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Abstract

Let ξ1, ξ2, . . . be a Poisson point process of density λ on (0,∞)d, d ≥ 1 and let
ρ, ρ1, ρ2, . . . be i.i.d. positive random variables independent of the point process. Let
C := ∪i≥1{ξi + [0, ρi]d}. If, for some t > 0, (t,∞)d ⊆ C, then we say that (0,∞)d is
eventually covered. We show that the eventual coverage of (0,∞)d depends on the be-
haviour of xP (ρ > x) as x → ∞ as well as on whether d = 1 or d ≥ 2. These results
are quite dissimilar to those known for complete coverage of Rd by such Poisson Boolean
models (Hall [3]).

In addition, we consider the region C := ∪{i≥1:Xi=1}[i, i + ρi], where X1, X2, . . . is
a {0, 1} valued Markov chain and ρ, ρ1, ρ2, . . . are i.i.d. positive integer valued random
variables independent of the Markov chain. We study the eventual coverage properties of
this random set C.

1 Introduction

In this paper we address two issues. One of these arises from genome analysis, while the other
complements the results on complete coverage in stochastic geometry.

In genomics, contig analysis is the method employed in sequencing or identifying the nucleotides
of a DNA sequence. This method involves cloning to obtain many identical copies of the
sequence. Each such copy is then fragmented (by bio-chemical means) into many contigs or
random segments, with each contig being of random length and starting from some random
point of the sequence. After sequencing each of the random segments obtained from all the
∗Research supported in part by the DST GRANT MS/152/01.
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clones, they are then ‘stitched’ together by stitching all pairs of segments such that the end
portion of one of the pair has a significant match with the beginning portion of the other.
For more details see Ewens and Grant [1]. The question of interest here is what should be
the random mechanism to guarantee that the sequence is significantly covered by the contigs.
Mathematically, we think of the sequence to be of infinite length and with a fixed starting
point. We have a segment Si of random length ρi starting from the ith point of the sequence
(Si may be empty). The question now is that given a random mechanism of choosing the points
i such that Si is non-empty, what should ρi be such that these Si’s together cover the sequence
significantly.

More formally, let X1, X2, . . . be a {0, 1} valued time homogeneous Markov chain and ρ1, ρ2, . . .

be an i.i.d. positive integer valued sequence of random variables, independent of the Markov
chain. Let

Si :=

[i, i+ ρi] if Xi = 1

∅ if Xi = 0,

and C := ∪∞i=1Si be the sequence obtained by stitching the segments. Of course, C may not
completely cover N, however it may be the case that barring an initial piece, C covers the rest
of N.

Definition 1.1. N is said to be eventually covered by C if there exists t ≥ 1 such that [t,∞) ⊆
C.

Here if Xi = 1 then we obtain the contig [i, i + ρi] and two overlapping contigs are assumed
to be obtained from two cloned copies of the sequence. The Markovian structure generally
assumed for a DNA sequence is incorporated by considering X1, X2, . . . to be a Markov chain.

To formulate our first result, let the transition probability matrix of the Markov chain be given

by

(
p00 p01

p10 p11

)
, where pij := P (Xn+1 = j|Xn = i).

Theorem 1.1. Assume that 0 < p00, p10 < 1.

(a) If l = lim inf
j→∞

jP (ρ1 > j) > 1, then P{C eventually covers N} = 1 whenever p01

p10+p01
> 1

l .

(b) If L = lim sup
j→∞

jP (ρ1 > j) < ∞, then P{C eventually covers N} = 0 whenever p01

p10+p01
<

1/L.

In stochastic geometry a question of interest is the complete coverage of a given region by a
collection of random shapes, where the random shapes are placed according to a well-behaved
point process. The most common model used is the Poisson Boolean model (Ξ, λ, ρ), which
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consists of a Poisson point process ξ1, ξ2, . . . of density λ on Rd, d ≥ 1 and i.i.d. random variables
ρ, ρ1, ρ2, . . . independent of the point process. Let B(0, ρ) denote the closed d-dimensional ball
of radius ρ centred at the origin 0. One then studies the (random) covered region ∪∞i=1(ξi +
B(0, ρi)) of Rd.

We provide a brief summary of the mathematical literature. It is known that

Proposition 1.1. (Hall [3], Theorem 3.1) For the Poisson Boolean model (Ξ, λ, ρ) on Rd, we
have Rd = ∪∞i=1(ξi +B((0, ρi)) almost surely if and only if Eρd =∞.

When the driving process of the Boolean model is not Poisson, but an arbitrary ergodic process,
R
d = ∪∞i=1(ξi + B((0, ρi)) almost surely if Eρd = ∞ (Meester and Roy [6], Proposition 7.3).

Also, regarding percolation properties of the Poisson Boolean model, Tanemura [8] has shown
that the critical parameters of percolation are the same for both the whole space as well as the
orthant.

