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Abstract
A binary operation * over real numbers is said to be associative if (x ∗ y) ∗ z = x ∗ (y ∗ z)

and it is said to be reducible if x ∗ y = x ∗ z or y ∗ w = z ∗ w if and only if z = y. The
operation * is said to have an identity element ẽ if x ∗ ẽ = x. Roy (2002) introduced a new
definition for bivariate lack of memory property and characterized the bivariate exponential
distribution introduced by Gumbel (1960) under the condition that the each of the conditional
distributions should have the univariate lack of memory property. We generalize this definition
and characterize different classes of bivariate probability distributions under binary associative
operations between random variables.

Keywords and phrases: Binary associative operation; Bivariate lack of memory property;
Bivariate exponential distribution; Bivariate Weibull distribution; Bivariate Pareto distribu-
tion; Multivariate exponential distribution; Characterization.

1 Introduction

Different types of bivariate exponential distributions have been investigated for stochastic mod-
elling purposes. Some of these distributions have been developed via characterizing properties
such as the lack of memory property (LMP ) of the exponential distribution. Marshall and
Olkin (1967) proposed a bivariate lack of memory property (BLMP ) and studied a class of bi-
variate as well as multivariate exponential distributions. Roy (2002) introduced a new definition
for bivariate lack of memory property (BLMP1) and characterized the bivariate exponential
distribution introduced by Gumbel (1960) under the condition that the each of the conditional
distributions should have the univariate lack of memory property. We generalize this definition
and characterize different classes of bivariate probability distributions under binary associative
operations between random variables. These include bivariate exponential, bivariate Weibull
and bivariate Pareto distributions.

2 Preliminaries

A binary operation * over real numbers is said to be associative if

(x ∗ y) ∗ z = x ∗ (y ∗ z) (2. 1)

for all real numbers x, y, z. The binary operation * is said to be reducible if x ∗ y = x ∗ z if and
only if y = z and if y ∗ w = z ∗ w if and only if y = z. It is known that the general reducible
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continuous solution of the functional equation (2.1) is

x ∗ y = g−1(g(x) + g(y)) (2. 2)

where g(.) is a continuous and strictly monotone function provided x, y, x ∗ y belong to a fixed
(possibly infinite) interval A (cf. Aczel (1966,1987)).The function g(.) in (2.2) is determined
up to a multiplicative constant, that is,

g−1
1 (g1(x) + g1(y)) = g−1

2 (g2(x) + g2(y))

for all x, y in a fixed interval A implies g2(x) = αg1(x) for all x in that interval for some α 6= 0.
We assume here after that the binary operation is reducible and associative with the function
g(.) continuous and strictly increasing. Further assume that there exists an identity element
ẽ ∈ R̄ such that

x ∗ ẽ = x, x ∈ A.

It is also known that every continuous, reducible and associative operation defined on an interval
A in the real line is commutative (cf. Aczel (1966), p.267). Let X be a random variable with
the distribution function F (x) having support A. Define

φ∗X(s) =
∫
A

exp{isg(x)} F (dx),−∞ < s <∞. (2. 3)

Note that the function φ∗X(s) is the characteristic function of the random variable g(X) and
hence determines the distribution function of the random variable g(X) uniquely.

Examples of such binary operations are given in Castagnoli (1974, 1978, 1982), Muliere
(1984) and Castagnoli and Muliere (1984, 1986, 1988). For instance (i) if A = (−∞,∞) and
x ∗ y = x+ y, then g(x) = x, (ii) if A = (0,∞) and x ∗ y = xy, x > 0, y > 0 then g(x) = log x,
(iii) if A = (0,∞) and x ∗ y = (xα + yα)1/α, x > 0, y > 0 for some α > 0, then g(x) = xα,

(iv) if A = (−1,∞) and x ∗ y = x + y + xy + 1, x > −1, y > −1, then g(x) = log(1 + x)
(v)if A = (0,∞) and x ∗ y = xy/(x + y), x > 0, then g(x) = 1/x and (vi)if A = (0,∞) and
x ∗ y = (x+ y)/(1 + xy), x > 0, y > 0, then g(x) = arth x.

A characterization of the multivariate normal distribution through a binary operation which
is associative is given in Prakasa Rao (1974) and in Prakasa Rao (1977) for Gaussian measures
on locally compact abelian groups. Some characterizations of probability distributions through
binary associative operations have been studied in Muliere and Prakasa Rao (2002) extending
earlier results in Prakasa Rao (1992, 1997).

