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1 Introduction

The common model for the competing risks situation is the latent lifetimes model. Under
this model, the latent lifetimes are never observed together and data are available only on the
minimum, T , of these and a variable, δ, identifying the minimum. The problem of identifiability
due to such incomplete data is well known. Besides, there is a strong case made out against
the latent lifetimes model by many biostatisticians such as Prentice et al. (1978) and others.
Over the years, the latent lifetimes model has lost much of its lustre. Deshpande (1990), Aras
and Deshpande (1992) and others have emphasized an alternative in terms of the observable
random pair (T, δ) itself which seems more appropriate.

In this paper we consider the case of two competing risks and study the relations between
the various kinds of dependence between T ≥ 0 and δ ∈ {0, 1} and the shape of the conditional
probability functions Φ1(t) = pr(δ = 1 | T ≥ t) and Φ∗0(t) = pr(δ = 0 | T < t). Examples arise
in many fields where such conditional probabilities are of primary importance. It is obvious
that the independence of T and δ is equivalent to constancy of Φ1(t) and is also equivalent to
constancy of Φ∗0(t). Many popular bivariate parametric distributions used in survival analysis
have constant Φ1(t) and Φ∗0(t), for example Block and Basu (1974), Farlie-Gumbel-Morgenstern
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bivariate exponential distribution, Gumbel Type A distribution. However, in many practical
situations, this is not the case. In clinical trials carried out to study the performance of an intra-
uterine device where termination of the device could be due to several reasons such as pregnancy,
expulsion, bleeding and pain, it is often of interest to know the chances of termination due to a
specific reason given that the device was intact for some specified period. In such a situation,
conditional probabilities are of interest and are expected to vary with time. In the report by
Cooke et al.(1993) and references therein, it has been shown that different kinds of censoring
mechanisms lead to distinct shapes of these functions. Random sign censoring, also known
as age-dependent censoring, is a model in which the lifetime of a unit, X, is censored by
Z = X −Wη, where 0 < W < X is the time at which a warning is emitted by the unit before
its failure, and η is a random variable taking values {−1, 1} and is independent of X. When
W = aX for some 0 < a < 1 and X is assumed to be exponential, it is easy to see that Φ1(t)
is increasing. Another model considered in Cooke et al. (1993) is a constant warning-constant
inspection model in which a warning is emitted at time X − d before it fails, where d < 1 is a
constant and Φ1(t) is a constant. A model where Φ1(t) is decreasing is a proportional warning-
constant inspection model which is similar to the constant warning-constant inspection model
except that the warning is emitted at time X/η if the component fails at X and where η > 1 is
a constant. The important question is that of choosing a model from these three models and
it is obvious that the monotonicity of Φ1(t) can be used to distinguish between these models.

Section 2 brings out the relationships between the shapes of the conditional probabilities
and dependence structures between T and δ. In section 3, we consider the problem of testing

H0 : T and δ are independent

against various alternative hypotheses, characterising the dependence structure of T and δ,

which are:

H1 : T and δ are not independent

H2 : T and δ are positive quadrant dependent

H3 : δ is right tail increasing in T

H4 : δ is left tail decreasing in T.

A test based on the concept of concordance and discordance is proposed for testing H0

against H1. Actually a one-sided version of the test is seen to be consistent against H2 which
is a special case of H1. Two tests are proposed for testing H0 against H3 using the properties
of Φ1(t), and on the same lines two tests are proposed for testing H0 against H4 using the
properties of Φ∗0(t). Note that there is no relationship between H3 and H4 but both imply H2.

Two tests are proposed for this weaker hypothesis also. Some of the tests derived here are
already in the literature but in other contexts. In section 4, relative efficiencies of these tests
are studied and in section 5 the tests are applied to two real data sets. To the best of our
knowledge, there are no tests available in the literature to check the dependence structure of
T and δ, except PQD(T, δ).

