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Abstract: We develop a wavelet based linear density estimator for the estimation of the
probability density function for a sequence of associated random variables with a common one-
dimensional probability density function and obtain bounds on Lp-losses for such estimators.

1 Introduction

Let {Xn, n ≥ 1} be a sequence of random variables. A finite family {X1, . . . , XN} of random
variables is said to be associated if

Cov(h(X1, . . . , XN ), g(X1, . . . , XN )) ≥ 0

for any componentwise nondecreasinfg functions h and g on Rn such that the covariance exists.
An infinite family of random variables is said to be associated if every finite subfamily is
associated.

Associated random variables are of considerable interest in reliability studies, percolation
theory and statistical mechanics. For a review of several probabilistic and statistical results for
associated sequences, see Prakasa Rao and Dewan (2001).

Suppose that {Xn, n ≥ 1} is a sequence of associated random variables with a common one-
dimensional marginal probability density function f. The problem of inerest is the estimation
of probability density function f based on the observations {X1, . . . , XN}. Kernel method of
density estimation has been investigated in this context by Bagai and Prakasa Rao (1991,
1995) and Roussas (1991). A general method of density estimation using delta sequences was
discussed in Dewan and Prakasa Rao (1999). We now propose an estimator based on wavelets
and obtain bounds on the Lp-losses for the propsed estimator.

2 Preliminaries

Let {Xi, i ≥ 1} be a sequence of associated random variables with common one-dimensional
marginal probability density function f. Suppose f is bounded and compactly supported. The
problem is to estimate the probability density function f based on the observations X1, . . . , Xn.

Any function f ∈ L2(R) can be expanded in the form

f =
∞∑

k=−∞
αj0,kφj0,k +

∞∑
j=j0

∞∑
k=−∞

βj,kψj,k

= Pj0f +
∞∑
j=j0

Djf
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for any integer j0 ≥ 1 where the functions

φj0,k(x) = 2j0/2φ(2j0x− k)

and
ψj0,k(x) = 2j0/2ψ(2j0x− k)

constitute an orthonormal basis of L2(R) ( Daubechies (1988)). The functions φ(x) and ψ(x)
are the scale function and the orthogonal wavelet function respectively. Observe that

αj0,k =
∫ ∞
−∞

f(x)φj0,k(x)dx

and
βj,k =

∫ ∞
−∞

f(x)ψj,k(x)dx.

We suppose that the function φ and ψ belong to Cr+1 for some r ≥ 1 and have compact support
contained in an interval [−δ, δ]. It follows from the Corollary 5.5.2 in Daubechies (1988) that
the function ψ is orthogonal to a polynomial of degree less than or equal to r. In particular∫ ∞

−∞
ψ(x)x`dx = 0, ` = 0, 1, . . . , r.

We assume that the following conditions hold.

(A1) The sequence {Xn, n ≥ 1} is a sequence of associated random variables with

u(n) = sup
i≥1

∑
|j−i|≥n

Cov(Xi, Xj) ≤ Cn−α

for some C > 0 and α > 0.
(A2) Suppose the density function f belongs to the Besov class (cf. Meyer (1990))

Fs,p,q = {f ∈ Bs
p,q, ||f ||Bsp,q ≤M}

for some 0 < s < r + 1, p ≥ 1 and q ≥ 1, where

||f ||Bsp,q = ||P0f ||p + [
∑
j≥0

(||Djf ||p2js)q]1/q.

(For properties of Besov spaces, see Triebel (1992) (cf. Leblanc( 1996)).

Define
f̂N =

∑
k∈Kj0

α̂j0,kφj0,k(2. 1)

where

α̂j0,k =
1
N

N∑
i=1

φj0,k(Xi)(2. 2)
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and Kj0 is the set of all k such that the the intersection of the support of f and the support of
φj0,k is nonempty. Since the function φ has a compact support by assumption, it follows that
the cardinality of the set Kj0 is O(2j0).