Let X = (X1, X2) be a bivariate nonnegative random vector with the bivariate survival
function

S(x1, x2) = P (X1 > x1, X2 > x2), x1 ≥ 0, x2 ≥ 0 (2. 4)

satisfying the functional equation

S(x1 + t, x2 + t) = S(x1, x2) S(t, t), x1 ≥ 0, x2 ≥ 0, t ≥ 0. (2. 5)
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The above functional equation represents a particular type of bivariate lack of memory property
(BLMP ). Marshall and Olkin (1967) characterized the class of bivariate distributions with the
exponential marginal distributions satisfying the above functional equation. They have shown
that the unique solution of the above functional equation is the bivariate distribution with the
survival function given by

S(x1, x2) = exp{−λ1x1 − λ2x2 − λ12 max(x1, x2)}. (2. 6)

This bivariate distribution is a mixture of an absolutely continuous distribution and a
singular part that concentrates its mass on the line x1 = x2. This family of distributions have
been found useful for applications in reliability theory (cf. Basu and Block (1975); Galambos
and Kotz (1978)).

Muliere and Scarsini (1987) characterized a class of bivariate Marshall-Olkin type distribu-
tions that generalize the Marshall-Olkin bivariate exponential distribution through a functional
equation involving binary associative operations. These classes of bivariate distributions do
not necessarily have exponential distributions as their marginal distributions and their form
depends on the associative operation. They concentrate positive mass on the line x1 = x2 as
in the case of bivariate exponential distribution introduced by Marshall and Olkin (1967).

Let ∗ be a binary associative operation with an identity element ẽ. Suppose that the survival
function S(x1, x2) satisfies the functional equations

S(x1 ∗ t, x2 ∗ t) = S(x1, x2) S(t, t), (2. 7)

S1(x1 ∗ t) = S1(x1) S1(t), S1(x1) = S(x1, ẽ), (2. 8)

and
S2(x2 ∗ t) = S2(x2) S2(t), S2(x2) = S(ẽ, x2) (2. 9)

for all x1, x2, t > ẽ.

Muliere and Scarsini (1987) prove that the only continuous solution of the functional equa-
tions (2.7)-(2.9) is

S(x1, x2) = exp{−λ1g(x1)− λ2g(x2)− λ12 g(max(x1, x2))} (2. 10)

with λ1, λ2, λ12 > 0 wher g(.) is the function corresponding to the binary associative operation
*.

Different specializations of the binary associative operation * lead to different bivariate
survival functions.

Example 1: If x ∗ y = x+ y, then g(x) = x and

S(x1, x2) = exp{−λ1x1 − λ2x2 − λ12 max(x1, x2))}. (2. 11)

This is the Marshall-Olkin distribution.
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Example 2: If x ∗ y = xy, then g(x) = log x and

S(x1, x2) = x−λ1
1 x−λ2

2 (max(x1, x2))−λ12 . (2. 12)

This is the bivariate Pareto distribution over the set (1,∞)× (1,∞).
Example 3: If x ∗ y = (xα + yα)1/α, then g(x) = xα and

S(x1, x2) = exp{−λ1x
α
1 − λ2x

α
2 − λ12 max(xα1 , x

α
2 )}. (2. 13)

This is the bivariate Weibull distribution (cf. Marshall and Olkin (1967); Moeschberger (1974)).

Recently Roy (2002) introduced a new concept of bivariate lack of memory property.

Definition : Let S(x1, x2) be the bivariate survival function of a nonnegative bivariate random
vector (X1, X2). The survival function S(x1, x2) is said to possess bivariate lack of memory
property BLMP2 if and only if for all x1, x2, y1 and y2,

S(x1 + y1, x2) S(0, x2) = S(x1, x2) S(y1, x2) (2. 14)

and
S(x1, x2 + y2) S(x1, 0) = S(x1, x2) S(x1, y2). (2. 15)

It is easy to see that if a bivariate distribution has the BLMP2 property, then the marginals
posess univariate lack of memory property (LMP ). This can be seen by substituting x2 = 0
in (2.14) or x1 = 0 in (2.15).

Roy (2002) proved that a bivariate random vector X=(X1, X2) follows BLMP2 if and only if
X follows the bivariate exponential distribution introduced by Gumbel (1960) with the survival
function

S(x1, x2) = exp{−λ1x1 − λ2x2 − λ12 max(x1, x2)}. (2. 16)

It was shown further by Roy (2002) that the failure rates

ri(x1, x2) =
∂

∂xi
[− logS(x1, x2)], i = 1, 2 (2. 17)

are locally constant in the sense that r1(x1, x2) = r1(0, x2) for all x1 and x2 and similarly
r2(x1, x2) = r2(x1, 0) for all x1 and x2. Similarly the man residual lives

Mi(x1, x2) = E(Xi − xi|X1 ≥ x1, X2 ≥ x2), i = 1, 2 (2. 18)

are locally constant.