For the coverage of the real line R, Mandelbrot [5] introduced the terminology interval processes
and Shepp [7] showed that if S is an inhomogeneous Poisson point process on R× [0,∞) with
density measure λ×µ where λ is the Lebesgue measure on the x-axis and µ is a given measure
on the y-axis, then the union of the intervals (x, x + y) for Poisson points (x, y) ∈ S covers R
almost surely if and only if

∫ 1
0 dx exp(

∫∞
x (y − x)µ(dy)) = ∞. Shepp also considered random

Cantor sets, which is defined as follows. Let 1 ≥ t1 ≥ t2 ≥ . . . be a sequence of positive
numbers decreasing to 0 and let P1,P2, . . . be Poisson point processes on R, each with density
λ. The set V := R \ (∪i ∪x∈Pi (x, x + ti)) is the random Cantor set. He showed that V has
Lebesgue measure 0 if and only if

∑
i ti = ∞. Moreover, P (V = ∅) = 0 or 1 according as∑∞

n=1 n
−2 exp{λ(t1 + · · ·+ tn)} converges or diverges (see also Hall [3], Theorem 3.20.)

In this paper we take Rd+ := {(x1, . . . , xd) ∈ Rd : x1, . . . , xd > 0} and consider the random
covered region C := ∪{i: ξi∈Rd+}(ξi+[0, ρi]d). Clearly C will never completely cover Rd+ because,
for any ε > 0 [0, ε]d will not be covered by C with positive probability. However it may be the
case that for some t > 0, the region {(x1, . . . , xd) : xi ≥ t for i = 1, . . . , d} is entirely covered
by C. Thus in analogy with the notion of complete coverage for the space Rd, we have the
following notion of eventual coverage for the orthant Rd+.

Definition 1.2. Rd+ is said to be eventually covered by the Poisson Boolean model (Ξ, λ, ρ) if
there exists 0 < t <∞ such that (t,∞)d ⊆ C.

Our results on point processes focus on eventual coverage of Rd+ by the points of the Poisson
Boolean model (Ξ, λ, ρ) situated in Rd+. Here even when Eρ = ∞, whether eventual coverage
occurs or not depends on the growth rate of the distribution function of ρ as is shown in the
following results.
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Theorem 1.2. For d = 1,

(a) if 0 < l := lim inf
x→∞

xP (ρ > x) <∞ then there exists 0 < λ0 ≤ 1
l <∞ such that

Pλ(R+ is eventually covered by C) =

0 if λ < λ0

1 if λ > λ0;

(b) if 0 < L := lim sup
x→∞

xP (ρ > x) <∞ then there exists 0 < 1
L ≤ λ1 <∞ such that

Pλ(R+ is eventually covered by C) =

0 if λ < λ1

1 if λ > λ1;

(c) if lim
x→∞

xP (ρ > x) = ∞ then for all λ > 0, R+ is eventually covered by C almost surely
(Pλ); and

(d) if lim
x→∞

xP (ρ > x) = 0 then for any λ > 0, R+ is not eventually covered by C almost
surely (Pλ).

In higher dimensions the notion of criticality in λ is absent. A point (x, y) ∈ R2
+ may be covered

by any Poisson point in the rectangle [0, x]× [0, y]. The further the point is from the origin the
larger is the probability of it being covered. Therefore one would expect (x, y) to be covered
for large x and y, irrespective of λ.

Theorem 1.3. Let d ≥ 2. For all λ > 0 we have
(a) Pλ(Rd+ is eventually covered by C) = 1 whenever lim inf

x→∞
xP (ρ > x) > 0,

(b) Pλ(Rd+ is eventually covered by C) = 0 whenever lim
x→∞

xP (ρ > x) = 0.

Remark: (i) It is not too difficult to see that Proposition 1.1 is true when B((0, ρi)) is replaced
by [0, ρi]d. Comparing the above results with this we see that while Eρd = ∞ guarantees
complete coverage of Rd by C, it is insufficient to guarantee eventual coverage for the orthant
R
d
+. This dichotomy in the coverage property arises because for the orthant Rd+ we have the

‘boundary’ effect which is, however, absent for the whole space Rd.

(ii) If 0 < l := lim
x→∞

xP (ρ > x) <∞ then Pλ(R+ is eventually covered by C) =

0 if λ < 1
l

1 if λ > 1
l

.

This is an immediate consequence of the first two parts of Theorem 1.2.

The rest of the paper is organised as follows. In the next section we prove Theorem 1.1. In
Section 3, we first consider an independent discrete model and then via a straight-forward
comparison to the discrete model we obtain the results for the Poisson Boolean model.
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2 The Markov model

In this section we will prove Theorem 1.1. Let F be the distribution function of ρ and, for each
k ∈ N, let Ak := {k 6∈ C}.

