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1. IntrodutionConsider a ompeting risks model with two auses of failure. Let T denote the lifetime of asubjet, assumed to be ontinuous, with distribution funtion F and survivor funtion S, andlet Æ denote the ause of failure, that is, fÆ = jg is the event that the failure is due to risk j,j = 1; 2. In many pratial situations it is important to know whether the various risks underonsideration are equally serious or whether some risks are more serious than others, withinthe environment in whih the risks are ating simultaneously. To quantify this, the oneptof (ordinary) hazard rate has been generalized in the ompeting risks model to the notion ofause spei� hazard rates (CSHR), whih is de�ned by�j(t) = lim�t!0 1�t P (t � T < t+�t; Æ = jjT � t); j = 1; 2: (1)The overall hazard rate for time to failure satis�es the relation �T (t) = �1(t) + �2(t). Causespei� hazard rates provide detailed information on the extent of eah type of risk at eahtime point t. In models where the various auses of failure are independent, �j(t) redues to the(ordinary) hazard rate orresponding to the marginal distribution of failure from the jth ause.Prentie et al. (1978) emphasize that only those quantities whih are expressible in terms ofause spei� hazard rates are estimable and an be estimated from the ompeting risks dataeven if the risks are dependent. Censoring is possible arising from removal of subjets beforefailure from either ause 1 or ause 2 and it may be due to ombination of other ompetingrisks. Denote the ensoring time by C and its survivor funtion by SC . We assume thatSC(t) > 0 for all t and C is independent of T . We now identify three auses of failure,Æ = 0; 1; 2, where fÆ = 0g is the event that the subjet was ensored. Under right ensoring,we observe n independent, identially distributed opies (Xi; Æi), i = 1; : : : ; n of (X; Æ), whereX = min(T;C). More spei�ally, on the basis of these data, we formulate the problem oftesting the null hypothesis,H0 : �1(t) = �2(t) for all t, (2)against the alternativeHa : �1(t) � �2(t) for all t, with strit inequality for some t: (3)In the literature suh omparisons have also been made in terms of the umulative inidenefuntions F1 and F2 (see Gray, 1988 and Luo & Turnbull, 1999), whereFj(t) = P (T � t; Æ = j) = Z t0 S(u)�j(u) du; j = 1; 2:Note that the null hypothesis H0 in (2) is equivalent toH0 : F1(t) = F2(t); t � 0and Ha in (3) impliesHb : F1(t) � F2(t); t � 0 with strit inequality for some t:2



Several tests have been proposed in the literature for testing H0 against various alternatives(see Kohar, 1995 and Carriere & Kohar, 2000). Most of the tests disussed in the literaturean be expressed as funtionals of weighted log-rank type statistis of the formLn(t) = Z t0 w(u) d(�̂2 � �̂1)(u); (4)where �j(t) = R t0 �j(u)du is the umulative ause spei� hazard rate funtion for risk j, j = 1; 2and the Nelson-Aalen estimator (see, e.g., Fleming and Harrington, 1991) of �j is�̂j(t) = Xi:Xi�t I(Æi = j)=Riwhere Ri = #fk : Xk � Xig is the size of the risk set at time Xi�. The weight funtion w(u)reets the importane attahed to the di�erene between the CSHRs at time u. The testsproposed by Yip and Lam (1992) are based on studentized Ln(1) statistis for various hoiesof w. Although these tests may be able to detet ertain kinds of departure from H0 with highpower, they may not be onsistent against general alternatives.Aly, Kohar and MKeague (1994) proposed two Renyi-type tests for this problem. The �rstone, whih is suitable for omparing umulative inidene funtions, is based on the statistiD3n = sup0�t<1�n(t);where �n(t) = Z t0 ŜT (u�)ŜC(u�)1=2 d(�̂2 � �̂1)(u);and ŜT and ŜC are the produt-limit estimators of ST and SC , respetively. Their seond testwhih is suitable for testing against Ha is based on the statistiD4n = sup0�s<t<1 f�n(t)� �n(s)g:The rationale behind these tests is that �n is an estimator of�(t) = Z t0 ST (u�)SC(u�)1=2(�2(u)� �1(u)) duand Ha holds if and only if � is inreasing. Thus large positive values of D4n give evidene ofa departure from H0 in the diretion of Ha. This property will ontinue to hold if instead ofST (u�)SC(u�)1=2, we use some other suitable nonnegative weight funtion. It was shown inAly, Kohar and MKeague (1994) that the hoie of the weight funtion ŜT (u�)ŜC(u�)1=2leads to asymptotially distribution-free tests when the data are ensored and these tests areexatly distribution-free otherwise. An unpleasant property of these tests is that they arevery onservative. This is probably due to the fat that the �nite sample distributions of thestatistis n1=2D3n and n1=2D4n annot be approximated losely by their respetive asymptotidistributions when n is not extremely large. 3



