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Abstract

For nonnegative random variables X and Y we write X ≤ttt Y if TX(p) ≤ TY (p) for all
p ∈ (0, 1), where TX(p) ≡

∫ F−1(p)
0 (1− F (x)) dx and TY (p) ≡

∫ G−1(p)
0 (1−G(x)) dx; here F and

G denote the distribution functions of X and Y , respectively. The purpose of this article is
to study some properties of this new stochastic order. New properties of the excess wealth (or
right spread) order, and of other related stochastic orders, are obtained in the present article
as well. Applications in the statistical theory of reliability and in economics are included.

AMS Subject Classification: 60E15, 62N05.
Key words and phrases: Excess wealth order, right spread order, Lorenz order, NBUE,
increasing convex and concave orders, series and parallel systems, HNBUE, economic inequality
measure, empirical TTT transform, test for “more NBUE.”



1 Motivation and Definitions

Consider a distribution function F , of a nonnegative random variable X, which is strictly
increasing on its interval support. Let p ∈ (0, 1) and t ≥ 0 be two values related by p = F (t)
or, equivalently, by t = F−1(p), where F−1 is the right continuous inverse of F . Every choice
of such p and t determines three regions of interest:

AF ≡ {(x, u) : u ∈ (0, p), x ∈ (0, F−1(u))} = {(x, u) : x ∈ (0, t), u ∈ (F (x), F (t))},

BF ≡ {(x, u) : u ∈ (p, 1), x ∈ (0, F−1(p))} = {(x, u) : x ∈ (0, t), u ∈ (F (t), 1)},

CF ≡ {(x, u) : u ∈ (p, 1), x ∈ (F−1(p), F−1(u))} = {(x, u) : x ∈ (t,∞), u ∈ (F (x), 1)},

as depicted in Figure 1. When we want to emphasize the dependence of AF on p ∈ (0, 1) we
write AF (p). When we want to emphasize the dependence of AF on t > 0 we write ÃF (t). Of
course, AF (p) = ÃF (t) when p = F (t). Similarly we denote BF (p), B̃F (t), CF (p), and C̃F (t).

Figure 1: Depiction of AF , BF and CF

The areas of the regions depicted in Figure 1 have various intuitive meanings in different
applications. For example, if F is the distribution of wealth in some community then ‖CF (p)‖
(denoting by ‖D‖ the area of D for any two-dimensional set D with an area) corresponds
to the excess wealth of the richest (1 − p) · 100% individuals in that community (see Shaked
and Shanthikumar (1998)). Similarly, ‖AF (p)‖ corresponds to the total income of the poorest
p · 100% individuals in that community. If F is the distribution function of the lifetime of a
machine then

TX(p) ≡ ‖AF (p) ∪BF (p)‖, p ∈ (0, 1),
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corresponds to the total time on test (TTT) transform associated with this distribution (see,
for example, Figure 1 in Klefsjö (1991), or Figure 9.2 in Høyland and Rausand (1994), or
Figure 2.1 in Hürlimann (2002)). Notice also that

‖AF (p) ∪BF (p) ∪ CF (p)‖ = ‖ÃF (t) ∪ ÃF (t) ∪ ÃF (t)‖

is the mean EX of that lifetime, provided the mean exists.

Let G be another distribution function, of a nonnegative random variable Y , which is also
strictly increasing on its interval support. Let G ≡ 1−G be the corresponding survival function,
and analogously define AG(p), ÃG(t), etc. Assume the existence of the means EX and EY , if
necessary. Comparisons of areas of analogous sets of F and G for each p ∈ (0, 1) or t > 0, yield
and characterize many well known useful stochastic orders. For example,(

‖ÃF (t) ∪ B̃F (t)‖ ≤ ‖ÃG(t) ∪ B̃G(t)‖, ∀t ∈ (0,∞)
)
⇐⇒ X ≤icv Y, (1.1)

where ≤icv denotes the increasing concave order (see Shaked and Shanthikumar (1994, Sec-
tion 3.A)), whereas (

‖C̃F (t)‖ ≤ ‖C̃G(t)‖, ∀t ∈ (0,∞)
)
⇐⇒ X ≤icx Y,

where ≤icx denotes the increasing convex order (again, see Shaked and Shanthikumar (1994,
Section 3.A)). The normalized comparison

‖C̃F (t)‖/F (t) ≤ ‖̃CG(t)‖/G(t), t > 0,

yields the mean residual life order ≤mrl (see Shaked and Shanthikumar (1994, Section 1.D)).
Similarly, (

‖AF (p)‖/EX ≤ ‖AG(p)‖/EY, ∀p ∈ (0, 1)
)
⇐⇒ X ≥Lorenz Y,

where ≤Lorenz denotes the Lorenz order (see Shaked and Shanthikumar (1994, Section 3.A)).
The comparison

‖CF (p)‖ ≤ ‖CG(p)‖, p ∈ (0, 1), (1.2)

yields the excess wealth order, that is, X ≤ew Y (see Shaked and Shanthikumar (1998)), or,
equivalently, the right spread order X ≤RS Y (see Fernandez-Ponce, Kochar, and Muñoz-Perez
(1998)). The NBUE (new better than used in expectation) order of Kochar and Wiens (1987)
can also be characterized by the sets above as follows(

‖AF (p) ∪BF (p)‖/EX ≤ ‖AG(p) ∪BG(p)‖/EY, ∀p ∈ (0, 1)
)
⇐⇒ X ≥nbue Y

(see (3.5) in Kochar (1989)).

The various stochastic orders mentioned above share some similarities, but they are all
distinct, and each is useful in different contexts. For example, the order ≤ew is location inde-
pendent (and thus it can be used to compare also random variables that are not nonnegative)
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and it compares the variability of the underlying random variables (see Shaked and Shanthiku-
mar (1998)). Similarly the order ≤Lorenz is an order which compares variability. On the other
hand, the orders ≤icx and ≤icv combine comparison of location with comparison of variation.
The order ≤nbue compares aging mechanisms of different items.

One purpose of this article is to study the stochastic order which is defined by

TX(p) ≤ TY (p), p ∈ (0, 1), (1.3)

where TY (p) ≡ ‖AG(p) ∪ BG(p)‖. When (1.3) holds we write X ≤ttt Y , and we say that X is
smaller than Y in the TTT transform order. We investigate in this article some properties of
this stochastic order. New properties of the excess wealth (or right spread) order, and of other
related stochastic orders, are obtained in the present article as well.

