isid/ms/2003/02 January 22, 2003 http://www.isid.ac.in/~statmath/eprints

Wavelet Linear Density Estimation for Associated Sequences

B. L. S. PRAKASA RAO

Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi–110016, India

Wavelet Linear Density Estimation for Associated Sequences

B.L.S.PRAKASA RAO

Indian Statistical Institute, New Delhi

Abstract: We develop a wavelet based linear density estimator for the estimation of the probability density function for a sequence of associated random variables with a common onedimensional probability density function and obtain bounds on L_p -losses for such estimators.

1 Introduction

Let $\{X_n, n \ge 1\}$ be a sequence of random variables. A finite family $\{X_1, \ldots, X_N\}$ of random variables is said to be *associated* if

$$Cov(h(X_1,\ldots,X_N),g(X_1,\ldots,X_N)) \ge 0$$

for any componentwise nondecreasinf functions h and g on \mathbb{R}^n such that the covariance exists. An infinite family of random variables is said to be *associated* if every finite subfamily is associated.

Associated random variables are of considerable interest in reliability studies, percolation theory and statistical mechanics. For a review of several probabilistic and statistical results for associated sequences, see Prakasa Rao and Dewan (2001).

Suppose that $\{X_n, n \ge 1\}$ is a sequence of associated random variables with a common onedimensional marginal probability density function f. The problem of inerest is the estimation of probability density function f based on the observations $\{X_1, \ldots, X_N\}$. Kernel method of density estimation has been investigated in this context by Bagai and Prakasa Rao (1991, 1995) and Roussas (1991). A general method of density estimation using delta sequences was discussed in Dewan and Prakasa Rao (1999). We now propose an estimator based on wavelets and obtain bounds on the L_p -losses for the propsed estimator.

2 Preliminaries

Let $\{X_i, i \ge 1\}$ be a sequence of associated random variables with common one-dimensional marginal probability density function f. Suppose f is bounded and compactly supported. The problem is to estimate the probability density function f based on the observations X_1, \ldots, X_n .

Any function $f \in L_2(R)$ can be expanded in the form

$$f = \sum_{k=-\infty}^{\infty} \alpha_{j_0,k} \phi_{j_0,k} + \sum_{j=j_0}^{\infty} \sum_{k=-\infty}^{\infty} \beta_{j,k} \psi_{j,k}$$
$$= P_{j_0} f + \sum_{j=j_0}^{\infty} D_j f$$

for any integer $j_0 \ge 1$ where the functions

$$\phi_{j_0,k}(x) = 2^{j_0/2} \phi(2^{j_0}x - k)$$

and

$$\psi_{j_0,k}(x) = 2^{j_0/2}\psi(2^{j_0}x - k)$$

constitute an orthonormal basis of $L_2(R)$ (Daubechies (1988)). The functions $\phi(x)$ and $\psi(x)$ are the scale function and the orthogonal wavelet function respectively. Observe that

$$\alpha_{j_0,k} = \int_{-\infty}^{\infty} f(x)\phi_{j_0,k}(x)dx$$

and

$$\beta_{j,k} = \int_{-\infty}^{\infty} f(x)\psi_{j,k}(x)dx.$$

We suppose that the function ϕ and ψ belong to C^{r+1} for some $r \ge 1$ and have compact support contained in an interval $[-\delta, \delta]$. It follows from the Corollary 5.5.2 in Daubechies (1988) that the function ψ is orthogonal to a polynomial of degree less than or equal to r. In particular

$$\int_{-\infty}^{\infty} \psi(x) x^{\ell} dx = 0, \ell = 0, 1, \dots, r.$$

We assume that the following conditions hold.

(A1) The sequence $\{X_n, n \ge 1\}$ is a sequence of associated random variables with

$$u(n) = \sup_{i \ge 1} \sum_{|j-i| \ge n} Cov(X_i, X_j) \le Cn^{-\alpha}$$

for some C > 0 and $\alpha > 0$.

(A2) Suppose the density function f belongs to the Besov class (cf. Meyer (1990))

$$F_{s,p,q} = \{ f \in B^s_{p,q}, ||f||_{B^s_{p,q}} \le M \}$$

for some $0 < s < r+1, p \ge 1$ and $q \ge 1$, where

$$||f||_{B^s_{p,q}} = ||P_0f||_p + [\sum_{j\geq 0} (||D_jf||_p 2^{js})^q]^{1/q}.$$

(For properties of Besov spaces, see Triebel (1992) (cf. Leblanc(1996)).