3 Main Results

Let X= (X1, X2) be a bivariate random vector with the survival function S(x1, x2). Let * be
a binary associative operation with the identity ẽ satisfying the equations

S(x1 ∗ y1, x2) S(ẽ, x2) = S(x1, x2) S(y1, x2) (3. 1)
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and
S(x1, x2 ∗ y2) S(x1, ẽ) = S(x1, x2) S(x1, y2). (3. 2)

Suppose that S(x1, x2) > 0 for all x1 ≥ ẽ and x2 ≥ ẽ. Let g(.) be a continuous strictly
increasing function associated with the binary associative operation as described earlier. It is
known that the function g(.) is unique up to a multiplicative constant. Note that g(ẽ) = 0.
Further more

x1 ∗ x2 = g−1(g(x1) + g(x2)). (3. 3)

Suppose that the function g(.) defined above is differentiable with the derivative g′(x) > 0
for all x ≥ ẽ. We now characterize the class of all bivariate distributions satisfying the functional
equations (3.1) and (3.2).

Observe that

M1(x1, x2) ≡
∫ ∞
ẽ

S(x1 ∗ t, x2)
S(x1, x2)

dt (3. 4)

=
∫ ∞
ẽ

S(t, x2)
S(ẽ, x2)

dt

from the equation (3.2) and the right side is a function of x2 alone. Let us denote it by K1(x2).
Hence

1
K1(x2)

=
1

M1(x1, x2)
=

S(x1, x2)∫∞
ẽ S(x1 ∗ t, x2) dt

(3. 5)

for all x1 ≥ ẽ and x2 ≥ ẽ. Let

A1(x1, x2) ≡
∫ ∞
ẽ

S(x1 ∗ t, x2) dt (3. 6)

=
∫ ∞
x1

S(u, x2)
g′(u)

g′(g−1(g(u)− g(x1)))
du.

Observe that
∂A1

∂x1
= −S(x1, x2)g′(x1)

g′(g−1(0))
(3. 7)

= −S(x1, x2)g′(x1)
g′(ẽ)

.

Combining relations (3.4) to (3.7), we get that

1
K1(x2)

=
S(x1, x2)
A1(x1, x2)

(3. 8)

= −
∂A1
∂x1

g′(ẽ)
g′(x1)

A1(x1, x2)
.

(3. 9)

Therefore

g′(x1)
g′(ẽ)

1
K1(x2)

= −
∂A1
∂x1

A1(x1, x2)
(3. 10)

= −∂ logA1

∂x1
.
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Solving this differential equation, we obtain that

g(x1)
g′(ẽ)

1
K1(x2)

= − logA1 +B1(x2) (3. 11)

for some function B1(.). Therefore

A1(x1, x2) = exp[−g(x1)
g′(ẽ)

1
K1(x2)

+B1(x2)] (3. 12)

which implies that

S(x1, x2) =
1

K1(x2)
exp[−g(x1)

g′(ẽ)
1

K1(x2)
+B1(x2)]. (3. 13)

Therefore
S(x1, x2) = L1(x2) exp[−g(x1)

g′(ẽ)
1

K1(x2)
] (3. 14)

for some functions K1(x2) and L1(x2). This relation was derived from (2.14).Similarly it follows
from (2.15)that

S(x1, x2) = L2(x1) exp[−g(x2)
g′(ẽ)

1
K2(x1)

] (3. 15)

for some functions K2(x1) and L2(x1). Hence

L1(x2) exp[−g(x1)
g′(ẽ)

1
K1(x2)

] = L2(x1) exp[−g(x2)
g′(ẽ)

1
K2(x1)

] (3. 16)

for all x1, x2. Let x2 = ẽ in the above identity. Then it follows that

L1(ẽ) exp[−g(x1)
g′(ẽ)

1
K1(e)

] = L2(x1) exp[− g(ẽ)
g′(ẽ)

1
K2(x1)

] (3. 17)

or equivalently

logL1(ẽ)− [
g(x1)
g′(ẽ)

1
K1(e)

] = logL2(x1) (3. 18)

for all x1 since g(ẽ) = 0. Therefore

L2(x1) = exp[α1 + β1g(x1)] (3. 19)

for all x1 for some constants α1 and β1 and hence

S(x1, x2) = exp[α1 + β1g(x1) + γ1g(x2)H2(x1)] (3. 20)

for some constants α1, β1, γ1 and some function H2 depending on x1 only. A similar analysis
starting with substituting x1 = ẽ in the identity (3.16) shows that

S(x1, x2) = exp[α2 + β2g(x2) + γ2g(x1)H1(x2)] (3. 21)

for some constants α2, β2, γ2 and some function H1 depending on x2 only.