The inequality (1.3) has appeared already in Bartoszewicz (1986), but it has not been
studied there as a stochastic order. In fact, Bartoszewicz (1986) has derived (1.3) for the so-
called generalized TTT transforms. In the present paper we only study the order defined in (1.3)
for standard TTT transforms, and for such transforms the result obtained in Proposition 1 of
Bartoszewicz (1986) is trivial. The inequality (1.3) for the so-called normalized generalized TTT
transforms has appeared in Barlow and Doksum (1972), in Barlow (1979), and in Bartoszewicz
(1995, 1998), but, again, it has not been studied there as a stochastic order.

We also devote a section in this article to the excess wealth order. In that section we give
some new and useful properties of this order.

Applications in the statistical theory of reliability and in economics illustrate the usefulness
of our results.

In this paper “increasing” and “decreasing” stand for “nondecreasing” and “nonincreasing,”
respectively. For any distribution function F we denote by F ≡ 1−F the corresponding survival
function.

2 Some Basic Properties of the TTT Transform Order

Let X and Y be two nonnegative random variables with distribution functions F and G,
respectively. It is easy to verify that X ≤ttt Y if, and only if,∫ F−1(p)

0
F (x) dx ≤

∫ G−1(p)

0
G(x) dx, p ∈ (0, 1). (2.1)

A simple sufficient condition for the order ≤ttt is the usual stochastic order:

X ≤st Y =⇒ X ≤ttt Y, (2.2)

where X ≤st Y means F (x) ≤ G(x) for all x ∈ R (see, for example, Shaked and Shanthikumar
(1994, Section 1.A)). In order to verify (2.2) one may just notice that if X ≤st Y then F−1(p) ≤
G−1(p) for all p ∈ (0, 1).
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Using the fact that for any nonnegative random variable X, and for any a > 0, we have

TaX(p) = aTX(p), p ∈ (0, 1),

it is easy to see that for any two nonnegative random variables X and Y we have

X ≤ttt Y =⇒ aX ≤ttt aY for any a > 0. (2.3)

The implication (2.3) may suggest that if X ≤ttt Y then φ(X) ≤ttt φ(Y ) whenever φ is an
increasing function. However, this is not true, as it is shown in the following example.

Example 2.1. In this example we show that

X ≤ttt Y 6=⇒ φ(X) ≤ttt phi(Y ) for all increasing functions φ.

Let X, with distribution function F , be an exponential random variable with rate λ > 0, and
let Y , with distribution function G, be a uniform (0, 1) random variable. Then a straightforward
computation yields

TX(p) ≡ ‖AF (p) ∪BF (p)‖ =
p

λ
, p ∈ (0, 1), and

TY (p) ≡ ‖AG(p) ∪BG(p)‖ =
p(2− p)

2
, p ∈ (0, 1).

When λ = 4 we see that TX(p) ≤ TY (p) for all p ∈ (0, 1), and thus X ≤ttt Y . Let us consider
the kth power of both X and Y when k > 1. Then

TXk(p) =
k

λk

∫ − log(1−p)

0
xk−1e−x dx, TY k(p) = k · p

k(k + 1− kp)
k(k + 1)

, p ∈ (0, 1).

Now,

lim
p↑1

TXk(p) =
k

λk

∫ ∞
0

xk−1e−x dx =
k!
λk

and lim
p↑1

TY k(p) =
1

k + 1
.

If λ = 4 and k = 10 we get

lim
p↑1

TXk(p) =
10!
410

>
1
11

= lim
p↑1

TY k(p).

So for some p near 1 we have TXk(p) > TY k(p), and thus Xk 6≤ttt Y
k when k = 10. J

It is true, however, that the order ≤ttt is closed under increasing concave transformations.
This is shown in the next theorem, the proof of which is given in the Appendix.

Theorem 2.2. Let X and Y be two continuous nonnegative random variables with interval
supports, and with 0 being the common left endpoint of the supports. Then, for any increasing
concave function φ, such that φ(0) = 0, we have

X ≤ttt Y =⇒ φ(X) ≤ttt φ(Y ).
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A stochastic order 4 is said to be location independent if

X 4 Y =⇒ X 4 Y + c for any c ∈ (−∞,∞). (2.4)

For example, the order ≤ew is location independent- –see Section 4. The order ≤ttt is not
location independent. However, if Y is a random variable with distribution function G, then

TY+c(p) = ‖AG(·−c)(p) ∪BG(·−c)(p)‖ = ‖AG(p) ∪BG(p)‖+ c = TY (p) + c,

p ∈ (0, 1), c ∈ (−∞,∞).

It follows that the order ≤ttt is closed under right shifts of the larger variable; that is,

X ≤ttt Y =⇒ X ≤ttt Y + c for any c > 0.

Note that
X ≤ttt Y =⇒ EX ≤ EY, (2.5)

provided the expectations exist.

3 The Relationship of the TTT Transform Order to Other

Stochastic Orders

In this section X and Y are continuous nonnegative random variables with interval supports,
and with distribution functions F and G, respectively.

When EX = EY then the order ≤ttt is equivalent to the orders ≤ew and ≤nbue (described
in Section 1) in the sense

X ≤ttt Y ⇐⇒ X ≥ew Y ⇐⇒ X ≥nbue Y. (3.1)

However, these orders are distinct when EX < EY—this will be shown later in this section.
It is useful to note that for nonnegative random variables X and Y with finite means we have

X ≥nbue Y ⇐⇒
X

EX
≤ttt

Y

EY
. (3.2)

Note that the inequality on the right side of (3.2) is just an inequality between two scaled
TTT transforms; such transforms are studied, for example, in Barlow and Campo (1975). This
provides an interesting illustration of the ≥nbue inequality. Furthermore, recall that the scaled
TTT transform that is associated with an exponential distribution (with any mean) is just
a straight line connecting (0, 0) and (1, 1). Recall also from Kochar and Wiens (1987) that
if X is an exponential random variable, then Y is an NBUE random variable if, and only if,
X ≥nbue Y . Thus it is seen from (3.2) that Y is an NBUE random variable if, and only if, its
scaled TTT transform is above the diagonal of the unit square; the latter is an observation in
Bergman (1979).
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The next result, which is a corollary of Theorem 2.2, shows that the order ≤ttt is stronger
than the order ≤icv. This agrees with the intuitive fact that the order ≤ttt is a stochastic order
that combines comparison of location with comparison of variation.

