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1 Introduction

Let F be any distribution function on [0,∞). Let {Zn : n ≥ 0} be a sequence of independent
and identically distributed (i.i.d.) observations from F . We say Zj is a lower record value if

Zj ≤ min{Z1, Z2, . . . , Zj−1}.

By convention, Z0 is a record. (The upper records may be defined likewise by reversing the
inequality above). We note here that this definition is slightly different from the usual definition
where the above is a strict inequality. However, when F is continuous, the two definitions are
equivalent. Further, if F is continuous on (0,∞) and F (0) > 0, our lower records will be strictly
decreasing, until it hits 0. Thereafter, with our definition, all subsequent records will assume
value 0. While with the usual definition, there can be no new record. Since we are interested
in the infinite sum of records, both the concepts yield same results.

Define L0 := 1 and for n ≥ 1,

Ln := min{j > Ln−1 : Zj ≤ ZLn−1}.

Define, Xn = ZLn . Thus, {Xn : n ≥ 0} is the sequence of lower records of i.i.d. observations
from the distribution F . Note that P(x, du) = 1{u≤x}F (du)/F (x) defines a transition function.
It may be observed that {Xn : n ≥ 0} is a Markov process with this transition function and
the initial distribution F .

The interest in asymptotic behaviour of record statistics can be traced back to Gnedenko [5].
Later a thorough investigation was made by Resnick [8] who derived the class of all possible
limit distributions of the nth upper record statistic as n→∞. His work has been followed by
many others. In a recent work, Arnold and Villaseñor [1] derived some asymptotic properties
of partial sums of the first n upper records. Bose et. al. [2] in a subsequent article also dealt
with sums of upper records and settled some of the questions raised in Arnold and Villaseñor
(1999). In this paper we study the properties of sums of lower records.

In Section 2, F is assumed to be continuous on (0,∞). In this case we obtain a necessary and
sufficient condition for almost sure convergence of the sum of the records. The limit turns out
to be infinitely divisible. We obtain an explicit relation between the Levy measure of the limit
and the parent distribution F . This has several interesting consequences. First, we can show
how specific classes of infinitely divisible distributions such as the self decomposable class, the
class of generalised gamma convolutions etc arise from different classes of F . Further, any
infinitely divisible distribution on [0,∞), under a mild restriction, arises as a limit of the sums
of lower records from a suitable F . It thus gives a method of simulating observations from a
given i.d. distribution which is known only through its Levy measure. We are also able to
derive conditions on F which guarantee absolutely continuity of the limit with respect to the
Lebesgue measure.

In Section 3, the underlying distribution F is assumed to be discrete with support in N0 and
results similar to those in Section 2 are derived.
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2 The continuous case

In this section we assume that F is continuous on (0,∞). Note that 0 is the only possible point
of discontinuity of F . The main results are Theorem 1 and Theorem 2 in Section 2.1. They
provide necessary and sufficient conditions for the finiteness of

∑∞
n=0Xn and establishes the

Laplace transform of the limit. Further properties of the limit, including its connection to the
class of i.d. distributions are given in Section 2.2.

2.1 Convergence Results

Obviously, Xn decreases as n increases, so has a limit, almost surely, which can be easily shown
to be degenerate at the infimum of the support of F . This is stated in the following Proposition.
Its proof is a rather simple consequence of the Borel-Cantelli lemma.

Proposition 2.1 Let c0 = inf{u : u ∈ supp(F )}. Then as n→∞, Xn ↓ c0 almost surely.

We are interested in the convergence of infinite sum of the sequence of records {Xn : n ≥ 0}.
Therefore, we shall require in the sequel that c0 = 0. Define Tn =

∑n
k=0Xk. Since Xn ≥ 0, for

all n ≥ 0, Tn is non-decreasing as n increases.