In Setion 2, we propose two new lasses of asymptotially distribution-free tests whih aresimilar to the studentized versions of the D3n andD4n statistis, but with arbitrary nonnegativeweight funtions hosen from a exible lass of weight funtions. In Setion 3, we arry outan intensive simulation study to ompare the performane of the various tests. It seems fromthis study that the studentized statistis using the estimated ovariane funtions appear toonverge to the asymptoti null distribution muh faster, whih improves the small sampleapproximations signi�antly. Moreover, the proposed tests are highly exible and this approahuni�es the existing proedures. The proposed methods are illustrated by appliation to datafrom Hoel (1972) in Setion 4. Setion 5 ontains some losing remarks and disussion.2. The proposed lasses of testsIn this setion, we generalize the tests of Aly, Kohar and MKeague (1994) by taking di�erentweight funtions w. With suitable studentization, this yields a versatile family of tests. It iswell known that under H0, n1=2Ln(t) is a martingale with preditable variation proess �2(t)whih, under some mild onditions, an be estimated onsistently byS2n(t) = Z t0 w2(u)�Y 2(u)=n d �N(u); (5)where �Y (u) =Pni=1 I(Xi � u) is the total number of items at risk at u�, and �N(u) is the totalnumber of deaths up to time u. Using Ln(t) as in (4), we propose the following three lassesof test statistis for testing H0:An(w) = Ln(1)Sn(1) ;Bn(w) = sup0�t<1 Ln(t)Sn(1) ;Cn(w) = sup0�s<t<1 Ln(t)�Ln(s)Sn(1) :Large values of the statisti indiate statistial signi�ane for tests of H0. It follows from theresults given in the Appendix that underH0 and under some regularity onditions, fn1=2 Ln(t)=Sn(1)gonverges weakly to fW (t); t � 0g, a standard Brownian motion. As a onsequene, underH0, n1=2 An(w)! Z; a standard normal variable, (6)P [n1=2 Bn(w) > b℄! P [sup0<t<1W (t) > b℄ = 2(1� �(b)); b � 0; (7)n1=2 Cn(w)! sup0�t�1 jW (t)j; (8)where � is the standard normal distribution funtion.Consequently, for  > 0P (n1=2Cn � )! 4� P1k=0 (�1)k2k+1 expf��2(2k + 1)2=82g. (9)4



Using (9) the asymptoti 0.90, 0.95 and 0.99 quantiles of n1=2Cn are found to be 1.96, 2.241and 2.807, respetively.When an ordered alternative is unsuitable, it an be of interest to test H0 against the gen-eral alternative: F1(t) 6= F2(t) for some t, whih is equivalent to �1(t) 6= �2(t) for some t. In thatase it is natural to use the Kolmogorov{Smirnov type test statisti B�n = supt�0 jLn(t)j=Sn(1).Using the same kind of arguments as in Aly, Kohar and MKeague (1994), it follows thatunder H0, n1=2B�n onverges in distribution to sup0�t�1 jW (t)j. This gives an omnibus test|onsistent against arbitrary departures from H0. The orresponding two-sided analogue of Cnis C�n = sup0�s<t<1 jLn(t)� Ln(s)j=Sn(1) and its asymptoti null distribution is given in theAppendix.The lass An was proposed and studied by Yip and Lam (1992). In this lass the hoie of theweight funtion w(u) = �Y (u) leads to the sign test whereas the hoie w(u) = �Y (u) �N (u�) givesa test whih is equivalent to the one proposed by Bagai, Deshpand�e and Kohar (1989a) fortesting the equality of two hazard rates. On the other hand, the weight funtion w(u) = �Y 2(u)results in the statisti proposed by Bagai, Deshpand�e and Kohar (1989b) for testing againsta stohasti ordering alternative. Previous studies show that the tests belonging to the lassAn have good power for testing against some spei� alternatives, but they annot be expetedto be onsistent against all alternatives to H0. As will be seen later, the tests belonging tothe lasses Bn and Cn are sensitive to a wider range of alternatives and at the same time theymaintain the full eÆieny of the orresponding statistis belonging to the lass An. In theunensored ase, the tests of Aly, Kohar and MKeague (1994) are extensions of the sign testto Renyi-type statistis and they are seen to be quite powerful for testing against alternativeswhere the ause spei� hazard rates are proportional to eah other and for this alternative thesign test is the UMP test. Similar observations were made by Gill (1980) and Fleming et al.