Corollary 3.1. Let X and Y be two continuous nonnegative random variables with interval
supports, and with 0 being the common left endpoint of the supports. Then

X ≤ttt Y =⇒ X ≤icv Y.

Proof. Suppose that X ≤ttt Y . Let φ be an increasing concave function defined on [0,∞).
Define φ̃(·) = φ(·) − φ(0), so that φ̃(0) = 0. From Theorem 2.2 we obtain φ̃(X) ≤ttt φ̃(Y ).
Hence from (2.5) we get E[φ̃(X)] ≤ E[φ̃(Y )], and this reduces to E[φ(X)] ≤ E[φ(Y )], provided
the expectations exist.

The order ≤ttt seems to be closely related to the order ≤ew, and to the location independent
riskier (lir) order of Jewitt (1989) which is defined by

X ≤lir Y ⇐⇒
(
‖DF (p)‖ ≤ ‖DG(p)‖, ∀p ∈ (0, 1)

)
,

where, for p ∈ (0, 1) (and t = F−1(p)), the set DF (p), depicted in Figure 2, is defined as

DF (p) ≡ {(x, u) : u ∈ (0, p), x ∈ (F−1(u), F−1(p))} = {(x, u) : x ∈ (0, t), u ∈ (0, F (x))},

and DG(p) is similarly defined. In particular, Kochar and Carrière (1997, Theorem 2.2) and
Shaked and Shanthikumar (1998, Theorem 2.1) showed, under the same conditions on the
supports of X and of Y as in the present Corollary 3.1, that X ≤ew Y =⇒ X ≤icx Y (see
Corollary 4.3 in Section 4 below), and Fagiuoli, Pellerey, and Shaked (1999, Corollary 3.4)
showed, under some conditions on the supports of X and of Y , that X ≤lir Y =⇒ X ≤icv Y .
Thus, one may ask: Can the result of the present Corollary 3.1 be directly derived from the
above mentioned facts? We could not prove the present Corollary 3.1 using such an argument.
In fact, we argue and show below that the order ≤ttt is strictly different from any one of the
orders ≤ew and ≤lir.

First we show that none of the orders ≤ew and ≤lir imply the order ≤ttt. In order to
see this, recall that the order ≤ew is location independent in the sense of (2.4). The order
≤lir is also location independent (an easy way to see it is by using the fact (see Figure 2)
that ‖DF (·−c)(p)‖ = ‖DF (p)‖ for any p ∈ (0, 1) and c ∈ (−∞,∞)). Thus, if X ≤ew Y

(respectively, X ≤lir Y ) had implied X ≤ttt Y then it would have followed that it would have
implied X + c ≤ttt Y for every c > 0, and in particular it would have implied, by (2.5), that
E[X+c] ≤ EY for every c > 0. But clearly the last inequality does not hold for c > EY −EX.
Thus none of the inequalities X ≤ew Y and X ≤lir Y necessarily implies X ≤ttt Y . In a similar
manner it can be shown that none of the inequalities Y ≤ew X and Y ≤lir X necessarily implies
X ≤ttt Y .

The following examples show that the converses are also false.
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Figure 2: Depiction of DF

Example 3.2. In this example we show that

X ≤ttt Y 6=⇒ X ≥ew Y.

Let X, with distribution function F , be an exponential random variable with rate λ > 0,
and let Y , with distribution function G, be a uniform (0, 1) random variable, as in Example 2.1.
We saw there that if λ = 4 then X ≤ttt Y . A straightforward computation yields

WX(p) ≡ ‖CF (p)‖ =
1− p
λ

, p ∈ (0, 1), and

WY (p) ≡ ‖CG(p)‖ =
(1− p)2

2
, p ∈ (0, 1).

Note, when λ = 4, that WX(p) ≤WY (p) if, and only if, p ∈ (0, 1/2), and thus neither X ≤ew Y

nor Y ≤ew X hold. J

Note that Example 3.2 also shows that

X ≤ttt Y 6=⇒ X ≤st Y. (3.3)

This is so because for X and Y in Example 3.2 we have X 6≤st Y .

Example 3.3. Let X, with distribution function F, be a uniform (0, 1) random variable,
and let Y be a beta(2, 1) random variable, that is, the distribution function of Y is given by
G(x) = x2, x ∈ (0, 1). Obviously X ≤st Y , and therefore, by (2.2), X ≤ttt Y . On the other
hand, a straightforward computation yields

‖DF (p)‖ =
p2
2
, p ∈ (0, 1), and

7



‖DG(p)‖ =
p3/2

3
, p ∈ (0, 1).

That is, ‖DF (p)‖ ≤ ‖DG(p)‖ if, and only if, p ≤ 4/9, and thus neither X ≤lir Y nor Y ≤lir X

hold. J

In light of (3.1) it is also of interest to note that without the assumption EX = EY , the
orders ≤ttt and ≤nbue are distinct. This is shown in the following example.

Example 3.4. First we show that

X ≥nbue Y 6=⇒ X ≤ttt Y.

In order to see this, first note that for any nondegenerate nonnegative random variable X, we
have X ≥nbue X. Since the order ≤nbue is scale independent, it follows that for such a random
variable X we have aX ≥nbue X for any a > 0. Now, obviously for a > 1 we have EaX > EX.
Therefore, from (2.5) we get that aX 6≤ttt X when a > 1.

Next we show that
X ≤ttt Y 6=⇒ X ≥nbue Y.

For this purpose, let X be a uniform (0, 2) random variable, and let Y have the distribution
function G given by

G(x) =



0, x < 0;

x/2, x ∈ [0, 1];

(x+ 1)/4, x ∈ [1, 3];

1, x > 3;

that is, G is an equal mixture of the uniform (0, 1) and (1, 3) distributions. It is easy to see
that X ≤st Y , and therefore, by (2.2), X ≤ttt Y . Actual computations of the TTT transforms
give

TX(p) = 2p− p2, p ∈ (0, 1); and

TY (p) =

2p− p2, p ∈ (0, 1/2);

3/4 + (4p− 2)(3/4− p/2), p ∈ [1/2, 1].