6



Equating the relations (3.20) and (3.21), it follows that

α1 + β1g(x1) + γ1g(x2)H2(x1) = α2 + β2g(x2) + γ2g(x1)H1(x2) (3. 22)

for all x1 and x2. Let x1 = x2 = ẽ. in the equation (3.22). Then it follows that α1 = α2 since
g(ẽ) = 0. Hence

β1g(x1) + γ1g(x2)H2(x1) = β2g(x2) + γ2g(x1)H1(x2) (3. 23)

for all x1 and x2. Fix a value of x2 = x20 such that g(x20) 6= 0. Then it follows that

β1g(x1) + γ1g(x20)H2(x1) = β2g(x20) + γ2g(x1)H1(x20) (3. 24)

= c1 + c2g(x1)

for some constants c1 and c2. Therefore

H2(x1) =
c1 + c2g(x1)− β1g(x1)

γ1g(x20)
(3. 25)

= c3 + c4g(x1)

when γ1 6= 0 for some constants c3 and c4. In particular, we have

S(x1, x2) = exp[α1 + β1g(x1) + γ1g(x2)(c3 + c4g(x1))] (3. 26)

= exp[α1 + β1g(x1) + β2g(x2) + β3g(x1)g(x2)]

It is clear that the above representation holds even if γ1 = 0 from the equation (3.20). Let
x1 = x2 = ẽ in the equation (3.26). Then it follows that α1 = 0 since g(ẽ) = 0 and S(ẽ, ẽ) = 1.
Suppose that S(x1, ẽ) < 1 and S(ẽ, x2) < 1 for all x1 > ẽ or x2 > ẽ. Then it follows that
β1 < 0, β2 < 0 and 0 ≤ −β3 ≤ β1β2. Hence we have the foloowing theorem.
Theorem 2.1: Suppose a bivariate random vector X has the BLMP2 property under a binary
associative operation * with an identity ẽ, that is, its survival function S(x1, x2) satisfies the
conditions

S(x1 ∗ y1, x2) S(ẽ, x2) = S(x1, x2) S(y1, x2) (3. 27)

and
S(x1, x2 ∗ y2) S(x1, ẽ) = S(x1, x2) S(x1, y2). (3. 28)

for all x1 ≥ ẽ and x2 ≥ ẽ. Further suppose that S(x1, ẽ) < 1 and S(ẽ, x2) < 1 for all x1 > ẽ or
x2 > ẽ. Then there exists constants λ1 > 0, λ2 > 0, 0 ≤ λ3 ≤ λ1λ2 such that

S(x1, x2) = exp[−λ1g(x1)− λ2g(x2)− λ3g(x1)g(x2)] (3. 29)

for all x1 ≥ ẽ and x2 ≥ ẽ where g(.) is the function corresponding to the binary associate
operation *.
Remark 1: By choosing the binary associate operation * as the addition operation on the
set of real numbers with the identitity ẽ = 0, we obtain that g(x) = x and hence derive the
characterization of the bivariate exponential distribution given in Theorem 3.1 of Roy (2002)
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as a corollory to Theorem 2.1 given above. As pointed out by Roy (2002), the characterization
results obtained in Johnson and Kotz (1975), Zahedi (1985) and Roy and Gupta ( 1996) also
follow as special cases of our results.
Remark 2: A multivariate extension of Theorem 2.1 can be obtained by mathematical
induction. The multivariate version of BLMP2 property under the binary associative op-
eration * with an identity ẽ can be defined as follows. A k-dimensional random vector
X = (X1, . . . ,Xi, . . . ,Xk) is said to have the MLMP2 property under a binary associative
operation * with an identity ẽ if its survival function S(x1, x2, . . . , xk) satisfies the conditions

S(x1, . . . , xi−1, xi ∗ yi, xi+1, . . . , xk)S(x1, . . . , xi−1, 0, xi+1, . . . , xk)

= S(x1, . . . , xi, . . . , xk)S(x1, . . . , xi−1, yi, xi+1, . . . , xk)

for all xi ≥ ẽ, i = 1, 2, . . . , k. Further suppose that

S(ẽ, . . . , ẽ, xi, ẽ, . . . , ẽ) < 1, i = 1, 2, . . . , k.

Then it can be shown that the class of all such multivariate distributions are those with the
survival functions of the form

S(x1, . . . , xi, . . . , xk) = exp[−Σλixi − ΣΣλijxixj − . . .− λ12...kx1x2 . . . xk]. (3. 30)
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