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Abstract

In this paper we review some of the results obtained recently in the area of stochastic
comparisons of order statistics and sample spacings. We consider the cases when the parent
observations are identically as well as non-identically distributed. But most of the time we shall
be assuming that the observations are independent. The case of independent exponentials with
unequal scale parameters is discussed in detail.

1 Introduction

The simplest and the most common way of comparing two random variables is through their
means and variances. It may happen that in some cases the median of X is larger than that
of Y , while the mean of X is smaller than the mean of Y . However, this confusion will not
arise if the random variables are stochastically ordered. Similarly, the same may happen if one
would like to compare the variability of X with that of Y based only on numerical measures
like standard deviation etc. Besides, these characteristics of distributions might not exist in
some cases. In most cases one can express various forms of knowledge about the underlying
distributions in terms of their survival functions, hazard rate functions, mean residual functions,
quantile functions and other suitable functions of probability distributions. These methods are
much more informative than those based only on few numerical characteristics of distributions.
Comparisons of random variables based on such functions usually establish partial orders among
them. We call them as stochastic orders.
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Stochastic models are usually sufficiently complex in various fields of statistics, particu-
larly in reliability theory. Obtaining bounds and approximations for their characteristics is of
practical importance. That is, the approximation of a stochastic model either by a simpler
model or by a model with simple constituent components might lead to convenient bounds
and approximations for some particular and desired characteristics of the model. The study
of changes in the properties of a model, as the constituent components vary, is also of great
interest. Accordingly, since the stochastic components of models involve random variables, the
topic of stochastic orders among random variables plays an important role in these areas.

Order statistics and spacings are of great interest in many areas of statistics and they have
received a lot of attention from many researchers. Let X1, . . . , Xn be n random variables.
The ith order statistic, the ith smallest of Xi’s, is denoted by Xi:n. A k-out-of-n system of n
components functions if at least k of n components function. The time of a k-out-of-n system
of n components with life times X1, . . . , Xn corresponds to the (n − k + 1)th order statistic.
Thus, the study of lifetimes of k-out-of-n systems is equivalent to the study of the stochastic
properties of order statistics. Spacings, the differences between successive order statistics, and
their functions are also important in statistics, in general, and in particular in the context of
life testing and reliability models. Lot of work has been done in the literature on different
aspects of order statistics and spacings. For a glimpse of this, see the books by David (1981),
and Arnold, Balakrishnan and Nagaraja (1992); and two volumes of papers on this topic by
Balakrishnan and Rao (1998 a and b). But most of this work has been confined to the case
when the observations are i.i.d. In many practical situations, like in reliability theory, the
observations are not necessarily i.i.d. Because of the complicated nature of the problem, not
much work has been done for the non i.i.d. case. Some references for this case are Sen (1970),
David (1981, p.22), Shaked and Tong (1984), Bapat and Beg (1989), Boland et al. (1996),
Kochar (1996), and Nappo and Spizzichino (1998), among others.

Some interesting partial ordering results on order statistics and spacings from independent
but non-identically random variables have been obtained by Pledger and Proschan (1971),
Proschan and Sethuraman (1976), Bapat and Kochar (1994), Boland, El-Neweihi, and Proschan
(1994 ), Kochar and Kirmani (1995), Kochar and Korwar (1996), Kochar and Rojo (1996),
Dykstra, Kochar, and Rojo (1997), Kochar and Ma (1999), Bon and Paltanea (1999), Kochar
(1999), Khaledi and Kochar (1999), Khaledi and Kochar (2000 a,b,c), and Khaledi and Kochar
(2001).

In this chapter, we discuss some newly obtained results on stochastic comparisons of order
statistics and spacings. Kochar (1998) and Boland, Shaked and Shanthikumar (1998) have given
comprehensive reviews on this topic upto 1998. In Section 2, we introduce the required notation
and definitions. Section 3 and 4 are devoted to stochastic comparisons of order statistics in one-
sample and two-sample problems, respectively. In Sections 5, we discuss the stochastic ordering
among spacings in one-sample problem and two sample problem. Section 6 is devoted to
stochastic properties of sample range Throughout this chapter increasing means nondecreasing
and decreasing means nonincreasing; and we shall be assuming that all distributions under
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study are absolutely continuous.

2 Definitions

Let X and Y be univariate random variables with distribution functions F and G, survival
functions F and G, density functions f and g; and hazard rates rF (= f/F ) and rG (= g/G),
respectively. Let lX (lY ) and uX (uY ) be the left and the right endpoints of the support of
X (Y ).

Stochastic orderings

Definition 2.1 X is said to be stochastically smaller than Y (denoted by X ≤st Y ) if F (x) ≤
G(x) for all x.

This is equivalent to saying that Eg(X) ≤ Eg(Y ) for any increasing function g for which
expectations exist.

Definition 2.2 X is said to be smaller than Y in hazard rate ordering (denoted by X ≤hr Y )
if G(x)/F (x) is increasing in x ∈ (−∞, max(uX , uY )).

It is worth noting that X ≤hr Y is equivalent to the inequalities

P [X − t > x|X > t] ≤ P [Y − t > x|Y > t], for all x ≥ 0 and t.

In other words, the conditional distributions, given that the random variables are at least of a
certain size, are all stochastically ordered (in the standard sense) in the same direction. Thus,
if X and Y represent the survival times of different models of an appliance that satisfy this
ordering, one model is better (in the sense of stochastic ordering) when the appliances are new,
the same appliance is better when both are one month old, and in fact is better no matter how
much time has elapsed. It is clearly useful to know when this strong type of stochastic ordering
holds since quantities judgements are then easy to make. In case the hazard rates exist, it is
easy to see that X ≤hr Y , if and only if, rG(x) ≤ rF (x) for every x. The hazard rate ordering
is also known as uniform stochastic ordering in the literature.

Definition 2.3 X is said to be smaller than Y in likelihood ratio ordering (denoted by X ≤lr
Y ) if g(x)/f(x) is increasing in x ∈ (lX , uX) ∪ (lY , uY ).

When the supports of X and Y have a common left end-point, we have the following chain of
implications among the above stochastic orders :

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (2.1)

Definition 2.4 The random vector X = (X1, . . . , Xn) is smaller than the random vector Y =

(Y1, . . . , Yn) in the multivariate stochastic order (denoted by X
st
� Y) if h(X) ≤st h(Y) for all

increasing functions h.
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It is easy to see that multivariate stochastic ordering implies component-wise usual stochas-
tic ordering. For more details on stochastic orderings, see Chapters 1 and 4 of Shaked and
Shanthikumar (1994).