Also, EX = TX(1) = 1 and EY = TY (1) = 5/4. Therefore TX(p)/EX > TY (p)/EY when
p ∈ (0, 1/2). That is, X/EX 6≤ttt Y/EY . It follows from (3.2) that X 6≥nbue Y . J

4 Some New Properties of the Excess Wealth Order

Let X and Y be two random variables with distribution functions F and G, respectively. It is
well known (or it can be easily seen from (1.2)) that X ≤ew Y , or, equivalently, X ≤RS Y , if,
and only if, ∫ ∞

F−1(p)
F (x) dx ≤

∫ ∞
G−1(p)

G(x) dx, p ∈ (0, 1). (4.1)
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The similarity between (2.1) and (4.1) may suggest that results which involve the order ≤ttt

may have analogs that involve the order ≤ew. In this section we highlight some similarities and
some differences between these two orders. While doing that we also obtain some new results
involving the order ≤ew.

First we note that the order ≤ew is location independent (see (2.4))—an easy way to see it
is to notice (see Figure 1) that

‖CF (·−c)(p)‖ = ‖CF (p)‖, p ∈ (0, 1), c ∈ (−∞,∞).

In contrast, the order ≤ttt is not location independent. We recall that the above facts about
location independence were used in Section 3 to show that Y ≤ew X 6=⇒ X ≥ttt Y .

Because of the location independence property of the order≤ew, when we study this order we
do not need to assume that the compared random variables are nonnegative. As a consequence,
the random variables that are studied in this section can have any support in R, unless stated
otherwise.

Remark 4.1. In light of (3.1) it is of interest to note that without the assumption EX = EY ,
the orders ≤ew and ≤nbue are distinct. This can be seen using the facts that the order ≤ew is
location independent, whereas the order ≤nbue is scale independent. Explicitly, for any random
variable X we have that X ≤ew X + a for any a. Now, suppose that X is nonnegative, and
that EX > 0 is finite. Let p ∈ (0, 1) be such that TX(p) < EX. Then, for any a > 0 we have

TX(p)
EX

<
TX(p) + a

EX + a
=

TX+a(p)
E(X + a)

.

Therefore X/EX 6≥ttt (X + a)/E(X + a), and hence, by (3.2), X 6≤nbue X + a.

Conversely, for any random variable X we have that X ≤nbue aX for any a > 0. However,
if X is a uniform (0, 1) random variable then, as can be easily verified, X 6≤ew aX when a < 1.
J

In Theorem 2.2 we showed that the order ≤ttt is closed under increasing concave transfor-
mations. In the following theorem it is shown that somewhat similarly the order ≤ew is closed
under increasing convex transformations.

Theorem 4.2. Let X and Y be two continuous random variables with finite means. Then, for
any increasing convex function φ we have

X ≤ew Y =⇒ φ(X) ≤ew φ(Y ).

The proof of Theorem 4.2 is given the Appendix.

A result which is similar to Theorem 4.2 holds for the dispersive order. It is reported in
Rojo and He (1991), but it is already implicit in Bartoszewicz (1985, p. 389).
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Theorem 4.2 is a significant extension of Theorem 2.2 of Kochar and Carrière (1997) and
of Theorem 2.1 of Shaked and Shanthikumar (1998) (which are stated as Corollary 4.3 below).
Explicitly, let X and Y have the same left endpoint of support which, by the location indepen-
dence property of the order ≤ew, can be taken to be 0 without loss of generality. Let φ be an
increasing convex function. Define φ̃(·) ≡ φ(·)− φ(0), so that φ̃(0) = 0. Then both φ̃(X) and
φ̃(Y ) have 0 as the left endpoint of their supports. By Theorem 4.2 we have φ̃(X) ≤ew φ̃(Y ),
and from (4.1) with p → 0 we obtain E[φ̃(X)] ≤ E[φ̃(Y )], and therefore E[φ(X)] ≤ E[φ(Y )].
We thus obtain Theorem 2.2 of Kochar and Carrière (1997) and Theorem 2.1 of Shaked and
Shanthikumar (1998) for continuous random variables as the following corollary. This corollary
is used later in Section 5.

Corollary 4.3. Let X and Y be two continuous random variables with finite means, and with
a common left endpoint of support. Then X ≤ew Y =⇒ X ≤icx Y .

The following example shows that the convexity assumption in Theorem 4.2 cannot be
dropped.

Example 4.4. In this example we show that

X ≤ew Y 6=⇒ φ(X) ≤ew φ(Y ) for all increasing functions φ.

Let X, with distribution function F , be a uniform (0, 1) random variable, and let Y , with
distribution function G, be an exponential random variable with rate 2. Then a straightforward
computation yields∫ ∞

F−1(p)
F (x) dx =

(1− p)2
2

,

∫ ∞
G−1(p)

G(x) dx =
1− p

2
, p ∈ (0, 1).

Therefore X ≤ew Y . Let φ(x) = 1− e−x, x ≥ 0. Then∫ ∞
F−1(p)

F (x)φ′(x) dx = e−1 − pe−p,
∫ ∞
G−1(p)

G(x)φ′(x) dx =
(1− p)3/2

3
, p ∈ (0, 1).

The first function is smaller than the second for p in a right neighborhood of 0. Therefore
φ(X) 6≤ew φ(Y ). J

5 Some Applications of the TTT Transform and the Excess

Wealth Orders

In this section we give various applications of the results that were developed in previous
sections. We remind the reader of (3.1); that is, the ≤ttt comparison is the same as the ≥ew

comparison when the compared random variables have the same means. Below we do not
always state the results for both of the above orders, but in some cases (when the means are
equal) it should be easy to translate a result involving one order into a result involving the
other order (and to the order ≥nbue as well).
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The first theorem below shows that if X ≤ttt Y then a series system of n components
having independent lifetimes which are copies of Y has a larger lifetime, in the sense of ≤ttt,
than a similar system of n components having independent lifetimes which are copies of X. A
similar result for parallel systems involving the excess wealth order is also given. The proof of
the following theorem is given in the Appendix.