Define

(2. 1)
$$\hat{f}_N = \sum_{k \in K_{j_0}} \hat{\alpha}_{j_0,k} \phi_{j_0,k}$$

where

(2. 2)
$$\hat{\alpha}_{j_0,k} = \frac{1}{N} \sum_{i=1}^{N} \phi_{j_0,k}(X_i)$$

and K_{j_0} is the set of all k such that the intersection of the support of f and the support of $\phi_{j_0,k}$ is nonempty. Since the function ϕ has a compact support by assumption, it follows that the cardinality of the set K_{j_0} is $O(2^{j_0})$.

We now study the properties of the estimator \hat{f}_N as an estimator of the probability density function f.

3 Main Result

Let $p' \ge \max(2, p)$. We will now obtain bounds on $E_f ||\hat{f}_N - f||_{p'}^2$. Observe that

(3. 1)
$$E_f ||\hat{f}_N - f||_{p'}^2 \le 2(||f - P_{j_0}f||_{p'}^2 + E_f ||\hat{f}_N - P_{j_0}f||_{p'}^2).$$

We now estimate the terms on the right side of the above equation. Lemma 3.1 For any $f \in F_{s,p,q}, s \geq \frac{1}{p}$, there exists a constant C_1 such that

(3. 2)
$$||f - P_{j_0}f||_{p'}^2 \le C_1 2^{-2s'j_0}$$

where

(3. 3)
$$s' = s + \frac{1}{p'} - \frac{1}{p}$$

Proof: See Leblanc (1996), p.83.

We will now estimate the second term in the equation (3.1). Note that

$$E_{f} || \hat{f}_{N} - P_{j_{0}} f ||_{p'}^{2} = E_{f} || \sum_{k \in K_{j_{0}}} (\hat{\alpha}_{j_{0},k} - \alpha_{j_{0},k}) \phi_{j_{0},k} ||_{p'}^{2}$$

$$\leq C_{2} E_{f} \{ || \hat{\alpha}_{j_{0},.} - \alpha_{j_{0},.} ||_{\ell_{p'}(Z)}^{2} \} 2^{2j_{0}(\frac{1}{2} - \frac{1}{p'})}$$

for some constant $C_2 > 0$ by Lemma 1 in Leblanc (1996), p.82 (cf. Meyer (1990)). Here Z is the set of all integers $-\infty < k < \infty$ and the norm

$$||\lambda||_{\ell_p(Z)} = (\sum_{k \in Z} |\lambda_k|^p)^{1/p}.$$

Hence

(3. 4)
$$E_f ||\hat{f}_N - P_{j_0}f||_{p'}^2 \le C_2 2^{2j_0(\frac{1}{2} - \frac{1}{p'})} \{\sum_{k \in K_{j_0}} E_f |\hat{\alpha}_{j_0,k} - \alpha_{j_0,k}|^{p'}\}^{2/p'}.$$

Let

$$W_i = \eta(X_i) = \phi_{j_0,k}(X_i) - E_f(\phi_{j_0,k}(X_i)), 1 \le i \le N.$$

Then

$$\hat{\alpha}_{j_0,k} - \alpha_{j_0,k} = \frac{1}{N} \sum_{i=1}^{N} W_i$$

and

$$E_f |\hat{\alpha}_{j_0,k} - \alpha_{j_0,k}|^{p'} = N^{-p'} E_f |\sum_{i=1}^N W_i|^{p'}$$

Observe that the random variables $W_i, 1 \le i \le N$ are functions of associated random variables $X_i, 1 \le i \le N$. We will now estimate the term

$$E_f |\hat{\alpha}_{j_0,k} - \alpha_{j_0,k}|^{p'}$$

by applying Rosenthal type inequality for functions of associated random variables due to Shao and Yu (1996), p.210. Note that the sequence of random variables $\eta(X_i), 1 \leq i \leq N$ are identically distributed with mean zero. Further more the function $\eta(x)$ is differentiable with

(3. 5)

$$\sup_{-\infty < x < \infty} |\eta'(x)| = \sup_{-\infty < x < \infty} |\phi'_{j_0,k}(x)| \\
\leq 2^{3j_0/2} \sup_{-\infty < x < \infty} |\phi'(2^{j_0}x - k)| \\
\leq 2^{3j_0/2} \sup_{-\infty < x < \infty} |\phi'(x)| \\
\leq B_0 2^{3j_0/2}$$

for some constant $B_0 > 0$ since $\phi \in C^{r+1}$ for some $r \ge 1$. In addition, for any $d \ge 0$,

