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1. Introdu
tionConsider a 
ompeting risks model with two 
auses of failure. Let T denote the lifetime of asubje
t, assumed to be 
ontinuous, with distribution fun
tion F and survivor fun
tion S, andlet Æ denote the 
ause of failure, that is, fÆ = jg is the event that the failure is due to risk j,j = 1; 2. In many pra
ti
al situations it is important to know whether the various risks under
onsideration are equally serious or whether some risks are more serious than others, withinthe environment in whi
h the risks are a
ting simultaneously. To quantify this, the 
on
eptof (ordinary) hazard rate has been generalized in the 
ompeting risks model to the notion of
ause spe
i�
 hazard rates (CSHR), whi
h is de�ned by�j(t) = lim�t!0 1�t P (t � T < t+�t; Æ = jjT � t); j = 1; 2: (1)The overall hazard rate for time to failure satis�es the relation �T (t) = �1(t) + �2(t). Causespe
i�
 hazard rates provide detailed information on the extent of ea
h type of risk at ea
htime point t. In models where the various 
auses of failure are independent, �j(t) redu
es to the(ordinary) hazard rate 
orresponding to the marginal distribution of failure from the jth 
ause.Prenti
e et al. (1978) emphasize that only those quantities whi
h are expressible in terms of
ause spe
i�
 hazard rates are estimable and 
an be estimated from the 
ompeting risks dataeven if the risks are dependent. Censoring is possible arising from removal of subje
ts beforefailure from either 
ause 1 or 
ause 2 and it may be due to 
ombination of other 
ompetingrisks. Denote the 
ensoring time by C and its survivor fun
tion by SC . We assume thatSC(t) > 0 for all t and C is independent of T . We now identify three 
auses of failure,Æ = 0; 1; 2, where fÆ = 0g is the event that the subje
t was 
ensored. Under right 
ensoring,we observe n independent, identi
ally distributed 
opies (Xi; Æi), i = 1; : : : ; n of (X; Æ), whereX = min(T;C). More spe
i�
ally, on the basis of these data, we formulate the problem oftesting the null hypothesis,H0 : �1(t) = �2(t) for all t, (2)against the alternativeHa : �1(t) � �2(t) for all t, with stri
t inequality for some t: (3)In the literature su
h 
omparisons have also been made in terms of the 
umulative in
iden
efun
tions F1 and F2 (see Gray, 1988 and Luo & Turnbull, 1999), whereFj(t) = P (T � t; Æ = j) = Z t0 S(u)�j(u) du; j = 1; 2:Note that the null hypothesis H0 in (2) is equivalent toH0 : F1(t) = F2(t); t � 0and Ha in (3) impliesHb : F1(t) � F2(t); t � 0 with stri
t inequality for some t:2



Several tests have been proposed in the literature for testing H0 against various alternatives(see Ko
har, 1995 and Carriere & Ko
har, 2000). Most of the tests dis
ussed in the literature
an be expressed as fun
tionals of weighted log-rank type statisti
s of the formLn(t) = Z t0 w(u) d(�̂2 � �̂1)(u); (4)where �j(t) = R t0 �j(u)du is the 
umulative 
ause spe
i�
 hazard rate fun
tion for risk j, j = 1; 2and the Nelson-Aalen estimator (see, e.g., Fleming and Harrington, 1991) of �j is�̂j(t) = Xi:Xi�t I(Æi = j)=Riwhere Ri = #fk : Xk � Xig is the size of the risk set at time Xi�. The weight fun
tion w(u)re
e
ts the importan
e atta
hed to the di�eren
e between the CSHRs at time u. The testsproposed by Yip and Lam (1992) are based on studentized Ln(1) statisti
s for various 
hoi
esof w. Although these tests may be able to dete
t 
ertain kinds of departure from H0 with highpower, they may not be 
onsistent against general alternatives.Aly, Ko
har and M
Keague (1994) proposed two Renyi-type tests for this problem. The �rstone, whi
h is suitable for 
omparing 
umulative in