Proof of Theorem 1.1 (b) For k ≥ 1, let P0(Ak) = P (Ak | X1 = 0) and P1(Ak) = P (Ak |
X1 = 1). We first show that∑

k

P1(Ak) =
∑
k

P0(Ak) =∞ whenever
p01

p10 + p01
<

1
L
. (1)

To this end, we first observe that a simple conditioning argument yields the following recurrence
relations:

P0(Ak+1) = p00P0(Ak) + p01P1(Ak) (2)

P1(Ak+1) = F (k − 1) [p10P0(Ak) + p11P1(Ak)] . (3)

For k0 ≥ 1 to be chosen later in (7), let B(s) =
∑∞

k=k0
P1(Ak)sk, A(s) =

∑∞
k=k0

P0(Ak)sk. To
establish (2) we need to show that A(1) = B(1) = ∞ whenever p01

p10+p01
< 1

L . Multiplying (2)
by sk+1 and summing over k ≥ k0, we have that

∞∑
k=k0

sk+1P0(Ak+1) = p00

∞∑
k=k0

sk+1P0(Ak) + p01

∞∑
k=k0

sk+1P1(Ak).

So A(s)− sk0P0(Ak0) = p00sA(s) + p01sB(s), and consequently

A(s) =
sk0P0(Ak0) + p01sB(s)

1− p00s
. (4)

Now multiplying (3) by sk+1 and summing over k ≥ k0 we have that

∞∑
k=k0

sk+1P1(Ak+1) = p10

∞∑
k=k0

F (k − 1)sk+1P0(Ak) + p11

∞∑
k=k0

F (k − 1)sk+1P1(Ak). (5)

Each of the the above power series is uniformly convergent for |s| < 1, and hence differentiating
(5) term by term with respect to s we obtain, for |s| < 1

∞∑
k=k0

(k+1)skP1(Ak+1) = p10

∞∑
k=k0

F (k−1)(k+1)skP0(Ak)+p11

∞∑
k=k0

F (k−1)(k+1)skP1(Ak). (6)
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Let ε > 0 be given such that C1 = L + ε > 0, where L is as in the statement of the theorem.
There exists k0 such that

k0 + (1− C1) > 0, P0(Ak0) > 0, P1(Ak0) > 0, and F (k − 1) ≥ 1− C1

k + 1
for k ≥ k0. (7)

Our choice of k0 above yields,
∞∑

k=k0

(k + 1)skP1(Ak+1)

≥ p10

∞∑
k=k0

(1− C1

k + 1
)(k + 1)skP0(Ak) + p11

∞∑
k=k0

(1− C1

k + 1
)(k + 1)skP1(Ak)

= p10

∞∑
k=k0

(k + 1)skP0(Ak) + p11

∞∑
k=k0

(k + 1)skP1(Ak)

−C1

p10

∞∑
k=k0

skP0(Ak) + p11

∞∑
k=k0

skP1(Ak)

 .
So we have

B′(s)− k0s
k0−1P1(Ak0) ≥ p10sA

′(s) + p11sB
′(s) + (1− C1) [p10A(s) + p11B(s)] . (8)

Using (4), we have that

A′(s) =
(1− p00s)(k0s

k0−1P0(Ak0) + p01(sB′(s) +B(s))) + p00(sk0P0(Ak0) + p10sB(s))
(1− p00s)2

(9)

Substituting for A′ and A in (8) we have

B′(s)− k0s
k0−1P1(Ak0)

≥ p11sB
′(s) + (1− C1)

[
p10

sk0P0(Ak0) + p01sB(s)
1− p00s

+ p11B(s)
]

+p10s
(1− p00s)(k0s

k0−1P0(Ak0) + p01(sB′(s) +B(s))) + p00(sk0P0(Ak0) + p10sB(s))
(1− p00s)2

Multiplying both sides by (1− p00s)2 we have

B′(s)(1− p00s)2(1− p11s)

≥ (1− p00s)2(1− C1)
[
p10(1− p00s)(sk0P0(Ak0) + p01sB(s)) + p11B(s)

]
+p10s(1− p00s)(k0s

k0−1P0(Ak0) + p01(sB′(s) +B(s))) + p00(sk0P0(Ak0) + p10sB(s)),

from which we obtain
B′(s)P (s) ≥ Q(s)B(s) +R(s), (10)

where

P (s) = (1− p00s)2(1− p11s) + p10s(1− p00s)p01s

= (1− p00s)(1− s)(1− s(1− p01 − p10))

Q(s) = (1− p00s)2(1− C1)p11 + (1− C1)p10p01s(1− p00s) + p10sp01(1− p00s) + p10p00p01s
2

R(s) = (1− p00s)2k0s
k0−1P1(Ak0) + (k0 + 1− C1)p10s

k0(1− p00s)P0(Ak0) + p10s
k0+1p00P0(Ak0)
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From (10) we have for any 0 < t < 1

B(t) ≥ e
∫ t
0
Q(s)
P (s)

ds
∫ t

0
e
∫ s
0
−Q(r)
P (r)

drR(s)
P (s)

ds. (11)

