
H(x+ t, y)
H (y + t, y)

, R2 (t, x, y) =
H (y + t, y)
H (y + t, x)

.

We will show that R1 and R2 are increasing in t. In fact, R1 is increasing because z 7→ H(z, y)
is log-concave for every y. Furthermore, from the TP2 property of H we get

H (y + t+ a, x)H (y + t, y) ≤ H (y + t, x)H (y + t+ a, y) ,

and it follows immediately than R2 is increasing.

Proof of Theorem 2.2. Let φ(x, θ) = ψ(x, θ) = Ḡ(x|θ), let h = π and let H be the joint survival
function:

H (t1, t2) := F̄ (t1, t2) =
∫
Ḡ(t1|θ)Ḡ(t2|θ)π(θ)dθ.

We see that φ, ψ and h satisfy the conditions of Lemma 2.1, and hence H satisfies the conditions
of Lemma 2.2. It follows that

t 7→ F̄ (t1 + t, t2)
F̄ (t2 + t, t1)

is increasing, and the claim follows.
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Remark 2.1. The conditions of Theorem 2.2 guarantee that the marginals are IFR, as one can
easily check using Prékopa’s Theorem. These conditions are similar to those of Lynch (1999)
for a mixture of IFR distributions to be IFR. In this respect we also notice the following:

In the case when T1, T2 are conditionally i.i.d. given Θ, the condition (2.2) can be rewritten
in the form

∫
L

G(t1 + r + τ |θ)
G(t1 + r|θ)

π(θ|T1 > t1 + r, T2 > t2)dθ ≥∫
L

G(t2 + r + τ |θ)
G(t2 + r|θ)

π(θ|T1 > t1, T2 > t2 + r)dθ,∀ 0 < t1 < t2, and r, τ > 0

where we let
π(θ|T1 > t1 + r, T2 > t2) ∝ π (θ)G(t1 + r|θ)G(t2|θ),

which, by Bayes Formula, can be interpreted as the conditional distribution of Θ, given the
observation of the survival data

{T1 > t1 + r, T2 > t2}.

Analogously for π(θ|T1 > t1, T2 > t2 + r).
Notice, on the other hand, that the condition that the marginal distribution of T1, T2 be

IFR can be rewritten in the form∫
L

G(t1 + τ |θ)
G(t1|θ)

π(θ|T1 > t1)dθ ≥
∫
L

G(t2 + τ |θ)
G(t2|θ)

π(θ|T1 > t2)dθ.

3 Bivariate DMRL property

In this section we introduce a weak and a strong notion of bivariate DMRL aging, in analogy
with Definitions 2.1 and 2.2. A natural way to do so is to take into account the conditional
mean residual life function given an observed bivariate survival data. A first, natural, definition
in this vein is as follows.

Definition 3.1. An exchangeable random vector T = (T1, T2) is said to have bivariate DMRL
(BDMRL) distribution if for t1 < t2,

E[T1 − t1|T1 > t1, T2 > t2] ≥ E[T2 − t2|T1 > t1, T2 > t2] (3.1)

Note that (T1, T2) is BDMRL if and only if one (and hence all) of the following equivalent
conditions holds:

∫ ∞
t1

F (x, t2) dx ≥
∫ ∞
t2

F (x, t1) dx for t1 < t2∫ ∞
t1

∫ ∞
t2

F (x, y) dx dy is Schur-concave in (t1, t2),

µT1|T2
(t1|T2 > t2) ≥ µT1|T2

(t2|T2 > t1) for t1 < t2,

8



where µT1|T2
(·|T2 > t2) denotes the mean residual life function of the conditional distribution

of T1 given {T2 > t2}.
Since stochastic ordering implies the ordering of the means, it follows immediately that

bivariate IFR property implies bivariate DMRL property.
Note that for a univariate random variable X, the mean residual life µt(x) of Xt at time x

satisfies the relation µt(x) = µF (t+ x).
Therefore, X is DMRL

⇔ µF (x) is decreasing in x

⇔ µt(x) is decreasing in x,∀ t ≥ 0,

⇔ L(X − t1|X > t1) ≥mrl L(X − t2|X > t2) ∀ t1 < t2.

Then, in the case of i.i.d variables T1, T2, the condition that they are DMRL is equivalent
to

L(T1 − t1|T1 > t1, T2 > t2) ≥mrl L(T2 − t2|T1 > t1, T2 > t2) ∀ t1 < t2. (3.2)

Similarly to what we argued for the bivariate extension of the notion of IFR, notice now
that the equivalence between (3.1) and (3.2) is not anymore valid in the case when T1, T2 are
exchangeable, but not independent variables.

