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ABSTRACT Consider a sequence of independent Poisson point processes X1, Xo,... with densities A1, A2, ...
respectively and connection functions gi,g2,... defined by g,(r) = g(nr), for r > 0 and for some integrable
function g. The Poisson random connection model (X, Ay, gr) is a random graph with vertex set X, and, for any
two points z; and z; in X,, the edge < z;,z; > is included in the random graph with a probability g.(|z; —z;|)
independent of the point process as well as other pairs of points. We show that if An/nd = A (0 <A< o0)as
n — oo then for the number I,)(K) of isolated vertices of X, in a compact set K with non-empty interior, we
have (Var(I(,)(K))) ™" (I(n)(K) — E(I(n)(K))) converges in distribution to a standard normal random variable.
Similar results may be obtained for clusters of finite size. The importance of this result is in the statistical

simulation of such random graphs.

Keywords Random connection model, Continuum percolation, Poisson point process, central limit theorem

1 Introduction

The random connection model is an example of random graphs used in describing small world
networks. It consists of a countably infinite set of vertices distributed according to a well
defined mechanism (random or otherwise), with pairs of vertices connected by edges according
to some random mechanism. More formally, let G be a complete graph of a vertex set X =
{z1,29,...} C R? and containing edges < x;,z; > for all possible pairs of vertices x; and z;
of X. The random connection model (RCM) is a random sub-graph of G consisting of the
vertex set X and an edge set £(X) formed according to a random mechanism determined by
a connection function g : [0,00) — [0,1]. The edge < z;,z; > connecting the vertices xz;
and z; is included in the edge set £(X) with a probability g(|z; — «;|), where | - | denotes
the d-dimensional Euclidean distance. The inclusion or non-inclusion of an edge in £(X) is
independent of the inclusion or non-inclusion of all other edges of G.

It is immediate that for X = Z? and g(|z|) = Plyje|<1}, the random graph above coincides
with the nearest neighbour independent bond percolation model. Also for X arising as points
of a Poisson point process and g(|x|) = 1y4/<2r}, for some r > 0, we obtain the Poisson Boolean
model of continuum percolation with balls of a fixed radius r.

In this paper the object of study is the Poisson RCM where the vertex set X is the points
of a Poisson point process of density A on R?, i.e., for disjoint Borel sets A, B C R?,

(a) #(X N A) and #(X N B) are independent random variables.

(b) Given #(X N A) =k, these k points are uniformly distributed in A.



The connection function ¢ is arbitrary and the probabilistic mechanism forming the edge set
is independent of the Poisson point process generating X. We shall denote this RCM by
(X, )\, g). For a more formal account of the mathematical set-up of this model we refer the
reader to Meester and Roy [1996].

Clearly the graph (X, \,g) can be decomposed as a disjoint union of mazimal connected
sub-graphs. For a vertex z € X, let C(z) denote the maximal connected sub-graph containing
x. The vertex z is said to admit a cluster of order k if C(z) contains exactly k vertices. The
vertex x is isolated if it has a cluster of order 1. In case C(z) contains infinitely many vertices,
the vertex z is said to admit an unbounded cluster. Burton and Meester [1993] have shown
that the Poisson RCM admits at most one unbounded cluster almost surely.

It can be easily seen that in (X, A, g), for a fixed vertex u € X, the vertices z € X such that
the edges < w,z > are in the graph (X, )\, g) form an inhomogeneous Poisson point process

with density Ag(]z — u|). Thus, for any &,
P{u is connected to k distinct points}

r—Uu XL k
= oxp(A [ glhe — uaay P27 2D ()

Hence, if
/ 9(lz|)dz = oo, (2)
Rd

then, for any k£ > 1, P{u has a cluster of order k} = 0, i.e., u admits an unbounded cluster
almost surely. Combining this with the result of Burton and Meester we see that, for g satisfying
(2), (X, A, g) is an unbounded connected graph almost surely.