Now for s < 1, Q(s)
P (s) = D

1−p00s
+ E

1−s + F
1−s(1−p01−p10) , for some real numbers D,E, F. Using the

fact that p00 < 1 and −1 < 1− (p01 + p10) < 1 we have∫ t

0

Q(s)
P (s)

ds = ln
{

(1− p00t)
−D
p00 (1− t)−E(1− t(1− p01 − p10))

−F
1−p01−p10

}
. (12)

Using (12), we have

B(t) ≥ (1− p00t)
−D
p00 (1− t)−E(1− t(1− p01 − p10))

−F
1−p01−p10 ×

×
∫ t

0
(1− p00s)

D
p00 (1− s)E(1− s(1− p01 − p10))

F
1−p01−p10

R(s)
P (s)

ds

≥ (1− p00t)
−D
p00 (1− t)−E(1− t(1− p01 − p10))

−F
1−p01−p10 ×

×
∫ t

0
(1− p00s)

D
p00
−1(1− s)E−1(1− s(1− p01 − p10))

F
1−p01−p10

−1
R(s)ds

By our choice of k0, each of the summands in expression for R(s) is non-negative. Thus for α
such that 0 < α ≤ s < t < 1 we see that

R(s) ≥ (1− p00)2k0α
k0−1P1(Ak0) + (k0 + 1− C1)p10α

k0(1− p00)P0(Ak0) + p00P0(Ak0). (13)

Since 0 < p00 < 1 and −1 < 1 − (p01 + p10) < 1, for all 0 < s < 1, both 1 − p00s and
1− s(1− p01 − p10) are bounded above by 1 and below by a strictly positive constant. Hence
regardless of the values of D and F, using (13) we have that for α < t < 1

B(t) ≥ c2(1− t)−E
∫ t

α
(1− s)E−1R(s)ds

≥ c3(1− t)−E
∫ t

α
(1− s)E−1ds

= c3(1− t)−E
[

(1− α)E

E
− (1− t)E

E

]
= c3

[
(1− t)−E(1− α)E

E
− 1
E

]
,

for some 0 < c3 < ∞. Since B(·) is a power series, this implies B(1) = ∞ whenever E > 0.
Observe that E = Q(1)

(1−p00)(p01+p10) . Therefore (1−p00)(p01+p10)E = p00p10p01+(1−p00)p10p01+
(1− C1)(p11(1− p00)2 + p10p01(1− p00)) = (1− p00)(p10 + (1− C1)p01). Now,

E > 0 ⇐⇒ p10 + (1− C1)p01 > 0

⇐⇒ C1 <
p10 + p01

p01

⇐⇒ p01

p10 + p01
<

1
C1

=
1

L+ ε
.
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Since ε > 0 was arbitrary, we have that B(1) = ∞ whenever p01

p10+p01
< 1

L which implies, from
(4), that A(1) =∞ whenever p01

p10+p01
< 1

L .

The events {Ak : k ≥ 1} are not independent and hence Borel-Cantelli lemma cannot be
applied, however they are delayed renewal events as will be shown in (14). Let µ and ν be
two probability measures on {0, 1} with ν(1) = p01 and ν(0) = p00. Let Pµ and Pν denote the
probability distributions governing the Markov chains starting with the initial distribution µ

and ν, respectively, and the transition probabilities as given earlier. Observe that

Pµ(Ai+j+k ∩Ai+j | Ai) = Pν(Ak)Pν(Aj) for all i, j, k ≥ 1, (14)

which establishes that {Ak : k ≥ 1} are delayed renewal events (see Feller [2], page 317). Thus,
for f0(k) := Pµ(Ak ∩ ∩k−1

j=1A
c
j), if we show that

Pµ{k 6∈ C for some k ≥ 1} =
∞∑
k=1

f0(k) = 1 whenever
p01

p10 + p01
<

1
L
, (15)

then along with (1), Theorems 2 and 1 (pages 312 and 318 respectively, Feller [2]) we have
Pµ{k 6∈ C for infinitely many k ≥ 1} = 1.

To prove (15) we observe that

Pµ(Ak) = µ(1)P1(Ak) + µ(0)P0(Ak). (16)

It is easy to see that for all k ≥ 1 we have Pµ(Ak) = f0(k) +
∑k−1

j=1 f0(j)Pν(Ak−j). Set
Pµ(A0) = 1 and f0(0) = 0. Then, we can write Pµ(Ak) =

∑k
j=0 f0(j)Pp01(Ak−j) for all k ≥ 1.