This encourages us to propose the following stronger notion of bivariate DMRL property.

Definition 3.2. We say that an exchangeable random vector (T1, T2) is bivariate DMRL in
the strong sense (s-BDMRL) if for all t1 < t2, the inequality (3.2) holds.

Note that (T1, T2) is s-BDMRL if and only if one (and hence both) of the following equivalent
conditions hold:

µT1|T2
(x+ t1|T2 > t2) ≥ µT1|T2

(x+ t2|T2 > t1) for t1 < t2 and for x > 0∫∞
x+t1

F (u, t2) du∫ ∈fty
x+t2

F (u, t1) du
is increasing in x > 0.

In the following example we show a bivariate law which is BDMRL but not s-BDMRL.

Example 3.1. Let
F T1,T2(u, v) ∝ [1 + u3 + v3]−2

It is easy to check that this survival function is Schur- concave. Thus the joint law is BIFR,
and hence it is BDMRL. In order to see whether it is s-BDMRL, we have to examine whether∫∞

x+t1
F (u, t2) du∫ y

x+t2
F (u, t1) du

=

∫∞
x+1[65 + u3]−2 du∫∞
x+4[2 + u3]−2 du

is increasing in x. On examining the plot of this function, we see that it is not monotone. Hence
this distribution is not s-BDMRL. Since≥hr implies ≥mrl, this distribution is not s-BIFR either.
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In the next theorem we give sufficient conditions for bivariate s-DMRL property.

Theorem 3.1. Let

(a)µT1|T2
(x|T2 > y) be increasing in y for every x > 0, and;

(b) µT1|T2
(x|T2 > y) be decreasing in x for every y > 0

(that is, T1 is conditionally DMRL for every given T2 > y).

Then (T1, T2) is s-DMRL.

Proof. For t1 < t2 and x > 0,

µT1|T2
(x+ t1|T2 > t2) ≥ µT1|T2

(x+ t2|T2 > t2) by (b)

≥ µT1|T2
(x+ t2|T2 > t1) by (a).

This proves the required result.

In the next theorem we show that under a certain type of negative dependence between the
variables, the marginal distributions of a bivariate DMRL vector are NBUE.

Theorem 3.2. Let (T1, T2) be bivariate DMRL and be negatively dependent in the sense that

E(T1|T2 > t) ≤ E(T1) ∀ t > 0. (3.3)

Then the marginal distribution of T1 is NBUE.

Proof. (T1, T2) being DMRL is equivalent to

µT1|T2
(t2|T2 > t1) ≤ µT1|T2

(t1|T2 > t2) for t1 < t2. (3.4)

Taking t1 = 0 in it, we get, for t2 > 0,

µT1(t2) ≤ µT1|T2
(0|T2 > t2)

= E(T1|T2 > t2)

≤ E(T1) by (3.3) .

Hence T1 is NBUE.

Remark 3.1. The condition (3.3) is implied by negative quadrant dependence between T1 and
T2.

In the next theorem we give sufficient conditions under which the marginals of a multivariate
s-DMRL distribution are DMRL.
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Theorem 3.3. Let (T1, T2) be s-DMRL and let

µT1|T2
(x|T2 > y) ≤ µT1(x) ∀x, y > 0. (3.5)

Then the marginal distribution of T1 is DMRL.

Proof. (T1, T2) being s-DMRL is equivalent to

µT1|T2
(x+ t2|T2 > t1) ≤ µT1|T2

(x+ t1|T2 > t2) for t1 < t2 and for x > 0

Taking t1 = 0 in it, we get,

µT1|T2
(x+ t2|T2 > 0) ≤ µT1|T2

(x|T2 > t2) for t1 < t2 and for x > 0

That is, for x ≥ 0, t2 ≥ 0,

µT1(x+ t2) ≤ µT1|T2
(x|T2 > t2)

≤ µT1(x) by (3.5),

proving thereby that the distribution of T1 is DMRL.

We now turn to consider the BDMRL and s-BDMRL properties for the case of conditionally
i.i.d variables. First, we show that conditionally i.i.d. DMRL random variables are bivariate
DMRL.

Theorem 3.4. Let T1 and T2 be conditionally i.i.d., as specified in Hypotheses 2.1. Let the
conditional law of T1 (and T2) given Θ = θ be DMRL, for all θ. Then the joint distribution of
(T1, T2) is bivariate DMRL.

Proof. As seen earlier, conditionally on Θ = θ, T1 is DMRL iff∫ ∞
t

G(x|θ) dx is log- concave in t.