2



2 Dependence of T and δ

Define Si(t) = pr(T > t, δ = i), i = 0, 1, and Fi(t) = pr(T ≤ t, δ = i), i = 0, 1. The survival
function of T is given by S(t) = pr(T > t) = S0(t)+S1(t) and the distribution function is given
by F (t) = pr(T ≤ t) = F0(t) + F1(t). Throughout this paper, we assume that the subsurvival
functions are continuous. This gives

Φ1(t) = pr(δ = 1 | T ≥ t) = S1(t−)/S(t−) and

Φ∗0(t) = pr(δ = 0 | T < t) = F0(t−)/F (t−),

whenever S(t−) > 0 and F (t−) > 0. Equivalently, we can define Φ0(t) = pr(δ = 0 | T ≥
t) = 1 − pr(δ = 1 | T ≥ t), and Φ∗1(t) = pr(δ = 1 | T < t) = 1 − pr(δ = 0 | T < t). As
mentioned earlier, Φ1(t) = Φ∗1(t) = φ, for all t > 0 is equivalent to independence of T and δ.

This simplifies the study of competing risks to a greater extent. If T and δ are independent
then Si(t) = S(t)pr(δ = i). Thus the hypothesis of equality of incidence functions, or that of
equality of cause-specific hazard rates reduces to testing whether pr(δ = 1) = pr(δ = 0) = 1/2.
Hence, it allows studying the failure time and the failure types or the risks of failure separately.

Before we study the dependence structure of T and δ, we provide few definitions.

Definition 2.1 X2 is Right Tail Increasing in X1, RTI(X2 | X1), if pr(X2 > t2 | X1 > t1) is
increasing in t1 for all t2.

Definition 2.2 X2 is Left Tail Decreasing in X1, LTD(X2 | X1), if pr(X2 ≤ t2 | X1 ≤ t1) is
decreasing in t1 for all t2.

Definition 2.3 X1 and X2 are Positively Quadrant Dependent, PQD(X1, X2), if pr(X1 >

t1, X2 > t2) ≥ pr(X1 > t1)pr(X2 > t2), for all t1, t2 or equivalently, pr(X1 ≤ t1, X2 ≤ t2) ≥
pr(X1 ≤ t1)pr(X2 ≤ t2), for all t1, t2

Definition 2.4 A function K(s, t) is Totally Positive of Order 2, TP2, if

K(s1, t1)K(s2, t2) ≥ K(s2, t1)K(s1, t2)

for all s1 < s2, t1 < t2.

Note that, RTI(X2 | X1) and LTD(X2 | X1) both imply PQD(X1, X2) but there is no
hierarchy between RTI(X2 | X1) and LTD(X2 | X1).

2.1 Monotonicity of Φ1(t) and Φ∗0(t)

The following results are easy to verify:
(1) Independence of T and δ is equivalent to

(a) Φ1(t) = φ = pr(δ = 1), for all t > 0, a constant and
(b) Φ∗0(t) = 1− φ = φ0 = pr(δ = 0), for all t > 0, a constant.
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(2) PQD(δ, T ) is equivalent to
(a) Φ1(t) ≥ Φ1(0) = φ, for all t > 0, and
(b) Φ∗0(t) ≥ Φ∗0(∞) = 1− φ, for all t > 0.

(3) RTI(δ | T ) is equivalent to Φ1(t) ↑ t.
(4) Subsurvival functions Si(t) being TP2 is equivalent to Φ1(t) ↑ t.
(5) LTD(δ | T ) is equivalent to Φ∗0(t) ↓ t.
(6) Subdistribution function Fi(t) being TP2 is equivalent to Φ∗0(t) ↓ t.

Note that (3) and (4) are equivalent and both imply (2). Similarly, (5) and (6) are equivalent
and both imply (2) but there is no relationship between (3) and (5).

2.2 Hazard rate ordering and ageing

Let ri(t) and hi(t) denote crude and cause-specific hazard rates, respectively, i = 0, 1. Then

ri(t) =
fi(t)
Si(t−)

hi(t) =
fi(t)
S(t−)

.

Note that hi(t) = Φi(t)ri(t). The overall hazard rate of T is h(t) = f(t)/S(t−) = h0(t) + h1(t),
where fi(.), f(.) are densities corresponding to Si(.) and S(.), respectively.

Theorem 2.1 Φ1(t) ↑ t is equivalent to r1(t) ≤ h(t) ≤ r0(t).

The proof follows by using the fact that the derivative of Φ1(t) is non-negative and the derivative
of 1− Φ1(t) is non-positive being decreasing function of t.

Thus, Φ1(t) is increasing means that the overall failure rate is larger than the failure rate
given that the failure is due to risk 1 and is smaller than the failure rate given that the failure
is due to risk 0. Another interesting result stated below connects the monotonicity of Φ1(t)
with the ordering between two survival functions.