Similarly, if [p4 g(|z|)dz = 0, then (X, ), g) is just a collection of isolated vertices. Thus
the Poisson RCM worth considering is for g satisfying

0< /Rdg(|x|)dac < 0. 3)

Penrose [1991] has shown that for ¢ satisfying (3), and for a fixed vertex u € X, there exists
Ac(g) > 0 such that

=0 for A < A.(9)

f4(A) := P{u admits an unbounded cluster}
>0 for A > A:(g).

Moreover,
| _
ol —0,0)
A—00 )\fRdg(|x|)dx

(4)

which implies that the rate at which 6,()) tends to 1 as X tends to oo corresponds to the rate
at which the probability of u being isolated tends to 0. Thus as the density increases to oo,
the Poisson RCM tends to becoming a connected graph.



This however need not occur if the connection function were to also change with A. Indeed,

consider a sequence of independent Poisson point processes X1, Xo,... with densities A1, As, ...
respectively, where \,, — 0o as n — oo; and connection functions gi, gs, ... defined by
gn(r) = g(nr), for r >0, (5)

for some ¢ satisfying (3). We shall obtain asymptotic distributions of the number of isolated
vertices in a bounded region K admitted by (X, An, gn) as n — oo.

The mosaic structure of Poisson Boolean model of continuum percolation is a similar struc-
ture where one considers Boolean models whose intensities )\, increase to infinity while the
radii of the balls in each of the models decrease to 0. Hall [1988] has obtained asymptotic dis-
tribution of the number of ‘clumps’ of finite order according to the rate at which the radius goes
to 0. We shall obtain results similar to that obtained by Hall, however, in our case, because of
the arbitrary nature of ¢ and since the dependence structure of a general RCM is significantly
different from that of the Boolean model the calculations involved are more intricate.

For simplicity with the calculations we assume here that
g is a non-increasing function. (6)

Fix a compact subset K of R¢ with non-empty interior and let T, (n)(K) be the number of isolated

vertices in K of (X, \n,gn). Our main result is

Theorem 1 For Poisson RCM’s (Xy, A, gn) as above, if Ap/n — X, (0 < XA < 00) as n — o0

then
Iy (K) — E(I () (K))

Var(I(n) (K))

= Z

where Z 1s a standard normal random wvariable.

Here = denotes convergence in distribution.

One expects similar results for clusters of finite sizes; however the computations involved are

quite forbidding.

2 Moment computations

In preparation for our subsequent analysis, let U € R? be a point uniformly distributed
on K and independent of all other underlying processes. For ai,as,...,a; € RY, (X U
{a1,a9,...,a5}, A, g) denotes the RCM obtained with vertex set X U {aj,as,...,a;} and con-

nection function g, where X is a Poisson point process of intensity A.
Define
p(\,g) == P{o is isolated in (X U {0}, A,g)},

where 0 denotes the origin. By the translation invariance of the process

p(\,g) = P{U is isolated in (X U {U}, A,g)}.
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Moreover, given that the process has a point at the origin, the conditional distribution of
(X U {0}, \, g) is the same as that of a process (X, A, g) with a point of the process taken to

be the origin, thus from (1) we have
pOvg) =exp(-A [ gllol)ds). (7)
Rd
Clearly, for A, such that \,/n% — X as n — oo, for some A € (0,00), we have from (7),

POy gn) = P{U&smdMaim(XﬁU{ULAmgm}

= exp(~h /R gnllal)d)
= (- /R g(Jsl)de)

- #(259

— p(A,g) as n — oo. (8)

Now we introduce some notation. For a Borel set A C R?, we denote the points of the
Poisson points in A by X (A) := X N A and its cardinality by N(A) := #X(A). Also, for t > 0,
the fattening of A by ¢ is denoted by A := {y € R? : |z — y| < t for some 2 € A}. Finally,
let I(A) be the number of isolated vertices of X in A, i.e., I(A) := > ¢cy 1{geA and ¢ is isolated}
where {¢ is isolated} is the event that £ is not connected to any ¢ € X. Also, denote by
I(A) := E&X LiecA and ¢ is isolated in At} Where {¢ is isolated in A} is the event that ¢ is not
connected to any £ € X (A!). Note, both I(A) and I;(A) are 0 if X(A) = 0.