We now study the properties of the estimator f̂N as an estimator of the probability density
function f.

3 Main Result

Let p′ ≥ max(2, p). We will now obtain bounds on Ef ||f̂N − f ||2p′ .
Observe that

Ef ||f̂N − f ||2p′ ≤ 2(||f − Pj0f ||2p′ + Ef ||f̂N − Pj0f ||2p′).(3. 1)

We now estimate the terms on the right side of the above equation.
Lemma 3.1 For any f ∈ Fs,p,q, s ≥ 1

p , there exists a constant C1 such that

||f − Pj0f ||2p′ ≤ C12−2s′j0(3. 2)

where
s′ = s+

1
p′
− 1
p
.(3. 3)

Proof: See Leblanc (1996), p.83.
We will now estimate the second term in the equation (3.1). Note that

Ef ||f̂N − Pj0f ||2p′ = Ef ||
∑
k∈Kj0

(α̂j0,k − αj0,k)φj0,k||2p′

≤ C2Ef{||α̂j0,. − αj0,.||2`p′ (Z)}2
2j0( 1

2
− 1
p′ )

for some constant C2 > 0 by Lemma 1 in Leblanc (1996), p.82 (cf. Meyer (1990)). Here Z is
the set of all integers −∞ < k <∞ and the norm

||λ||`p(Z) = (
∑
k∈Z
|λk|p)1/p.

Hence
Ef ||f̂N − Pj0f ||2p′ ≤ C222j0( 1

2
− 1
p′ ){

∑
k∈Kj0

Ef |α̂j0,k − αj0,k|p
′}2/p′ .(3. 4)

Let
Wi = η(Xi) = φj0,k(Xi)− Ef (φj0,k(Xi)), 1 ≤ i ≤ N.

Then

α̂j0,k − αj0,k =
1
N

N∑
i=1

Wi
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and

Ef |α̂j0,k − αj0,k|p
′

= N−p
′
Ef |

N∑
i=1

Wi|p
′
.

Observe that the random variables Wi, 1 ≤ i ≤ N are funcions of associated random variables
Xi, 1 ≤ i ≤ N. We will now estimate the term

Ef |α̂j0,k − αj0,k|p
′

by applying Rosenthal type inequality for functions of associated random variables due to Shao
and Yu (1996), p.210. Note that the sequence of random variables η(Xi), 1 ≤ i ≤ N are
identically distributed with mean zero. Further more the function η(x) is differentiable with

sup
−∞<x<∞

|η′(x)| = sup
−∞<x<∞

|φ′j0,k(x)|(3. 5)

≤ 23j0/2 sup
−∞<x<∞

|φ′(2j0x− k)|

≤ 23j0/2 sup
−∞<x<∞

|φ′(x)|

≤ B023j0/2

for some constant B0 > 0 since φ ∈ Cr+1 for some r ≥ 1. In addition, for any d ≥ 0,

Ef [|η(X1)|d] ≤ 2d(Ef |φj0,k(X1)|d +Bd
1)(3. 6)

≤ 2d2j0d/2(Ef [|φ(2j0X1 − k)|d] +Bd
1)

≤ 2d+12j0d/2Bd
1

= B22j0d/2

where B1 is a bound on φ following the assumption that it has compact support and that
φ ∈ Cr+1 and B2 is a positive constant independent of j0.

(A3) Suppose that max(2, p) ≤ p′ < d <∞.