One of the basic criteria for comparing variability in probability distributions is that of
dispersive ordering. Let F−1 and G−1 be the right continuous inverses (quantile functions)
of F and G, respectively. We say that X is less dispersed than Y (denoted by X ≤disp Y ) if
F−1(β)− F−1(α) ≤ G−1(β)−G−1(α), for all 0 ≤ α ≤ β ≤ 1. From this one can easily obtain
that

X ≤disp Y ⇐⇒ g(x) ≤ f
(
F−1G(x)

)
∀ x, (2.2)

when the random variables X and Y admit densities. A consequence of X ≤disp Y is that
|X1 −X2| ≤st |Y1 − Y2| and which in turn implies var(X) ≤ var(Y ) as well as E[|X1 −X2|] ≤
E[|Y1 − Y2|], where X1, X2 (Y1, Y2) are two independent copies of X (Y ). For details, see
Saunders and Moran (1978), Lewis and Thompson (1981), Deshpande and Kochar (1983), Bagai
and Kochar (1986), Bartoszewicz (1986, 1987); and Section 2.B of Shaked and Shanthikumar
(1994).

Notions of Majorization and related orderings

One of the basic tools in establishing various inequalities in statistics and probability is the
notion of majorization.

Let {x(1) ≤ x(2) ≤ . . . ≤ x(n)} denote the increasing arrangement of the components of the
vector x = (x1, x2, . . . , xn).

Definition 2.5 The vector x is said to majorize the vector y (written x
m
� y) if

∑j
i=1 x(i) ≤∑j

i=1 y(i) for j = 1, . . . , n− 1 and
∑n
i=1 x(i) =

∑n
i=1 y(i).

Functions that preserve the majorization ordering are called Schur-convex functions. The
vector x is said to majorize the vector y weakly (written x

w
� y) if

∑j
i=1 x(i) ≤

∑j
i=1 y(i) for

j = 1, . . . , n. Marshall and Olkin (1979) provides extensive and comprehensive details on the
theory of majorization and its applications in statistics.

Recently Bon and Paltanea (1999) have considered a pre-order on IR+n, which they call as
a p-larger order.

Definition 2.6 A vector x in IR+n is said to be p-larger than another vector y also in IR+n

(written x
p
� y) if

∏j
i=1 x(i) ≤

∏j
i=1 y(i), j = 1, . . . , n.

Let log(x) denote the vector of logarithms of the coordinates of x. It is easy to verify that

x
p
� y⇔ log(x)

w
� log(y). (2.3)

It is known that x
m
� y =⇒ (g(x1), . . . , g(xn))

w
� (g(y1), . . . , g(yn)) for all concave functions g

(cf. Marshal and Olkin, 1979, p. 115). From this and (2.3), it follows that when x,y ∈ IR+n

x
m
� y =⇒ x

p
� y.
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The converse is, however, not true. For example, the vectors (0.2, 1, 5)
p
� (1, 2, 3) but majoriza-

tion does not hold between these two vectors.

Notions of Aging

Let X be a random variable with distribution function F and let Xt denote a random
variable with the same distribution as that of X − t|X > t. We will use the following notions
of aging in this article.

(a) X is said to have an increasing failure rate (denoted by IFR) distribution if Xt ≤st Xt′ ,
for t > t′. This is equivalent to saying that F (x+ t)/F (t) decreasing in t for x > 0. It is
easy to see that in case the random variable X admits density, F is IFR if and only if,
the hazard rate rF (t) = f(t)/F (t) is increasing in t.

(b) X is said to have a decreasing failure rate (denoted by DFR) distribution if Xt ≥st Xt′ ,
for t > t′. This is equivalent to F (x+ t)/F (t) increasing in t for x > 0.

Next theorem due to Bagai and Kochar (1986) and Bartoszewicz (1987) establishes a con-
nection between dispersive ordering and hazard rate ordering.

Theorem 2.1 Let X and Y be random variables with distribution function F and G, respec-
tively. Then,

(a) X ≤hr Y and F or G being DFR implies X ≤disp Y ;

(b) X ≤disp Y and F or G being IFR implies X ≤hr Y .

3 Stochastic Comparisons of Order Statistics in one-sample

problem

Let X1, . . . , Xn be a set of independent random variables. It is easy to see that Xi:n ≤st Xj:n,
for all i < j. Boland, El-Neweihi and Proschan (1994) extended this result from usual stochastic
order to hazard rate order. Using the definition of likelihood ratio ordering, it is not hard to
prove that Xi:n ≤lr Xj:n for i < j. Shaked and Shanthikumar (1994) considered the problem
of comparing order statistics from samples with possibly unequal sample sizes. They showed
that if random variables Xi’s are iid, then Xn:n ≤lr Xn+1:n+1 and X1:n ≥lr X1:n+1. Raqab
and Amin (1996) strengthened this result and proved that Xi:n ≤lr Xj:m, whenever i ≤ j and
n − i ≥ m − j. Using implications (2.1), we get, for i ≤ j and n − i ≥ m − j, Xi:n ≤hr Xj:m

which in turn implies that Xi:n ≤st Xj:m. Removing the identically distributed assumption, it
is interesting to investigate the above stochastic inequalities among order statistics. Boland,
El-Neweihi and Proschan (1994) showed that if random variables are independent and Xk ≤hr
Xn+1, k = 1, . . . , n, then Xi−1:n ≤hr Xi:n+1, i = 1, . . . , n + 1. They also proved that if Xi’s
are independent and Xn+1 ≤hr Xk, k = 2, . . . , n, then Xi:n ≥hr Xi:n+1, i = 1, . . . , n. The
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reader may be wondering whether likelihood ratio ordering among order statistics holds for
the case when Xi’s are independent but not necessarily identically distributed. Assuming
X1 ≤lr X2 ≤lr . . . ≤lr Xn, Bapat an Kochar (1994) proved that Xi:n ≤lr Xj:n, i < j.

We end this section by discussing some results on dispersive ordering of order statistics.
David and Groenveld (1982) proved that if Xi’s are iid random variables with a common DFR
distribution, then var(Xi:n) ≤ var(Xj:n), for i < j. Kochar (1996) strengthened this result to
prove that under the same conditions, Xi:n ≤disp Xj:n, i < j. In Theorem 3.2 below, due to
Khaledi and Kochar (2000 a), this result has been further extended. It is proved that if Xi’s
are iid with DFR distribution, then Xi:n ≤disp Xj:m, whenever i ≤ j and n − i ≥ m − j. We
will find the following result useful in proving it.

Theorem 3.1 (Saunders (1984)). The random variable X satisfies X ≤disp X + Y. for any
random variable Y independent of X if and only if X has a log-concave density.

