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Summary

A-optimality of block designs for control versus test comparisons in diallel crosses is investi-
gated. A sufficient condition for designs to be A-optimal is derived. Type S0 designs are defined
and A-optimal type S0 designs are characterized. A lower bound to the A-efficiency of type S0

designs is also given. Using the lower bound to A-efficiency, type S0 designs are shown to yield
efficient designs for test versus control comparisons.
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1. Introduction

Although designs for varietal trials and factorial experiments have been extensively inves-
tigated in literature over the past several decades, it was not until recently that some progress
in the design of diallel cross experiments has been made, see e.g. Gupta and Kageyama (1994),
Dey and Midha (1996), Mukerjee (1997), Das, Dey and Dean (1998). Designs for control versus
test comparisons where the treatments form different levels of a factor have also been exten-
sively investigated in the literature; see Majumdar (1996). The problem of deriving designs
appropriate for diallel crosses is quite different from the set-up of designs for varietal trials and
factorial experiments. Therefore, here we continue the work of Gupta and Kageyama (1994)
for studying optimal block designs for control versus test comparisons among the lines with
respect to their general combining ability effects. Recently Choi, Gupta and Kageyama (2002)
introduced a class of designs, called type S block designs, for control-test comparisons in a di-
allel cross experiment. Let p (> 2), b, and k denote the number of test lines, number of blocks
and block size respectively. In Section 2 we define a sub-class of type S designs, called type S0

designs, and derive a sufficient condition for designs to be A-optimal. Henceforth, by optimal
we mean A-optimal, and by efficiency we mean A-efficiency. We also characterize optimal type
S0 designs in Section 2, and show the optimality of some of the designs of Choi, Gupta and
Kageyama (2002). A new method of constructing type S0 designs is also provided there. A
type S0 design satisfying the derived sufficient condition for optimality does not always exist.
Therefore, a lower bound to the efficiency of a type S0 design is defined in Section 3. For type



S0 designs in a practical range p ≤ 30, b ≤ 50, k ≤ p, 70 designs out of a total of 247 possible
types S0 designs are optimal. Of the remaining 177 designs that do not satisfy the sufficient
condition for optimality, 175 designs have lower bound to efficiency at least 0.80. Thus, type
S0 designs provide highly efficient designs for control-test comparisons. For the sake of brevity,
table of efficient type S0 designs is not presented in this paper, and it will be reported elsewhere.

2. Optimal designs

We consider diallel cross experiments involving p + 1 inbred lines, giving rise to a total of
nc = p(p+ 1)/2 distinct crosses. Let a cross between lines i and j be denoted by (i, j), i < j =
0, 1, . . . , p. Suppose line 0 is a control or a standard line and lines 1, . . . , p are test lines. Let
sdj denote the total number of times that the jth line occurs in the crosses in the design d,
j = 0, 1, . . . , p. Further let sd = (sd0, sd1, . . . , sdp)′ and let n denote the total number of crosses
in the design. Following e.g., Gupta and Kageyama (1994), the model under the block design
set-up, for a design d involving p + 1 inbred lines and b blocks each containing k crosses, is
assumed to be

Yd = µ1n + ∆1dτ + ∆2dβ + ε,

where Yd is the n × 1 vector of responses, µ is the overall mean, 1t is the t × 1 vector of 1’s,
τ = (τ0, τ1, . . . , τp)′ is the vector of p+1 general combining ability effects, β = (β1, β2, . . . , βb)′ is
the vector of b block effects and ∆1d (∆2d) is the corresponding observation versus line (block)
design matrix, that is, the (h, l)th element of ∆1d (∆2d), is 1 if the hth observation pertains
to the lth line (block), and is zero otherwise, and ε is the n× 1 vector of independent random
errors with zero expectation and a constant variance σ2. The coefficient matrix of the reduced
normal equations for estimating the vector of general combining ability effects is then given by

Cd = Gd −
1
k
NdN

′
d (2.1)

where Nd = (ndij), i = 0, 1, . . . , p; j = 1, . . . , b, is the (p+ 1)× b line versus block incidence
matrix, Gd = (gdii′), gdii = sdi, and for i 6= i′, gdii′ is the number of times the cross (i, i′) appears
in the design.