Applying Theorem 4.2 in Shao and Yu (1996), it follows that for any ε > 0, there exists a
constant G0 depending only on ε, d, p′ and α such that

Ef |
N∑
i=1

Wi|p
′ ≤ D0(N1+εE|η(X1)|p′ +(3. 7)

(N max
1≤i≤N

N∑
`=1

|Cov(η(Xi), η(X`))|)p
′/2 +

N (d(p′−1)−p′+α(p′−d)/(d−2)∨(1+ε)

×||η(X1)||d(p′−2)/(d−2)
d (B2

023j0C)(d−p′)/(d−2))
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where B0 is as defined above. Note that the constants D0 and B0 are independent of k ∈ Kj0

and j0. Applying Newman’s inequality (Newman ( 1984)), we obtain that

|Cov(η(Xi), η(X`)| ≤ { sup
−∞<x<∞

|η′(x)|}2Cov(Xi, X`)(3. 8)

≤ B2
023j0 .

Combining the above estimates, we get that

Ef |
N∑
i=1

Wi|p
′ ≤ D0(N1+ε2(j0/2)p′B2 +(3. 9)

(N max
1≤i≤N

N∑
`=1

Cov(Xi, X`)B2
023j0)p

′/2 +

N (d(p′−1)−p′+α(p′−d)/(d−2)∨(1+ε)

×(B1/d
0 2j0/2)d(p′−2)/(d−2)(B2

023j0C)(d−p′)/(d−2)).

Since the above estimate holds for all k ∈ Kj0 and the cardinality of K is O(2j0), it follows
that

Ef ||f̂N − Pj0f ||2p′ ≤ C222j0( 1
2
− 1
p′ )2j0{D0(N1+ε2(j0/2)p′B2 +(3. 10)

(N max
1≤i≤N

N∑
`=1

Cov(Xi, X`)B2
023j0)p

′/2 +

N (d(p′−1)−p′+α(p′−d)/(d−2)∨(1+ε)

×(B1/d
0 2j0/2)d(p′−2)/(d−2)(B2

023j0C)(d−p′)/(d−2))}2/p′ .

Hence there exists a constant C3 > 0 such that

(3. 11)

Ef ||f̂N − f ||2p′ ≤ C3[22j0( 3
2
− 1
p′ )2j0{D0(N1+ε2j0/2p

′
B2 +

(N max
1≤i≤N

N∑
`=1

Cov(Xi, X`)B2
023j0)p

′/2 +

N (d(p′−1)−p′+α(p′−d)/(d−2)∨(1+ε)

×(B1/d
0 2j0/2)d(p′−2)/(d−2)(B2

023j0C)(d−p′)/(d−2))}2/p′ + 2−2s′j0 ]

and we have the following main result.

Theorem 3.2:Suppose the conditions (A1)-(A3) hold. Let max(2, p) ≤ p′ < d < ∞. Define
the wavelet linear estimator f̂N as defined by the relation (2.1). Then, for every ε > 0, there
corresponds a constant C > 0 such that

Ef ||f̂N − f ||2p′ ≤ C[22j0( 3
2
− 1
p′ )2j0{(N1+ε2(j0/2)p′ +(3. 12)
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(N max
1≤i≤N

N∑
`=1

Cov(Xi, X`)23j0)p
′/2 +

N (d(p′−1)−p′+α(p′−d)/(d−2)∨(1+ε)

×2(j0/2)d(p′−2)/(d−2)23j0(d−p′)/(d−2))}2/p′ + 2−2s′j0 ].

4 Remarks

Suppose 1 ≤ p′ ≤ 2. One can get similar bounds as in Theorem 3.2 for the expected loss

Ef ||f̂N − f ||p
′

p′

observing that

Ef ||f̂N − f ||p
′

p′ ≤ 2p
′−1(||f − Pj0f ||

p′

p′ + Ef ||f̂N − Pj0f ||
p′

p′),(4. 1)

||f − Pj0f ||
p′

p′ ≤ C42−p
′s′j0 ,(4. 2)

and

Ef ||f̂N − Pj0f ||
p′

p′ ≤ C
′22j0( p

′
2
−1)

∑
k∈Kj0

Ef |α̂j0,k − αj0,k|p
′

(4. 3)

for some positive constants C4 and C ′. We will not discuss the details.
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