(3. 6)
$$E_{f}[|\eta(X_{1})|^{d}] \leq 2^{d}(E_{f}|\phi_{j_{0},k}(X_{1})|^{d} + B_{1}^{d})$$
$$\leq 2^{d}2^{j_{0}d/2}(E_{f}[|\phi(2^{j_{0}}X_{1} - k)|^{d}] + B_{1}^{d})$$
$$\leq 2^{d+1}2^{j_{0}d/2}B_{1}^{d}$$
$$= B_{2}2^{j_{0}d/2}$$

where B_1 is a bound on ϕ following the assumption that it has compact support and that $\phi \in C^{r+1}$ and B_2 is a positive constant independent of j_0 .

(A3) Suppose that $\max(2, p) \le p' < d < \infty$.

Applying Theorem 4.2 in Shao and Yu (1996), it follows that for any $\varepsilon > 0$, there exists a constant G_0 depending only on ε, d, p' and α such that

(3. 7)
$$E_{f} \sum_{i=1}^{N} W_{i} |^{p'} \leq D_{0} (N^{1+\varepsilon} E |\eta(X_{1})|^{p'} + (N \max_{1 \leq i \leq N} \sum_{\ell=1}^{N} |Cov(\eta(X_{i}), \eta(X_{\ell}))|)^{p'/2} + N^{(d(p'-1)-p'+\alpha(p'-d)/(d-2)\vee(1+\varepsilon)} \times ||\eta(X_{1})||_{d}^{d(p'-2)/(d-2)} (B_{0}^{2} 2^{3j_{0}} C)^{(d-p')/(d-2)})$$

where B_0 is as defined above. Note that the constants D_0 and B_0 are independent of $k \in K_{j_0}$ and j_0 . Applying Newman's inequality (Newman (1984)), we obtain that

(3. 8)
$$|Cov(\eta(X_i), \eta(X_\ell)| \leq \{ \sup_{-\infty < x < \infty} |\eta'(x)| \}^2 Cov(X_i, X_\ell)$$

$$\leq B_0^2 2^{3j_0}.$$

Combining the above estimates, we get that

$$(3. 9) E_{f} |\sum_{i=1}^{N} W_{i}|^{p'} \leq D_{0} (N^{1+\varepsilon} 2^{(j_{0}/2)p'} B_{2} + (N \max_{1 \leq i \leq N} \sum_{\ell=1}^{N} Cov(X_{i}, X_{\ell}) B_{0}^{2} 2^{3j_{0}})^{p'/2} + N^{(d(p'-1)-p'+\alpha(p'-d)/(d-2)\vee(1+\varepsilon)} \times (B_{0}^{1/d} 2^{j_{0}/2})^{d(p'-2)/(d-2)} (B_{0}^{2} 2^{3j_{0}} C)^{(d-p')/(d-2)}).$$

Since the above estimate holds for all $k \in K_{j_0}$ and the cardinality of K is $O(2^{j_0})$, it follows that

$$(3. 10) \quad E_{f} || \hat{f}_{N} - P_{j_{0}} f ||_{p'}^{2} \leq C_{2} 2^{2j_{0}(\frac{1}{2} - \frac{1}{p'})} 2^{j_{0}} \{ D_{0}(N^{1+\varepsilon} 2^{(j_{0}/2)p'} B_{2} + (N \max_{1 \leq i \leq N} \sum_{\ell=1}^{N} Cov(X_{i}, X_{\ell}) B_{0}^{2} 2^{3j_{0}})^{p'/2} + N^{(d(p'-1)-p'+\alpha(p'-d)/(d-2)\vee(1+\varepsilon)} \times (B_{0}^{1/d} 2^{j_{0}/2})^{d(p'-2)/(d-2)} (B_{0}^{2} 2^{3j_{0}} C)^{(d-p')/(d-2)}) \}^{2/p'}.$$