(1987) in the ase of lassial two-sample problem when they extend the linear rank statististo Renyi-type statistis using the same sore funtion.3. Simulations and power omparisonsTo illustrate the exibility of the proposed lasses of tests, a large sale simulation study wasonduted. The null hypothesis H0 was tested against the alternatives(i) H1 : �2(t) = (� + 1) �1(t);(ii) H2 : �2(t) = �1(t) f1 + � �1(t)g; and(iii) H3 : �2(t) = f�1(t)gexp(�=2) .The alternatives H1 and H2 belong to the lass of order restrited alternatives Ha and one-sided tests were arried out for these. The alternative H3 was onsidered by Lam (1998) wherethe two CSHRs ross and hene a 2-sided test was arried out. For simpliity, we let �1(t) = 1,the level of signi�ane � = 0:05, and � is set to be 0 and 1 at whih � = 0 orresponds to the5



null hypothesis. For H1, the failure times T = min(Y1; Y2) were generated from the absolutelyontinuous bivariate exponential distribution of Blok and Basu (1974) with densityf(y1; y2) = ( (�0+�1+�2)�1(�0+�2)�1+�2 e��1y1�(�0+�2)y2 if y1 < y2;(�0+�1+�2)�2(�0+�1)�1+�2 e��2y2�(�0+�1)y1 if y1 > y2where �0 is the dependene parameter and �0 = 0 orresponds to the independene of the tworisks. In this ase, the ause spei� hazard rates are proportional to eah other and are givenby �j(t) = �j(�0 + �1 + �2)�1 + �2 j = 1; 2:We set �0 = 0 and 1 in the study under H1. For H2 and H3, we simply assumed the two risksto be independent of eah other. In all the three ases, the ensoring variable C was takento be independently exponentially distributed. Three levels of ensoring, namely no ensoring,moderate and heavy ensoring were onsidered to study the e�et due to ensoring. For eahombination of the alternative hypothesis and the set of parameters assumed, 10000 data sets,eah with a sample size of n = 100 were generated.The weight funtions used are(a) w1(u) = �Y (u);(b) w2(u) = �Y (u) �̂(u�);() w3(u) = �Y 2(u);(d) w4(u) = �Y (u) �N(u�);(e) w5(u) = ŜT (u�) ŜC(u�)1=2.where the weight funtions w1 and w2 are the optimal weight funtions for the lass of testsAn, whih give rise to asymptotially loally most powerful tests for H1 and H2, respetively(Yip and Lam, 1993). The tests generated by these �ve weight funtions are ompared withthe tests n1=2D3n and n1=2D4n of Aly, Kohar and MKeague (1994), denoted by (f) under thelasses Bn and Cn, respetively. The empirial type I error rates and the empirial powers ofthe tests with � = 1 are given in Tables 1 to 3.Under H0 (� = 0), the tests of Aly, Kohar and MKeague (1994) are more onservativein the sense that their empirial type I error probabilities are muh smaller than the nominallevel of signi�ane 0.05, partiularly when the ensoring proportion is large. However, thetests proposed in this paper perform muh better as their empirial type I error rates arequite lose to the nominal level, and are not muh a�eted by the magnitude of the ensoringproportion. This indiates that the studentized tehnique has improved the rate of onvergeneof the proposed statistis to their asymptoti values whih gives rise to more aurate inferentialproedures. 6