For K compact with non-empty interior we have I;(K) | I(K) almost surely as ¢ 1 0o, and
for any t > 0, E(I;(K))? < E(N(K))? < oo; thus applying the dominated convergence theorem
we have

E(I(K)) | E(I(K)) and Var(I;(K)) — Var(I(K)) as t — oc. 9)

Now we will compute E(I;(K)) and E(I;(K))2. First note that the points € X such that
either < x,u; > or < x,ug > is an edge in (X U{uy,u2}, A, g) form an inhomogeneous Poisson
point process. A simple inclusion—exclusion calculation shows that the intensity function of
this inhomogeneous process is Ah(z;u1,u2) where h(z;uq,u2) == g(Jlz — ui]) + g(|z — ua|) —

9(jz —ui])g(lz — ual).

Lemma 2 For any t > 0, we have

B(I,(K)) = A /

Kdac exp(—A /Kt dyg(|z —yl))

and
E(I(K))* = E(I(K))

X2 / / da1dis(1 - (21 — ws])) exp(—A / dyh(y; 71, 2)).
K JK Kt



Proof: The proof is by direct computation.

E(I;(K))

= Z E (Z Lieck and ¢ is isolated in Kt} N (K") = m) P(N(K') =m)

m=1 fexX

_ iexp(—M(K’f))W(Kt)]m

m!

m=1

mP (& € K and & is isolated in K'|X(K") = {51, &)

e Kt m
_ Z"Xp —M(KC)A /dxl/ /dxm deH (1 g(ler — )
Kt Kt

m=1
- AZQXP i ;3”“ | da [/thy(l—g(|w1—y|>)]m_l
= Xexp(—M(K")) /dmlz [/dy (1- (le—yl))]m

= A/deexp (—A/Kt dyg(|x—y|)>.

For the second moment, note that

{ex

2
(I:(K))* = (Z Lieck and ¢ is isolated in Kt}>

- Z 1{§€K and ¢ is isolated in Kt}
cex

Z 1{§,§’€K and both are isolated in Kt}
§AEeX
— LK) + Vi(K) (say).

We now calculate E(V,(K)).

E(Vi(K))
- Zz E (57&;)( 1{§,§’€K and both are isolated in Kt}|(N(Kt) = m) P(N(Kt) = m)
>, exp(— t ty1m
I S UL LT <) G
m=2

(51 # & € K are isolated in Kt|X(Kt) ={&,... 7§m})

. ex >\£ Kt JA™
_ dzdzy (1 — g(|z1 — 22]))
m§:2: // 1dzy ( |z1 — 22|
(/K/K dxm...dxng:3(1—g(|$1 —zi]))(1 - g(ja —xil))>

5
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2. exp Am 2
= )\22 ( /K/deldxg (1 —g(Jz1 — z2|))

m=2

[/ dy(1 - (|y—m1|)><1—g(|y—x2|)>]
Kt
- ,\2exp(—,\e(Kt))/K/de1dw2(1—g(lxl—wal))

(Z i [ = gt = 1)1 = gl — 22| )

_ vexp?—ie(m)) /K /K dzydzy (1 - g(|z1 — o))
exp (X [ an(1 = g(ler =)t = g0z~ o) )
_ AQ//dxldeI— |x1—$2|))exp< / dyh(y;xl,x2)>. (12)
This proves the lemma. m

Letting ¢ — 0o and using the dominated convergence theorem as in (9), we obtain from

(10),
EI(K) = )\/Kdacexp <—)\/Rd g(|x—y|)dy>

= [ drew (—A / dg(|y|>dy)

= )\Z(K)p()\,g) (13)

and, from (11) and (12), we have

Var(I(K))
= —DROP exp(=27 [ dug(la)) + () exp(-A [ () +

o / dxldxg[l—guxl—m))exp( A duntyson. )|
2;0 (A,

= M(K)p(\g) + / / doiday g

0= gl = alexpin [ dyatlor = whalez ~ ) - 1]. (14

9)

Now let I(,)(K) be the number of isolated Poisson points in K for the model (X, Ay, gn)
(i.e. the equivalent of I(K) for the process X,).