Using Theorem 3.1, first the result is proved for exponential distribution.

lemma 3.1 Let Xi:n be the ith order statistic of a random sample of size n from an exponential
distribution. Then

Xi:n ≤disp Xj:m for i ≤ j and n− i ≥ m− j. (3.1)

Proof : Suppose we have two independent random samples, X1, . . . , Xn and X
′
1, . . . , X

′
m of

sizes n and m from an exponential distribution with failure rate λ. The ith order statistic Xi:n

can be written as a convolutions of the sample spacings as

Xi:n = (Xi:n −Xi−1:n) + · · ·+ (X2:n −X1:n) +X1:n

dist=
i∑

k=1

En−i+k (3.2)

where for k = 1, . . . , i, En−i+k is an exponential random variable with failure rate (n− i+k)λ.
It is a well known fact that En−i+k’s are independent. Similarly we can express X

′
j:m as

X
′
j:m

dist=
j∑

k=1

E
′
m−j+k (3.3)

where again for k = 1, . . . , j, E
′
m−j+k is an exponential random variable with failure rate

(m − j + k)λ and E
′
m−j+k’s are independent. It is easy to verify that En−i+1 ≤disp E

′
m−j+1

for n− i ≥ m− j.
Since the class of distributions with log-concave densities is closed under convolutions (cf.

Dharmadhiakri and Joag-dev (1988), p. 17), it follows from the repeated applications of The-
orem 3.1 that

i∑
k=1

En−i+k ≤disp
i∑

k=1

E
′
m−j+k. (3.4)
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Again since
∑j
k=i+1E

′
m−j+k, being the sum of independent exponential random variables has

a log-concave density and since it is independent of
∑i
k=1E

′
n−i+k, it follows from Theorem 3.1

that the R.H.S of (3.4) is less dispersed than
∑j
k=1E

′
m−j+k for i ≤ j . That is,

Xi:n
dist=

i∑
k=1

En−i+k ≤disp
j∑

k=1

E
′
m−j+k

dist= X
′
j:m.

Since Xj:m and X
′
j:m are stochastically equivalent, (3.1) follows from this.

The proof of the next lemma can be found in Bartoszewicz (1987).

lemma 3.2 Let φ : R+ → R+ be a function such that φ(0) = 0 and φ(x) − x is increasing.
Then for every convex and strictly increasing function ψ : R+ → R+ the function ψφψ−1(x)−x
is increasing.

In the next theorem we extend Lemma 3.1 to the case when F is a DFR distribution.

Theorem 3.2 Let Xi:n be the ith order statistic of a random sample of size n from a DFR
distribution F . Then

Xi:n ≤disp Xj:m for i ≤ j and n− i ≥ m− j.

Proof : The distribution function of Xj:m is Fj:m(x) = Bj:mF (x), where Bj:m is the distri-
bution function of the beta distribution with parameters (j,m− j + 1).

Let G denote the distribution function of a unit mean exponential random variable. Then
Hj:m(x) = Bj:mG(x) is the distribution function of the jth order statistic in a random sample
of size m from a unit mean exponential distribution. We can express Fj:m as

Fj:m(x) = Bj:mGG
−1F (x)

= Hj:mG
−1F (x). (3.5)

To prove the required result, we have to show that for i ≤ j and n− i ≥ m− j,

F−1
j:mFi:n(x)− x is increasing in x

⇔ F−1GH−1
j:mHi:nG

−1F (x)− x is increasing in x. (3.6)

By Lemma 3.1, H−1
j:mHi:n(x) − x is increasing in x for i ≤ j and n − i ≥ m − j. Also the

function ψ(x) = F−1G(x) is strictly increasing and it is convex if F is DFR. The required
result now follows from Lemma 3.2.
Remark: A consequence of Theorem 3.2 is that if we have random samples from a DFR
distribution, then

Xi:n+1 ≤disp Xi:n ≤disp Xi+1:n+1, for i = 1, . . . , n.
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4 Stochastic Comparisons of Order Statistics in two-sample

problem

Let X1, . . . , Xn be a set of independent random variables and Y1, . . . , Yn be another set of
independent random variables. Ross (1983) proved that if Xi ≤st Yi, i = 1, . . . , n, then
(X1, . . . , Xn) ≤st (Y1, . . . , Yn). A consequence of this result is that Xi:n ≤st Yi:n for i =
1, . . . , n. Lynch, Mimmack and Proschan (1987) generalized this result from stochastic ordering
to hazard rate ordering. They showed that if Xi ≤hr Yj , i, j ∈ {1, . . . , n}, then Xi:n ≤hr Yi:n,
i = 1, . . . , n. A similar result for likelihood ratio ordering has been proved by Chan, Proschan
and Sethuraman (1991). They proved that if Xi ≤lr Yj , i, j ∈ {1, . . . , n}, then Xi:n ≤lr Yi:n,
i = 1, . . . , n. Lillo, Nanda and Shaked (2000) strengthened this result to the case when the
number of Xi’s and Yi’s are possibly different.

Theorem 4.1 Let X1, . . . , Xn be independent random variables and Y1, . . . , Ym be another set
of independent random variables, all having absolutely continuous distributions. Then Xi ≤lr Yj
for all i, j implies Xi:n ≤lr Yj:m whenever i ≤ j and n− i ≥ m− j.

In the next theorem we establish dispersive ordering between order statistics when the
random samples are drawn from different distributions.

Theorem 4.2 Let X1, . . . , Xn be a random sample of size n from a continuous distribution F

and let Y1 . . . , Ym be a random sample of size m from another continuous distribution G. If
either F or G is DFR, then

X ≤disp Y ⇒ Xi:n ≤disp Yj:m for i ≤ j and n− i ≥ m− j. (4.1)

Proof: Let F be a DFR distribution. The proof for the case when G is DFR is similar. By
Theorem 3.2, Xi:n ≤disp Xj:m for i ≤ j and n− i ≥ m− j. Bartoszewicz (1986) proved that if
X ≤disp Y then Xj:m ≤disp Yj:m. Combining these we get the required result.

Since the property X ≤hr Y together with the condition that either F or G is DFR implies
that X ≤disp Y (Theorem 2.1), we get the following result from the above theorem.

Corollary 4.1 Let X1, . . . , Xn be a random sample of size n from a continuous distribution
F and Y1 . . . , Ym be a random sample of size m from another continuous distribution G. If
either F or G is DFR, then

X ≤hr Y ⇒ Xi:n ≤disp Yj:m.

Stochastic comparisons of order statistics from heterogeneous populations

An assumption often made in reliability models is that the n components have lifetimes
with proportional hazards. Let Xi denote the lifetime of the ith component of a reliability
system with survival function F i(t), i = 1, . . . , n. Then they have proportional hazard rates
(PHR) if there exist constants λ1, . . . , λn and a (cumulative hazard) function R(t) ≥ 0 such that
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F i(t) = e−λiR(t) for i = 1, . . . , n.Clearly then the hazard rate of Xi is ri(t) = λiR
′(t) (assuming

it exists). An example of such a situation is when the components have independent exponential
lifetimes with respective hazard rates λ1, . . . , λn. Many researchers have investigated the effect
on the survival function, the hazard rate function and other characteristics of the time to
failure of this system when we switch the vector (λ1, . . . , λn) to another vector say (λ∗1, . . . , λ

∗
n).

Pledger and Proschan (1971), for the first time, studied this problem and proved the following
interesting result among many other results.