The simulation study also demonstrates the importane of the weight funtion used. Whentesting against order restrited alternatives Ha and Hb, all tests with weight funtions on-sidered above perform quite well. The powers of the tests highly depend on the hoie of theweight funtion. The three lasses of tests, with optimal weight funtion generated from An,give good power for all values of �, and not just for loal alternatives. In partiular, under theusual order restrited alternatives, the test based on An is, in general, more powerful than thetests based on Bn and Cn for any arbitrary nonnegative weight funtion w(u). In the aseswith rossing CSHRs, the Renyi-type of tests based on B�n and C�n are generally more sensitiveand more powerful than that of A�n. It is observed that the proposed two lasses of tests aremore versatile in the sense that they are power robust. The Renyi-type tests are generally moresensitive to departure from null hypothesis as is illustrated by the following example.4. An exampleThe three lasses of tests were applied to a set of mortality data given in Hoel (1972) whih hasbeen studied by many researhers in the �eld of ompeting risks analysis. The data were ob-tained from a laboratory experiment on RFM strain male mie whih had reeived a radiationdose of 300 roentgens at ages of 5 to 6 weeks and were kept in a onventional laboratory envi-ronment. Causes of death were lassi�ed into three distint groups, namely thymi lymphoma,retiulum ell saroma, and other auses. In this appliation, the deaths due to other ausesare treated as ensored observations and are assumed to be independent of the two types ofaner. The estimates of the umulative hazard of dying from thymi lymphoma and retiulumell saroma are given in Figure 1. Aly, Kohar and MKeague (1994), based on the plots ofthe smoothed estimates of the CSHRs, suggested that the CSHRs of the two types of anerross at about 500 days.Hene, we only onsidered a 2-sided alternative using the omplete data set. The weightfuntions (a) to (e) of Setion 3 were used, and were ompared with the tests of Aly, Koharand MKeague (1994). The test statistis and the orresponding p-values (in parentheses)given in Table 4 suggest that the result is highly signi�ant. By omparing the p-values of thetests, it is notied the tests based on the C�n are more robust while the tests based on A�n andB�n may be more sensitive to the weight funtions adopted. The proposed lasses of tests arehighly exible and when we do not have any idea of the order of rossings of the two CSHRs,the tests based on C�n are reommended as they tend to give more robust results.5. DisussionThe non-studentized tests of Aly et al. (1994) are asymptotially distribution-free only whenthe weight funtion ŜT (u�) ŜC(u�)1=2 is used. Flexibility an be gained when di�erentweight funtions are adopted, but studentization is neessary in order to retain the asymp-toti distribution-free properties. Simulation studies show that the studentized test statistishave better performane than the non-studentized statistis of Aly et al. (1994) in the sense7



that the �nite sample distributions of the studentized statistis an be losely approximatedby their respetive asymptoti distributions under the null hypothesis. Empirially the stu-dentized tests are almost unbiased even for moderate sample sizes, irrespetive of the hoieof the weight funtions and ensoring proportion. Choies of weight funtion have been pro-posed and disussed widely in the literature. However, the hoie of weight funtion shouldbe based on the investigator's desire to emphasize either early or late departures between theCSHRs as the data from di�erent linial trials may have di�erent harateristis. For exampleunexpeted early or late ourrenes of the event may not be very informative and hene aweight funtion with lighter weight at both ends would be adopted by the investigator. Thesupremum version of the tests, namely Bn and Cn would be more sensitive to the ases wheretwo CSHRs di�er substantially for some range of t but not neessarily elsewhere. Neverthe-less, tests based on weight funtion w1(u) = �Y (u) has reasonable power in pratie in mostsituations. Together with the lasses of tests Cn or C�n, whih are less sensitive to the hoieof weight funtions, would be good tests to start with in general when we have no informationabout the harateristis of the data.AknowledgmentsThe authors aknowledge the valuable omments and suggestions of the Assoiate Editor andtwo referees. This researh was supported by a RGC grant and the researh funding of theFaulty of Soial Sienes, the University of Hong Kong.