Let D(p+ 1, b, k) denote the set of all connected designs with p test lines, one control line
and bk crosses arranged in b blocks each of size k. A design d ∈ D(p + 1, b, k) is said to
be optimal for control-test comparisons if it minimizes

∑p
i=1 V ar(τ̂di − τ̂d0), where τ̂di − τ̂d0

denotes the best linear unbiased estimator (BLUE) of τi − τ0 using d. Let P = (−1p Ip)
where It denotes the identity matrix of order t. Then the covariance matrix for the BLUE’s
(τ̂d1− τ̂d0, τ̂d2− τ̂d0, . . . , τ̂dp− τ̂d0) of the control-test contrast is σ2PC−d P

′. If one partitions Cd
as

Cd =

(
cd00 γ′d
γd Md

)
(2.2)

then it can be shown (see Gupta, 1989) that (PC−d P
′)−1 = Md, i.e., Md is the information

matrix for the control-test contrasts. For a design d in D(p + 1, b, k), using Kiefer’s (1975)
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technique of averaging, we obtain

tr(PC−d P
′) ≥ tr(PC̄−d P

′); (2.3)

see also Majumdar and Notz (1983) and Jacroux and Majumdar (1989). Here C̄d = 1
p!

∑
π πCdπ

′,
the summation being taken over all (p + 1) × (p + 1) permutation matrices π that corre-
spond to permutations of the p test treatments only. Partitioning C̄d as in (2.2), we see that
M̄d = (PC̄−d P

′)−1 is a completely symmetric matrix. In general, there may be no design in
D(p+ 1, b, k) for which M̄d is the information matrix for the control-test contrasts. If there is
such a design, then for this design, call it d∗, Md∗ = M̄d∗ is completely symmetric and γd∗ of
(2.2) is a vector with all entries equal. That is, d∗ belongs to a class of designs, called type S
block designs, introduced by Choi, Gupta and Kageyama (2002).

Definition 2.1. A design d ∈ D(p+ 1, b, k) is called a type S block design if there are positive
integers g0, g1, λ0 and λ1, such that for i 6= i′ = 1, . . . , p,

gd0i = g0, gdii′ = g1, Σb
j=1nd0jndij = λ0, Σb

j=1ndijndi′j = λ1.

We denote a type S block design with parameters p, b, k, g0, g1, λ0 and λ1 by
S(p, b, k, g0, g1, λ0, λ1). For an S(p, b, k, g0, g1, λ0, λ1) design d it holds that sd0 = pg0,
sd1 = sd2 = · · · = sdp = g0 + (p− 1)g1, bk = (sd0 + psd1)/2,

V ar(τ̂di − τ̂d0) =
k{a1 − (p− 2)b1}σ2

(a1 + b1){a1 − (p− 1)b1}
, i = 1, . . . , p ,

Cov(τ̂di − τ̂d0, τ̂di′ − τ̂d0) =
kb1σ

2

(a1 + b1){a1 − (p− 1)b1}
, i 6= i′ = 1, . . . , p ,

where a1 = λ0 − kg0 + (p− 1)b1 and b1 = λ1 − kg1.

Definition 2.2. A type S0 block design denoted by S0(p, b, k, g0, g1, λ0, λ1) is a type S block
design with the property that |nd0j − nd0j′ | ≤ 1, |ndij − ndi′j′ | ≤ 1 for i, i′ = 1, . . . , p;
j, j′ = 1, . . . , b.

Using [z] to denote the largest integer not exceeding z, we now introduce some notations
that are used in the sequel.

a(s) = (2bk − s)(2x+ 1)− pbx(x+ 1), x = [2bk−s
pb ],

h(s) = s(2y + 1)− by(y + 1), y = [ sb ],

g(s; p, b, k) = p
s−h(s)/k + (p−1)2

2bk−s−a(s)/k−(s−h(s)/k)/p .

For an S0(p, b, k, g0, g1, λ0, λ1) design it can be shown that nd0j = [pg0

b ] or [pg0

b ] + 1,
2ks0 = h(s0) + pλ0, 2ks1 = h(s1) + (p − 1)λ1 + λ0, and ndij = [2bk−pg0

pb ] or [2bk−pg0

pb ] + 1,
i = 1, . . . , p; j = 1, . . . , b.