Theorem 2.2 Φ1(t) ↑ t implies that the survival function of T given δ = 1 is larger than that
of T given δ = 0, that is, S1(t)/φ ≥ S0(t)/(1− φ).

It is important to note that the hazard rates r1(t) and r0(t) correspond to the above two
distributions. Under the proportional hazards model, h1(t) = φh(t). This is equivalent to
independence of T and δ and hence Φ1(t) = φ, for all t > 0. It is easy to see that h1(t) ≥ φh(t)
implies Φ1(t) ≥ Φ(0), for all t, that is, PQD(δ, T ). Hence, the tests proposed in the next section
can be used to test the proportionality of the two casue-specific hazards also. When φ ≥ 1/2,
S1(t) ≥ S0(t) for all t and this means that there is stochastic dominance between the two
incidence functions as well as the conditional distributions.

A result similar to Theorem 2.1 for cause-specific hazard rates is given below.

Theorem 2.3 Φ1(t) ↑ t is equivalent to h1(t) ≤ Φ1(t)h(t) and h0(t) ≥ (1− Φ1(t))h(t).
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The above theorem implies that h1(t)/h0(t) ≤ Φ1(t)/{1−Φ1(t)}. This puts functional bounds
on the relative rate of ageing of two risks, see Sengupta and Deshpande (1994) for definitions
of relative ageing. It is interesting and also useful to express the cause-specific hazard rate in
terms of Φ1(t). This enables one to study the ageing through the properties of Φ1(t).

Theorem 2.4 (a) h1(t) = −Φ′1(t) + Φ1(t)h(t), where Φ′1(t) is the first derivative of Φ1(t) with
respect to t. (b) If Φ1(t) is monotone increasing and concave then h1(t) is an increasing function
of t, provided r(t) is IFR.

Proof : The proof is straightforward and follows from the definitions of Φ1(t) and h1(t).
In case of independent latent lifetimes, the hazard rate of X is expressed in terms of h1(t).

If h1(t) is IFR then X will also have IFR distribution. Further, let r∗i (t) and h∗i (t) denote crude
and cause-specific reverse hazard rates, then

r∗i (t) =
fi(t)
Fi(t−)

h∗i (t) =
fi(t)
F (t−)

.

All the above results hold true between these reverse hazards and the Φ∗0(t). Since the results
are quite similar the details are not given here. The above results bring out the fact that the
various kinds of dependence between T and δ can be expressed in terms of various shapes of
Φ1(t) and Φ∗0(t).

3 Test statistics and their distributions

3.1 General dependence between T and δ

Here we consider the problem of testing H0 against H1. Note that H0 and H1 can equivalently
be stated as

H0 : Φ1(t) is a constant

H1 : Φ1(t) is not a constant.

Kendall’s τ is expected to work against a very general alternative of dependence. A pair (Ti, δi)
and (Tj , δj) is a concordant pair if Ti > Tj , δi = 1, δj = 0 or Ti < Tj , δi = 0, δj = 1 and is a
discordant pair if Ti > Tj , δi = 0, δj = 1 or Ti < Tj , δi = 1, δj = 0. Define the kernel

ψk(Ti, δi, Tj , δj) =



1 if Ti > Tj , δi = 1, δj = 0
or Ti < Tj , δi = 0, δj = 1

−1 if Ti > Tj , δi = 0, δj = 1
or Ti < Tj , δi = 1, δj = 0

0 otherwise.
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Note that when both δi and δj are 1 or 0, δi− δj = 0. The corresponding U-statistic is given by

Uk =
1(n
2

) ∑
1≤i<j≤n

ψk(Ti, δi, Tj , δj).

Note that
E(Uk) = 2φ+ 4

∫ ∞
0

S(t)dS1(t).

It is seen that E(Uk) ≥ (≤)0 if T and δ are positive (negative) quadrant dependent. Hence, a
one-sided test based on Uk can be used to test PQD(T, δ) also. It is easy to write the statistic
Uk as a function of ranks. Let Rj be the rank of Tj . Let T(1) < · · · < T(n) be the ordered T ′is.
Let

Wj =

{
1 if T(j) corresponds to δ = 1
0 otherwise.