Theorem 4.3 Let (X1, . . . , Xn) and (X∗1 , . . . , X
∗
n) be two random vectors of independent life-

times with proportional hazards with λ1, . . . , λn and λ∗1, . . . λ
∗
n as the constants of proportional-

ity. Suppose that

λ
m
� λ∗.

Then

Xi:n ≥st X∗i:n, i = 1, . . . , n. (4.2)

Proschan and Sethuraman (1976) generalized this result from component wise stochastic or-
dering to multivariate stochastic ordering. That is, under the same assumptions of Theorem
4.3, they showed that

(X1:n, . . . , Xn:n) ≥st (X∗1:n, . . . , X
∗
n:n).

Boland, El-Neweihi and Proschan (1994 ) proved that for n = 2 the above result can be
extended from stochastic ordering to hazard rate ordering. They also showed with the help
of a counterexample that for n > 2, (4.2) cannot be strengthened from stochastic ordering to
hazard rate ordering.

Dykstra, Kochar and Rojo (1997) studied the problem of stochastically comparing the
largest order statistic of a set of n independent and non-identically distributed exponential
random variables with that corresponding to a set of n independent and identically distributed
exponential random variables. Let X1, . . . , Xn be independent exponential random variables
with Xi having hazard rate λi, for i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size
n from an exponential distribution with common hazard rate λ =

∑n
i=1λi/n, the arithmetic

mean of the λi’s. They proved that Xn:n is greater than Yn:n according to dispersive as well as
hazard rate orderings. In Theorem 4.4 below we prove that similar results hold if instead, we
assume that for i = 1, . . . , n, the random variable Yi has exponential distribution with hazard
rate λ̃ = (

∏n
i=1 λi)

1/n, the geometric mean of the λi’s. To prove dispersive ordering between
Xn:n and Yn:n in Theorem 4.4 we shall need the following lemma.

lemma 4.1 For z > 0, the functions g(z) = (1 − e−z)/z and h(z) = (z2e−z)/(1 − e−z)2 are
both decreasing.

Proof : The numerator of the derivative of g(z) is k(z) = (1+z)e−z−1, which is a decreasing
function of z. This implies that k(z) < 0 for z > 0, since k(0) = 0.
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It is easy to see after some simplifications that

d

dz
(log(h(z))) =

2− 2e−z − z − ze−z

z(1− e−z)
. (4.3)

Using the fact that k(z) is negative, one can verify that the numerator of (4.3) is decreasing,
from which the required result follows.

Theorem 4.4 Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential
distribution with common hazard rate λ̃ = (

∏n
i=1 λi)

1/n. Then

(a) Xn:n ≥disp Yn:n ;

(b) Xn:n ≥hr Yn:n .

Proof : (a) The distribution function of Xn:n is

FXn:n(x) =
n∏
i=1

(
1− e−λix

)
,

with density function as

fXn:n(x) =
n∑
i=1

λie
−λix

1− e−λix
n∏
i=1

(
1− e−λix

)
. (4.4)

Replacing λi with λ̃ in (4.4), we see that the distribution function and the density function of
Yn:n are

FYn:n(x) =
(
1− e−λ̃x

)n
and fYn:n(x) = nλ̃e−λ̃x

(
1− e−λ̃x

)n−1
,

respectively. It is easy to verify that F−1
Yn:n

(x) = − 1
λ̃

log
(
1− x1/n

)
. Using these observations,

it follows that

fYn:n

(
F−1
Yn:n

FXn:n(x)
)

= nλ̃

(
1−

n∏
i=1

(1− e−λix)1/n

)(
n∏
i=1

(1− e−λix)1/n

)n−1

. (4.5)

To prove that Xn:n ≥disp Yn:n, it follows from relation (2.2) that it is sufficient to show that

fXn:n(x) ≤ fYn:n

(
F−1
Yn:n

FXn:n(x)
)
∀x > 0. (4.6)

Using expressions (4.4) and (4.5) in (4.6), one can see after some simplifications that (4.6)
is equivalent to

n∑
i=1

λi
1− e−λix

− n
n∏
i=1

(
λi

1− e−λix
)1/n ≤

n∑
i=1

λi − n
n∏
i=1

(λi)1/n . (4.7)

To prove that (4.7) holds for all λi > 0, i = 1, . . . , n, it is sufficient to show that the L.H.S. of
(4.7) (denoted by h(x)) is increasing in x since for x > 0,

h(x) ≤ limx→+∞h(x) =
n∑
i=1

λi − n
n∏
i=1

(λi)1/n ,
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the right hand side of (4.7).

The derivative of h(x) is

h
′
(x) =

(
n∑
i=1

λie
−λix

1− e−λix

)(
n∏
i=1

λi
1− e−λix

)1/n

−
n∑
i=1

λ2
i e
−λix

(1− e−λix)2

≥
(

n∑
i=1

λie
−λix

1− e−λix

) n∑n
i=1

1−e−λix
λi

− n∑
i=1

λ2
i e
−λix

(1− e−λix)2
,

since the geometric mean of a set of numbers is always greater than or equal to its harmonic
mean. Now h

′
(x) ≥ 0 if and only if,

n
n∑
i=1

λie
−λix

1− e−λix
≥
(

n∑
i=1

λ2
i e
−λix

(1− e−λix)2

)(
n∑
i=1

1− e−λix

λi

)
. (4.8)

Multiplying both sides of (4.8) by x(> 0) and replacing the λix with zi for i = 1, . . . , n, it is
enough to prove that

n
n∑
i=1

zie
−zi

1− e−zi
≥
(

n∑
i=1

z2
i e
−zi

(1− e−zi)2

)(
n∑
i=1

1− e−zi
zi

)
. (4.9)

The inequality in (4.9) follows immediately from Čebyšev’s inequality (Theorem 1, p. 36 of
Mitrinović, 1970), Lemma 4.1 and by writing

zie
−zi

1− e−zi
=

(
z2
i e
−zi

(1− e−zi)2

)(
1− e−zi

zi

)
.

This proves that h(x) is increasing in x and hence the result.

(b) It follows from Theorem 5.8 of Barlow and Proschan (1981) that Yn:n is IFR. Using
this and part (a), the required result follows from Theorem 2.1.

From the above results, we get the following convenient bounds on the hazard rate and the
variance of Xn:n.

Corollary 4.2 Under the conditions of Theorem 4.4,

(a) the hazard rate rXn:n of Xn:n satisfies

rXn:n(x;λ) ≤
nλ̃
(
1− exp(−λ̃x)

)n−1
exp(−λ̃x)

1−
(
1− exp(−λ̃x)

)n ,

(b)

var(Xn:n;λ) ≥ 1
λ̃2

n∑
i=1

1
(n− i+ 1)2

.
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Dykstra, Kochar and Rojo (1997) proved a result similar to Theorem 4.4 by assuming that the
random variables Yi’s are exponential with common hazard rate λ =

∑n
i=1 λi/n and obtained

bounds on the hazard rate and the variance of Xn:n in terms of λ. The new bounds given in
Corollary 4.2 are better because rYn:n and var(Yn:n) are increasing and decreasing function of
λ̃, respectively, and the fact that the geometric mean of λi’s is smaller than their arithmetic
mean.

