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Abstract

Let A be the C∗-algebra associated with SUq(2), J be the modular conjugation coming
from the Haar state and let D be the generic equivariant Dirac operator for SUq(2). We
prove in this article that there is no element in JAJ , other than the scalars, that have
bounded commutator with D. This shows in particular that JAJ does not contain any
Poincaré dual for SUq(2).
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1 Introduction

In noncommutative geometry, spaces are described by a triple (A,H, D), called a spectral
triple. In this spectral point of view, one requires D to be nontrivial in the sense that the
associated Kasparov module should give a nontrivial element in K-homology. The motivation
behind this formalism is, in the context of closed Riemannian spin manifolds, one intuitively
thinks that the induced Kasparov module should correspond to the fundamental class via the
Chern isomorphism. One characteristic feature of the fundamental class is the following: on
taking intersection product with this class we get the Poincaré duality. When tranferred to
K-theory/K-homology, this property gives the commuting square

⊗[D] : K∗(C∞(M))⊗Q
∼=−→ K∗(C∞(M))⊗Q

↓ ↓
[·] ∩ [M ](·) =

∫
M · ∧ · : H∗(M,Q)

∼=−→ H∗(M,Q)

where the top row is given by the Kasparov product

KK(C, C∞(M))×KK(C∞(M)⊗ C∞(M)op,C)→ KK(C∞(M)op,C) ∼= KK(C∞(M),C).

Looking at things in this way helps in extending the notion of Poincaré duality in NCG. See [3]
for a detailed formulation of Poincaré duality in NCG, and [6] for an interesting application.
It says in particular that there should be a subalgebra B of the commutant A′ with the same
K-theory as that of A such that (B,H, D) is also a spectral triple and the cup product with
D gives an isomorphism between K∗(A) and (K∗(B))∗.
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In what follows, we will be concerned with Poincaré duality for the quantum SU(2) group,
the spectral triple under consideration being the canonical equivariant spectral triple con-
structed by the authors in [1]. We will mostly follow notations used in that paper. In particular,
A will denote the C∗-algebra of continuous functions on SUq(2), Af will be the *-subalgebra
of A generated by α and β. αr and βr will stand for αr and βr respectively if r ≥ 0, and for
(α∗)−r and (β∗)−r if r < 0. Recall ([1]) that the operator D : e(n)

ij 7→ d(n, i)e(n)
ij , where

d(n, i) =
{

2n+ 1 if n 6= i,
−(2n+ 1) if n = i,

(1.1)

gives rise to an equivariant spectral triple of dimension 3 and with nontrivial K-homology class.
Let J be the modular conjugation associated with the Haar state of SUq(2). The main result
in this article says that an element in JAJ will have bounded commutator with D only if it is
scalar.

2 Closer look at L2(h)

Recall (cf. [1]) that L2(h) has a natural orthonormal basis {e(n)
ij : n ∈ 1

2N, i, j = −n,−n +
1, . . . , n}, and the left multiplication operators in this basis are given by

α : e(n)
ij 7→ a+(n, i, j)e

(n+ 1
2

)

i− 1
2
,j− 1

2

+ a−(n, i, j)e
(n− 1

2
)

i− 1
2
,j− 1

2

, (2.1)

β : e(n)
ij 7→ b+(n, i, j)e

(n+ 1
2

)

i+ 1
2
,j− 1

2

+ b−(n, i, j)e
(n− 1

2
)

i+ 1
2
,j− 1

2

, (2.2)

where

a+(n, i, j) =
(
q2(n+i)+2(n+j)+2 (1− q2n−2j+2)(1− q2n−2i+2)

(1− q4n+2)(1− q4n+4)

) 1
2
,

a−(n, i, j) =
((1− q2n+2j)(1− q2n+2i)

(1− q4n)(1− q4n+2)

) 1
2
,

b+(n, i, j) = −
(
q2(n+j) (1− q2n−2j+2)(1− q2n+2i+2)

(1− q4n+2)(1− q4n+4)

) 1
2
,

b−(n, i, j) =
(
q2(n+i) (1− q2n+2j)(1− q2n−2i)

(1− q4n)(1− q4n+2)

) 1
2
.