Theorem 5.1. Let X1, X2, . . . be a collection of independent and identically distributed random
variables, and let Y1, Y2, . . . be another collection of independent and identically distributed
random variables.

(a) If X1 and Y1 are nonnegative, and if X1 ≤ttt Y1, then min{X1, X2, . . . , Xn} ≤ttt min{Y1, Y2, . . . , Yn},
n ≥ 1.

(b) If X1 ≤ew Y1 then max{X1, X2, . . . , Xn} ≤ew max{Y1, Y2, . . . , Yn}, n ≥ 1.

Let X1, X2, . . . and Y1, Y2, . . . be two collections of independent and identically distributed
random variables with 0 being the common left endpoint of the supports. Barlow and Proschan
(1975, page 121) proved that if X1 ≤icv Y1, then min{X1, X2, . . . , Xn} ≤icv min{Y1, Y2, . . . , Yn},
n ≥ 1. Comparing this to Theorem 5.1(a) we see, using Corollary 3.1, that the latter yields a
stronger conclusion, but under a stronger assumption. Barlow and Proschan (1975, page 121)
also proved that if X1 ≤icx Y1, then max{X1, X2, . . . , Xn} ≤icx max{Y1, Y2, . . . , Yn}, n ≥ 1.
Comparing this result to Theorem 5.1(b) we see, this time using Corollary 4.3, that the latter
again yields a stronger conclusion, but, again, under a stronger assumption.

Application 5.2 (Reliability). Recall from Belzunce (1999) that if a random variable X
with mean µ is NBUE then

X ≤ew Exp(µ), (5.1)

where Exp(µ) denotes an exponential random variable with mean µ. Consider now a paral-
lel system of n components having independent and identically distributed NBUE lifetimes
X1, X2, . . . , Xn with the left endpoint of the common support being 0. Denote the common
mean by µ. Let Y1, Y2, . . . , Yn be independent and identically distributed exponential random
variables with mean µ. From Theorem 5.1(b) we obtain

max{X1, X2, . . . , Xn} ≤ew max{Y1, Y2, . . . , Yn}. (5.2)

Since both max{X1, X2, . . . , Xn} and max{Y1, Y2, . . . , Yn} have 0 as the left endpoint of their
corresponding supports, it follows that

E[max{X1, X2, . . . , Xn}] ≤ E[max{Y1, Y2, . . . , Yn}], and

Var[max{X1, X2, . . . , Xn}] ≤ VarE[max{Y1, Y2, . . . , Yn}]

(this is so since if two random variables X and Y have 0 as the left endpoint of their respective
supports, and if X ≤ew Y , then EX ≤ EY and Var[X] ≤ Var[Y ]; the first inequality follows
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from (4.1) with p → 0, and the second inequality follows from Corollary 3.3 in Shaked and
Shanthikumar (1998)). Now, computing

E[max{Y1, Y2, . . . , Yn}] =
∫ ∞

0

[
1−

(
1− e−

x
µ
)n]

dx =
∫ ∞

0

n−1∑
k=0

e
− x
µ
(
1− e−

x
µ
)k
dx = µ

n∑
k=1

1
k
,

and

E[(max{Y1, Y2, . . . , Yn})2] = 2
∫ ∞

0
x
[
1−

(
1− e−

x
µ
)n]

dx = 2µ2
n∑
k=1

(−1)k+1

k2

(
n

k

)
,

we obtain the following upper bounds on the mean and on the variance of the lifetime of the
parallel system

E[max{X1, X2 . . . , Xn}] ≤ µ
n∑
k=1

1
k

(5.3)

and

Var[max{X1, X2 . . . , Xn}] ≤ µ2
[
2

n∑
k=1

(−1)k+1

k2

(
n

k

)
−
( n∑
k=1

1
k

)
2
]
. (5.4)

It should be remarked that (5.3) (but not (5.4)) can alternatively be obtained also as follows.
LetXi and Yi be as above, i = 1, 2, . . . , n. IfXi ≤ew Yi, and they both have 0 as the left endpoint
of their supports, then Xi ≤icx Yi (see Corollary 4.3). It follows by Theorem 9 of Li, Li, and Jing
(2000) (or by a more general result of Ross (1996, p. 436) which is also given as Theorem 3.A.9
in Shaked and Shanthikumar (1994)) that max{X1, X2, . . . , Xn} ≤icx max{Y1, Y2, . . . , Yn}, and
therefore (5.3) holds. In fact, (5.3) even holds if the Xi’s are merely HNBUE (harmonic
new better than used in expectation, that is, Xi ≤icx Exp(µ), where µ is the mean of Xi,
i = 1, 2, . . . , n) rather than NBUE.

We also mention that the inequalities (5.3) and (5.4) are reversed if the Xi’s are new worse
than used in expectation (NWUE).

Finally it is worthwhile to note that from (3.1) and (5.1) it follows that if X is an NBUE
random variable with mean µ then X ≥ttt Exp(µ). Therefore, from Theorem 5.1(a) we obtain

min{X1, X2, . . . , Xn} ≥ttt min{Y1, Y2, . . . , Yn},

where the Xi’s and the Yi’s are the same as in inequality (5.2). F

From Theorem 5.1(a) and (2.5) we get the following corollary.

Corollary 5.3. Let X1, X2, . . . , Xn be a collection of independent and identically distributed
random variables, and let Y1, Y2, . . . , Yn be another collection of independent and identically
distributed random variables. If X1 and Y1 are nonnegative, and if X1 ≤ttt Y1, then

E[min{X1, X2, . . . , Xn}] ≤ E[min{Y1, Y2, . . . , Yn}].
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A similar result which compares E[max{X1, X2, . . . , Xn}] and E[max{Y1, Y2, . . . , Yn}] can
be derived under the assumptions that X1 and Y1 have the same left endpoint of support, and
X1 ≤ew Y1; see Application 5.2.

It is worthwhile to mention that whereas the conclusion of Corollary 5.3 easily follows from
X ≤st Y , the assumption X ≤ttt Y of the corollary is strictly weaker than X ≤st Y ; see (2.2)
and (3.3).

A useful identity that involves the TTT transform TX of a nonnegative random variable X
is given in the next lemma.