Then Vk =
(n

2

)
Uk can be written as

Vk =
n∑
j=1

(2Rj − n− 1)δj =
n∑
j=1

(2j − n− 1)Wj

=
n∑
j=1

ajWj (3.1)

where aj = 2j − n− 1.
A test given in equation (2.3), page 214, in Dykstra et al. (1996) in a different context, is

−Uk and the correct variance of Vn is (1/3)n(n2−1)θ(1−θ) and not the one given on page 215.
The null distribution of Vk can be found from its moment generating function. Note that under
H0, T1, . . . , Tn and δ1, . . . , δn are independent. Hence, under H0, W1, . . . ,Wn are independent
and identically distributed with pr(Wi = 1) = φ, pr(Wi = 0) = 1 − φ. From here we obtain
that the moment generating function of Vk, under H0, is given by

M(t) =
n∏
j=1

[φ exp{t(2j − n− 1)}+ (1− φ)].

Hence the null distribution of Vk depends on the unknown φ even under H0. For large n, we
can estimate φ consistently by φ̂ = (1/n)

∑n
i=1 I(δi = 1). Under H0,

E(Uk) = 0,

V ar(Uk) =
4(n+ 1)

3n(n− 1)
φ(1− φ).

Note that E(Uk) 6= 0 under H1. From the results on U-statistics it follows that Uk has asymp-
totic normal distribution for large n.

Theorem 3.1 As n tends to ∞, under H0, n
1/2{Uk − E(Uk)} converges in distribution to

N(0, σ2) where σ2 = (4/3)φ(1− φ).
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A consistent estimator of variance is σ̂2 = (4/3)φ̂(1 − φ̂). A test procedure for testing H0

against H1 is then: reject H0 at 100α% level of significance if | n1/2Uk/σ̂ | is larger than z1−α,
the cut-off point of standard normal distribution.

It is clear that a one-sided test can also be used for testing H0 against H2 since it is based
on concordance and discordance principle and the number of concordances are expected to be
larger than the number of discordances under PQD.

3.2 Testing independence against PQD(δ, T )

Consider testing H0 against H2.

A. Test based on Φ1(t)
H2 is equivalent to

H2 : Φ1(t) ≥ φ for all t with strict inequality for some t.

Consider
∆3(S1, S) =

∫ ∞
0

[S1(t)− φS(t)]dF (t) = pr(T2 > T1, δ2 = 1)− φ/2.

Under H0, S1(t)/S(t) = φ = pr(δ = 1). This implies that ∆3(S1, S) = 0. Under H2, S1(t) >
φS(t) and hence ∆3(S1, S) ≥ 0. Define the symmetric kernel

ψ3(Ti, δi, Tj , δj) =


1 if Tj > Ti, δj = 1

or if Ti > Tj , δi = 1
0 otherwise.

which is equivalent to

ψ3(Ti, δi, Tj , δj) =


1 if Tj > Ti, δj = 1, δi = 0

if Ti > Tj , δi = 1, δj = 0
if δi = δj = 1

0 otherwise.

Then the U-statistic corresponding to ∆3(S1, S) is given by

U3 =
1(n
2

) ∑
1≤i<j≤n

ψ3(Ti, δi, Tj , δj).

Note that E(U3) = 2∆3(S1, S) + φ. Under H0, E(U3) = φ, while under H2 E(U3) ≥ φ. Note
that the statistic U3 has earlier been proposed by Bagai et al. (1989) for testing the equality
of failure rates of two independent competing risks. Then, following the arguments for Uk, we
see that (

n

2

)
U3 =

n∑
i=1

(Ri − 1)δi =
n∑
i=1

(i− 1)Wi. (3.2)

Under H0, the moment generating function is given by

M(t) =
n∏
j=1

[(1− φ) + φexp{t(j − 1)}].
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When φ = 1/2, M(t) is same as that of Wilcoxon signed rank statistics with n replaced by
(n+ 1).

Theorem 3.2 As n tends to ∞, under H0, n
1/2{U3 − E(U3)} converges in distribution to

N(0, σ2
3), where σ2

3 = (4/3)φ(1− φ).

A consistent estimator of variance is σ̂2
3 = (4/3)φ̂(1− φ̂). We reject the null hypothesis for large

values of Z = n1/2(U3 − φ̂)/σ̂2.

B. Test based on Φ∗0(t)
H2 is also equivalent to

H2 : Φ∗0(t) ≥ φ0 for all t with strict inequality for some t.