iden
e fun
tions, is based on the statisti
D3n = sup0�t<1�n(t);where �n(t) = Z t0 ŜT (u�)ŜC(u�)1=2 d(�̂2 � �̂1)(u);and ŜT and ŜC are the produ
t-limit estimators of ST and SC , respe
tively. Their se
ond testwhi
h is suitable for testing against Ha is based on the statisti
D4n = sup0�s<t<1 f�n(t)� �n(s)g:The rationale behind these tests is that �n is an estimator of�(t) = Z t0 ST (u�)SC(u�)1=2(�2(u)� �1(u)) duand Ha holds if and only if � is in
reasing. Thus large positive values of D4n give eviden
e ofa departure from H0 in the dire
tion of Ha. This property will 
ontinue to hold if instead ofST (u�)SC(u�)1=2, we use some other suitable nonnegative weight fun
tion. It was shown inAly, Ko
har and M
Keague (1994) that the 
hoi
e of the weight fun
tion ŜT (u�)ŜC(u�)1=2leads to asymptoti
ally distribution-free tests when the data are 
ensored and these tests areexa
tly distribution-free otherwise. An unpleasant property of these tests is that they arevery 
onservative. This is probably due to the fa
t that the �nite sample distributions of thestatisti
s n1=2D3n and n1=2D4n 
annot be approximated 
losely by their respe
tive asymptoti
distributions when n is not extremely large. 3



In Se
tion 2, we propose two new 
lasses of asymptoti
ally distribution-free tests whi
h aresimilar to the studentized versions of the D3n andD4n statisti
s, but with arbitrary nonnegativeweight fun
tions 
hosen from a 
exible 
lass of weight fun
tions. In Se
tion 3, we 
arry outan intensive simulation study to 
ompare the performan
e of the various tests. It seems fromthis study that the studentized statisti
s using the estimated 
ovarian
e fun
tions appear to
onverge to the asymptoti
 null distribution mu
h faster, whi
h improves the small sampleapproximations signi�
antly. Moreover, the proposed tests are highly 
exible and this approa
huni�es the existing pro
edures. The proposed methods are illustrated by appli
ation to datafrom Hoel (1972) in Se
tion 4. Se
tion 5 
ontains some 
losing remarks and dis
ussion.2. The proposed 
lasses of testsIn this se
tion, we generalize the tests of Aly, Ko
har and M
Keague (1994) by taking di�erentweight fun
tions w. With suitable studentization, this yields a versatile family of tests. It iswell known that under H0, n1=2Ln(t) is a martingale with predi
table variation pro
ess �2(t)whi
h, under some mild 
onditions, 
an be estimated 
onsistently byS2n(t) = Z t0 w2(u)�Y 2(u)=n d �N(u); (5)where �Y (u) =Pni=1 I(Xi � u) is the total number of items at risk at u�, and �N(u) is the totalnumber of deaths up to time u. Using Ln(t) as in (4), we propose the following three 
lassesof test statisti
s for testing H0:An(w) = Ln(1)Sn(1) ;Bn(w) = sup0�t<1 Ln(t)Sn(1) ;Cn(w) = sup0�s<t<1 Ln(t)�Ln(s)Sn(1) :Large values of the statisti
 indi
ate statisti
al signi�
an
e for tests of H0. It follows from theresults given in the Appendix that underH0 and under some regularity 
onditions, fn1=2 Ln(t)=Sn(1)g
onverges weakly to fW (t); t � 0g, a standard Brownian motion. As a 
onsequen
e, underH0, n1=2 An(w)! Z; a standard normal variable, (6)P [n1=2 Bn(w) > b℄! P [sup0<t<1W (t) > b℄ = 2(1� �(b)); b � 0; (7)n1=2 Cn(w)! sup0�t�1 jW (t)j; (8)where � is the standard normal distribution fun
tion.Consequently, for 
 > 0P (n1=2Cn � 
)! 4� P1k=0 (�1)k2k+1 expf��2(2k + 1)2=8
2g. (9)4



Using (9) the asymptoti
 0.90, 0.95 and 0.99 quantiles of n1=2Cn are found to be 1.96, 2.241and 2.807, respe
tively.When an ordered alternative is unsuitable, it 
an be of interest to test H0 against the gen-eral alternative: F1(t) 6= F2(t) for some t, whi
h is equivalent to �1(t) 6= �2(t) for some t. In that