8



ReferenesE. A. A. Aly, S. C. Kohar, and I. W. MKeague, \Some tests for omparing umulativeinidene funtions and ause- spei� hazard rates," J. Amer. Statist. Asso., vol. 89,pp. 994-999, 1994.I. Bagai, J. V. Deshpand�e, and S. C. Kohar, \A distribution-free test for the equality offailure rates due to two ompeting risks," Commun. Statist. Theory Meth., vol. 18, pp.107-120, 1989a.I. Bagai, J. V. Deshpand�e, and S. C. Kohar, \Distribution-free tests for stohasti orderingamong two independent risks," Biometrika, vol. 76, pp. 775{778, 1989b.H. W. Blok and A. P. Basu, \A ontinuous bivariate exponential extension," J. Amer. Statist.Asso., vol. 69, pp. 1031-1037, 1974.K. C. Carriere and S. C. Kohar, \Comparing sub- survival funtions in a ompeting risksmodel," Lifetime Data Analysis, vol. 6, pp. 85-97, 2000.W. Feller, \The asymptoti distribution of the range of sums of independent random vari-ables," Annals of Mathematial Statistis, vol. 22, pp. 427-432, 1951.T. R. Fleming, D. P. Harrington and M. O'Sullivan, \Supremum versions of the Log-rank andgeneralized Wiloxon statistis," J. Amer. Statist. Asso., vol. 82, pp. 312-320, 1987.T. R. Fleming and D. P. Harrington, Counting Proesses and Survival Analysis. Wiley, NewYork, 1991.R. D. Gill, Censoring and Stohasti Integrals. Mathematial Centre Trats, vol. 124, Math-ematish Centrum, Amsterdam, (1980).R. J. Gray, \A lass of k-sample tests for omparing the umulative inidene of a ompetingrisk," Ann. Statist., vol. 16, pp. 1141-1154, 1988.D. G. Hoel, \A representation of mortality data by ompeting risks," Biometris, vol. 28, pp.475- 488, 1972.S. C. Kohar, \A review of some distribution-free tests for the equality of ause spei� hazardrates, " Analysis of Censored Data - the IMS -LNMS, vol. 27, pp. 117-162, eds. J. V.Deshpand�e and Hira Koul, 1995.K. F. Lam, \A lass of tests for the equality of k ause-spei� hazard rates in a ompetingrisks model," Biometrika, vol. 85, pp. 179-188, 1998.X. Luo and B. W. Turnbull, \Comparing two treatments with multiple ompeting risks end-points," Statistia Sinia, vol. 9, pp. 985-997, 1999.9



R. L. Prentie, J. D. Kalbeish, A. V. Peterson, N. Flourney, V. T. Farewell and N. E.Breslow, \The analysis of failure times in the presene of ompeting risks," Biometris,vol. 34, pp. 541-554, 1978.P. Yip and K. F. Lam, "A lass of non-parametri tests for the equality of failure rates in aompeting risks model," Commun. Statist. Theory Meth., vol. 21, pp. 2541-2556, 1992.P. Yip and K. F. Lam, \A multivariate nonparametri test for the equality of failure ratesin a ompeting risks model," Commun. Statist. Theory Meth., vol. 22, pp. 3199-3222,1993.