We now derive a necessary and sufficient condition for Tn → T such that T < ∞ almost
surely. If F (0) > 0, define N := min{n ≥ 0 : Xn = 0}. Then, N will be dominated by a
geometric random variable with probability of success being F (0). Thus, N is finite almost
surely. Therefore, the infinite sum becomes a finite sum and hence Tn → T where T < ∞
almost surely. Therefore, the more interesting case is when F (0) = 0 but F (x) > 0 for all
x > 0. Henceforth, we assume this.

First, we note that since Tn is non-decreasing in n, it must have a limit, albeit∞. Therefore,
Tn → T almost surely where T may take value +∞ with positive probability. If we show that
Tn ⇒ VF where VF <∞ almost surely, we will have that T d= VF and therefore T <∞ almost
surely.

For fixed t > 0, let us define for x > 0,

ψ
(n)
t (x) = E(exp(−tTn) | X0 ≤ x) = E(exp(−t

n∑
k=0

Xk) | X0 ≤ x).
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We first show that ψ(n)
t (x) is decreasing in x for x > 0 for fixed n ≥ 0. First, note that for

x1 > x2 > 0, we have,

F (x1)F (x2)
[
ψ

(0)
t (x1)− ψ(0)

t (x2)
]

=
[
F (x2)

∫ x1

0
exp(−tu)F (du)− F (x1)

∫ x2

0
exp(−tu)F (du)

]
=

[
F (x2)

∫ x1

x2

exp(−tu)F (du)− (F (x1)− F (x2))
∫ x2

0
exp(−tu)F (du)

]
≤

[
F (x2) exp(−tx2)

∫ x1

x2

F (du)− (F (x1)− F (x2)) exp(−tx2)
∫ x2

0
F (du)

]
≤ 0.

Thus, ψ(0)
t is decreasing. To apply induction, assume that ψ(n)

t is decreasing. Then, we have
for x1 > x2 > 0,

F (x1)F (x2)
[
ψ

(n+1)
t (x1)− ψ(n+1)

t (x2)
]

=
[
F (x2)

∫ x1

0
exp(−tu)ψ(n)

t (u)F (du)− F (x1)
∫ x2

0
exp(−tu)ψ(n)

t (u)F (du)
]

=
[
F (x2)

∫ x1

x2

exp(−tu)ψ(n)
t (u)F (du)

−(F (x1)− F (x2))
∫ x2

0
exp(−tu)ψ(n)

t (u)F (du)
]

≤
[
F (x2) exp(−tx2)ψ(n)

t (x2)
∫ x1

x2

F (du)

−(F (x1)− F (x2)) exp(−tx2)ψ(n)
t (x2)

∫ x2

0
F (du)

]
≤ 0.

Hence, ψ(n)
t is a decreasing function of x for each n.

Since Xn ≥ 0, we have that for every fixed x, ψ(n)
t (x) is decreasing in n. Hence, for fixed

x > 0,

ψt(x) = lim
n→∞

ψ
(n)
t (x)

exists and lies between 0 and 1. Further, since each ψ
(n)
t is decreasing in x, ψt(x) is also a

decreasing function of x. Define

ψt(∞) = lim
x↑∞

ψt(x).

Next, we claim that
lim
n→∞

E(exp(−tTn)) = ψt(∞).
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To prove this, fix any ε > 0 and choose y so large that F (y) > 1− ε and |ψt(∞)− ψt(y)| < ε.
Then, we have,

|E(exp(−tTn))− ψt(∞)|

≤ |E(exp(−tTn)1{X0≤y})− ψt(y)|+ P(X0 > y) + |ψt(∞)− ψt(y)|

≤ F (y)|ψ(n)
t (y)− ψt(y)|+ ψt(y)|1− F (y)|+ 2ε.

Now, for this fixed y, we choose N so large that |ψ(n)
t (y)−ψt(y)| ≤ ε for all n ≥ N . Therefore,

for all n ≥ N , we have, |E(exp(−tTn))− ψt(∞)| ≤ 4ε, proving the claim.