ase it is natural to use the Kolmogorov{Smirnov type test statisti
 B�n = supt�0 jLn(t)j=Sn(1).Using the same kind of arguments as in Aly, Ko
har and M
Keague (1994), it follows thatunder H0, n1=2B�n 
onverges in distribution to sup0�t�1 jW (t)j. This gives an omnibus test|
onsistent against arbitrary departures from H0. The 
orresponding two-sided analogue of Cnis C�n = sup0�s<t<1 jLn(t)� Ln(s)j=Sn(1) and its asymptoti
 null distribution is given in theAppendix.The 
lass An was proposed and studied by Yip and Lam (1992). In this 
lass the 
hoi
e of theweight fun
tion w(u) = �Y (u) leads to the sign test whereas the 
hoi
e w(u) = �Y (u) �N (u�) givesa test whi
h is equivalent to the one proposed by Bagai, Deshpand�e and Ko
har (1989a) fortesting the equality of two hazard rates. On the other hand, the weight fun
tion w(u) = �Y 2(u)results in the statisti
 proposed by Bagai, Deshpand�e and Ko
har (1989b) for testing againsta sto
hasti
 ordering alternative. Previous studies show that the tests belonging to the 
lassAn have good power for testing against some spe
i�
 alternatives, but they 
annot be expe
tedto be 
onsistent against all alternatives to H0. As will be seen later, the tests belonging tothe 
lasses Bn and Cn are sensitive to a wider range of alternatives and at the same time theymaintain the full eÆ
ien
y of the 
orresponding statisti
s belonging to the 
lass An. In theun
ensored 
ase, the tests of Aly, Ko
har and M
Keague (1994) are extensions of the sign testto Renyi-type statisti
s and they are seen to be quite powerful for testing against alternativeswhere the 
ause spe
i�
 hazard rates are proportional to ea
h other and for this alternative thesign test is the UMP test. Similar observations were made by Gill (1980) and Fleming et al.(1987) in the 
ase of 
lassi
al two-sample problem when they extend the linear rank statisti
sto Renyi-type statisti
s using the same s
ore fun
tion.3. Simulations and power 
omparisonsTo illustrate the 
exibility of the proposed 
lasses of tests, a large s
ale simulation study was
ondu
ted. The null hypothesis H0 was tested against the alternatives(i) H1 : �2(t) = (� + 1) �1(t);(ii) H2 : �2(t) = �1(t) f1 + � �1(t)g; and(iii) H3 : �2(t) = f�1(t)gexp(�=2) .The alternatives H1 and H2 belong to the 
lass of order restri
ted alternatives Ha and one-sided tests were 
arried out for these. The alternative H3 was 
onsidered by Lam (1998) wherethe two CSHRs 
ross and hen
e a 2-sided test was 
arried out. For simpli
ity, we let �1(t) = 1,the level of signi�
an
e � = 0:05, and � is set to be 0 and 1 at whi
h � = 0 
orresponds to the5



null hypothesis. For H1, the failure times T = min(Y1; Y2) were generated from the absolutely
ontinuous bivariate exponential distribution of Blo
k and Basu (1974) with densityf(y1; y2) = ( (�0+�1+�2)�1(�0+�2)�1+�2 e��1y1�(�0+�2)y2 if y1 < y2;(�0+�1+�2)�2(�0+�1)�1+�2 e��2y2�(�0+�1)y1 if y1 > y2where �0 is the dependen
e parameter and �0 = 0 
orresponds to the independen
e of the tworisks. In this 
ase, the 
ause spe
i�
 hazard rates are proportional to ea
h other and are givenby �j(t) = �j(�0 + �1 + �2)�1 + �2 j = 1; 2:We set �0 = 0 and 1 in the study under H1. For H2 and H3, we simply assumed the two risksto be independent of ea
h other. In all the three 
ases, the 
ensoring variable C was takento be independently exponentially distributed. Three levels of 
ensoring, namely no 
ensoring,moderate and heavy 
ensoring were 
onsidered to study the e�e
t due to 
ensoring. For ea
h
ombination of the alternative hypothesis and the set of parameters assumed, 10000 data sets,ea
h with a sample size of n = 100 were generated.The weight fun