Thus multiplying both sides by sk and summing over k, we have,

Gµ(s)− 1 = F0(s)Gν(s)

where Gµ(s) =
∑∞

k=0 Pµ(Ak)sk and F0(s) =
∑∞

k=0 f0(k)sk. Since Gν(s) 6= 0, we have,

F0(s) =
Gµ(s)− 1
Gν(s)

. (17)

Now, taking A1(s) :=
∑∞

k=0 P0(Ak)sk and B1(s) :=
∑∞

k=0 P1(Ak)sk we have
Gµ(s) = µ(0)A1(s) +µ(1)B1(s) and Gν(s) = p00A1(s) + p01B1(s). Substituting this in (17) we
have that

F0(s) =
µ(0) + ((µ(1)B1(s)− 1)/A1(s))

p00 + p01B1(s)/A1(s)
→ 1 as s→ 1,

where the limit above holds because both the numerator and denominator in the first equality
converge to 1, as may be seen easily from (4) for k0 = 1 and the fact that A(1) =∞ whenever
p01

p10+p01
< 1

L . �
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Proof of Theorem 1.1(a) The proof of part (a) is similar. Using the hypothesis, and an
analogous calculation as in the previous part, it may be seen that B(1) <∞ whenever p01

p10+p01
>

1
l . Also, by (4), A(1) <∞ and here the Borel-Cantelli lemma will imply the result. �

3 The Poisson Boolean model

In this section we prove Theorem 1.2 and Theorem 1.3. We first prove it for a discrete model on
N
d and then for the point process via a straight forward comparison with the discrete model.

3.1 Independent discrete model

In this subsection we take {Xi : i ∈ Nd} to be an i.i.d. collection of {0, 1} valued random
variables with p = P (Xi = 1) and {ρi : i ∈ Nd} to be another i.i.d. collection of positive integer
valued random variables with distribution function F and independent of {Xi : i ∈ Nd}. Let
C := ∪i∈Nd|Xi=1(i + [0, ρi]d). We first consider eventual coverage of Nd by Xi. Although, for
d = 1, Theorem 1.1 holds for this set-up, we present an alternate simpler proof as it indicates
the method needed for d ≥ 2.

Proposition 3.1. (a) If l = lim infj→∞ jP (ρ > j) > 1, then for all p > 1/l,

Pp{C eventually covers N} = 1.

(b) If L = lim supj→∞ jP (ρ > j) <∞, then for all p < 1/L,

Pp{C eventually covers N} = 0.

Proof : Define Ai := {i 6∈ C} for i ≥ 1 and let G := 1− F .

(a) Fix p > 1/l. Since l > 1/p, we can choose δ > 0 so that l > (1 + δ)/p. Now, we
can choose j0 so large that jG(j) > (1 + δ)/p for all j ≥ j0. Thus, for j ≥ j0, we have
pG(j) > (1+δ)/j. Therefore, we have, for all j ≥ j0, Pp(Aj) = (1−p)

∏j−1
k=1(1−pG(k)) ≤

(1 − p)
∏j0
k=1(1 − pG(k))

∏j−1
k=j0+1(1 − (1 + δ)/k) = aj (say). Observe that aj+1/aj =

1− (1 + δ)/j, hence by Gauss’ test (see Knopp [4], page 288) we have
∑∞

j=1 Pp(Aj) <∞.
An application of the Borel-Cantelli lemma proves part (a).

(b) The proof is similar. One calculates Pp(Aj) as above. An application of Gauss’ test shows
that

∑
i Pp(Ai) =∞ for p < 1

L = 1
lim supj→∞ jG(j) . The Ak’s are not independent and hence
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Borel-Cantelli lemma cannot be applied. However using conditional independence one can
show that

Pp(Ak ∩Ai) = Pp(Ak−i)Pp(Ai)

and therefore, Ai’s satisfy the definition of a renewal event in Feller [2], page 308. So
from Theorem 2, on page 312 in Feller [2] if

∑∞
i=1 P (Ai) =∞ then Ai occurs for infinitely

many i′s with probability one. �

For higher dimensions, we have

Proposition 3.2. Let d ≥ 2 and 0 < p < 1.

(a) if lim
j→∞

jP (ρ > j) = 0 then Pp(C eventually covers Nd) = 0

(b) if lim inf
j→∞

jP (ρ > j) > 0 then Pp(C eventually covers Nd) = 1

Proof : Recall that G(j) = P (ρ > j)

(a) Let d = 2 and fix 0 < p < 1. For i, j ∈ N let A(i, j) := {(i, j) 6∈ C}. Now observe that for
each fixed j,

P (A(k, j) ∩A(i, j)) = P (A(k − i, j))P (A(i, j)),

i.e., for each fixed j the event A(i, j) is a renewal event. Thus, if, for every j ≥ 1,∑∞
i=1 P (A(i, j)) =∞ then, on every line {y = j}, j ≥ 1, we have infinitely many i’s for which

(i, j) is uncovered with probability one and hence would imply part (a).