10



AppendixThe proof of the following theorem follows from Aly, Kohar and MKeague (1994).Theorem : Let w be a loally bounded preditable non-negative weight funtion suh thatnw2(u)= �Y (u) ! K(u) in probability for eah u and R10 K(u)d(�1 +�2)(u) <1. Then underH0 n1=2Ln(t) D! W (�(t))where fW (t); t � 0g is a standard Brownian motion and �2(t) = R10 K(u)d(�1 +�2)(u) whihan be estimated onsistently by S2n(t) of (5).It follows from this and from Gill (pp. 80-81, 1980) that under the onditions of the abovetheorem and under H0, pnLn(t)Sn(1) D! W (t):The asymptoti null distributions as given by (6), (7) and (8) now follow easily from this andthe details given in Aly, Kohar and MKeague (1994).Now we onsider the asymptoti null distribution of the statistipnC�n =pn sup0�s<t<1 jLn(t)�Ln(s)j=Sn(1). Sine the statisti n1=2C�n onverges in distribution to C�� = sup0�s<t�1 jW (t)�W (s)j with W being a standard Brownian motion. It is easy to see that C�� has the samedistribution as the range of the standard Brownian motion (jjW�jj + jjW+jj) where jjW�jj =min(0; infW (t)), jjW+jj = max(0; supW (t)). The range of the standard Brownian motion wasstudied by Feller (1951) with density funtion given by (Eq. (3.6) of Feller (1951) by settingt = 1) h(x) = 8 1Xk=1 (�1)k�1k2 �(kx)where � is the density funtion of a standard normal variable Z. The 95% and 99% quantilesare found to be 2.497 and 3.023, respetively.
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Figure 1: Nelson-Aalen estimates of the CSHRs for the two types of aner.
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Table 1: Empirial type I error rates and powers of the tests under H1No ensoring 18 - 35% ensoring 45 - 60% ensoringEmpirial type I error rates (� = 0)�0 = 0:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.0458 0.0460 0.0396 0.0515 0.0447 0.0365 0.0517 0.0418 0.0332(b) 0.0532 0.0376 0.0314 0.0505 0.0317 0.0269 0.0537 0.0302 0.0216() 0.0530 0.0470 0.0367 0.0515 0.0465 0.0316 0.0495 0.0413 0.0284(d) 0.0497 0.0416 0.0372 0.0510 0.0419 0.0351 0.0548 0.0423 0.0332(e) 0.0525 0.0439 0.0404 0.0509 0.0430 0.0368 0.0533 0.0410 0.0347(f) - 0.0359 0.0307 - 0.0271 0.0216 - 0.0138 0.0086�0 = 1:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.0441 0.0480 0.0363 0.0520 0.0443 0.0344 0.0491 0.0408 0.0321(b) 0.0493 0.0336 0.0292 0.0500 0.0323 0.0268 0.0511 0.0319 0.0230() 0.0478 0.0465 0.0345 0.0531 0.0498 0.0325 0.0493 0.0409 0.0284(d) 0.0477 0.0395 0.0360 0.0506 0.0402 0.0357 0.0526 0.0398 0.0336(e) 0.0501 0.0456 0.0395 0.0510 0.0448 0.0362 0.0500 0.0398 0.0344(f) - 0.0378 0.0286 - 0.0305 0.0219 - 0.0188 0.0126Empirial powers (� = 1:0)�0 = 0:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.9850 0.9496 0.9266 0.9034 0.8737 0.8330 0.7714 0.7264 0.6607(b) 0.7862 0.7894 0.6869 0.6755 0.6587 0.5343 0.5290 0.4865 0.3604() 0.9030 0.8478 0.8184 0.8203 0.7462 0.7024 0.6687 0.5738 0.5108(d) 0.9072 0.8981 0.8380 0.8165 0.7963 0.7099 0.6743 0.6361 0.5429(e) 0.9609 0.9428 0.9210 0.8991 0.8732 0.8299 0.7618 0.7240 0.6537(f) - 0.9292 0.9000 - 0.8348 0.7755 - 0.6053 0.5076�0 = 1:0 An Bn Cn An Bn Cn An Bn Cn(a) 0.9536 0.9453 0.9224 0.9219 0.8920 0.8588 0.8167 0.7740 0.7185(b) 0.7771 0.7850 0.6804 0.6979 0.6870 0.5666 0.5716 0.5318 0.4098() 0.9034 0.8477 0.8196 0.8415 0.7665 0.7239 0.7163 0.6264 0.5666(d) 0.9020 0.8868 0.8280 0.8415 0.8203 0.7417 0.7228 0.6851 0.5909(e) 0.9571 0.9377 0.9175 0.9163 0.8907 0.8541 0.8088 0.7709 0.7110(f) - 0.9219 0.8946 - 0.8599 0.8136 - 0.6872 0.5986