Figure 4.1. Graphs of hazard rates of X3:3

Figure 4.2. Graphs of hazard rates of X3:3

In Figures 4.1. and 4.2. above, we plot the hazard rates of parallel systems of three
exponential components along with the upper bounds as given by Dykstra, Kochar and Rojo
(1997) and the one’s given by Corollary 4.2 (a). The vector of parameters in Figure 4.1 is
λ1 = (1, 2, 3) and that in Figure 4.2 is λ2 = (0.2, 2, 3.8). Note that λ2

m
� λ1. It appears from

these figures that the improvements in the bounds are relatively more if λi’s are more dispersed
in the sense of majorization. This is true because the geometric mean is Schur-concave and the

12



hazard rate of a parallel system of i.i.d. exponential components with a common parameter λ̃
is increasing in λ̃.

Let F denote the survival function of a nonnegative random variable X with hazard rate
h. According to the PHR model, the random variables X1, . . . , Xn are independent with Xi

having survival function F
λi(.), so that its hazard rate is λih(.), i = 1, . . . , n.

Next, we extend Theorem 4.4 from exponential to PHR models. To prove this we need the
following theorem due to Rojo and He (1991).

Theorem 4.5 Let X and Y be two random variables such that X ≤st Y . Then X ≤disp Y
implies that γ(X) ≤disp γ(Y ) where γ is a nondecreasing convex function.

Theorem 4.6 Let X1, . . . , Xn be independent random variables with Xi having survival func-
tion F

λi(x), i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from a distribution

with survival function F
λ̃(x), where λ̃ = (

∏n
i=1 λi)

1/n. Then

(a) Xn:n ≥hr Yn:n ; and

(b) if F is DFR, then Xn:n ≥disp Yn:n .

Proof : (a)

Let H(x) = − logF (x) denote the cumulative hazard of F . Let Zi = H(Xi), i = 1, . . . , n
and Wi = H(Yi), i = 1, . . . , n. Since Xi’s follow the PHR model, then it is easy to show that Zi
is exponential with hazard rate λi, i = 1, . . . , n. Similarly, Wi is exponential with hazard rate
λ̃, i = 1, . . . , n. Theorem 4.4 (b) implies that Zn:n ≥hr Wn:n. Using this fact, (since H−1, the
right inverse of H, is nondecreasing) it is easy to show that H−1(Zn:n) ≥hr H−1(Wn:n) from
which the part (a) follows.

(b) Theorem 4.4 (a) and (b), respectively, imply that Zn:n ≥disp Wn:n and Zn:n ≥st Wn:n.
The function H−1(x) is convex, since F is DFR, and is nondecreasing. Using these obser-
vations, it follows from Theorem 4.5 that H−1(Zn:n) ≥disp H−1(Wn:n) which is equivalent to
Xn:n ≥disp Yn:n.

In Theorem 4.9 below we prove that for the largest order statistic, the conclusion of Theorem
4.3 holds under the weaker p-larger ordering. The proof of this theorem hinges on the following
results.

Theorem 4.7 ( Marshall and Olkin, 1979, p. 57) Let I ⊂ IR be an open interval and let
φ : In → IR be continuously differentiable. Necessary and sufficient conditions for φ to be
Schur-convex on In are φ is symmetric on In and for all i 6= j,

(zi − zj)[φ(i)(zi)− φ(j)(zj)] ≥ 0 for all z ∈ In,

where φ(i)(z) denotes the partial derivative of φ with respect to its ith argument.
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Theorem 4.8 (Marshall and Olkin, 1979, p. 59) A real-valued function φ on the set A ⊂ IRn

satisfies
x
w
� y on A =⇒ φ(x) ≥ φ(y)

if and only if φ is decreasing and Schur-convex on A.

lemma 4.2 The function ψ : IR+n → IR satisfies

x
p
� y =⇒ ψ(x) ≥ ψ(y) (4.10)

if and only if,

(i) ψ(ea1 , . . . , ean) is Schur-convex in (a1, . . . , an)

(ii) ψ(ea1 , . . . , ean) is decreasing in ai, for i = 1, . . . , n,

where ai = log xi, for i = 1, . . . , n.

Proof : Using relation (2.3), we see that (4.10) is equivalent to

a
w
� b =⇒ ψ(ea1 , . . . , ean) ≥ ψ(eb1 , . . . , ebn), (4.11)

where ai = log xi and bi = log yi, for i = 1, . . . , n.
Taking φ(a1, . . . , an) = ψ(ea1 , . . . , ean) in Theorem 4.8, we get the required result.
Now we are ready to prove the next theorem.

Theorem 4.9 Let X1, . . . , Xn be independent random variables with Xi having survival func-
tion F

λi(x), i = 1, . . . , n. Let Y1, . . . , Yn be another set of random variables with Yi having
survival function F

λ∗i (x), i = 1, . . . , n. Then

λ
p
� λ∗ =⇒ Xn:n ≥st Yn:n.

Proof : The survival function of Xn:n can be written as

FXn:n(x) = 1−
n∏
i=1

(1− e−eaiH(x)), (4.12)

where ai = log λi, i = 1, . . . , n and H(x) = − logF (x).
Using Lemma 4.2, we find that it is enough to show that the function FXn:n given by (4.12)

is Schur-convex and decreasing in ai’s. To prove its Schur-convexity, it follows from Theorem
4.7 that, we have to show that for i 6= j, (ai − aj)(∂FXn:n

∂ai
− ∂FXn:n

∂aj
) ≥ 0. That is,

H(x)(ai − aj)
(

n∏
i=1

(1− e−eaiH(x))

)(
eaje−e

ajH(x)

1− e−eajH(x)
− eaie−e

aiH(x)

1− e−eaiH(x)

)
≥ 0, for i 6= j (4.13)

since
∂FXn:n

∂ai
= −

n∏
i=1

(1− e−eaiH(x))

(
H(x)eaie−e

aiH(x)

1− e−eaiH(x)

)
.
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It is easy to see that the function be−bH(x)/(1 − e−bH(x)) is decreasing in b, for each fixed
x > 0. Replacing b with eai , it follows that the function eaie−e

aiH(x)/(1 − e−eaiH(x)) is also
decreasing in ai for i = 1, . . . , n. This proves that (4.13) holds. The partial derivative of FXn:n

with respect to ai is negative and which in turn implies that the survival function of Xn:n is
decreasing in ai for i = 1, . . . , n. This completes the proof.

The following result due to Khaledi and Kochar (2000 b) is a special case of Theorem 4.9.

Corollary 4.3 Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be another set of independent exponential random
variables with Yi having hazard rate λ∗i , i = 1, . . . , n. Then

λ
p
� λ∗ =⇒ Xn:n ≥st Yn:n.