We will also need the following operators on L2(h):

α̂ : e(n)
ij 7→ â+(n, i, j)e

(n+ 1
2

)

i− 1
2
,j− 1

2

+ â−(n, i, j)e
(n− 1

2
)

i− 1
2
,j− 1

2

, (2.3)

β̂ : e(n)
ij 7→ b̂+(n, i, j)e

(n+ 1
2

)

i+ 1
2
,j− 1

2

+ b̂−(n, i, j)e
(n− 1

2
)

i+ 1
2
,j− 1

2

, (2.4)

where

â+(n, i, j) = q2n+i+j+1,

â−(n, i, j) = (1− q2n+2i)
1
2 (1− q2n+2j)

1
2 ,

b̂+(n, i, j) = −qn+j(1− q2n+2i+2)
1
2 ,

b̂−(n, i, j) = qn+i(1− q2n+2j)
1
2 .
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It is easy to see that α̂ and β̂ are compact perturbations of α and β respectively.
We will now decompose the space L2(h) as a direct sum of smaller subspaces, and study

the behaviour of the above operators with respect to that decomposition. Note that the set
Λ = {(n, i, j) : n ∈ 1

2N, i, j = −n,−n + 1, . . . , n} parametrizes the canonical orthonormal
basis for L2(h). For each n ∈ 1

2Z, denote by Λn the minimal subset of Λ containing the point
(|n|,−n,−n) and closed under the translations

(a, b, c) 7→ (a+
1
2
, b+

1
2
, c− 1

2
), (a, b, c) 7→ (a+

1
2
, b− 1

2
, c+

1
2

).

For n, k ∈ 1
2Z, denote by Λnk the minimal subset of Λn that contains (|n|+ |k|,−n+k,−n−k)

and is closed under the translation (a, b, c) 7→ (a + 1, b, c). Thus all the Λnk’s are disjoint,
Λ = ∪nΛn, Λn = ∪n,kΛnk. The following diagram will make these definitions clearer. Represent
the lattice Λ as a pyramid. Then Λn are precisely the vertical cross-sections parallel to the
plane ABC. In particular, Λ0 is the cross-section given by the plane ABC. Λnk are vertical
lines in the plane Λn.

A

B

C

Λ0s

Λrs

n

i

j

Λ00

D

E

Let us also note that the family of maps φn : Λn → Λ0 given by

φn(a, b, c) = (a− |n|, b+ n, c+ n) (2.5)

give bijections between Λn and Λ0 whose restriction to Λnk yield a bijection from Λnk to Λ0k.
Let Hr denote the closed span of {e(n)

ij : (n, i, j) ∈ Λr}, Hrs denote the closed span of

{e(n)
ij : (n, i, j) ∈ Λrs}, Pr denote the projection onto Hr and Prs denote the projection onto
Hrs. Let Un denote the unitary operator from Hn to H0 induced by the bijection φn.
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Proposition 2.1 Let A stand for α or α̂, and B stand for β or β̂. Then one has

Pn+ 1
2
APn = APn, BPn = PnB, (2.6)

Pr+ 1
2
,sAPrs = APrs, Pr,s+ 1

2
BPrs = BPrs, (2.7)

PrsB
∗B = B∗BPrs, (2.8)

where n, r, s ∈ 1
2Z.

Moreover, for all n ∈ 1
2N, the operators Unα̂U∗n and Unβ̂U∗n are independent of n.

Lemma 2.2 α̂ and β̂ satisfy the following commutation relations:

α̂∗α̂+ β̂∗β̂ = I, α̂α̂∗ + q2β̂β̂∗ = I, α̂β̂ − qβ̂α̂ = 0, α̂β̂∗ − qβ̂∗α̂ = 0, β̂∗β̂ = β̂β̂∗. (2.9)

Following is a simple consequence of the above commutation relations.

Corollary 2.3 Let γ = β∗β and γ̂ = β̂∗β̂. Then σ(γ̂) = {q2k : k ∈ N} ∪ {0} = σ(γ), and
ker α̂∗ = {0} = kerα∗.

Note that the action of γ̂ on the basis vectors are given by

γ̂e
(n)
ij = c+(n, i, j)e(n+1)

ij + c0(n, i, j)e(n)
ij + c−(n, i, j)e(n−1)

ij , (2.10)

where

c+(n, i, j) = −q2n+i+j+1(1− q2n+2i+2)
1
2 (1− q2n+2j+2)

1
2 ,

c0(n, i, j) = (q2n+2j(1− q2n+2i) + q2n+2i(1− q2n+2j+2),

c−(n, i, j) = −q2n+i+j−1(1− q2n+2i)
1
2 (1− q2n+2j)

1
2 .

It is not too difficult to check, using (2.10) and (2.8) that ker γ̂ = {0}.

Lemma 2.4 Let r ∈ 1
2N, and s ∈ 1

2Z. The restriction Prsγ̂Prs of γ̂ to Hrs is compact for
every r, s and σ(Prsγ̂Prs) = σ(γ̂), where σ(·) denotes the spectrum.