Lemma 3 Asn — oo, we have

(Al(K)) " E(Iy(K)) = p(A,g)

and



(Vb)) ™ Var(Ly (K)) = ) + 2 Og) | o
(1= glo)) exp(x /R 9lzDg(lz —v)dz) — 1] (15)
Proof: First, from (13) and (8) we have

(ARZ(K))ilE(I(n)(K)) = p(Mnsgn)
— p(A,g) as n — oo. (16)

Also,

J

/ dacldxg —g(nlzy — x2|)) exp )\n/ g(n|zy — y|)g(n|ze — y|)dy) — 1]
KJK Rd

= [ o [ [(1 ~ gl exph | glnlzDanlz —ouldy) - 1]

dardes[(1 = gu(lar — ) exph | gnlzr —v) gn(|w2—y|>dy>—1}
R

=
=

i o [ vty [0 g oo [ alebats - obas <1 an

The inner integrand 1,(x_4,) [(1 — g(Jv])) exp (An/n?) [ga dzg(|2)g(]2 = v])) — 1} of the ex-

pression in (17) tends to [(1 —g(v])) exp(A [pa dzg(|2|)g(]z — v])) — 1} as n — oo for almost all
(Lebesgue) z; € K.
Note that for any y € R?, we must have either |y| > |v|/2 or |[v — y| > |v|/2, thus

/ dyg(lyg (o — ) + / dyg(luDg(v — vl)
ly|<|v]/2 ly|>|v]/2

v|/2 d v|/2 d v —
g(0l/2) /y|<v/2 yalyl) + g(lol/2) /| yalo — o)

12|v]/2

IN

/ dyg(y)g (o — )
Rd

IN

< 20(ol/2) | duallu).

Since A, /n® — X as n — 00, [pa 9(|y|)dy < oo and g is non-increasing, we can choose M and
N so large that (2X,/n%)g(M/2) [pa 9(ly|)dy <1 for all n > N. Hence, for [v| > M

exp /\—Z 9(yDg(lv —yhdy ) < exp 2/\—Zg(lvl/Q) g(lyl)dy
n® Jra n Rd

< 1+2250000/2) [ allads (18)

where we have used the inequality e* < 1+ ex for z < 1.

Combining the above inequalities we have for n > N,

= alohyess (25 [ ala(o - vdy) -
< (1= g1+ Clo d)g(lo]/2) -
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< (2C(g,d) + L)g(|v]/2),

where C(g,d) is a constant depending only on ¢g and d. Thus, applying the dominated conver-

gence theorem to (17) and combining it with (14) and (16) we have, as n — oo,

(Anl(E)) ™ Var (I (K)) = p(X,9)
=wtng) [ o[ =g(ubyexpn [ aleDgllz — o)) ~1].

This completes the proof of the lemma. [ |

3 Asymptotic normality

We shall apply Lyapunov’s central limit theorem for arrays to obtain the required asymptotic
normality. For this we first need to truncate the connection function g. Let R > 0 be fixed
and consider the functions gg,g® : R — [0,1] defined by gr(z) = liz<ryg(r) and g®(z) =
Liz>r19(7). Let Jr(K) be the number of isolated vertices of (X, A, gr) in K and let Lg(K) be
the number of isolated vertices of (X, A, gr) in K which are not isolated in (X, ), g). Clearly
Lp(K) = Jp(K) — I(K). Similarly define g, g, g% : R? — [0,1] by g,.r(z) = L{z<rygn(z) and
9B (z) = Liz>rygn(z). Let Jy g(K) and Ly g(K) be the corresponding quantities for the model