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Table 2: Empirial type I error rates and powers of the tests under H2No ensoring 25 - 35% ensoring 55 - 60% ensoringEmpirial type I error rates (� = 0)An Bn Cn An Bn Cn An Bn Cn(a) 0.0422 0.0435 0.0374 0.0506 0.0424 0.0322 0.0472 0.0396 0.0295(b) 0.0494 0.0329 0.0277 0.0471 0.0295 0.0239 0.0507 0.0282 0.0196() 0.0476 0.0447 0.0331 0.0510 0.0454 0.0310 0.0462 0.0401 0.0262(d) 0.0477 0.0398 0.0358 0.0473 0.0364 0.0301 0.0489 0.0367 0.0287(e) 0.0481 0.0425 0.0386 0.0509 0.0423 0.0332 0.0487 0.0380 0.0287(f) - 0.0352 0.0284 - 0.0271 0.0181 - 0.0120 0.0066Empirial powers (� = 1:0)An Bn Cn An Bn Cn An Bn Cn(a) 0.4509 0.3914 0.4038 0.2731 0.2019 0.2025 0.1322 0.0958 0.0896(b) 0.5931 0.5285 0.4678 0.3599 0.2829 0.2322 0.1721 0.1155 0.0861() 0.2162 0.1485 0.1395 0.1258 0.0876 0.0720 0.0816 0.0593 0.0425(d) 0.6023 0.5190 0.4969 0.3578 0.2829 0.2622 0.1690 0.1235 0.1106(e) 0.4323 0.3466 0.3665 0.2739 0.2059 0.2102 0.1446 0.1084 0.1004(f) - 0.3047 0.3141 - 0.1600 0.1472 - 0.0512 0.0366
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Table 3: Empirial type I error rates and powers of the tests under H3No ensoring 30 - 45% ensoring 45 - 70% ensoringEmpirial type I error rates (� = 0)A�n B�n C�n A�n B�n C�n A�n B�n C�n(a) 0.0553 0.0410 0.0424 0.0540 0.0460 0.0350 0.0471 0.0376 0.0276(b) 0.0480 0.0332 0.0275 0.0491 0.0298 0.0235 0.0456 0.0217 0.0140() 0.0480 0.0434 0.0305 0.0541 0.0465 0.0285 0.0490 0.0423 0.0239(d) 0.0466 0.0401 0.0349 0.0482 0.0396 0.0331 0.0473 0.0337 0.0271(e) 0.0482 0.0432 0.0369 0.0515 0.0453 0.0349 0.0472 0.0336 0.0268(f) - 0.0329 0.0274 - 0.0243 0.0175 - 0.0081 0.0032Empirial powers (� = 1:0)A�n B�n C�n A�n B�n C�n A�n B�n C�n(a) 0.1105 0.3204 0.2363 0.2559 0.4389 0.2917 0.4157 0.4894 0.3582(b) 0.2228 0.1639 0.2092 0.0687 0.0386 0.0538 0.0494 0.0313 0.0174() 0.5132 0.6619 0.4854 0.6491 0.6956 0.5398 0.6702 0.6485 0.4978(d) 0.1333 0.0957 0.1774 0.0516 0.0575 0.0607 0.1156 0.1280 0.0793(e) 0.1317 0.3752 0.2190 0.2110 0.3677 0.2353 0.2900 0.3547 0.2349(f) - 0.3169 0.1750 - 0.2657 0.1485 - 0.1507 0.0755
Table 4: Test statistis (p-values) using di�erent weight funtions for the rats datan1=2A�n n1=2B�n n1=2C�n(a) 2.0656 (0.0388671) 2.4529 (0.0283428) 4.5185 (0.0000249)(b) 4.6612 (0.0000031) 4.6612 (0.0000063) 5.0209 (0.0000021)() -1.4994 (0.1337626) 3.5473 (0.0007782) 3.5473 (0.0015564)(d) 4.7409 (0.0000021) 4.7409 (0.0000043) 5.5396 (0.0000001)(e) 2.6433 (0.0082097) 2.6433 (0.0164195) 4.8243 (0.0000056)(f) - 2.4316 (0.0300615) 4.4380 (0.0000363)
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