tions used are(a) w1(u) = �Y (u);(b) w2(u) = �Y (u) �̂(u�);(
) w3(u) = �Y 2(u);(d) w4(u) = �Y (u) �N(u�);(e) w5(u) = ŜT (u�) ŜC(u�)1=2.where the weight fun
tions w1 and w2 are the optimal weight fun
tions for the 
lass of testsAn, whi
h give rise to asymptoti
ally lo
ally most powerful tests for H1 and H2, respe
tively(Yip and Lam, 1993). The tests generated by these �ve weight fun
tions are 
ompared withthe tests n1=2D3n and n1=2D4n of Aly, Ko
har and M
Keague (1994), denoted by (f) under the
lasses Bn and Cn, respe
tively. The empiri
al type I error rates and the empiri
al powers ofthe tests with � = 1 are given in Tables 1 to 3.Under H0 (� = 0), the tests of Aly, Ko
har and M
Keague (1994) are more 
onservativein the sense that their empiri
al type I error probabilities are mu
h smaller than the nominallevel of signi�
an
e 0.05, parti
ularly when the 
ensoring proportion is large. However, thetests proposed in this paper perform mu
h better as their empiri
al type I error rates arequite 
lose to the nominal level, and are not mu
h a�e
ted by the magnitude of the 
ensoringproportion. This indi
ates that the studentized te
hnique has improved the rate of 
onvergen
eof the proposed statisti
s to their asymptoti
 values whi
h gives rise to more a

urate inferentialpro
edures. 6



The simulation study also demonstrates the importan
e of the weight fun
tion used. Whentesting against order restri
ted alternatives Ha and Hb, all tests with weight fun
tions 
on-sidered above perform quite well. The powers of the tests highly depend on the 
hoi
e of theweight fun
tion. The three 
lasses of tests, with optimal weight fun
tion generated from An,give good power for all values of �, and not just for lo
al alternatives. In parti
ular, under theusual order restri
ted alternatives, the test based on An is, in general, more powerful than thetests based on Bn and Cn for any arbitrary nonnegative weight fun
tion w(u). In the 
aseswith 
rossing CSHRs, the Renyi-type of tests based on B�n and C�n are generally more sensitiveand more powerful than that of A�n. It is observed that the proposed two 
lasses of tests aremore versatile in the sense that they are power robust. The Renyi-type tests are generally moresensitive to departure from null hypothesis as is illustrated by the following example.4. An exampleThe three 
lasses of tests were applied to a set of mortality data given in Hoel (1972) whi
h hasbeen studied by many resear
hers in the �eld of 
ompeting risks analysis. The data were ob-tained from a laboratory experiment on RFM strain male mi
e whi
h had re
eived a radiationdose of 300 roentgens at ages of 5 to 6 weeks and were kept in a 
onventional laboratory envi-ronment. Causes of death were 
lassi�ed into three distin
t groups, namely thymi
 lymphoma,reti
ulum 
ell sar
oma, and other 
auses. In this appli
ation, the deaths due to other 
ausesare treated as 
ensored observations and are assumed to be independent of the two types of
an
er. The estimates of the 
umulative hazard of dying from thymi
 lymphoma and reti
ulum
ell sar
oma are given in Figure 1. Aly, Ko
har and M
Keague (1994), based on the plots ofthe smoothed estimates of the CSHRs, suggested that the CSHRs of the two types of 
an
er
ross at about 500 days.Hen
e, we only 
onsidered a 2-sided alternative using the 
omplete data set. The weightfun
tions (a) to (e) of Se
tion 3 were used, and were 
ompared with the tests of Aly, Ko
harand M
Keague (1994). The test statisti
s and the 
orresponding p-values (in parentheses)given in Table 4 suggest that the result is highly signi�
ant. By 
omparing the p-values of thetests, it is noti