(X, Any gn)-
We first compute the mean and variance of Lr(K). For this we need some more notations.
Given two functions f1, f2 : R = [0,1], 1,22 € R? and any Borel set A C R? and A > 0, we set

ph{* ) = exp(% [ fully =oa) faly = el

By a change of variables, it is clear that p{;}d’{f (x1,29) = pﬁ;ﬂ;{\z(o, T2 — T1) = Ppd'y (T1 — T2,0).

Lemma 4 For R > diam(K),
E(Lr(K)) = M(K)p(\, gr) (1 — p(X,¢")) (19)
and
Var(Lr(K)) = M(K)p(\, gr)(1 = p(A, "))
e / / dmlel— lar — waD)) [P O g I 7 (01, 22)
252\ gr)p(\, DI (01, 22) + D (N, 9t (1, 2)|

_pz(Ang)(l _p(Ang))zl : (20)



Proof : We employ the same technique as in Lemma 2 to compute the moments. Define, as
earlier, Ly p(K) := Zi]\;(th) 1, where F; := {¢; € K is not connected to any &; € X (K') at a
distance R or less from &;, but is connected to some ¢; € X (K %) at a distance more than R
from ¢&;}.

Note that P(F; | N(K') =m) = P(F; | N(K') =m) for i = 2,3,...,m, and

P(FllN(Kt)Zm)

- = /dxll/l{t g

x[l—H(l— (|1 — z;]) }H 1 — gr( |$1—$z|))]
=2

1=2

= W/Kdam[(/mdy(l—gR(Iy—ﬂcll))dy)m_1

~(f avr =ty - x1|>>dy)m‘1]

where we have used the fact that gz and ¢* have disjoint supports and ¢ = gr + g®. Now,
using the above, we have

E(Lyr(K))
© exp(— t £\ M
S p( AE(KWL)(M(K ) PRy | N(KY) = m)
m=1
2 exp(=M(KH))A™ .
= A/dellmzo p( Wf! ) [/thy(l—gRﬂy_xlD)]
_mzo exp(—Afrg!Kt))Am [/Kt 21— a(ly - x1|))]m]

= [ dvexp(=x [ dvanty—al)[1 = expn [y (g = 1)),

The integrand above converges to p(\, gr)(1 — p(X, ¢f%)) as t — oo and it is bounded. Using
the dominated convergence theorem, we have (19).

P(FiNF | N(K') =

m)
- W/K/dxldxz(l—g(m—x2|>)[/m---/wdwm---dw3

m

(1= TI = 9" (e = ail))) TT( = grllos — i)

3

=3 =3
x (1= TI0 = g2 = wil) [T = gl - xim]. (21)
=3 =3



Here we have used the fact that diam(K) < R and gr(z) = g(x) for x < R. Writing a; =

g®(|z1 — zi]), etc., we simplify the integrand in the inner integral as

(=T —an ][ -t - [T -en ][0 -d)
= [I-b—di+bd)(1-[[ - @) - [Ja-& + ][ - @)1 -a))
= JI0=bi—di+bid)) + [J(1 = bi — di + bidi) (1 — @ — & + @ics)
=10 =0 = di 4 bidi) (1 = @) = [[(1 = bi = di + bidi) (1 - c2). (22)

Here a;b; = ¢;d; = 0.