We proceed to show that
∑∞

i=1 P (A(i, j)) = ∞. Let i ≥ j + 1. To calculate Pp(A(i, j)) we
divide the rectangle into a square of length j and a rectangle as in Figure 1. For any point
(k, l), 1 ≤ k ≤ i − j and 1 ≤ l ≤ j, in the shaded region of Figure 1, we ensure that either
X(k,l) = 0 or ρ(k,l) ≤ k + j − 1. The remaining square region in Figure 1 is decomposed into j
sub squares of length t, 1 ≤ t ≤ j − 1 and we ensure that for each point (k, l) on the section of
the boundary of the sub square t given by the dotted lines either X(k,l) = 0 or ρ(k,l) ≤ t. So,

Pp(A(i, j)) = (1− p)
j−1∏
t=1

(1− p+ pF (t− 1))2t+1
i−j∏
k=1

(1− p+ pF (k + j − 1))j

= (1− p)
j−1∏
t=1

(1− pG(t))2t+1
i∏

k=j+1

(1− pG(k))j . (18)

Now choose ε > 0 such that pjε < 1. By assumption there exists N such that, for all i ≥ N,

10



(1, 1)

(i, j)(i− j, j)

(i− j, 1) (i, 1)

(1, j)

Figure 1: Division of the rectangle formed by [1, i]× [1, j]

iG(i) < ε. Taking cj :=
∏j−1
t=1 (1− pG(t))2t+1, we have from (18) we have that

∞∑
i=N

Pp(A(i, j)) = (1− p)cj
∞∑
i=N

i−j∏
k=1

(1− pG(k + j))j

= (1− p)cj
∞∑
i=N

ei (say). (19)

For m ≥ N we have
em+1

em
= (1− pG(m+ 1))j

≥
(

1− pε

m+ 1

)j
= 1− j pε

m+ 1
+

j∑
k=2

(−p)k
(
j

k

)
εk

(m+ 1)k

= 1− pjε

m+ 1
+
g(m, p, j, ε)
(m+ 1)2

, (20)

for some function g(m, p, j, ε) bounded inm. Thus by Gauss’ test, as pjε < 1 we have
∑∞

i=N ei =
∞ and hence,

∑∞
i=1 Pp(A(i, j)) =∞. This completes the proof of part (a) for d = 2.

We turn our attention to d = 3. Fix l2 ≥ l3 ∈ N. For i ≥ l2, l3, consider the event A(i, l2, l3) =
{(i, l2, l3) 6∈ C}. We decompose the cube [1, i]× [1, l2]× [1, l3] into rectangles [1, i]× [1, l2]×{m},
1 ≤ m ≤ l3 . We divide each such rectangle as in Figure 2. Now in the shaded region we need
to ensure that at each point Xi = 0 or ρi ≤ l3 −m− 1 and for the rest we proceed exactly as
in the d = 2 case. We have

Pp(A(i, l2, l3))

=
l3∏

m=1

[1− pG(l3 −m)](l3−m+1)2
i−l2∏
k=1

[1− pG(k + l2)]l2
l2∏

t=l3−m−1

[1− pG(t)]2t+1 .

11



(1, 1,m)

(1, i2,m) (i− (l3 −m), l2,m) (i, l2,m)

(i, l2 − (l3 −m),m)

(i− l2, 1,m) (i, 1,m)

(i− l2, l2,m)

Figure 2: Division of the rectangle formed by [1, i]× [1, l2]×m

Note that there is only one product involving i, while the other two products form a constant
say dl2,l3 . Therefore, as in (19),

∞∑
i=N

Pp(A(i, l2, l3)) = (1− p)dl2,l3
∞∑
i=N

i−l2∏
k=1

[1− pG(k + l2)]l2 .

Proceeding as in (20)
∑∞

i=1 Pp(A(i, l2, l3)) =∞.

By the renewal argument stated at the beginning, A(i, l2, l3) occurs for infinitely many i. Hence,
along every line {(i, l2, l3), i ∈ N}, l2 ≥ l3 there are infinitely many vertices on it which are not
in C. The same argument holds for l2 ≤ l3. As in d = 2, this shows that C does not eventually
cover N3.

For d ≥ 4, the argument follows along similar lines.

(b) We prove this part of the proposition for d = 2, the proof for d ≥ 3 is similar and we omit
it. Fix η > 0 such that η < lim infj→∞ jG(j). Let N1 be such that for all i ≥ N1 we have
iG(i) > η. Also, we fix 0 < p < 1 and choose a such that 0 < exp(−pη) < a < 1. Let N2 be
such that for all j ≥ N2 we have (1− pηj−1)j < a. For N := max{N1, N2}, let i, j ∈ N be such
that j ≥ N and i > j. Define A(i, j) := {(i, j) 6∈ C}. As in (18) we have

Pp(A(i, j)) = (1− p)
i−j∏
k=1

((1− p) + pF (j + k − 1))j
j−1∏
t=1

((1− p) + pF (t− 1))2t+1

= (1− p)
i−j∏
k=1

(1− pG(j + k))j
j−1∏
t=1

(1− pG(t))2t+1 . (21)
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Taking cj :=
∏j−1
t=1 (1− pG(t))2t+1, we have from (21) and by our choice of j,