Boland, El-Neweihi and Proschan (1994 ) pointed out that for n > 2, (4.2) cannot be
strengthened from stochastic ordering to hazard rate ordering. Since majorization implies p-
larger ordering, it follows that, in general, Theorem 4.9 cannot be strengthened to hazard rate
ordering.

As shown in the next example, a result similar to Theorem 4.9 may not hold for other order
statistics.

Example 4.1 : Let X1, X2, X3 be independent exponential random variables with λ =
(0.1, 1, 7.9) and Y1, Y2, Y3 be independent exponential random variables with λ∗ = (1, 2, 5). It

is easy to see that λ
p
� λ∗. The X1:3 and Y1:3 have exponential distributions with respective

hazard rates 9 and 8 and which implies that Y1:3 ≥st X1:3.

5 Stochastic Comparisons of Sample Spacings

Let X1, . . . , Xn be n random variables. The random variables Di:n = Xi:n − Xi−1:n and
D∗i:n = (n − i + 1)Di:n, i = 1, . . . , n, with X0:n ≡ 0, are respectively called spacings and
normalized spacings. They are of great interest in various areas of statistics, in particular, in
characterizations of distributions, goodness-of-fit tests, life testing and reliability models. In
the reliability context they correspond to times elapsed between successive failures of compo-
nents in a system. It is well known that the normalized spacings of a random sample from
an exponential distribution are i.i.d. random variables having the same exponential distribu-
tion. Such a characterization may not hold for other distributions and much of the reliability
theory deals with this aspect of spacings. In this section we review stochastic properties of
spacings when original random variables are i.i.d. as well as when they are independent but
not identically distributed.

Many authors have studied the stochastic properties of spacings from restricted families
of distributions. Barlow and Proschan (1966) proved that if X1, . . . , Xn is a random sample
from a DFR distribution, then the successive normalized spacings are stochastically increasing.
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Kochar and Kirmani (1995) strengthened this result from stochastic ordering to hazard rate
ordering, that is, for i = 1, . . . , n− 1,

D∗i:n ≤hr D∗i+1:n. (5.1)

The corresponding problem when the random variables are not identically distributed, has also
been studied by many researchers, including Pledger and Proschan (1971), Shaked and Tong
(1984), Kochar and Korwar (1996), Kochar and Rojo (1996), Nappo and Spizzichino (1998),
among others. For a review of this topic see Kochar (1998). Here we give some new results
obtained recently by the authors.

Kochar and Korwar (1996) conjectured that a result similar to (5.1) holds in the case when
X1, . . . , Xn are independent exponential random variables with Xi having hazard rate λi, for
i = 1, . . . , n. Khaledi and Kochar (2001) proved this conjecture when random variables Xi’s
follow a single outlier model with parameters λ and λ∗, that is when λ1 = . . . = λn−1 = λ and
λn = λ∗. To prove this we shall be using the following results.

The joint density function of the spacings when λi’s are possibly different is given by (cf.
Kochar and Korwar, 1996),

fD1:n,...,Dn:n(x1, . . . , xn) =
∑
(r)

∏n
i=1 λi∏n

i=1

∑n
j=i λ(rj)

n∏
i=1

(
n∑
j=i

λ(rj))exp{−xi
n∑
j=i

λ(rj)}, (5.2)

for xi ≥ 0, i = 1, . . . , n, where (r) = (r1, . . . , rn) is a permutation of (1, . . . , n) and λ(i) = λi.
It is a mixture of products of exponential random variables. From (5.2) it is easy to find that
the joint pdf of (Di:n, Dj:n) for 1 ≤ i < j ≤ n, is

fDi:n,Dj:n(x, y) =
∑
(r)

∏n
i=1 λi∏n

i=1

∑n
j=i λ(rj)

(5.3)

× (
n∑

m=i

λ(rm))exp{−x
n∑

m=i

λ(rm)}(
n∑

m=j

λ(rm))exp{−y
n∑

m=j

λ(rm)},

for x, y ≥ 0. Now (5.2) can be written as

fD1:n,...,Dn:n(x1, . . . , xn) =
n∑
θ=1

(n− 1)!λ∗(λ)n−1∏θ
i=1((n− i)λ+ λ∗)

∏n
i=θ+1(n− i+ 1)λ

×
θ∏
i=1

((n− i)λ+ λ∗)e−((n−i)λ+λ∗)xi
n∏

i=θ+1

(n− i+ 1)λe−(n−i+1)λxi , (5.4)

which can be further expressed as

fD1:n,...,Dn:n(x1, . . . , xn) =
n∑
θ=1

h(θ)
θ∏
i=1

α∗i e
−α∗i xi

n∏
i=θ+1

αie
−αixi ,

where αi = (n− i+ 1)λ, α∗i = (n− i)λ+ λ∗, i = 1, . . . , n and using αi and α∗i , the function h

is given by

h(θ) =
(n− 1)!λn−1λ∗∏θ
i=1 α

∗
i

∏n
i=θ+1 αi

, θ = 1, . . . , n. (5.5)
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The marginal density function of Di:n can be expressed as

fDi:n(x) = Hiαie
−αix +H iα

∗
i e
−α∗i x, (5.6)

where

Hi =
i−1∑
θ=1

h(θ), i = 2, . . . , n and H1 = 0. (5.7)

Thus, the density function of Di:n is a mixture of two exponential random variables with
parameters αi and α∗i . Now we prove the main theorem.

Theorem 5.1 Let X1, . . . , Xn follow the single-outlier exponential model with parameters λ
and λ∗. Then

D∗i+1:n ≥hr D∗i:n, i = 1, . . . , n− 1.

Proof : We prove the result when λ∗ > λ. The proof for the case λ∗ < λ follows using the
same kind of arguments. From (5.6) we find that the survival function of D∗i:n is FD∗i:n(x) =
Hie

−λx + H ie
−ηix, where ηi = (n−i)λ+λ∗

n−i+1 . To prove the theorem we have to show that for any
i ∈ {1, . . . , n− 1},

g(x) =
FD∗i+1:n

(x)

FD∗i:n(x)

is increasing in x. The numerator of g
′
(x), the derivative of g(x) is

A(x) = [Hie
−λx +H ie

−ηix][−λHi+1e
−λx − ηi+1H i+1e

−ηi+1x]

+[Hi+1e
−λx +H i+1e

−ηi+1x][λHie
−λx + ηiH ie

−ηix]

= (λ∗ − λ)

{
H iHi+1

n− i+ 1
e−(ηi+λ)x

−H i+1Hi

n− i
e−(ηi+1+λ)x − H iH i+1

(n− i+ 1)(n− i)
e(ηi+ηi+1)x

}

≥ (λ∗ − λ)

{(
H iHi+1

n− i+ 1
− H i+1Hi

n− i

)
e−(ηi+1+λ)x (5.8)

− H iH i+1

(n− i+ 1)(n− i)
e(ηi+ηi+1)x

}

=
(λ∗ − λ)

(n− i)(n− i+ 1)

{{
(n− i)H i − (n− i+ 1)H i+1 +H iH i+1

}
× e−(ηi+1+λ)x −H iH i+1e

−(ηi+ηi+1)x } . (5.9)

The inequality in (5.8) follows, since λ∗ > λ implies ηi+1 > ηi.
Again λ∗ > λ implies λ < ηi and which in turn implies e−(ηi+1+λ)x ≥ e−(ηi+ηi+1)x for every

x ≥ 0. Also for λ∗ > λ ,{
(n− i)H i − (n− i+ 1)H i+1

}
= (n− i)h(i)−H i+1

≥ 0, (5.10)
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since for λ∗ > λ, h(j) is a decreasing function of j. Using these results in (5.9) we find that
A(x) and hence g′(x) is nonnegative for x ≥ 0. This proves the required result.