ed the tests based on the C�n are more robust while the tests based on A�n andB�n may be more sensitive to the weight fun
tions adopted. The proposed 
lasses of tests arehighly 
exible and when we do not have any idea of the order of 
rossings of the two CSHRs,the tests based on C�n are re
ommended as they tend to give more robust results.5. Dis
ussionThe non-studentized tests of Aly et al. (1994) are asymptoti
ally distribution-free only whenthe weight fun
tion ŜT (u�) ŜC(u�)1=2 is used. Flexibility 
an be gained when di�erentweight fun
tions are adopted, but studentization is ne
essary in order to retain the asymp-toti
 distribution-free properties. Simulation studies show that the studentized test statisti
shave better performan
e than the non-studentized statisti
s of Aly et al. (1994) in the sense7



that the �nite sample distributions of the studentized statisti
s 
an be 
losely approximatedby their respe
tive asymptoti
 distributions under the null hypothesis. Empiri
ally the stu-dentized tests are almost unbiased even for moderate sample sizes, irrespe
tive of the 
hoi
eof the weight fun
tions and 
ensoring proportion. Choi
es of weight fun
tion have been pro-posed and dis
ussed widely in the literature. However, the 
hoi
e of weight fun
tion shouldbe based on the investigator's desire to emphasize either early or late departures between theCSHRs as the data from di�erent 
lini
al trials may have di�erent 
hara
teristi
s. For exampleunexpe
ted early or late o

urren
es of the event may not be very informative and hen
e aweight fun
tion with lighter weight at both ends would be adopted by the investigator. Thesupremum version of the tests, namely Bn and Cn would be more sensitive to the 
ases wheretwo CSHRs di�er substantially for some range of t but not ne
essarily elsewhere. Neverthe-less, tests based on weight fun
tion w1(u) = �Y (u) has reasonable power in pra
ti
e in mostsituations. Together with the 
lasses of tests Cn or C�n, whi
h are less sensitive to the 
hoi
eof weight fun
tions, would be good tests to start with in general when we have no informationabout the 
hara
teristi
s of the data.A
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AppendixThe proof of the following theorem follows from Aly, Ko
har and M
Keague (1994).Theorem : Let w be a lo
ally bounded predi
table non-negative weight fun
tion su
h thatnw2(u)= �Y (u) ! K(u) in probability for ea
h u and R10 K(u)d(�1 +�2)(u) <1. Then underH0 n1=2Ln(t) D! W (�(t))where fW (t); t � 0g is a standard Brownian motion and �2(t) = R10 K(u)d(�1 +�2)(u) whi
h
an be estimated 
onsistently by S2n(t) of (5).It follows from this and from Gill (pp. 80-81, 1980) that under the 
onditions of the abovetheorem and under H0, pnLn(t)Sn(1) D! W (t):The asymptoti
 null distributions as given by (6), (7) and (8) now follow easily from this andthe details given in Aly, Ko
har and M
Keague (1994).Now we 
onsider the asymptoti
 null distribution of the statisti
pnC�n =pn sup0�s<t<1 jLn(t)�Ln(s)j=Sn(1). Sin
e the statisti
 n1=2C�n 
onverges in distribution to C�� = sup0�s<t�1 jW (t)�W (s)j with W being a standard Brownian motion. It is easy to see that C�� has the samedistribution as the range of the standard Brownian motion (jjW�jj + jjW+jj) where jjW�jj =min(0; infW (t)), jjW+jj = max(0; supW (t)). The range of the standard Brownian motion wasstudied by Feller (1951) with density fun
tion given by (Eq. (3.6) of Feller (1951) by settingt = 1) h(x) = 8 1Xk=1 (�1)k�1k2 �(kx)where � is the density fun
tion of a standard normal variable Z. The 95% and 99% quantilesare found to be 2.497 and 3.023, respe
tively.