Hence there exists a constant $C_3 > 0$ such that

(3. 11)

$$E_{f} || \hat{f}_{N} - f ||_{p'}^{2} \leq C_{3} [2^{2j_{0}(\frac{3}{2} - \frac{1}{p'})} 2^{j_{0}} \{ D_{0}(N^{1 + \varepsilon} 2^{j_{0}/2p'} B_{2} + (N \max_{1 \leq i \leq N} \sum_{\ell=1}^{N} Cov(X_{i}, X_{\ell}) B_{0}^{2} 2^{3j_{0}})^{p'/2} + N^{(d(p'-1) - p' + \alpha(p'-d)/(d-2) \vee (1+\varepsilon)} \times (B_{0}^{1/d} 2^{j_{0}/2})^{d(p'-2)/(d-2)} (B_{0}^{2} 2^{3j_{0}} C)^{(d-p')/(d-2)}) \}^{2/p'} + 2^{-2s'j_{0}}]$$

and we have the following main result.

Theorem 3.2:Suppose the conditions (A1)-(A3) hold. Let $\max(2, p) \leq p' < d < \infty$. Define the wavelet linear estimator \hat{f}_N as defined by the relation (2.1). Then, for every $\varepsilon > 0$, there corresponds a constant C > 0 such that

(3. 12)
$$E_f ||\hat{f}_N - f||_{p'}^2 \leq C [2^{2j_0(\frac{3}{2} - \frac{1}{p'})} 2^{j_0} \{ (N^{1+\varepsilon} 2^{(j_0/2)p'} +$$

$$(N \max_{1 \le i \le N} \sum_{\ell=1}^{N} Cov(X_i, X_\ell) 2^{3j_0})^{p'/2} + N^{(d(p'-1)-p'+\alpha(p'-d)/(d-2)\vee(1+\varepsilon)} \times 2^{(j_0/2)d(p'-2)/(d-2)} 2^{3j_0(d-p')/(d-2)}) 2^{2/p'} + 2^{-2s'j_0}].$$

4 Remarks

Suppose $1 \le p' \le 2$. One can get similar bounds as in Theorem 3.2 for the expected loss

$$E_f ||\hat{f}_N - f||_{p'}^{p'}$$

observing that

(4. 1)
$$E_f ||\hat{f}_N - f||_{p'}^{p'} \le 2^{p'-1} (||f - P_{j_0}f||_{p'}^{p'} + E_f ||\hat{f}_N - P_{j_0}f||_{p'}^{p'}),$$

(4. 2)
$$||f - P_{j_0}f||_{p'}^{p'} \le C_4 2^{-p's'j_0},$$

and

(4. 3)
$$E_f ||\hat{f}_N - P_{j_0}f||_{p'}^{p'} \le C' 2^{2j_0(\frac{p'}{2} - 1)} \sum_{k \in K_{j_0}} E_f |\hat{\alpha}_{j_0,k} - \alpha_{j_0,k}|^{p'}$$

for some positive constants C_4 and C'. We will not discuss the details. **References**

- Bagai, I., and Prakasa Rao, B.L.S. (1991) Esimation of the survival function for stationary associated processes, *Statist. Probab. Lett.* 12, 385-391.
- Bagai, I., and Prakasa Rao, B.L.S. (1995) Kernel-type density and failure rate estimation for associated sequences, Ann. Inst. Statist. Math. 47, 253-266.
- Daubecheis, I. (1988) Orthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41, 909-996.
- Dewan, I., and Prakasa Rao, B.L.S. (1999) A general method of density estimation for associated random variables, *J. Nonparametric Statistics* **10**, 405-420.
- Leblanc, F. (1996) Wavelet linear densitry estimator for a discrete-time stochastic process: L_p -losses, *Statist. Probab. Lett.* **27**, 71-84.
- Meyer, Y. (1990) Ondolettes et Operateurs, Hermann, Paris.
- Triebel, H. (1992) Theory of Function Spaces II, Birkhauser Verlag, Berlin.

- Newman, C. Asymptotic independence and limit theorems for positively and negaively dependent random variables. In *Inequalities in Statistics and Probability*, Ed.Y.L.Tong, Institute of Mathematical Statistics, Hayward, CA, pp. 127-140.
- Prakasa Rao, B.L.S., and Dewan, I. (2001) Associated sequences and related inference problems, In *Handbook of Statistics, Vol.19*, Ed. D.N.Shanbhag and C.R.Rao, Elsevier Science B.V., Amsterdam, pp. 693-731.
- Roussas, G.G. (1991) Kernel estimates under association: strong uniform consistency, Statist. Probab. Lett. 12, 393-403.
- Shao, Q.M., and Yu.H. (1996) Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab 24, 2098-2127.