∞∑
i=N

Pp(A(i, j)) = (1− p)cj
∞∑
i=N

i−j∏
k=1

(1− pG(k + j))j (22)

= (1− p)cj
∞∑
i=N

bi (say). (23)

Now m ≥ N

bm+1

bm
= (1− pG(m+ 1))j

≤
(

1− p η

m+ 1

)j
= 1− pj η

m+ 1
+

j∑
k=2

(−p)k
(
j

k

)
ηk

(m+ 1)k

= 1− pjη

m+ 1
+
h(m, p, j, η)

(m+ 1)2
(24)

for some function h(m, p, j, η) bounded in m.

Thus by Gauss’ test, if pjη > 1 then
∑∞

i=N bi <∞ and hence,
∑∞

i=1 Pp(A(i, j)) <∞.

Now, for a given p, let j′ := sup{j : pjη < 1} and j0 := max{j′ + 1, N}. We next show that
the region Qj0 := {(i1, i2) ∈ N2 : i1, i2 ≥ j0} has at most finitely many points that are not
covered by C almost surely; there by proving that C eventually covers N2. For this we apply
Borel-Cantelli lemma after showing that

∑
(i1,i2)∈Qj0

Pp(A(i1, i2)) <∞.

Towards this end we have∑
i1,i2≥j0

Pp(A(i1, i2))

=
∞∑
k=1

(
2
k−1∑
m=1

Pp(A(j0 + k, j0 +m)) + Pp(A(j0 + k, j0 + k))

)

= 2
∞∑
k=1

k−1∑
m=1

(1− p)
k−m∏
i=1

(1− pG(j0 +m+ i))j0+m
j0+m−1∏
t=1

(1− pG(t))2t+1

+
∞∑
k=1

j0+k−1∏
t=1

(1− pG(t))2t+1

= 2(1− p)
∞∑
m=1

(
j0+m−1∏
t=1

(1− pG(t))2t+1
∞∑

k=m+1

k−m∏
i=1

(1− pG(j0 +m+ i))j0+m

)

+
∞∑
k=1

j0+k−1∏
t=1

(1− pG(t))2t+1.
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Observe that

σm :=
∞∑

k=m+1

k−m∏
i=1

(1− pG(j0 +m+ i))j0+m

=
∞∑
s=1

s∏
i=1

(1− pG(j0 +m+ i))j0+m (25)

≤
∞∑
s=1

s∏
i=1

(
1− pη

j0 +m+ s

)j0+m

,

hence as in (24) and the subsequent application of Gauss’ test, we have that, for every m ≥ 1,
σm <∞.

Now let γm :=
∏j0+m−1
t=1 (1 − pG(t))2t+1σm. Note that an application of the ratio test yields∑∞

m=1 γm <∞; indeed from (25),

γm+1

γm
= (1− pG(j0 +m))2j0+2m+1

∑∞
s=1

∏s
i=1(1− pG(j0 +m+ 1 + i))j0+m+1∑∞

s=1

∏s
i=1(1− pG(j0 +m+ i))j0+m

=
(1− pG(j0 +m))2j0+2m+1

(1− pG(j0 +m+ 1))j0+m

∑∞
s=1

∏s
i=1(1− pG(j0 +m+ 1 + i))j0+m+1

1 +
∑∞

s=2

∏s
i=2(1− pG(j0 +m+ i))j0+m

≤ (1− pG(j0 +m))j0+m+1

∑∞
s=1

∏s
i=1(1− pG(j0 +m+ 1 + i))j0+m+1

1 +
∑∞

s=1

∏s
i=1(1− pG(j0 +m+ 1 + i))j0+m

.

Since σm <∞ for all m ≥ 1, in the fraction on the right side of the above inequality both the
numerator and the denominator are finite. Moreover, each term in the sum of the numerator
is less than the corresponding term in the sum of the denominator; yielding that the fraction
is at most 1. Hence, for 0 < a < 1 as chosen earlier

γm+1

γm
≤ (1− pG(j0 +m))j0+m+1

≤
(

1− pη

j0 +m

)j0+m+1

≤ a.

This shows that
∑∞

m=1 γm <∞ and completes the proof of part (a). �

3.2 Proofs of Theorems 1.2 and 1.3

Consider (Ξ, λ, ρ) the Poisson Boolean model on Rd+ as in Section 1. Let C be the covered
region as defined in Section 1.

Fix i := (i1, . . . , id) and consider ξi := Ξ ∩ [i1 − 1, i1)× · · · × [id − 1, id). Let ξi1, . . . , ξiNi
be an

enumeration of all the points of ξi. Note that Ni is a Poisson random variable with mean λ
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and that this enumeration is possible only if Ni is positive. Let ρi1, . . . , ρiNi
be the associated

random variables with these points. Define

ρred(i) := 2 + bmax{ρi1, . . . , ρiNi}c and ρgreen(i) = max{0, bmax{ρi1, . . . , ρiNi
}c − 2}.