Exactly on the same line as in the earlier section, we have

Theorem 3.3 As n tends to ∞, n1/2{U∗3 − E(U∗3 )} converges in distribution to N(0, σ∗3
2),

where (
n

2

)
U∗3 = n(n− 1)/2−

n∑
i=1

(n− i)Wi (3.3)

and σ3∗2 = (4/3)φ0(1− φ0).

A consistent estimator of variance is σ̂2
3 = (4/3)φ̂(1 − φ̂). We reject the null hypothesis for

large values of Z = n1/2(U∗3 − φ̂0)/σ̂∗3. ¿From equations (3.1), (3.2) and (3.3), it follows that
Uk = U3 + U∗3 − 1.

3.3 Testing independence against RTI(δ | T )

Here, we consider testing H0 against H3. Note that H3 is equivalent to

H3 : Φ1(t) ↑ t, t > 0.

A. Test I - U1

Φ1(t) ↑ t is equivalent to Φ1(t1) ≤ Φ1(t2), whenever t1 ≤ t2. This gives δ(t1, t2) =
S1(t2)S(t1)− S1(t1)S(t2) ≥ 0, t1 ≤ t2 with strict inequality for some (t1, t2). Define

∆1(S1, S) =
∫ ∫

t1≤t2
δ(t1, t2)dF1(t1)dF1(t2) (3.4)

=
∫ ∞

0
[S2

1(t)− φ2/2]S(t)dF1(t).

Under H0, S1(t)/S(t) = φ. This implies that ∆1(S1, S) = 0. Under H3, ∆1(S1, S) ≥ 0. Define
the kernel

ψ∗1(Ti, δi, Tj , δj , Tk, δk, Tl, δl) =



1 if Tk > Tj > Tl > Ti,

δi = δj = δk = 1, δl = 0
−1 if Tl > Tj > Tk > Ti,

δi = δj = δk = 1, δl = 0
0 otherwise.
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Then the U-statistic corresponding to ∆1(S1, S) is given by

U1 =
1(n
4

) ∑
1≤i1<i2<i3<i4≤n

ψ1(Ti1 , δi1 , Ti2 , δi2 , Ti3 , δi3 , Ti4 , δi4),

where ψ1 is the symmetric version corresponding to ψ∗1. Note that E(U1) = 24∆1(S1, S). Under
H0, E(U1) = 0 and under H3, E(U1) ≥ 0. Now we will express U1 as a function of ranks. Let
T ′s corresponding to 1′s be called X ′s and those corresponding to 0′s be called Y ′s. Then the
number of X ′s is n1 =

∑n
i=1 δi, and there are n2 = n − n1 Y

′s. Let R(i)(S(j)) be the rank of
X(i)(Y(j)) be the ith(jth) ordered statistic in the X(Y ) sample in the combined arrangement
of n1X

′s and n2Y
′s (in fact nT ′s). Hence(
n

4

)
U1 =

n2∑
j=1

(S(j) − j)
(
n1 + j − S(j)

2

)
−

n2∑
j=1

(
S(j) − j

3

)
.

It is interesting to note that in terms of X ′s and Y ′s the above statistic is the same as that
proposed by Kochar (1979) for testing equality of failure rates, the only difference being that
the number of X ′s and Y ′s is random.

Theorem 3.4 As n tends to ∞, under H0, n
1/2{U1 − E(U1)} converges in distribution to

N(0, σ2
1), where σ2

1 = (96/35)φ5(1− φ).

The null hypothesis is rejected for large values of n1/2U1/σ̂1 where σ̂2
1 = (96/35)φ̂5(1− φ̂).

B. Test II - U2

As mentioned earlier, H3 is equivalent to Si(t) being TP2. Under TP2, S1(t2)S0(t1) −
S1(t1)S0(t2) > 0, t1 < t2. Consider

∆2(S1, S) =
∫
t1<t2

[S1(t2)S0(t1)− S1(t1)S0(t2)]d[F1(t1)F0(t2) + F1(t2)F0(t1)].

Under H0, ∆2(S1, S) = 0 and under H3, ∆2(S1, S) ≥ 0. Define the kernel

ψ∗2(Ti, δi, Tj , δj , Tk, δk, Tl, δl) =



1 if Tk > Tj > Tl > Ti, δi = δk = 1, δj = δl = 0
if Tk > Ti > Tl > Tj , δi = δk = 1, δj = δl = 0

−1 if Tl > Tj > Tk > Ti, δi = δk = 1, δj = δl = 0
or Tl > Ti > Tk > Tj , δi = δk = 1, δj = δl = 0

0 otherwise.