We introduce some more notations to write the inner integrand in the square brackets of
(21) . For any two functions fi, fo : R — [0,1] and z1, 29 € R, oy, (f1) = fKt fi(ly — z1])dy
and B(f1, f2) = [we 1(ly — z1]) fo(ly — 22|)dy. Now, using these notations and expanding as in

(22), the inner integrand in the square brackets in (21), can be written as

m—1

[[E(Kt) — ag, (9R) — 0y (gR) + /B(QR,QR)]

~[0(K) = a2, (9) = s (gm) + Blom,9m) + (6" 9m)] "

(oK) 0, 91) — ey (0) + Blam.am) + Blam.a™)] "

UK — 2, () — ayla) + Blo.9)] |-

Now, using this expression in (21), we have

E(L} p(K)) — E(Lt r(K))
ex /\E(Kt))(/\E(Kt))m

= 2.
exp(—M(KH))A™

=2
— a2 /dmldwg(l— (Iw1—$2|))[i m!
x[[

m(m — 1)P(Fy N Fy | N(K") = m)

m=0

UKY) =, (9) — s (gm) + Blor, 9r)|

UK = az,(9) = cwalgr) + Blor,gr) + Bla™ gr)|

~[UK") = an,(9r) = avalo) + Blor, gr) + Blor,g™)]

+[UK") = az,(9) = caal9) + Blg, )| m]

- )\Z/K/deldxg(l—gﬂxl—x2|))[exp(—aml(9)—aa;g(gR)"‘ﬁ(gRagR))

— exp(—aa, (9) — wy (9r) + B9r, 9r) + B9", 9r))
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—exp(—ag, (9r) — @, (9) + B(gr, 9r) + B(9r,g™))
+exp(—ag, (9) — au,(9) + (g, 9)) |-

Finally, using the dominated convergence theorem, we conclude (20). [
Next, we turn our attention to the model (X, Ay, gn). Similar computations as in Lemma,

3 can be carried out here to conclude
Lemma 5 As n — oo, we have
(Anl(5)) ™ E(Ln p(5)) = p(3,gr)(1 = p(2.g")) (23)
and
(Ml(K)) ™" Var(Ln,r(K))
= o)1 =pOg™) 2 [ da [(1 ~ g(ll)
[pz(/\, gr)PgE " (,0) = 2p* (A, gr)p(\, g7 )Pl (x,0)

+p2(>‘7 g)p%’dg,)\(x, 0):| - p2(>‘7 gR) (1 - p(>‘7 gR))2] . (24)

As a corollary to Lemma 5, we obtain

Corollary 6 As R — oo, we have

lim lim (A,8(K)) ™ E(Lyr(K)) = 0

R—00 n—00

and
lim lim (\A(K)) " Var(Ly r(K)) — 0.

R—00 n—0

Proof : Since [p4g(|z|)dz < oo, we have [, 9%(|z|)dz — 0 as R — oo. Hence p(A,g%) — 1
as R — oo, proving the first part.

For the second part, we note that the integrand in (24) converges to 0 as R — oco. To use
the dominated convergence theorem, we need to show that the integrand is bounded by an
integrable function. As in the second half of the proof of Lemma 3, we argue that the absolute

value of the integrand is bounded by,

g(l21) [P 9IS (2,0) + 252\, gr)p(X, g™ )Pl (2, 0)

+ 920 9)p%d (2, 0)] + 52 (A gi) (P57 (2,0) — 1)

+20° (0, gr)p (A, o) (355 (,0) = 1) + (0, 9) (P57, (,0) = 1)
<dg(Ja]) +4(p%d \(5,0) - 1)

<4(L+ C)g(lz/2)).

11



This proves the result. [ |
We now show that it suffices to obtain a central limit theorem for J,, p(K). Indeed, for any
z € R, € > 0 and any fixed R > 0, we have

Pl B _ | LlB) — Bl
Var(I(K) 7 Var(I(K))
L p Jn,r(K) — E(Jy r(K)) < x+€)_
Var (Jp g (K)) 4 | 2tlln.r ()

Var(I(n) (K))

Now, note that both the values Var(J, r(K)) and Var(I(,)(K)) may be computed from (15)
to show that Var(J, r(K))/Var(l,)(K)) converges to some constant dr as n — oo where dp
is such that dp — 1 as R — oo. Thus, we have,

limsupP(I(n)(K) — Bl (K)) _ x)
n—00 Var(I,)(K))