Lemma 5.4. Let X be a nonnegative random variable with survival function F . Then

(n− 1)
∫

0
1(1− p)n−2TX(p) dp =

∫ ∞
0

F
n(t) dt, n ≥ 2. (5.5)

Proof. We compute∫
0

1(1− p)n−2TX(p) dp =
∫

0
1
∫ F−1(p)

0
(1− p)n−2F (t) dtdp

=
∫ ∞

0

∫ x

0
F
n−2(x)F (t) dtdF (x)

=
∫ ∞

0

∫ ∞
t

F
n−2(x)F (t) dF (x)dt

=
∫ ∞

0

1
n− 1

F
n(t) dt,

and the stated result follows.

The identity (5.5) is used in the following application.

Application 5.5 (Economics). Let F be the wealth distribution of some population. Bhat-
tacharjee and Krishnaji (1984) studied the following Lorenz measure of inequality:

LF = 1− 2
∫ ∞

0
F1(x) dF (x),

where F1 is the length-biased distribution associated with F , given by

F1(x) = µ−1
F

∫ x

0
t dF (t), x ≥ 0.

A straightforward computation gives

LF = 1− µ−1
F

∫ ∞
0

F
2(x) dx

(this corrects a minor mistake in Klefsjö (1984, page 306)). Now, from (5.5) it is seen that if
X and Y are two nonnegative random variables corresponding to wealth distributions F and
G, respectively, and if EX = EY and X ≤ttt Y , then LF ≥ LG; that is, a wealth distribution
that is larger in the ≤ttt order yields a smaller inequality measure. In other words, by (3.1), a
wealth distribution that is smaller in the ≤ew order yields a smaller inequality measure. F
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A further application of the orders ≤ttt, ≥ew, and ≥nbue is the following.

Application 5.6 (Statistical reliability). Let X1, X2, . . . , Xm be a sample (of size m) of
independent and identically distributed nonnegative random variables with a finite mean and
a common continuous distribution function F , and let Y1, Y2, . . . , Yn be another sample (of
size n) of independent and identically distributed nonnegative random variables with a finite
mean and a common continuous distribution function G. We assume that the two samples are
independent and we wish to test the null hypothesis

H0 : F =nbue G (that is, F (·) = G(θ·) for some θ > 0),

against the alternative hypothesis

H1 : Gis more NBUE than F (that is, Y1 ≤nbue X1).

Let X and Y denote generic random variables with distributions F and G, respectively.
Motivated by (3.2) (that is, Y ≤nbue X ⇐⇒ X

EX ≤ttt
Y
EY ) it is seen that for testing H0 versus

H1, one can base a test on an estimate of

S ≡
∫

0
1
[
TY (p)
EY

− TX(p)
EX

]
dp.

This integral is the difference between the area below the scaled TTT transform of X and that
below Y . A practitioner of the test described below should be aware that S may be positive
even if these transforms cross each other (that is, if Y1 6≤nbue X1).

Let 0 ≡ X0:m ≤ X1:m ≤ X2:m ≤ · · · ≤ Xm:m denote the order statistics corresponding to
X1, X2, . . . , Xm. The corresponding empirical TTT transform, TXm , is defined by

TXm (p) =
∫ F−1

m (p)

0
Fm(x) dx, 0 ≤ p ≤ 1, (5.6)

where Fm and Fm are the corresponding empirical distribution and survival functions. From
(5.6) we have

TXm

( i
m

)
=

1
m

i∑
j=1

(m− j + 1)(Xj:m −Xj−1:m), 0 ≤ i ≤ m.

Note that TXm (1) = Xm. Similarly define T Yn (i/n), 0 ≤ i ≤ n. The cumulative empirical scaled
TTT statistics based on the X-sample and on the Y -samples are, respectively,

AXm =
1
m

m−1∑
i=1

TXm (i/m)
TXm (1)

and AYn =
1
n

n−1∑
i=1

T Yn (i/n)
T Yn (1)

.

Barlow and Doksum (1972) proposed a test based on large values of AXm for the one-sample
goodness-of-fit problem of testing the exponentiality of F against IFR alternatives. Later
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Hollander and Proschan (1975) proved the consistency of the same test for NBUE alternatives.
The test was also generalized by Klefsjö (1983) to the larger HNBUE class.

For testing H0 versus H1 above, we base out test on large values of the statistic

Sm,n = AYn −AXm.

Let N = m+ n. Denote η(F ) =
∫

0 1TX(p)
EX dp. Note, by (5.5), that η(F ) =

∫∞
0 F

2(t) dt. Define

ν2(F ) = 2
∫∫

0≤x≤y

[2F (x)− η(F )][2F (y)− η(F )]F (x)F (y) dxdy. (5.7)

Similarly define ν2(G). It follows from Theorem 6.6 of Barlow, Bartholomew, Bremner, and
Brunk (1972) that, under some regularity conditions, the limiting distribution of

N1/2[Sm,n − (η(G)− η(F ))]

is normal with mean 0 and variance

σ2 =
ν2(F )
λ(EX)2

+
ν2(G)

(1− λ)(EY )2
, (5.8)

where λ = limN→∞
m
N and 0 < λ < 1.

Let σ̂2m,n be a consistent estimator of σ2. Such an estimator can be obtained, for example,
by replacing F and G in (5.7) and (5.8) by the corresponding empirical distribution functions.
It follows that under the null hypothesis H0 the limiting distribution of N1/2Sm,n/σ̂m,n is
normal with mean 0 and variance 1. Thus, the two-sample test for testing H0 versus H1, which
reject H0 when

N1/2Sm,n/σ̂m,n > z1−α,

where z1−α is the quantile of order (1−α) of the standard normal distribution, is asymptotically
unbiased whenever X

EX ≤ttt
Y
EY , that is, X ≥nbue Y .

Ideas similar to those used above have been utilized by Gerlach (1988) to propose a test for
the two-sample problem of testing that one distribution is “more NBU” than another. F

A Appendix

In this Appendix we give the proofs of Theorems 2.2, 4.2, and 5.1, as well as lemmas that are
used in these proofs.