Proof : Observe that for r ∈ 1
2N, Ur(Prsγ̂Prs)U∗r = P0sγ̂P0s. So it is enough to prove the

statement for r = 0.
It is easy to see that P0sγ̂P0s is compact by using equation (2.10). This, along with the

second equality in (2.7) and the fact that β̂ and γ̂ commute, tells us that σ(P0sγ̂P0s) is inde-
pendent of s, and consequently σ(P0sγ̂P0s) = σ(P0γ̂P0) and in fact, this is same as the essential
spectrum σess(P0γ̂P0).

Let us next show that σ(P0γ̂P0) = σ(γ̂). Let K be the operator on H0, given on the basis
vectors e(n)

i,−i as follows:

Ke
(n)
i,−i = c+(n, i,−i)e(n+1)

i,−i + (q2n+2|i| − q4n − q4n+2)e(n)
i,−i + c−(n, i,−i)e(n−1)

i,−i . (2.11)

It is easy to see that K is compact, the restriction T of P0γ̂P0 −K to H0s is independent of s,
and σ(T ) = σ(γ̂). Hence σ(P0γ̂P0 −K) = σess(P0γ̂P0 −K) = σ(γ̂). Since σess(P0γ̂P0 −K) =
σess(P0γ̂P0), the proof follows. 2

The following lemma will play a key role in some of the proofs in section 4.
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Lemma 2.5 Let r ∈ 1
2N. If e(r)

−r,−r is an eigenvector for f(γ̂), then f(γ̂) is a scalar. In
particular, if f(γ̂)e(r)

−r,−r = 0, then f(γ̂) = 0.

Proof : Suppose the corresponding eigenvalue is λ. Let E = f−1{λ}. If E 6= σ(γ̂), µ is some
nonzero element of σ(γ̂)\E, and v is an eigenvector of Pr0γ̂Pr0 corresponding to the eigenvalue
µ, then we must have 〈e(r)

−r,−r, v〉 = 0. But it is easy to see that for any eigenvector v of Pr0γ̂Pr0,
the above inner product is nonzero. Hence we must have E = σ(γ̂), which implies that f(γ̂) is
a scalar. 2

3 The modular conjugation

Denote by S the operator a 7→ a∗ in L2(h). Then {e(n)
ij : (n, i, j) ∈ Λ} is contained in the

domain of S and

Se
(n)
ij =

∑
m,k,l

〈e(m)
kl , Se

(n)
ij 〉e

(m)
kl

=
∑
m,k,l

〈e(n)
ij e

(m)
kl , 1〉e

(m)
kl .

Using properties of Clebsch-Gordon coefficients as can be found for example in [5], one can
show that

Se
(n)
ij = (−1)2n+i+jqi+je

(n)
−i,−j . (3.1)

Let J denote the antilinear operator, given on the basis elements by

Je
(n)
ij = (−1)2n+i+je

(n)
−i,−j , (3.2)

and let ∆ be given by
∆e(n)

ij = q2i+2je
(n)
ij . (3.3)

Then it follows from (3.1) that S = J∆
1
2 , i.e. J is the modular conjugation and ∆ is the

modular operator associated with the haar state.

Remark 3.1 Let R be the operator given by

Re
(n)
ij =

{
e

(n)
ij if |i| < n,

−e(n)
ij if i = ±n.

Then we have DJ = RJD, where R satisfies R2 = I and DR = RD.

4 Poincaré duality

Let τ be the action of S1 × S1 on A by automorphisms given by

τz,w :
{
α 7→ zα,

β 7→ wβ.
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For r, s ∈ Z, denote by πr and ρs the following maps:

πr(a) =
∫
S1

z−rτz,1(a)dz, ρs(a) =
∫
S1

w−sτ1,w(a)dw.

For n ∈ N, write α̃n(a) =
∑
|r|≤n πr(a) and β̃n(a) =

∑
|s|≤n ρs(a). Both these maps are

contractive and for a ∈ Af , one has a = limn α̃n(a), a = limn β̃n(a). It is easy to see that for
any a ∈ A, πr(a) is of the form αrf(β) and for any a ∈ A of the form f(β), ρs(a) is of the form
βsg(β∗β). Let T ∈ A. Denote by Trs the element ρs(πr(a)). Observe that Trs is of the form
αrβrf(γ) for some continuous function f on σ(γ). One can prove the following proposition
from the above discussion.

Proposition 4.1 Let T ∈ A. Then T can be written as a sum
∑

r,s Trs, where the sum
converges in norm.