Now, conditioning on X0,

ψ
(n)
t (x) =

∫ x

0
E

(
exp(−t

n∑
j=0

Xj) | X0 = u
)
F (du)/F (x)

=
∫ x

0
E

(
exp(−tu− t

n∑
j=1

Xj) | X1 ≤ u
)
F (du)/F (x)

=
∫ x

0
exp(−tu)ψ(n−1)

t (u)F (du)/F (x). (1)

Letting n→∞ and applying dominated convergence theorem on the right side, we see that ψt
satisfies the integral equation,

F (x)ξ(x) =
∫ x

0
exp(−tu)ξ(u)F (du). (2)

Since F is continuous on (0,∞) and ψt is bounded, from the above equation it easily follows
that ψt is continuous on (0,∞). Further, by setting

ψt(0) := lim
x↓0

ψt(x),

we see that ψt is a continuous function on [0,∞) taking values in [0, 1]. Henceforth, when we
talk about solutions to this and similar integral equations, we shall always restrict to bounded
continuous solutions.

Now, we are in a position to establish the following result.

Theorem 1 Suppose that F (0) = 0, F (x) > 0 for x > 0 and F is continuous on (0,∞) and∫ 1

0

uF (du)
F (u)

<∞. (3)

Then

ψt(x) = exp
(∫ x

0

(
exp(−tu)− 1

)
F (du)

F (u)

)
.

Further, Tn ⇒ VF where VF is a non-negative random variable whose Laplace transform for all
t > 0 is given by

φF (−t) = E(exp(−tVF )) = exp
(∫ ∞

0

(
exp(−tu)− 1

)
F (du)

F (u)

)
(4)
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Proof: To prove the result, it suffices to show that:

(i) ψt(∞) is given by the above equation (4),

(ii) as a function of t > 0, ψt(∞) is the Laplace transform of a non-negative random variable
whose distribution is proper; that is, without mass at infinity.

We first assume (i) and show (ii). By Bondesson [3], page 8 for instance, it suffices to show
that:

(a) ψt(∞) is completely monotone, that is, (−1)n dn

dtnψt(∞) ≥ 0 for n ≥ 1,

(b) limt→0 ψt(∞) = 1.

To show (a), differentiating under the integral, we have

d

dt
ψt(∞) = −ψt(∞)

∫ ∞
0

exp(−tu)uF (du)
F (u)

.

Note that this is permissible when the integral
∫∞

0 F (du) exp(−tu)u/F (u) <∞. Since, exp(−tu)u→
0 as u→∞, we can say that exp(−tu)u ≤ C1 min(u, 1) for some C1 > 0. Thus, using condition
(3), we have

∫∞
0 F (du) exp(−tu)u/F (u) <∞.

Now, consider the function s(t) =
∫∞

0 exp(−tu)uF (du)/F (u). It is easy to see that the
function s(t) is infinitely differentiable using similar arguments. Further, we have for all n ≥ 0

(−1)n
dn

dtn
s(t) =

∫ ∞
0

exp(−tu)un+1F (du)
F (u)

≥ 0.

Now assume that (−1)k d
k

dtk
ψt(∞) ≥ 0 for all k = 1, 2, . . . , n. Therefore,

(−1)n+1 d
n+1

dtn+1
ψt(∞)

= (−1)n
dn

dtn
ψt(∞)s(t)

= (−1)n
n∑
k=0

(
n

k

)
dk

dtk
ψt(∞)

dn−k

dtn−k
s(t)

=
n∑
k=0

(
n

k

)
(−1)k

dk

dtk
ψt(∞)(−1)n−k

dn−k

dtn−k
s(t)

≥ 0.

We now show (b). Clearly, as t→ 0, we have (1− exp(−tu))/F (u)→ 0. For t < 1, we have
1− exp(−tu) ≤ min(1, u). From the condition (3), we get that

∫∞
0 min(1, u)F (du)/F (u) <∞.