We require the following lemmas for characterizing optimal type S0 designs.
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Lemma 2.1. If d ∈ D(p+ 1, b, k) then M̄d has eigenvalues µd1, µd2 = · · · = µdp with

µd1 =
ksd0 − Σb

j=1n
2
d0j

pk
, µd2 =

2bk − sd0 − 1
kΣp

i=1Σb
j=1n

2
dij − µd1

p− 1
.

Proof. From (2.1) and (2.2), the entries of Md are

mdii′ =

{
sdi − 1

kΣb
j=1n

2
dij (i = i′)

gdii′ − 1
kΣb

j=1ndijndi′j (i 6= i′)

and the sum of the entries in the ith row (or i′th column) is
∑p
i′=1mdii′ = −gd0i+ 1

kΣb
j=1nd0jndij .

The lemma then follows by noting that that M̄d = ξ1Ip+ξ21p1′p with ξ2 = 1
p(p−1)

∑
1≤i6=i′≤pmdii′

and ξ1 = 1
p

∑p
i=1mdii − ξ2.

Lemma 2.2 [Cheng, 1978]. For given positive integers v and t, the minimum of
∑v
i=1 n

2
i subject

to
∑v
i=1 ni = t, where ni’s are non-negative integers, is obtained when t− v[t/v] of the ni’s are

equal to [t/v] + 1 and v − t+ v[t/v] are equal to [t/v]. The corresponding minimum of
∑v
i=1 n

2
i

is t(2[t/v] + 1)− v[t/v]([t/v] + 1).

Lemma 2.3. Let d ∈ D(p+ 1, b, k) and nd01, . . . , nd0b be fixed quantities. Then

tr(M−1
d ) ≥ µ−1

d1 + (p− 1)2{2bk − sd0 − a(sd0)/k − µd1}−1(= θd, say). (2.4)

Proof. Using Lemma 2.2 we have Σp
i=1Σb

j=1n
2
dij ≥ a(sd0). Thus from (2.3) we get

tr(M−1
d ) ≥ µ−1

d1 + (p− 1)µ−1
d2 ≥ µ

−1
d1 + (p− 1)2{2bk − sd0 − a(sd0)/k − µd1}−1.

Lemma 2.4. Suppose d ∈ D(p + 1, b, k) satisfies Σp
i=1Σb

j=1n
2
dij = a(sd0) and has sd0 > b[k2 ].

Then there exists a design d∗ satisfying (i) Σp
i=1Σb

j=1n
2
d∗ij = a(sd∗0) and (ii) sd∗0 ≤ b[k2 ] such

that θd∗ ≤ θd unless (i) p = 5, k = 3, (ii) p = 4, k odd, (iii) p = 3.

Proof. We replace d by a d∗ which is such that

nd∗0j = nd0j if nd0j ≤ [
k

2
] and nd∗0j = k − nd0j if nd0j > [

k

2
].

Clearly, sd∗0 < sd0, and sd∗0 satisfies sd∗0 ≤ b[k2 ]. Also, µd∗1 = µd1. The result then follows by
noting that the function ψ(sd0) = 2bk − sd0 − a(sd0)/k decreases as sd0 increases except when
(i) p = 5, k = 3, (ii) p = 4, k odd and (iii) p = 3.

Lemma 2.5. Let d ∈ D(p+ 1, b, k). Then

θd ≥ pk{(ks0 − h(sd0))−1 + (p− 1)2(pk(2bk − sd0)− pa(sd0)− ksd0 + h(sd0))−1} (2.5)

where θd is the same as in (2.4).

Proof. From Lemma 2.1 and equation (2.4) we have

θd = pk{(ks0 − Σb
j=1n

2
d0j)

−1 + (p− 1)2(pk(2bk − sd0)− pa(sd0)− ksd0 + Σb
j=1n

2
d0j)

−1}

= pk{(ks0 − q)−1 + (p− 1)2(w + q)−1},
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where q = Σb
j=1n

2
d0j and w = pk(2bk− sd0)− pa(sd0)− ksd0. For fixed sd0, s2d0

b ≤ q ≤ ksd0. We
shall prove that

δθd/δq ≥ 0 for all q ∈ [
s2
d0

b
, ksd0]. (2.6)

Inequality (2.5) will then follow from (2.6) since a sharp lower bound for q is h(sd0). To prove
(2.6), it is enough to show that (w+ q)2 ≥ (p−1)2(ksd0− q)2. Equivalently, since both ksd0− q
and w + q are non-negative, we need only show that w + q ≥ (p − 1)(ksd0 − q), i.e., q ≥
2ksd0+a(sd0)−2bk2. Thus, since q ≥ s2d0

b , it is sufficient to show that s2d0
b ≥ 2ksd0+a(sd0)−2bk2.