Proof of Theorem 2.2. Let F and G denote the distribution functions of X and of Y , respec-
tively. First note that if F and G are not identical, and do not cross each other, then, from
(2.1) it is seen that F ≤ G at a right neighborhood of 0, and therefore F (x) ≤ G(x) for all
x ≥ 0; that is, X ≤st Y . It then follows that φ(X) ≤st φ(Y ) for any increasing function φ, and
from (2.2) we get φ(X) ≤ttt φ(Y ).
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Thus, let us assume that F and G cross each other at least once. Denote the consecutive
crossing points by (0, 0) ≡ (t0, p0), (t1, p1), (t2, p2), . . .; see an example in Figure 3. Let φ be an
increasing concave function such that φ(0) = 0. For simplicity we assume that φ is differentiable
with derivative φ′. We note that

Tφ(X)(p) =
∫ F−1(p)

0
F (x)φ′(x) dx, p ∈ (0, 1), and

Tφ(Y )(p) =
∫ G−1(p)

0
G(x)φ′(x) dx, p ∈ (0, 1).

- t

6

p

1

0 t1 t2 t3 t4

p1

p2

p3

p4

F

F

F
F

F

G

G

G

G

G

Figure 3: Typical graphs of the distribution functions F and G (of X and Y , respectively) when
X ≤ttt Y

First consider p ∈ (0, p1]. Then G−1(p) ≥ F−1(p). Also, for x ∈ (0, G−1(p)) we have
G(x)− F (x) ≥ 0 and φ′(x) ≥ φ′(t1) ≥ 0 (since φ is increasing and concave). Thus

Tφ(Y )(p)− Tφ(X)(p) ≥ φ′(t1)
[ ∫ F−1(p)

0

[
G(x)− F (x)

]
dx+

∫ G−1(p)

F−1(p)
G(x) dx

]
= φ′(t1)[TY (p)− TX(p)], p ∈ (0, p1]. (A.1)

Next let p ∈ (p1, p2] (here p2 = 1 if F and G cross only once). Then G−1(p) ≤ F−1(p).
Also (recall that F−1(p1) = G−1(p1) = t1), for x ∈ (t1, F−1(p)) we have F (x)−G(x) ≥ 0 and
0 ≤ φ′(x) ≤ φ′(t1) (since φ is increasing and concave). Thus

Tφ(Y )(p)− Tφ(X)(p)

= Tφ(Y )(p1)− Tφ(X)(p1) +
∫ G−1(p)

t1

[
G(x)− F (x)

]
φ′(x) dx−

∫ F−1(p)

G−1(p)
F (x)φ′(x) dx
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≥ Tφ(Y )(p1)− Tφ(X)(p1) + φ′(t1)
[ ∫ G−1(p)

t1

[
G(x)− F (x)

]
dx−

∫ F−1(p)

G−1(p)
F (x) dx

]
≥ φ′(t1)[TY (p1)− TX(p1)] + φ′(t1)[TY (p)− TY (p1)− TX(p) + TX(p1)],

where the last inequality follows from (A.1). That is,

Tφ(Y )(p)− Tφ(X)(p) ≥ φ′(t1)[TY (p)− TX(p)], p ∈ (p1, p2]. (A.2)

In a manner similar to the proof of (A.1) it can be shown that if F and G cross at least
twice then for p ∈ (p2, p3] we have

Tφ(Y )(p)− Tφ(X)(p)

≥ Tφ(Y )(p2)− Tφ(X)(p2) + φ′(t3)
[
[TY (p)− TY (p2)]− [TX(p)− TX(p2)]

]
≥ φ′(t1)[TY (p2)− TX(p2)] + φ′(t3)

[
[TY (p)− TY (p2)]− [TX(p)− TX(p2)]

]
≥ φ′(t3)[TY (p2)− TX(p2)] + φ′(t3)

[
[TY (p)− TY (p2)]− [TX(p)− TX(p2)]

]
(here, if F and G cross exactly twice we set p3 = 1 and φ′(t3) = limt→∞ φ

′(t)), where the
second inequality above follows from (A.2), and the last inequality from the concavity of φ and
t3 ≥ t1. That is,

Tφ(Y )(p)− Tφ(X)(p) ≥ φ′(t3)[TY (p)− TX(p)], p ∈ (p2, p3]. (A.3)

Furthermore, if F and G cross each other at least three times it can be shown, using (A.3) and
the ideas in the proof of (A.2), that

Tφ(Y )(p)− Tφ(X)(p) ≥ φ′(t3)[TY (p)− TX(p)], p ∈ (p3, p4];

here p4 = 1 if F and G cross exactly three times.

In general, if F and G cross each other at least i times then

Tφ(Y )(p)− Tφ(X)(p) ≥ φ′(tj(i))[TY (p)− TX(p)], p ∈ (pi, pi+1], (A.4)

where j(i) = i if i is odd, and j(i) = i+ 1 if i is even. If there are exactly i crossings, and i is
even, then in (A.4) we take pi+1 = 1 and φ′(tj(i)) = limt→∞ φ

′(t). From (A.4) and X ≤ttt Y

we get that
Tφ(Y )(p)− Tφ(X)(p) ≥ 0, p ∈ (pi, p(i+1)]. (A.5)

Since (A.5) is true for all relevant i we obtain Tφ(Y )(p)−Tφ(X)(p) ≥ 0 for all p ∈ (0, 1), that is,
φ(X) ≤ttt φ(Y ).

For the proof of Theorem 4.2 we will need the following two lemmas.

Lemma A.1 (Belzunce (1999)). Let X and Y be two continuous random variables with
distribution functions F and G, respectively. Then X ≤ew Y if, and only if,∫ ∞

t
F (x+ F−1(p)) dx ≤

∫ ∞
t

G(x+G−1(p)) dx, t ≥ 0, p ∈ (0, 1).
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Lemma A.2 (Barlow and Proschan (1975, p. 120)). Let W be a measure on the interval
(a, b), not necessarily nonnegative. Let h be a nonnegative function defined on (a, b).

(a) If
∫ b
t dW (x) ≥ 0 for all t ∈ (a, b), and if h is increasing, then

∫ b
a h(x) dW (x) ≥ 0.

(b) If
∫ t
a dW (x) ≥ 0 for all t ∈ (a, b), and if h is decreasing, then

∫ b
a h(x) dW (x) ≥ 0.