Therefore, by dominated convergence theorem, we obtain ψt(∞)→ 1 as t→ 0.

Finally we show (i). Define, for all x ≥ 0,

g(x) := exp
(
−
∫ x

0

(
1− exp(−tu)

)
F (du)

F (u)

)
.

Note that to show (i), it is enough to show that ψt = g. Towards this end, we show that:
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(A) all solutions of (2) which are continuous on [0,∞) and assume values in [0, 1], are multiples
of g,

(B) ψt is the largest among all such solutions.

It is easier to establish (B). If η is any such solution of (2) then we have

ψ
(0)
t (x) =

1
F (x)

∫ x

0
exp(−tu)F (du)

≥ 1
F (x)

∫ x

0
exp(−tu)η(u)F (du)

= η(x).

Using equation (1) and repeating the above arguments, it follows that ψ(n)
t ≥ η for every n ≥ 0.

Thus, ψt ≥ η.

We now establish (A). By using (3) it is easy to see that the non-negative expression g

is continuous, decreasing in x and takes values in [0, 1]. Note that g(du) = −F (du)g(u)(1 −
exp(−tu))/F (u). Now, using the integration by parts formula, we have

1
F (x)

∫ x

0
exp(−tu)g(u)F (du)

=
1

F (x)

[∫ x

0
F (u)

(
exp(−tu)− 1

)
g(u)F (du)

F (u)
+
∫ x

0
g(u)F (du)

]
=

1
F (x)

[∫ x

0
F (u)g(du) +

∫ x

0
g(u)F (du)

]
=

1
F (x)

(g(x)F (x)− g(0)F (0))

= g(x)

since F (0) = 0. Thus g is a solution of the equation (2).

Now, we prove that all bounded continuous solutions of (2) are given by constant multiples
of g. Indeed, it is easy to see that all constant multiples of g are solutions of (2). Conversely,
suppose that η is a solution of (2). First assume that η(0) = 0. Now fix any 0 < ε < 1.
Using the continuity of η at 0, choose δ > 0 such that |η(x)| < ε||η|| for all 0 ≤ x ≤ δ where
||η|| = sup{|η(x)| : x ∈ [0,∞)}. Now, we have for any x > δ,

|η(x)|

=
1

F (x)
|
∫ x

0
exp(−tu)(η(u))F (du)|

≤ 1
F (x)

∫ x

0
exp(−tu)|η(u)|F (du)

=
1

F (x)

[∫ δ

0
exp(−tu)|η(u)|F (du) +

∫ x

δ
exp(−tu)|η(u)|F (du)

]
≤ 1

F (x)
[
ε||η||F (δ) + exp(−tδ)||η||(F (x)− F (δ))

]
≤ max(ε, exp(−tδ))||η||.
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Thus, we have,
||η|| = sup{|η(x)| : x ∈ [0,∞)} ≤ max(ε, exp(−tδ))||η||.

Since max(ε, exp(−tδ)) < 1, this yields that ||η|| = 0.

Now, assume that η is a solution with η(0) 6= 0, then η− η(0)g is also a solution of (2) and
(η − η(0)g)(0) = 0. Therefore, we must have from the previous argument, η − η(0)g ≡ 0. In
other words, η = η(0)g. This establishes the result completely.

Remark: So far we have assumed that F (0) = 0. Suppose now that F (0) > 0. We have
already remarked that T <∞ almost surely in this case. Also, note that condition (3) is also
satisfied. Denoting, the conditional Laplace transformation of T given that X0 ≤ x by ψt(x),
we note that ψt(0) = 1 and for any x > 0,

ψt(x) =
1

F (x)

[∫
(0,x]

exp(−tu)ψt(u)F (du) + F (0)ψt(0)
]
.

Following the same method, we can also solve this integral equation to show that

ψt(x) = exp
(
−
∫

(0,x]

(
1− exp(−tu)

)
F (du)

F (u)

)
= exp

(
−
∫ x

0

(
1− exp(−tu)

)
F (du)

F (u)

)
.