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Figure 1: Nelson-Aalen estimates of the CSHRs for the two types of 
an
er.
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Table 1: Empiri
al type I error rates and powers of the tests under H1No 
ensoring 18 - 35% 
ensoring 45 - 60% 
ensoringEmpiri
al type I error rates (� = 0)�0 = 0:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.0458 0.0460 0.0396 0.0515 0.0447 0.0365 0.0517 0.0418 0.0332(b) 0.0532 0.0376 0.0314 0.0505 0.0317 0.0269 0.0537 0.0302 0.0216(
) 0.0530 0.0470 0.0367 0.0515 0.0465 0.0316 0.0495 0.0413 0.0284(d) 0.0497 0.0416 0.0372 0.0510 0.0419 0.0351 0.0548 0.0423 0.0332(e) 0.0525 0.0439 0.0404 0.0509 0.0430 0.0368 0.0533 0.0410 0.0347(f) - 0.0359 0.0307 - 0.0271 0.0216 - 0.0138 0.0086�0 = 1:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.0441 0.0480 0.0363 0.0520 0.0443 0.0344 0.0491 0.0408 0.0321(b) 0.0493 0.0336 0.0292 0.0500 0.0323 0.0268 0.0511 0.0319 0.0230(
) 0.0478 0.0465 0.0345 0.0531 0.0498 0.0325 0.0493 0.0409 0.0284(d) 0.0477 0.0395 0.0360 0.0506 0.0402 0.0357 0.0526 0.0398 0.0336(e) 0.0501 0.0456 0.0395 0.0510 0.0448 0.0362 0.0500 0.0398 0.0344(f) - 0.0378 0.0286 - 0.0305 0.0219 - 0.0188 0.0126Empiri
al powers (� = 1:0)�0 = 0:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.9850 0.9496 0.9266 0.9034 0.8737 0.8330 0.7714 0.7264 0.6607(b) 0.7862 0.7894 0.6869 0.6755 0.6587 0.5343 0.5290 0.4865 0.3604(
) 0.9030 0.8478 0.8184 0.8203 0.7462 0.7024 0.6687 0.5738 0.5108(d) 0.9072 0.8981 0.8380 0.8165 0.7963 0.7099 0.6743 0.6361 0.5429(e) 0.9609 0.9428 0.9210 0.8991 0.8732 0.8299 0.7618 0.7240 0.6537(f) - 0.9292 0.9000 - 0.8348 0.7755 - 0.6053 0.5076�0 = 1:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.9536 0.9453 0.9224 0.9219 0.8920 0.8588 0.8167 0.7740 0.7185(b) 0.7771 0.7850 0.6804 0.6979 0.6870 0.5666 0.5716 0.5318 0.4098(
) 0.9034 0.8477 0.8196 0.8415 0.7665 0.7239 0.7163 0.6264 0.5666(d) 0.9020 0.8868 0.8280 0.8415 0.8203 0.7417 0.7228 0.6851 0.5909(e) 0.9571 0.9377 0.9175 0.9163 0.8907 0.8541 0.8088 0.7709 0.7110(f) - 0.9219 0.8946 - 0.8599 0.8136 - 0.6872 0.5986
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Table 2: Empiri
al type I error rates and powers of the tests under H2No 
ensoring 25 - 35% 
ensoring 55 - 60% 
ensoringEmpiri