Let X1, . . . , Xn be independent exponential random variables with hazard rates λ1, . . . , λn,
respectively. Pledger and Proschan (1971) proved that for i ∈ {1, . . . , n}, Di:n is stochastically
larger when the hazard rates are unequal than when they are all equal. Kochar and Rojo
(1996) strengthened this result to likelihood ratio ordering. The natural question is to examine
whether the survival function of Di:n is Schur-convex in (λ1, . . . , λn). Pledger and Proschan
(1971) came up with a counterexample to show that this is not true in general. Kochar and
Korwar (1996) proved that in the special case of second spacing, whereas the survival function
of D2:n is Schur-convex in (λ1, . . . , λn), its hazard rate is not Schur-concave. They proved,
however, that the hazard rate of D2:2 is Schur-concave. We now examine this question when
X1, . . . , Xn follow the single-outlier exponential model with parameters λ and λ∗. In the rest
of this section, we assume that λ∗ < λ. We will treat it as a part of the model. It is easy to
see that in this case, (λ∗1, λ1, . . . , λ1)

m
� (λ∗2, λ2, . . . , λ2) if and only if λ∗1 < λ∗2 < λ2 < λ1 and

λ∗1 +(n−1)λ1 = λ∗2 +(n−1)λ2. We prove later in this section that for the single-outlier model,
for i ∈ {1, . . . , n}, the hazard rate of Di:n is Schur-concave in λ’s. To prove it we need the
following lemmas.

lemma 5.1 Let X1, . . . , Xn follow the single-outlier exponential model with parameters λ and
λ∗. Then

λ∗ < λ =⇒ Hi ≤
i− 1
n

, for i = 1, . . . , n, (5.11)

where Hi is given by (5.7). The inequality in (5.11) is reversed for λ∗ > λ.

Proof : λ∗ < λ implies that the function h(j) in (5.5) is increasing in j, j = 1, . . . , n. Note
that

(h(1), h(2), . . . , h(n))
m
� (1/n, . . . , 1/n).

The required result follows from the definition of majorization.
The proof for the case λ∗ > λ follows from the same kind of arguments.

lemma 5.2 Let X1, . . . , Xn follow the single-outlier exponential model with parameters λ1 and
λ∗1. Let Y1, . . . , Yn be another set of random variables following the single-outlier exponential
model with parameters λ2 and λ∗2. If

(i) λ∗1 < λ∗2 < λ2 < λ1, then Θ1 ≥lr Θ2,

(ii) λ1 < λ2 < λ∗2 < λ∗1, then Θ1 ≤lr Θ2,

where Θ1 and Θ2 correspond to random variable Θ with probability mass function h(j) in (5.5)
for Xi’s and Yi’s, respectively.

Proof : (i) We prove that
h2(θ + 1)
h1(θ + 1)

≤ h2(θ)
h1(θ)

,
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where h1 and h2 are probability mass functions of Θ1 and Θ2, respectively. This inequality
holds if and only if

(n− θ − 1)λ1 + λ∗1
(n− θ − 1)λ2 + λ∗2

≤ λ1

λ2
. (5.12)

Since λ∗1 < λ∗2 and λ2 < λ1, it is easy to see that (5.12) is true.
(ii) In this case the inequality in (5.12) is reversed which in turn implies that Θ1 ≤lr Θ2.

This proves the result.

Theorem 5.2 Let X1, . . . , Xn follow the single-outlier exponential model with parameters λ1

and λ∗1 with λ∗1 < λ1. Then for i ∈ {1, . . . , n}, the hazard rate of Di:n is Schur-concave in
{λ1, . . . , λ1, λ

∗
1}.

Proof : Let Y1, . . . , Yn be another set of random variables following the single-outlier expo-
nential model with parameters λ2 and λ∗2 (λ∗2 < λ2) such that (λ∗1, λ1, . . . , λ1)

m
� (λ∗2, λ2, . . . , λ2).

As discussed above this holds if and only if λ∗1 < λ∗2 < λ2 < λ1 and λ∗1+(n−1)λ1 = λ∗2+(n−1)λ2.
Without loss of generality, let us assume that λ∗1 + (n− 1)λ1 = 1. We have to prove that under
the given conditions for i = 1, . . . , n,

D
(1)
i:n ≥hr D

(2)
i:n ,

where D(1)
i:n (D(2)

i:n) denotes the ith spacing of Xi’s (Yi’s). From (5.6) the survival functions of
D

(1)
i:n and D

(2)
i:n are

F
D

(1)
i:n

(x) = Pie
−αi1x + P ie

−α∗i1x,

F
D

(2)
i:n

(x) = Qie
−αi2x +Qie

−α∗i2x,

where Pi and Qi correspond to Hi in (5.6) for D(1)
i:n and D(2)

i:n , respectively and αi1 = (n−i+1)λ1,
α∗i1 = (n− i)λ1 + λ∗1, αi2 = (n− i+ 1)λ2 and α∗i2 = (n− i)λ2 + λ∗2.

We have to show that

φ(x) =
F
D

(1)
i:n

(x)

F
D

(2)
i:n

(x)

is increasing in x. After some simplifications we find that the numerator of φ
′
(x), the derivative

of φ(x) is

g(x) = −(αi1 − αi2)PiQie−(αi1+αi2)x + (α∗i2 − α∗i1)P iQie
−(α∗i1+α∗i2)x

− (α∗i1 − αi2)QiP ie−(αi2+α∗i1)x + (α∗i2 − αi1)QiPie
−αi1+α∗i2)x, (5.13)

Using the assumption λ∗1 < λ∗2 < λ2 < λ1 and the fact the λ∗i + (n − 1)λi = 1, i = 1, 2 , it
follows, αi1 + α∗i2 < αi1 + αi2, αi1 + α∗i2 > α∗i1 + α∗i2, αi1 + α∗i2 > α∗i1 + αi2 and all (αi1 − αi2),
(α∗i2 − α∗i1), (αi2 − α∗i1), are nonnegative. Using these observations in (5.13), we see

g(x) ≥ e−(αi1+α∗i2)x{−(αi1 − αi2)PiQi + (α∗i2 − α∗i1)P iQi
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−(αi1 − α∗i2)QiPi + (αi2 − α∗i1)QiP i}

=
e−(αi1+α∗i2)x

n− 1
{Qi − Pi − (nQi − (i− 1))λ∗2 + (nPi − (i− 1))λ∗1}

≥ e−(αi1+α∗i2)x

n− 1
{Qi − Pi − n(Qi − Pi)λ∗2} (5.14)

=
e−(αi1+α∗i2)x

n− 1
(Qi − Pi)(1− nλ∗2)

≥ 0. (5.15)

The inequality in (5.14) follows, since by Lemma 5.1 Pi ≤ i−1
n and λ∗1 < λ∗2. From Lemma 5.2

it follows that Qi ≥ Pi, since it is known the likelihood ratio ordering implies usual stochastic
ordering. This observation along with the fact that λ∗2 ≤ 1/n implies the inequality in (5.15).