(Jn,R(K) — E(Jpr(K)) |Var(Jy r(K))

v/ Var(Jp q(K)) Var(I(,)(K))
Lyr(K) — E(Ln,R)‘ S 6)
Var(I,)(K)) '

IN

lim limsup P <z+ e)

R—0 n—soco

+P<‘

‘ . . Var(Ln R(K))
< Var(l (K))
S i e(@+a/n) + fim i o T )

= ®(z+e)

where ®(z) is the distribution function of the standard normal random variable. Letting e — 0,
Iy (K)=E(I () (K))

\/Va.r(l(n)(K))
P<Jn,R(K) — E(nr(K) 6)
Var(I,(K)) B
P(‘Ln,R(K) - E(Ln,R)‘ S 6) N P(I(n)(K) — E(ly)(K)) < x)
Var(Ii,)(K)) ' B

we get limsup,, P( < x) < ®(z). Arguing similarly, we may show, using

<

Iy (K)—E(I(n)(K)) )
SVl (&) =7 2 &(x).
Now, we will prove the central limit theorem for J,, r(K). Thus we assume henceforth that

that lim inf, o P(

g(xz) =0 for |z| > R.

Fix an integer m and define B(n) = [~ (m+2)R/n, (m+1)R/n]? and By(n) = [-mR/n,mR/n]%.
Divide R? into cubes each being isomorphic to B(n) and centred at the sites of the lat-
tice L(n) := {W(zl,zg,...,zd) D 21,%22,-..,2¢ € Nyi = 1,...,d}. For a site z =
W(zl,zm...,zd), define B(n,z) = x + B(n), Bo(n,z) = z + By(n) and S(z,n) =
z + (B(n)\Bo(n))-

12



Let ai,...,a;, be an enumeration all sites x in L(n) for which B(n,z) C K. Define
D, = UfﬁlBg(n, «;) and Dy = UfﬁlS(n, a;) and D3 = K\(Dy U Dy).

Clearly I(,)(Bo(n, ;)) depends only on the region B(n, «;), and since, for i # j, B(n,a;) N
B(n,aj) = 0, we have {I(,)(Bo(n,q;)) :i=1,...,k,} is a collection of i.i.d. random variables.
Thus, Var(I(,)(D1)) = kyVar({(;)(Bo(n))). Now, from equation (14), we have

Var (L) (Bo(n)))
= )\ng(Bg(n))p()\n,gn) + A’?L/B /B )dxl dzo p2(>‘nagn)

(@ =l =l exp (3 [ anlly =1l — 22 ) - 1
— AmR)’p(\,9) + A2;02(>\,9)/ / dyd;
[-mR,mR]* J[-mR,mR]%

(@ = gther = alyexp (<3 [ ally = aaatly — aabiy) -1 (25)

as n — oo. Here we have used the fact that nBy(n) = [-mR,mR]¢ and then applied the
dominated convergence theorem.

We will first show that the array {/(,)(Bo(n,®;)) : i =1,...,k,}n>1 satisfies the conditions
for Lyapunov’s central limit theorem. For this, besides the independence properties which we

obtained earlier, we need to show

i B| (I (Bo(n, 1)) = E(Iu)(Bo(n, )

— 0 asn — 0.
(Var(I(,)(D1)))3/?

i=1
ny(Bo(n, @;)) < Np(Bo(n)) where Ny (Bo(n)) is the number of points of the process