Proof of Theorem 4.2. Let F and G be the distribution functions of X and Y , respectively.
Assume that X ≤ew Y . Let φ be an increasing convex function; for simplicity we assume that
φ is strictly increasing and differentiable.

Let Fφ and Gφ denote the distribution functions of φ(X) and φ(Y ), respectively. Then

Fφ(x) = F (φ−1(x)), Gφ(x) = G(φ−1(x)), x ∈ R, and

F−1
φ (p) = φ(F−1(p)), G−1

φ (p) = φ(G−1(p)), p ∈ (0, 1).

Therefore ∫ ∞
F−1
φ (p)

F φ(x) dx =
∫ ∞
φ(F−1(p))

F (φ−1(x)) dx

=
∫ ∞
F−1(p)

F (y)φ′(y) dy

=
∫ ∞

0
F (y + F−1(p))φ′(y + F−1(p)) dy, p ∈ (0, 1).

Similarly, ∫ ∞
G−1
φ (p)

Gφ(x) dx =
∫ ∞

0
G(y +G−1(p))φ′(y +G−1(p)) dy, p ∈ (0, 1).

Thus, in order to prove the theorem we need to show that∫ ∞
G−1(p)

G(x)φ′(x) dx ≥
∫ ∞
F−1(p)

F (x)φ′(x) dx, p ∈ (0, 1). (A.6)

or, equivalently, that∫ ∞
0

G(x+G−1(p))φ′(x+G−1(p)) dx ≥
∫ ∞

0
F (x+F−1(p))φ′(x+F−1(p)) dx, p ∈ (0, 1). (A.7)

First we show that (A.7) holds for all p ∈ (0, 1) such that G−1(p) ≥ F−1(p). For such a p,
using the increasingness of φ′, we get∫ ∞

0

[
G(x+G−1(p))φ′(x+G−1(p))− F (x+ F−1(p))φ′(x+ F−1(p))

]
dx

≥
∫ ∞

0

[
G(x+G−1(p))− F (x+ F−1(p))

]
φ′(x+ F−1(p))dx, p ∈ (0, 1). (A.8)

By Lemma A.1 we have∫ ∞
t

[
G(x+G−1(p))− F (x+ F−1(p))

]
dx ≥ 0, t ≥ 0.
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Since φ′(x+ F−1(p)) is nonnegative and increasing in x, it follows from Lemma A.2 that∫ ∞
0

[
G(x+G−1(p))− F (x+ F−1(p))

]
φ′(x+ F−1(p)) dx ≥ 0.

This inequality, applied to (A.8), yields (A.7) for all p ∈ (0, 1) such that G−1(p) ≥ F−1(p).

Consider now a p ∈ (0, 1) such that G−1(p) < F−1(p). Note that in such a case F and G

are distinct and they must cross each other because otherwise (4.1) would not hold in a left
neighborhood of 1. In fact, in the last point of crossing F must cross G from below. Therefore
there exists a point p2 ∈ (p, 1) defined by p2 = inf{u > p : G−1(p) ≥ F−1(p)}. Define also
p1 = sup{u < p : G−1(p) ≥ F−1(p)}, where p1 ≡ 0 if {u < p : G−1(p) ≥ F−1(p)} = ∅. Denote
ti = F−1(pi) and note that ti = G−1(pi), i = 1, 2, by the continuity of F and G; see Figure 4.

- t

6

p

1

0 t1 t2

p1

p2

F

F

F

G

G

G

Figure 4: Typical crossing points of the distribution functions F and G (of X and Y , respec-
tively) when X ≤ew Y

For p ∈ (0, 1) such that G−1(p) < F−1(p) we have G(x) ≤ F (x) for all x ∈ [G−1(p1),
G−1(p)]. Recall also that G−1(p1) = F−1(p1). Therefore∫ ∞

G−1(p)
G(x)φ′(x) dx =

∫ ∞
G−1(p1)

G(x)φ′(x) dx−
∫ G−1(p)

G−1(p1)
G(x)φ′(x) dx

≥
∫ ∞
G−1(p1)

G(x)φ′(x) dx−
∫ F−1(p)

F−1(p1)
F (x)φ′(x) dx

≥
∫ ∞
F−1(p1)

F (x)φ′(x) dx−
∫ F−1(p)

F−1(p1)
F (x)φ′(x) dx

=
∫ ∞
F−1(p)

F (x)φ′(x) dx,
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where the second inequality follows from the validity of (A.6) for p1 proven earlier. This proves
that (A.6) holds also for p ∈ (0, 1) such that G−1(p) < F−1(p), and the proof of the theorem
is complete.

Because the orders ≤ew and ≤ttt are essentially different, the proofs of Theorems 2.2 and 4.2
should be contrasted. On one hand, both proofs share the idea of obtaining the desired in-
equalities on one interval at the time, where the intervals are determined by the points in
which F and G cross each other. On the other hand, the proofs differ significantly once the
inter-crossing interval is fixed.

We end this Appendix with the proof of Theorem 5.1.

Proof of Theorem 5.1. We only give the proof of part (a) since the proof of part (b) is similar.
So assume that X1 ≤ttt Y1. It suffices to consider only the case n = 2. Let F and G denote
the survival functions of X1 and of Y1, respectively, and let F 2 and G2 denote the survival
functions of min{X1, X2} and of min{Y1, Y2}, respectively. That is,

F 2(x) = F
2(x), x ≥ 0,

and
G2(x) = G

2(x), x ≥ 0.

Now, from the assumed inequality (2.1) it follows that∫ p

0
(1− u)d(G−1(u)− F−1(u)) ≥ 0, p ∈ (0, 1).

By Lemma A.2(b) it is seen that∫ p

0
(1− u)2d(G−1(u)− F−1(u)) ≥ 0, p ∈ (0, 1).

That is, ∫ F−1(p)

0
F

2(x) dx ≤
∫ G−1(p)

0
G

2(x) dx, p ∈ (0, 1).

Since F−1
2 (p) = F−1(1−

√
1− p ) and G−1

2 (p) = G−1(1−
√

1− p ), p ∈ (0, 1), it follows that∫ F−1
2 (p)

0
F 2(x) dx ≤

∫ G−1
2 (p)

0
G2(x) dx, p ∈ (0, 1),

that is, min{X1, X2} ≤ttt min{Y1, Y2}.
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