Remark : The conclusion of Theorem 5.2 holds if instead of λ∗1 < λ1 and λ∗2 < λ2 we assume
that λ∗1 > λ1 and λ∗2 > λ2.

It is known that spacings of independent exponential random variables have DFR distribu-
tions (cf. Kochar and Korwar, 1996). Combining this observation with Theorem 2.1, we have
proved the following corollary.

Corollary 5.1 Under the assumptions of Theorem 5.2,

D
(1)
i:n ≥disp D

(2)
i:n .

A consequence of Corollary 5.1 is that var(D(1)
i:n) ≥ var(D(2)

i:n), i = 1, . . . , n.

6 Stochastic ordering for sample range

Sample range is one of the criteria for comparing variabilities among distributions and hence it
is important to study its stochastic properties. First we study the stochastic properties of the
range of a random sample from a continuous distribution. Let X1, . . . , Xn be a random sample
from F and let Y1, . . . , Yn be an independent random sample from another distribution G. It
follows from Lemma 3(c) of Bartoszewic (1986) that X ≥disp Y ⇒ Xn:n−X1:n ≥st Yn:n−Y1:n.
This observation along with Theorem 2.1 (a) leads to the following theorem.

Theorem 6.1 Let X ≥hr Y and let either F or G be DFR. Then

Xn:n −X1:n ≥st Yn:n − Y1:n. (6.1)

Next we consider the case when the parent observations are independent exponentials but
with unequal parameters. Let X1, . . . , Xn be independent exponential random variables with
Xi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an
exponential distribution with common hazard rate λ, the arithmetic mean of the λi’s. Finally,
let RX = Xn:n − X1:n and RY = Yn:n − Y1:n denote the sample ranges of Xi’s and Yi’s,
respectively. Kochar and Rojo (1996) proved that RX ≥st RY . Khaledi and Kochar (2000 c)
proved the following result which is in terms of λ̃, the geometric mean of the λi’s.
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Theorem 6.2 Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, for i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential
distribution with common hazard rate λ̃ . Then,

RX ≥st RY .

Proof : The distribution function of RX (see David, 1981, p. 26) is

FRX (x) =
1∑n
i=1 λi

n∑
i=1

λi
1− e−λix

n∏
i=1

(1− e−λix). (6.2)

and that of RY is
GRY (x) =

(
1− e−λ̃x)

)n−1
. (6.3)

Using (6.2) and (6.3), we have to show that

n∑
i=1

λi
1− e−λix

n∏
i=1

(1− e−λix) ≤
n∑
i=1

λi
(
1− e−λ̃x)

)n−1
. (6.4)

Multiplying both sides of (6.4) by x(> 0), it is sufficient to prove that

n∑
i=1

λix

1− e−λix
n∏
i=1

(1− e−λix) ≤
(

n∑
i=1

λix

)(
1− e−λ̃x)

)n−1
. (6.5)

Dykstra, Kochar and Rojo (1997) proved that

n∑
i=1

yi
1− e−yi

≤
(

n∑
i=1

yi

)
n∏
i=1

(1− e−yi)−
1
n ,

where yi > 0 for i = 1, . . . , n. Making use of this inequality on the L.H.S. of (6.5), we get

n∑
i=1

λix

1− e−λix
n∏
i=1

(1− e−λix) ≤
(

n∑
i=1

λix

)
n∏
i=1

(
1− e−λix

)n−1
n (6.6)

A consequence of Theorem 4.4 (b) is that Xn:n ≥st Yn:n, which is equivalent to
∏n
i=1(1 −

e−λix)1/n ≤ 1 − e−λ̃x. Using this result, we find that the expression on the R.H.S. of (6.6) is
less than or equal to that on the R.H.S. of (6.5) and from which the required result follows.

As a consequence of this result we get the following upper bound on the distribution function
of RX in terms λ̃.

Corollary 6.1 Under the conditions of Theorem 6.2, for x > 0,

P [Xn:n −X1:n ≤ x] ≤
[
1− e−λ̃x

]n−1
. (6.7)

This bound is better than the one obtained in Kochar and Rojo (1996) in terms of λ, since the
expression on the R.H.S. of (6.7) is increasing in λ̃ and λ̃ ≤ λ.

Now we extend Theorem 6.1 to the PHR model. We assume that F is new worse than used
(NWU), that is,

F (x+ y) ≥ F (x)F (y), for x, y ≥ 0,
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or equivalently,
H(x+ y) ≤ H(x) +H(y), for x, y ≥ 0,

where H(x) = − logF (x) denotes the cumulative hazard of F .

Theorem 6.3 Let X1, . . . , Xn be independent random variables with Xi having survival func-
tion F λi(x), i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from a distribution with

survival function F λ̃(x), where λ̃ = (
∏n
i=1 λi)

1/n. If F is NWU, then Xn:n−X1:n ≥st Yn:n−Y1:n.

Proof :

The distribution function of the sample range Xn:n −X1:n (see David, 1981, p. 26) is

FRXn (x) =
n∑
i=1

∫ +∞

0
λih(t)e−λiH(t)

n∏
j 6=i

(
e−λjH(t) − e−λjH(t+x)

)
dt

≤
n∑
i=1

∫ +∞

0
λih(t)e−λiH(t)

n∏
j 6=i

(
e−λjH(t) − e−λjH(t)e−λjH(x)

)
dt

(since F is NWU )

=
n∑
i=1

λi
∏
j 6=i

(1− e−λjH(x))
∫ +∞

0
h(t)

n∏
j=1

e−λjH(t)dt

=
n∑
i=1

λi
∏
j 6=i

(1− e−λjH(x))
∫ +∞

0
h(t)e−H(t)

∑n

j=1
λj

=
1∑n
i=1 λi

n∑
i=1

λi
1− e−λiH(x)

n∏
i=1

(1− e−λiH(x)), x > 0,

Now, replacing x with H(x) in the proof of Theorem 6.2, it is easy to see that

FRXn (x) ≤ FRYn (x).
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