Clearly, I
X, in By(n). Thus,

B ([T (Bo (1, ) = Bl (Bo(n, o))
< B (I (Bo(n, @) + Bl (Bo(n, 1))
= Ely)(Bo(n, ))® + 3E(I () (Bo(n, a;)))* Bl (Bo(n, o))
+4(E(I(n) (Bo(n, ))))?
E(I(n) (Bo(n, @i))* + 3(E(I(ny(Bo(n, 2:)))*)**(E(I () (Bo(n, :)))*)/*
+4(E(I(n) (Bo(n, ))))’
= 4E(I()(Bo(n, )))® + 4(E(L(n)(Bo(n, @:))))?
< AE(Nn(Bo(n)))” + 4(E(Ny(Bo(n))))*. (26)
Now N, (Bg(n)) has a Poisson distribution with mean \,4(By(n)) = O(A\n/n?). Since A, /n? —

A as n — 0o, we have 4E (N, (By(n)))? + 4(E(N,(By(n)))®> < C, where C is a constant not
depending on n or d.

IA

Note first that &, = O(n?) as n — co. Thus, we have, as n — oo,

& E(| Iy (Bo(n, 7)) — E(Iny (Bo(n, ) ) knC
2 (Var I (D)7 PVl ol

13



Now applying Lyapunov’s theorem to the array {I(,)(Bo(n,q;)) : i = 1,... ky}n>1 we
I(n)(Bo(n, i) — E(I() (Bo(n, ai)))

\/Var(I(n) (Bo(n, a)))

random variable.

have that

converges in distribution to a standard normal

Finally to complete the proof of the theorem, we need to show

Tim. liﬂS£p<Var(I(n)(D1))> _IVar(I(n)(Di)) = 0 for both i = 2 and 3.
The above will also imply that lim,, o lim sup,,_,, Var(I(,)(D1))/Var(l,)(K)) — 1asn — oo.
For I(,,)(D2), we divide the annular region S(z,n) into cubes S; of size R/n. Thus, we have,
Iy (D2) = 25, In)(Si). Note that whenever two cubes are separated by two or more cubes
between them, they are independent. Now the random variables I(,)(S1), I()(S2), ... can be
rearranged as [(,)(Si1), [(n)(Siz2),... fori = 1,2,... ,2% such that all the random variables
> I(n)(Si,;) are identically distributed and, for any fixed ¢, the random variables {I(,,)(S; ;) :
j > 1} are i.i.d. Therefore,

Var(I(n)(DQ))
2d

= Zva’r(zl(")(si7j))+ Z COV(ZI ZI,J Zf(n)(siz,j)>
i=1 j 1<i1 #ip<2d J

< 2dVar(ZI (S1,)) +4 Var(ZI Sl,j))

< 22d+1Var<ZI Slyj))

= 2% ZVar )(S1.1))- (27)
Now, similar calculations as in (25) may be carried out to obtain

Var(T o (S11)) — AR%(A, g) + Ap*(A,g) / / d1ds
—R,R R.R

(=gl =22 expr [ ally = asg(ly = wal)y) 1]

Now, the number of terms in the sum in (27) is bounded by C(d)k,m?~! where C(d) is a

constant independent of m and n. Therefore,

lim limsu w

m—00 n—)oop Var(I(n)(Dl))

< lm 1 221 (d)kym® Var (I(,)(S1,1))
im limsu

o el kn(@mR)ap(An.gn)

2d+10(d) .

= ROp(g) mim i Varl (S1.1)

= 0.
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For I(,,)(D3), from equation (14) and using bounds as in (18), we have,
A, Var (I, (Ds))

= DO 00) 4 M Og) [ [ derd
<[ = anller =zl exp (3 [ anlly = o1hanlly — saday) 1
<UD Ong0) + i O [ [
<= attuyesn (25 [ allohaly - i) - 1]
< D) + 5 o) [ [ auco(i2)
= D8) [P0 0) + 350 O gn) [ duCiy(ful/2)]

where C' is a constant independent of n. Now noting that ¢(D3) — 0 as n — oo, and that

kn, = O(n?), we have, for some other constant C'’

Var(I(,,)(Ds))
Var(I(n) (Dl))

C' Al (D)

0 .
T @mR)Ip(Angn) T

<

This completes the proof of the theorem.
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