Let D be the operator given by (1.1), and let F = signD. It is easy to check that F as well
as JFJ commute with all the projections Prs. Let Q = I−JFJ

2 . In the diagram of section 2, Q
is the projection onto the span of e(n)

ij ’s for (n, i, j) belonging to the face ADC.
We now come to the main result in this section.

Theorem 4.2 Let T ∈ A and J be the modular conjugation given by (3.2). If [F, JTJ ] is
compact, then T is a scalar.

We will divide the proof into several lemmas.

Lemma 4.3 If [F, JTJ ] is compact, then [Q,Trs] is compact for all r, s.

Proof : Let Vz,w : L2(h)→ L2(h) be given by

Vz,we
(n)
ij = z−i−jwi−je

(n)
ij .

Then τz,w(a) = Vz,waV
∗
z,w for all a ∈ A. Now observe that [F, JTJ ] is compact if and only if

[Q,T ] is compact, and Vz,w[Q,T ]V ∗z,w = [Q, τz,w(T )]. Since Trs =
∫
S1×S1 z

−rw−sτz,w(T )dzdw,
it follows that compactness of [Q,T ] forces compactness of [Q,Trs]. 2

Lemma 4.4 Suppose [Q,T00] is compact. Then T00 must be a scalar.

Proof : T00 is of the form f(γ) where f is a continuous function on σ(γ). Since β̂ is a com-
pact perturbation of β and they have the same spectrum, it follows that f(γ̂) − f(γ) is com-
pact. Hence if [Q,T00] compact, then [Q, f(γ̂)] is compact. Now [Q, f(γ̂)] decomposes as
⊕n∈ 1

2
N

[PnQPn, Pnf(γ̂)Pn], and Un[PnQPn, Pnf(γ̂)Pn]U∗n = [P0QP0, P0f(γ̂)P0] for all n ∈ 1
2N.

Hence compactness of [Q, f(γ̂)] forces [P0QP0, P0f(γ̂)P0] = 0. Since γ̂ commutes with all the
Pni’s, f(γ̂) must commute with QP00. But this means e(0)

00 is an eigenvector for f(γ̂). By
lemma 2.5, it follows that f(γ̂) is a scalar. Therefore f is a constant function, and f(γ) is also
a scalar. 2
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Lemma 4.5 Suppose s 6= 0 and [Q,T0s] is compact. Then T0s = 0.

Proof : Observe that T0s is of the form βsf(γ). Hence, as in the proof of the previous
lemma, compactness of [Q,T0s] implies compactness of [Q, β̂sf(γ̂)]. Since this decomposes
as ⊕n∈ 1

2
N

[PnQPn, Pnβ̂sf(γ̂)Pn], and since Un[PnQPn, Pnβ̂sf(γ̂)Pn]U∗n = [P0QP0, P0β̂sf(γ̂)P0]

for all n ∈ 1
2N, we must have [P0QP0, P0β̂sf(γ̂)P0] = 0. Now, let us consider two cases:

Case I. s > 0. Observe that 0 = [P0QP0, P0β̂sf(γ̂)P0]e(0)
00 = β̂sf(γ̂)e(0)

00 . Since kernel of β̂s is
{0}, we have f(γ̂)e(0)

00 = 0. By lemma 2.5, we conclude that f(γ̂) must be zero.
Case II. s < 0. It follows by taking adjoints that [P0QP0, P0β̂−sf̄(γ̂)P0] = 0. Using the
argument used in the earlier case, we now get f̄(γ̂) = 0, which implies T0s = 0. 2

Lemma 4.6 Let r be a positive integer. Then [Q, α̂r] is not compact.

Proof : Direct computation gives us |〈[JFJ, α̂r]e(n)
n,n− r

2
, e

(n+ r
2

)

n+ r
2
,n〉| = 2|〈α̂re(n)

−n,−n+ r
2
, e

(n+ r
2

)

−n− r
2
,−n〉| =

2qr(
r
2

+1). This does not go to zero as n tends to ∞. So clearly [JFJ, α̂r] can not be compact.
2

Lemma 4.7 Suppose r 6= 0 and [Q,Trs] is compact. Then Trs = 0.

Proof : Trs is of the form αrβsf(γ), where f is a continuous function on σ(γ). Hence as before,
compactness of [Q,Trs] will lead to compactness of [Q, α̂rβ̂sf(γ̂)]. Now

[Q, α̂rβ̂sf(γ̂)] =
∑
n∈ 1

2
Z

[Q, α̂rβ̂sf(γ̂)]Pn =
∑
n∈ 1

2
Z

Pn+ r
2
[Q, α̂rβ̂sf(γ̂)]Pn.