Then the U-statistic corresponding to ∆2(S1, S) is given by

U2 =
1(n
4

) ∑
1≤i1<i2<i3<i4≤n

ψ2(Ti1 , δi1 , Ti2 , δi2 , Ti3 , δi3 , Ti4 , δi4),

where ψ2 is the symmetric version of ψ∗2. Note that

E(U2) = 24∆2(S1, S) (3.5)

= φ2(1− φ)2/4− φ(1− φ)
∫ ∞

0
S0(t)dF1(t) +

∫ ∞
0

S1(t)S2
0(t)dF1(t).
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U2 can be expressed as a function of ranks, following the arguments for such a representation
for U1. We have (

n

4

)
U2 =

n1∑
i=1

(n1 − i)
(
R(i) − i

2

)

−
n1∑
i=1

(n1 − i)(R(i) − i)(n2 −R(i) + i)

+
n2∑
j=1

(S(j) − j)(n1 − S(j) + j)(j − 1)

−
n2∑
j=1

(n2 − j)
(

(S(j) − j
2

)
. (3.6)

In terms of X ′s and Y ′s, the above statistic is the same as another one proposed by Kochar
(1979) to test for equality of failure rates with n1 and n2 fixed.

Theorem 3.5 As n tends to ∞, under H0, n
1/2{U2 − E(U2)} converges in distribution to

N(0, σ2
2), where σ2

2 = (384/35)φ3(1− φ)3.

We reject the null hypothesis for large value of n1/2U2/σ̂2 where σ̂2
2 = (384/35)φ̂3(1− φ̂)3.

Tests proposed in this section will help in discriminating between the constant or propor-
tional warning-constant inspection and random sign censoring models and also to determine
whether the corresponding mode of failure becomes more likely with increasing age.

3.4 Testing independence against LTD(δ | T )

Here, we consider testing H0 against H4, where H4 can equivalently be stated as

H4 : Φ∗0(t) ↓ t, t > 0.

A. Test I - U∗1
Φ∗0(t) ↓ t is equivalent to Φ∗0(t1) ≥ Φ∗0(t2), whenever t1 ≤ t2. This gives δ(t1, t2) =

F0(t1)F (t2)− F0(t2)F (t1) ≥ 0, t1 ≤ t2 with strict inequality for some (t1, t2). Define

∆1(F0, F ) =
∫ ∫

t1≤t2
δ(t1, t2)dF0(t1)dF0(t2) (3.7)

=
∫ ∞

0
[F 2

0 (t)− φ2
0/2]F (t)dF0(t).

Under H0, F0(t)/F (t) = φ0. This implies that ∆1(F0, F ) = 0. Under H4, ∆1(F0, F ) ≥ 0. Define
the kernel

ψ∗1(Ti, δi, Tj , δj , Tk, δk, Tl, δl) =


1 if Tk < Tj < Tl < Ti, δi = δj = δk = 0, δl = 1
−1 if Tl < Tj < Tk < Ti, δi = δj = δk = 0, δl = 1
0 otherwise.
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Then the U-statistic corresponding to ∆1(F0, F ) is given by

U∗1 =
1(n
4

) ∑
1≤i1<i2<i3<i4≤n

ψ1(Ti1 , δi1 , Ti2 , δi2 , Ti3 , δi3 , Ti4 , δi4),

where ψ1 is the symmetric version corresponding to ψ∗1. Note that E(U∗1 ) = 24∆1(F0, F ).
Under H0, E(U∗1 ) = 0 and under H4, E(U∗1 ) ≥ 0.

A rank representation of U∗1 is(
n

4

)
U∗1 =

n1∑
j=1

(
R(j) − j

2

)
(n2 + j −R(j))−

n1∑
j=1

(
n2 −R(j) + j

3

)
.

Theorem 3.6 As n tends to ∞, under H0, n
1/2{U∗1 − E(U∗1 )} converges in distribution to

N(0, σ∗1
2), where σ∗1

2 = (96/35)φ5
0(1− φ0) = (96/35)φ(1− φ)5.

We reject the null hypothesis for large values of n1/2U∗1 /σ̂
∗
1, where ˆσ∗1

2 = (96/35)φ̂5
0(1− φ̂0) =

(96/35)φ̂(1− φ̂)5.