Recalling (2.7), we have∫ ∞
t1

∫ ∞
t2

F (x, y) dx dy =
∫ ∞
t1

∫ ∞
t2

[∫
θ∈L

G(x|θ)G(y|θ) dΠ(θ)
]
dx dy

=
∫
θ∈L

[∫ ∞
t1

∫ ∞
t2

G(x|θ)G(y|θ)dx dy
]
dΠ(θ).

Since this expression is a mixture of log-concave functions, it is Schur-concave. Hence the
result.

In the next theorem we establish conditions under which conditionally i.i.d. DMRL random
variables are bivariate DMRL in the strong sense.

Theorem 3.5. Let T1 and T2 be conditionally i.i.d., as specified in Hypotheses 2.1, with L ⊂ R
and Π admitting a density π. We assume the following:
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•
∫∞
x G(ξ|θ)dξ is jointly log-concave in θ and x (and hence, in particular, G(·|θ) is DMRL
∀ θ).

• G(v|θ) is TP2 and log- concave as a function of θ

• π(θ) is log-concave.

Then the joint distribution of (T1, T2) is bivariate s-DMRL.

Proof. Let F̄ be the joint survival function and let

H(t1, t2) :=
∫ ∞
t1

F̄ (u, t2)du.

Clearly,

H(t1, t2) =
∫ ∞
t1

[∫
L
Ḡ(u|θ)Ḡ(t2|θ)π(θ)dθ

]
du

=
∫
L

[∫ ∞
t1

Ḡ(u|θ)du
]
Ḡ(t2|θ)π(θ)dθ

We need to show that, for t1 < t2,

t 7→ H(t1 + t, t2)
H(t2 + t, t1)

is increasing.
Let

φ(x, θ) :=
∫ ∞
x

Ḡ(u|θ)du; ψ(x, θ) = Ḡ(x|θ); h = π.

Observe that (t1, ξ) 7→ 1(t1,∞)(ξ) is TP2, and hence by the basic composition formula φ is also
TP2. Thus φ, ψ and h satisfy the conditions of Lemma 2.1, and hence H satisfies the conditions
of Lemma 2.2 and the conclusion follows.

4 Appendix

Some notions of dependence

There are several notions of positive and negative dependence between random variables and
these have been discussed in detail in Barlow and Proschan (1981) and Shaked (1977). For a
brief introduction, see Khaledi and Kochar (2000). The following concepts are used in this
paper.

Let (T1, T2) be a bivariate random variable with joint density function f(t1, t2) and joint
survival function F (t1, t2) = P [T1 > t1, T2 > t2].
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Definition 4.1. (T1, T2) is said to be positively quadrant dependent (PQD) if

{T1|T2 > t2} ≥st T1 ∀ t2 > 0, (4.1)

and negatively quadrant dependent (NQD) if the inequality is reversed in (4.1).

Definition 4.2. (T1, T2) is said to be right corner set increasing (RCSI) if

{T1|T2 > t2} ≥hr {T1|T2 > t1} ∀ t1 < t2 (4.2)

⇔ F (t1, t2)is TP2 in (t1, t2).

⇔ rT1|T2
(t1|T2 > t2) decreasing in t2 ∀ t1 > 0.

Shaked (1977) calls this dependence as DTP (1, 1) also. If the inequality is reversed in (4.2),
we say that (T1, T2) is right corner set decreasing (RCSD).

Definition 4.3. T2 is said to be right tail increasing (RTI) in T1 if

{T1|T2 > t2} ≥hr T1 ∀ t2 > 0 (4.3)

⇔ F (t1, t2)
F (t1)

is increasing in t1∀ t2 > 0

⇔ P [T2 > t2|T1 > t1] is increasing in t1∀ t2 > 0.

If the inequality is reversed in (4.3), we say that T2 is right tail decreasing (RTD) in T1.

Definition 4.4. (T1, T2) are dependent by total positivity of order (2, 1)
( DTP (2, 1)) if ∫ ∞

t
F (x, y) dx is TP2 in (t, y)

⇔ µT1|T2
(t1|T2 > t2) increasing in t2 ∀ t1 > 0. (4.4)

If µT1|T2
(t1|T2 > t2)is decreasing in t2 ∀ t1 > 0 the variables are negatively dependent and (T1, T2)

are said to be DRR(2, 1).

We have the following implications among the above concepts of positive dependence.

DTP (2, 1)⇐ RCSI ⇒ RTI ⇒ PQD

Similar implications hold among the above concepts of negative dependence.
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