Hence in the case r > 0, one has

Un+ r
2
[Q, α̂rβ̂sf(γ̂)]PnU∗n = U r

2
[Q, α̂rβ̂sf(γ̂)]P0 for all n ∈ 1

2
N,

and in the case r < 0, one has

Un+ r
2
[Q, α̂rβ̂sf(γ̂)]PnU∗nU |r|

2

= [Q, α̂rβ̂sf(γ̂)]P |r|
2

for all n ∈ |r|
2

+
1
2
N.

Hence if [Q, α̂rβ̂sf(γ̂)] is compact, then we must have

[Q, α̂rβ̂sf(γ̂)]P0 = 0, if r > 0, (4.1)

[Q, α̂rβ̂sf(γ̂)]P |r|
2

= 0, if r < 0. (4.2)

Let us next look at the cases s > 0, s < 0 and s = 0 separately.

Case I. s > 0. Suppose first that r > 0. Then we have (4.1). Evaluating both sides at e(0)
00 , we

get α̂rβ̂sf(γ̂)e(0)
00 = Qα̂rβ̂sf(γ̂)e(0)

00 . But the right hand side is zero, since α̂rβ̂sf(γ̂)e(0)
00 ∈ H r

2
,s.

Now α̂rβ̂sf(γ̂)e(0)
00 = 0 implies (α̂rβ̂sf(γ̂))∗α̂rβ̂sf(γ̂)e(0)

00 = 0. But now the left hand side is of
the form g(γ̂), so that by lemma 2.5, we get α̂rβ̂sf(γ̂) = 0.
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Suppose next that r < 0, so that we have (4.2). This time evaluating both sides at e
(
|r|
2

)
r
2
, r
2

,

and using the same kind of argument, one gets α̂rβ̂sf(γ̂) = 0.

Case II. s < 0. Taking adjoints in equations (4.1) and (4.2), we get

P0[Q, f̄(γ̂)β̂−sα̂−r] = [Q, f̄(γ̂)β̂−sα̂−r]P r
2

= 0, if r > 0, (4.3)

P |r|
2

[Q, f̄(γ̂)β̂−sα̂−r] = [Q, f̄(γ̂)β̂−sα̂−r]P0 = 0, if r < 0. (4.4)

Since f̄(γ̂)β̂−sα̂−r is of the form α̂−rβ̂−sg(γ̂) for some appropriate g, we are through by the
argument in case I.

Case III. s = 0. Suppose r > 0. By applying U r
2

on both sides in (4.1), we get [Q,U r
2
α̂rf(γ̂)]P0 =

0. Evaluating both sides on e
(0)
00 , U r

2
α̂rf(γ̂)e(0)

00 = QU r
2
α̂rf(γ̂)e(0)

00 . Now U r
2
α̂rf(γ̂) is of

the form g(γ̂)U r
2
α̂r. Hence we have g(γ̂)U r

2
α̂re

(0)
00 = Qg(γ̂)U r

2
α̂re

(0)
00 . It is easy to see that

U r
2
α̂re

(0)
00 = λe

(0)
00 for some λ. Hence it follows that e(0)

00 is an eigenvector of g(γ̂). By lemma 2.5,
g(γ̂) is a scalar. By lemma 4.6, g(γ̂) has to be zero. Hence α̂rf(γ̂) = 0.

If r < 0, then taking adjoint in (4.2) reduces it to the above case 2

Combining lemmas 4.3–4.7, proof of theorem 4.2 is immediate.

Remark 4.8 By the characterization of equivariant spectral triples in [1] (see the discussion
preceeding proposition 4.4, [1]), for any equivariant D, signD has to be of the form 2P − I or
I − 2P , where P is the projection onto the subspace spanned by {e(n)

ij : n ∈ 1
2N, n− i ∈ E, j =

−n,−n + 1, . . . , n}, E being some finite subset of N. Essentially the same argument used in
the proof of theorem 4.2 will work for the sign of this D also.

Corollary 4.9 Suppose a ∈ JAJ . If [D, a] is bounded, then a must be a scalar.

Remark 4.10 Poincaré duality for the equivariant spectral triples would fail to hold if one
could prove the above corollary for elements inA′ = JA′′J , which amounts to proving lemma 4.5
and 4.7 for Trs = αrβsf(γ), where f is a bounded measurable function on σ(γ). Thus although
the above result gives a strong indication that Poincaré duality might fail to hold, it does not
rule out the possibility completely.
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