Now we consider separately the two cases (i) 2k ≤ p and (ii) 2k > p.

Case (i): 2k ≤ p. Here a(sd0) = 2bk − sd0 since x = [2bk−sd0
pb ] = 0. Therefore, we need to show

s2d0
b ≥ 2ksd0 + 2bk− sd0− 2bk2, or sd0{sd0− b(2k− 1)}+ 2b2k(k− 1) ≥ 0. This inequality holds

because sd0 ≤ bk/2, a consequence of Lemma 2.4.

Case (ii): 2k > p. Here a(sd0) ≤ (2bk−sd0)2

pb + pb
4 . Therefore, we need to show s2d0

b ≥ 2ksd0 +
(2bk−sd0)2

pb + pb
4 − 2bk2, or 4(p− 1)s2

d0− 8bk(p− 2)sd0 + 8b2k2(p− 2)− p2b2 ≥ 0. This inequality
holds whenever sd0 ≤ bk/2. It is easy to see that the inequality also holds for the particular
cases (i) p = 5, k = 3, (ii) p = 4, k odd and (iii) p = 3. Using Lemma 2.4, the inequality holds
for the other cases as well.

Finally, the following theorem can be established using Lemmas 2.1 - 2.5.

Theorem 2.1. Suppose s0 is an integer defined by

g(s0; p, b, k) = min
1≤s≤c

g(s; p, b, k), (2.7)

where c = bk if (i) p = 5, k = 3, (ii) p = 4, k odd or (iii) p = 3, else c = b[k2 ]. Then
a type S0 block design S0(p, b, k, g0, g1, λ0, λ1) with g0 = s0

p , g1 = s1−g0

p−1 , λ0 = 2ks0−h(s0)
p ,

λ1 = 2ks1−h(s1)−λ0

p−1 and s1 = 2bk−s0
p is optimal in D(p+ 1, b, k).

The integer s which minimizes g(s; p, b, k) can easily be found using a computer.

Example 2.1. For p = 5, b = 10, k = 2, the g(s; 5, 10, 2) is minimized for s = 10. Thus the
following S0(5, 10, 2, 2, 1, 6, 3) design d∗ with sd∗0 = s0 = 10 is optimal over D(6, 10, 2) :

{(3,5) (0,1)}, {(1,4) (0,2)}, {(2,5) (0,3)}, {(1,3) (0,4)}, {(2,4) (0,5)},
{(4,5) (0,1)}, {(1,5) (0,2)}, {(1,2) (0,3)}, {(2,3) (0,4)}, {(3,4) (0,5)}.

Theorem 2.1 is useful in checking the optimality of type S0 designs. Choi, Gupta and
Kageyama (2002) gave some series of type S designs. Designs of their Series 1, 3 and 4 are type
S0 designs as they also satisfy the requirements of Definition 2.2. Among designs for p ≤ 30,
Series 1 designs for p = 3, 5, 7, 9 are optimal. Clearly, not all type S0 designs are optimal. In
the next section we give a lower bound eAd to efficiency of a type S0 design d, and show that
type S0 designs are highly efficient for control-test comparisons.
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We now present a new method of constructing type S0 designs. Following Gupta and
Kageyama (1994), let dn be a universally optimal block design for diallel crosses obtained using
a nested balanced incomplete block design with parameters v = p, bn, rn, kn(< p), λn, the nest
having block size two. Let Bi denote the ith block of the nested balanced incomplete block de-
sign, and let B̄i denote the corresponding complementary block such that the contents of Bi and
B̄i taken together form one replication of the lines i = 1, . . . , p. Let i1, i2, . . . , ip−kn denote the
contents of B̄i. Then, appending to the ith block of dn the crosses (0, i1), (0, i2), . . . , (0, ip−kn)
yields a type S0 design of the following theorem.
Theorem 2.2. The existence of a nested balanced incomplete block design with parameters v =
p, bn, rn, kn, λn, the nest having block size two, implies the existence of an
S0(p, b = bn, k = p− kn/2, g0 = bn(1− kn/p), g1 = bnkn

p(p−1) , λ0 = bn(p− kn), λ1 = bn).