Now we consider two discrete models – (a) the red model, where for i ∈ Nd, we call i red if
ξi 6= ∅ and place a cube of length ρred(i) at i; and (b) the green model where we call i green
if in addition to ξi 6= ∅ we have ρgreen(i) ≥ 1 and place a cube of length ρgreen(i) at i.

For the red model consider the region

Cred :=
⋃

{i:i is red}
[i1, i1 + ρred(i)]× · · · × [id, id + ρred(i)].

Similarly define the region Cgreen for the green model.

We observe that

eventual coverage of the Poisson model ensures the same for the red model; (26)

eventual coverage of the green model ensures the same for the Poisson model. (27)

Moreover, the red model is equivalent in law to a discrete model on Nd where for a vertex i,
P (Xi = 1) = 1 − exp(−λ), independent of other vertices; and the length of the cube, ρred,
associated with such a vertex is independent of the length associated with other such vertices
and has the distribution given by

P (ρred ≤ m)

= P{max{ρ1, . . . , ρN} < m− 1 | N ≥ 1}

=
∞∑
j=1

exp(−λ)λj

(1− exp(−λ))j!
P (ρ < m− 1)j

= exp(−λ)
exp(λP (ρ < m− 1))− 1

1− exp(−λ)

=
exp(−λP (ρ ≥ m− 1))− exp(−λ)

1− exp(−λ)
, (28)

where N is a Poisson random variable with mean λ. Similarly, the green model is equivalent
in law to a discrete model on Nd where for a vertex i, P (Xi = 1) = 1 − exp(−λP (ρ ≥ 3)),
independent of other vertices; and the length of the cube ρgreen associated with such a vertex
is independent of the length associated with other such vertices and has the distribution given
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by

P (ρgreen ≤ m)

= P{max{ρ1, . . . , ρN} < m+ 3 | N ≥ 1 and max{ρ1, . . . , ρN} ≥ 3}

=
∞∑
j=1

exp(−λ)λj

(1− exp(−λP (ρ ≥ 3)))j!
[P (ρ < m+ 3)j − P (ρ < 3)j ]

=
exp(−λP (ρ ≥ m+ 3))− exp(−λP (ρ ≥ 3))

1− exp(−λP (ρ ≥ 3))
. (29)

From (28) and (29) the proofs of the Theorem 1.2 and Theorem 1.3 easily follow. We illustrate
below.

Proof of Theorems 1.2 and 1.3 Using the inequality x− x2/2 ≤ 1− e−x ≤ x, we have from
(28),

m

1− e−λ

[
λP (ρ ≥ m− 1)− (λP (ρ ≥ m− 1))2

2

]
≤ mP (ρred ≥ m)

≤ m

1− e−λ
λP (ρ ≥ m− 1). (30)

Now given an ε > 0 let m0 be such that for all m ≥ m0 we have λP (ρ ≥ m − 1)/2 < ε, then
for all m ≥ m0,

m

1− e−λ
λP (ρ ≥ m− 1)(1− ε) ≤ mP (ρred ≥ m) ≤ m

1− e−λ
λP (ρ ≥ m− 1). (31)

Since this is true for all ε > 0, if 0 < l := lim inf
x

xP (ρ ≥ x) ≤ lim sup
x→∞

xP (ρ ≥ x) =: L , then we

have
lim inf
m→∞

mP (ρred ≥ m) =
λl

1− e−λ
and lim sup

m→∞
mP (ρred ≥ m) =

λL

1− e−λ
. (32)

A similar calculation yields

lim inf
m→∞

mP (ρgreen ≥ m) =
λl

1− e−λP (ρ≥3)
and lim sup

m→∞
mP (ρgreen ≥ m) =

λL

1− e−λP (ρ≥3)
.

(33)

Having established (33), from Propositions 3.1(a) we have that for all λ such that

lim inf
m→∞

mP (ρgreen ≥ m)P (a site is green) = λl > 1

there is eventual coverage in the green model. Thus from (26) we have that for sufficiently large
λ the Poisson model eventually covers R+ with probability 1. Similarly from (32), Propositions
3.1(b) and (27) we have that for λ such that λL < 1, with probability 1 the Poisson model
never eventually covers R+. This proves Theorem 1.2.
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Using (32), observe that if limx→∞ xP (ρ > x) = 0 then limm→∞mP (ρred ≥ m) = 0; and thus
from Proposition 3.2 (a), together with (27), we have that Theorem 1.3(b) holds.

To prove Theorem 1.3(a), observe that, Proposition 3.2(b) together with (26) now yields that
R
d
+ is eventually covered by the Poisson model with probability 1. This completes the proof of

Theorem 1.3. �
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