B. Test II - U∗2
In this section, we propose another test procedure for testing H0 against H4 using the TP2

property of the subdistribution functions of (T, δ). Note that H4 is equivalent to Fi(t) being
TP2. Under TP2, F1(t2)F0(t1)− F1(t1)F0(t2) > 0 for t1 < t2. Consider

∆2(F0, F ) =
∫
t1<t2

[F1(t2)F0(t1)− F1(t1)F0(t2)][dF1(t1)dF0(t2) + dF1(t2)dF0(t1)].

Under H0, we have ∆2(F0, F ) = 0, and under H4, ∆2(F0, F ) ≥ 0. Define the kernel

ψ∗2(Ti, δi, Tj , δj , Tk, δk, Tl, δl) =



1 if Tk < Tj < Tl < Ti, δi = δk = 0, δj = δl = 1
if Tk < Ti < Tl < Tj , δi = δk = 0, δj = δl = 1

−1 if Tl < Tj < Tk < Ti, δi = δk = 0, δj = δl = 1
or Tl < Ti < Tk < Tj , δi = δk = 0, δj = δl = 1

0 otherwise.

Then the U-statistic corresponding to ∆2(F0, F ) is given by

U∗2 =
1(n
4

) ∑
1≤i1<i2<i3<i4≤n

ψ2(Ti1 , δi1 , Ti2 , δi2 , Ti3 , δi3 , Ti4 , δi4),

where ψ2 is the symmetric version of ψ∗2. Note that

E(U∗2 ) = 24∆2(F0, F )

= 24[φ2
0(1− φ0)2/4− φ0(1− φ0)

∫ ∞
0

F1(t)dF0(t)

+
∫ ∞

0
F0(t)F 2

1 (t)dF0(t)]. (3.8)

11



U∗2 can be expressed as a function of ranks, following the arguments for such a representation
for U∗1 . We have (

n

4

)
U∗2 =

n1∑
i=1

(n1 − i)
(
R(i) − i

2

)

+
n1∑
i=1

(n1 − i)(R(i) − i)(n2 −R(i) + i)

−
n2∑
j=1

(S(j) − j)(n1 − S(j) + j)(j − 1)

−
n2∑
j=1

(n2 − j)
(

(S(j) − j
2

)
. (3.9)

Theorem 3.7 As n tends to ∞, under H0, n
1/2{U∗2 − E(U∗2 )} converges in distribution to

N(0, σ∗2
2), where σ∗2

2 = (384/35)φ3
0(1− φ0)3 = (384/35)φ3(1− φ)3.

We reject the null hypothesis for large values of n1/2U∗2 /σ̂
∗
2, where ˆσ∗2

2 = (384/35)φ̂3
0(1− φ̂0)3 =

(384/35)φ̂3(1− φ̂)3.

4 Asymptotic relative efficiency

To compare alternative tests proposed in this paper for testing H0 against H2, H0 against
H3 and H0 against H4, we compute asymptotic relative efficiency of the tests within a semi-
parametric family of distributions proposed in Deshpande (1990). The semiparametric family
considered here is F1(t) = pF a(t), F0(t) = F (t) − pF a(t), where 1 ≤ a ≤ 2, 0 ≤ p ≤ 0.5 and
F (t) is a proper distribution function. Note that φ = p and

Φ1(t) =
p(1− F a(t))

1− F (t)

which is an increasing function of t. Also,

Φ∗0(t) = 1− pF a−1(t)

which is a decreasing function of t. H0 corresponds to a = 1, and other alternative hypotheses
correspond to 1 < a ≤ 2. By the limiting theorem of U-statistics, all the U-statistics proposed
here have asymptotic normal distribution under both null and the alternative hypothesis. The
asymptotic relative efficiency of test U1 with respect to test U2 is then defined as eff(U1, U2) =
e(U2)/e(U1) where e(U) = µ′2(1)/var(U | H0) and µ′(1) is the derivative of expected value of
U with respect to a evaluated at a = 1, and var(U | H0) is the asymptotic variance of n1/2U

under H0. Tests U1 and U2 are equally efficient and the same is true for tests U∗1 and U∗2 . Tests
U3 and U∗3 are equally efficient but the general test Uk is four times more efficient compared to
these tests. This indicates the superiority of Uk as it is consistent for the alternative H2.