Several series of universally optimal block designs dn are available in literature, see e.g. Das,
Dey and Dean (1998). Using each of these series, a corresponding series of type S0 designs can
be derived using Theorem 2.2. For instance, Das, Dey and Dean (1998) gave Family 1 designs
with parameters p = 4t+ 1, bn = t(4t+ 1), kn = 4, λn = 3, where t is a positive integer, and
p is a prime or prime power. Using this family of designs, Theorem 2.2 yields a series of type
S0 designs with parameters p = 4t+ 1, b = t(4t+ 1), k = 4t− 1, g0 = t(4t− 3), g1 = 1, where
t ≥ 1, and p is a prime or prime power.

Morgan, Preece and Rees (2001) tabulated all possible nested balanced incomplete block
designs for p ≤ 16, and rn ≤ 30. Using designs in their table with nested design having block
size 2, Theorem 2.2 yields a total of 24 type S0 designs. Type S0 designs obtained from designs
in their table at serial numbers 6, 13.c, 40, 50.c and 62 are optimal as they satisfy the condition
of Theorem 2.1. Of the remaining 19 designs, 7 designs have eAd ≥ 0.95, 6 designs have
0.80 ≤ eAd < 0.95, 5 designs have 0.70 ≤ eAd < 0.80, and 1 design has eAd = 0.66. The eAd is
the lower bound to efficiency as defined in the next section.

3. Efficiency

The efficiency of a design d ∈ D(p + 1, b, k) for control-test comparisons compared to an
optimal design dA ∈ D(p+ 1, b, k) is defined as

EAd =
∑p
i=1 V ar(τ̂dAi − τ̂dA0)∑p
i=1 V ar(τ̂di − τ̂d0)

.

Clearly,
∑p
i=1 V ar(τ̂dAi − τ̂dA0) ≥ g(s0, p, b, k), where s0 is as in Theorem 2.1. Therefore,

based on Theorem 2.1, a lower bound to the efficiency of a type S0 design d with parameters
p, b, k, g0, g1, λ0, λ1 is given by

eAd = g(s0; p, b, k)/B0d, (3.1)

where B0d = g(sd0; , p, b, k). Since the efficiency of a design d is greater than or equal to eAd,
high values of eAd indicate that the design d is highly efficient, and hence approximately optimal
for control-test comparisons. The design d is optimal if eAd = 1.0.
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Example 3.1. The following type S0 design d for p = 8, b = 10, k = 6 with eAd = 0.983 is
approximately optimal:

{(1,2) (3,5) (4,7) (0,6) (0,8) (0,1)}, {(2,3) (4,6) (5,8) (0,7) (0,1) (0,2)},
{(3,4) (5,7) (1,6) (0,8) (0,2) (0,3)}, {(4,5) (6,8) (2,7) (0,1) (0,3) (0,4)},
{(5,6) (1,7) (3,8) (0,2) (0,4) (0,5)}, {(6,7) (2,8) (1,4) (0,3) (0,5) (0,6)},
{(7,8) (1,3) (2,5) (0,4) (0,6) (0,7)}, {(1,8) (2,4) (3,6) (0,5) (0,7) (0,8)},
{(1,5) (2,6) (0,3) (0,4) (0,7) (0,8)}, {(3,7) (4,8) (0,1) (0,2) (0,5) (0,6)}.

The lower bound eAd was computed using (3.1) for all type S0 designs in the practical
range p ≤ 30, b ≤ 50, k ≤ p, g0 ≤ 10, 1 < g0/g1 ≤ 5. Of the 247 possible type S0 designs
in this range, 70 designs are optimal, i.e. have eAd = 1.0. Of the remaining 177 designs that
do not satisfy condition (2.7) for optimality, 96 designs have eAd ≥ 0.95, 52 designs have
0.90 ≤ eAd < 0.95, 27 designs have 0.81 ≤ eAd < 0.90, and 2 designs have eAd = 0.77, and 0.70
respectively. For the sake of brevity, these highly efficient type S0 designs are not tabulated
here, and they will be reported elsewhere.
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