al type I error rates (� = 0)An Bn Cn An Bn Cn An Bn Cn(a) 0.0422 0.0435 0.0374 0.0506 0.0424 0.0322 0.0472 0.0396 0.0295(b) 0.0494 0.0329 0.0277 0.0471 0.0295 0.0239 0.0507 0.0282 0.0196(
) 0.0476 0.0447 0.0331 0.0510 0.0454 0.0310 0.0462 0.0401 0.0262(d) 0.0477 0.0398 0.0358 0.0473 0.0364 0.0301 0.0489 0.0367 0.0287(e) 0.0481 0.0425 0.0386 0.0509 0.0423 0.0332 0.0487 0.0380 0.0287(f) - 0.0352 0.0284 - 0.0271 0.0181 - 0.0120 0.0066Empiri
al powers (� = 1:0)An Bn Cn An Bn Cn An Bn Cn(a) 0.4509 0.3914 0.4038 0.2731 0.2019 0.2025 0.1322 0.0958 0.0896(b) 0.5931 0.5285 0.4678 0.3599 0.2829 0.2322 0.1721 0.1155 0.0861(
) 0.2162 0.1485 0.1395 0.1258 0.0876 0.0720 0.0816 0.0593 0.0425(d) 0.6023 0.5190 0.4969 0.3578 0.2829 0.2622 0.1690 0.1235 0.1106(e) 0.4323 0.3466 0.3665 0.2739 0.2059 0.2102 0.1446 0.1084 0.1004(f) - 0.3047 0.3141 - 0.1600 0.1472 - 0.0512 0.0366
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Table 3: Empiri
al type I error rates and powers of the tests under H3No 
ensoring 30 - 45% 
ensoring 45 - 70% 
ensoringEmpiri
al type I error rates (� = 0)A�n B�n C�n A�n B�n C�n A�n B�n C�n(a) 0.0553 0.0410 0.0424 0.0540 0.0460 0.0350 0.0471 0.0376 0.0276(b) 0.0480 0.0332 0.0275 0.0491 0.0298 0.0235 0.0456 0.0217 0.0140(
) 0.0480 0.0434 0.0305 0.0541 0.0465 0.0285 0.0490 0.0423 0.0239(d) 0.0466 0.0401 0.0349 0.0482 0.0396 0.0331 0.0473 0.0337 0.0271(e) 0.0482 0.0432 0.0369 0.0515 0.0453 0.0349 0.0472 0.0336 0.0268(f) - 0.0329 0.0274 - 0.0243 0.0175 - 0.0081 0.0032Empiri
al powers (� = 1:0)A�n B�n C�n A�n B�n C�n A�n B�n C�n(a) 0.1105 0.3204 0.2363 0.2559 0.4389 0.2917 0.4157 0.4894 0.3582(b) 0.2228 0.1639 0.2092 0.0687 0.0386 0.0538 0.0494 0.0313 0.0174(
) 0.5132 0.6619 0.4854 0.6491 0.6956 0.5398 0.6702 0.6485 0.4978(d) 0.1333 0.0957 0.1774 0.0516 0.0575 0.0607 0.1156 0.1280 0.0793(e) 0.1317 0.3752 0.2190 0.2110 0.3677 0.2353 0.2900 0.3547 0.2349(f) - 0.3169 0.1750 - 0.2657 0.1485 - 0.1507 0.0755
Table 4: Test statisti
s (p-values) using di�erent weight fun
tions for the rats datan1=2A�n n1=2B�n n1=2C�n(a) 2.0656 (0.0388671) 2.4529 (0.0283428) 4.5185 (0.0000249)(b) 4.6612 (0.0000031) 4.6612 (0.0000063) 5.0209 (0.0000021)(
) -1.4994 (0.1337626) 3.5473 (0.0007782) 3.5473 (0.0015564)(d) 4.7409 (0.0000021) 4.7409 (0.0000043) 5.5396 (0.0000001)(e) 2.6433 (0.0082097) 2.6433 (0.0164195) 4.8243 (0.0000056)(f) - 2.4316 (0.0300615) 4.4380 (0.0000363)
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