For this particular family of distributions, the other alternative tests are equally efficient.
But this need not be true in general.
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5 Illustrations

We consider two real data sets here, one where the empirical Φ1(t) is nondecreasing and the
empirical Φ∗0(t) is nonincreasing. In the other example, both of these seem to be fairly constant.
Example 1: Nair (1993)
Consider the data on the times to failure, in millions of operations, and modes of failure of 37
switches, obtained from a reliability study conducted at AT&T, given in Nair (1993). There
are two possible modes of failure, denoted by A (δ = 1) and B (δ = 0), for these switches.
Figure 1 shows the empirical estimates of the conditional probabilities corresponding to failure
modes A and B, respectively. The empirical Φ1 function corresponding to failure mode A is
clearly increasing and the empirical Φ∗0 function corresponding to B is decreasing, indicating
that the failure mode A becomes more likely with increase in the age of the switch.

Table 1 gives the values of the test statistics. The value of Z corresponding to Uk is 2.70
and hence we may conclude that the failure time and the type of failure are dependent. The
nonlinearity of the plot in Figure 1 supports this conclusion. Both the tests for PQD accepts
the null hypothesis of independence of T and δ. However, U1 accepts H0 and U2 rejects it in
favour of the alternative hypothesis that Φ1(t) is increasing. The test for checking whether
Φ∗0(t) is decreasing, rejects the null hypothesis and hence we may conclude that Φ∗0(t) is a
nonincreasing function of t.
Example 2: Hoel (1972)
Consider the data set obtained from a laboratory experiment on male mice which had received
a radiation dose of 300 rads at an age of 5 to 6 weeks given in Hoel (1972). The death occurred
due to cancer (δ = 1), or other causes (δ = 0). Figure 2 shows the empirical conditional
probabilities and in this case, the empirical conditional probability Φ1(t) seen to be almost flat
and the curve corresponding to Φ∗0(t) is not so flat.

Table 2 gives the values of the test statistics. All the proposed tests accept the null hy-
pothesis of independence of T and δ.

6 Concluding remarks

It is now a common practice to model the competing risks in terms of (T, δ). Hence, it is of
prime importance to check whether T and δ are independent. We have proposed tests based on
U-statistics to check whether T and δ are independent or not. It is clear that the tests perform
satisfactorily in distinguishing between the hypotheses. If the hypothesis of independence is
accepted then one can simplify the model and study the failure time and cause of failure
separately. If the hypothesis is rejected then one can think of a suitable model under specific
dependence between T and δ in terms of the incidence functions.
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Table 1: Values of the test statistics for Nair’s data (1993)
U-statistics Expectation Variance Z Conclusion

Uk = 0.26 0 0.33 2.70 Reject H0

U1 = 0.04 0 0.03 1.45 Accept H0

U2 = 0.15 0 0.17 2.26 Reject H0

U∗1 = 0.06 0 0.06 2.29 Reject H0

U∗2 = 0.15 0 0.17 2.18 Reject H0

U3 = 0.59 0.46 0.33 1.35 Accept H0

U∗3 = 0.67 0.54 0.33 1.35 Accept H0

Table 2: Values of the test statistics for Hoel’s data (1972)
U-statistics Expectation Variance Z Conclusion

Uk = 0.11 0 0.32 1.86 Accept H0

U1 = 0.04 0 0.09 1.50 Accept H0

U2 = 0.06 0 0.15 1.63 Accept H0

U∗1 = 0.01 0 0.02 1.14 Accept H0

U∗2 = 0.05 0 0.15 1.38 Accept H0

U3 = 0.66 0.61 0.32 0.93 Accept H0

U∗3 = 0.45 0.39 0.32 0.53 Accept H0
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Figure 1: Time versus empirical Φ1(t), Φ1(0), Φ∗0(t) and Φ∗0(∞) for the data given in Nair
(1993). Solid squares denote Φ1(t), dashed line denotes Φ1(0), pluses denotes Φ∗0(t) and solid
line denotes Φ∗0(∞).
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Figure 2: Time versus empirical Φ1(t), Φ1(0), Φ∗0(t) and Φ∗0(∞) for the data given in Hoel
(1972). Solid squares denote Φ1(t), dashed line denotes Φ1(0), pluses denote Φ∗0(t) and solid
line denotes Φ∗0(∞).
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