Remark: Let ξ(t) = E(exp(itT )) be the characteristic function of T . It is easy now to prove
that if (3) holds, then

ξ(t) = exp
(∫ ∞

0

(
exp(itu)− 1

)
F (du)

F (u)

)
. (5)

Now, we prove the “converse” of Theorem 1.

Theorem 2 Suppose that F (0) = 0, F (x) > 0 for x > 0 and F is continuous on (0,∞) and∫ 1

0

uF (du)
F (u)

=∞. (6)

Then
Tn →∞ as n→∞ almost surely.

Proof: As discussed earlier, it is enough to show that Tn ⇒ ∞. For this it is enough to
show that the only bounded continuous solution of the integral equation (2) is zero. We follow
arguments similar to that in the previous Theorem and use similar integral equations.

Let η be any bounded solution of (2). Now, fix δ > 0 and choose 0 < x0 < δ. Consider the
integral equation: for x > x0,

ξ(x) =
1

F (x)

[∫ x

x0

exp(−tu)ξ(u)F (du) + F (x0)ξ(x0)
]

(7)

with the boundary condition ξ(x0) = η(x0). Clearly, η restricted to [x0,∞) is a solution of (7).

The uniqueness argument in the previous theorem can be easily modified to prove that (7)
has a unique solution.
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Now consider the continuous function gx0 : [x0,∞)→ [0, 1]

gx0(x) := η(x0) exp
(
−
∫ x

x0

(1− exp(−tu))F (du)
F (u)

)
.

It is easy, following arguments given before, to verify that gx0 satisfies (7). Therefore, we have
η(x) = gx0(x) for all x > x0. Thus, we have,

η(δ) = η(x0) exp
(
−
∫ δ

x0

(1− exp(−tu))F (du)
F (u)

)
.

This is true for every 0 < x0 < δ. Now, let x0 → 0. Then by condition (6),
∫ δ
x0

(1−exp(−tu))F (du)
F (u) →

∞ while η(x0) remains bounded. Hence the right side of the above equation tends to zero. This
implies that η(δ) = 0. But δ was arbitrary. Hence η ≡ 0, proving the theorem.

The condition (3) is quite easy to verify for a large class of distributions. Here, we consider
a class of examples where the distribution function at u shows a decay as a power of u.

Example 1 If F admits a density f in a neighbourhood of the origin such that for u > 0,
C2u

γ−1 ≤ f(u) ≤ C3u
γ−1 where 0 < C2 ≤ C3 <∞ and γ > 0, then T <∞.

Proof: Clearly F (u) =
∫ u

0 f(x)dx ≥ C2u
γ/γ for 0 ≤ u ≤ δ for some δ > 0. Thus, for any

β > 0, we have ∫ 1

0

uF (du)
F (u)

=
∫ δ

0

uf(u)du
F (u)

+
∫ 1

δ

uF (du)
F (u)

≤
∫ δ

0

C3γuu
γ−1du

C2uγ
+

1
F (δ)

∫ 1

δ
F (du)

= C3γ/C2

∫ δ

0
du+

F (1)− F (δ)
F (δ)

= (C3γ/C2)δ +
F (1)− F (δ)

F (δ)
<∞

This proves the result.

In the next example, we consider where the decay of the distribution function near 0 is
faster than any polynomial.

Example 2 Suppose that F (x) = exp(−C4x
−γ) for x > 0 with F (0) = 0 where C4 and γ > 0.

Then T <∞ if and only if γ < 1.

Proof: Clearly f(u) = C4γ exp(−C4u
−γ)u−γ−1 for u > 0. Therefore, we have,∫ 1

0

uf(u)du
F (u)

= C4γ

∫ 1

0
u(1−γ)−1du.

Clearly, the above integral is finite if and only if (1−γ) > 0, i.e., γ < 1. This proves the result.
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Remark : Monotone transforms will preserve the records. In other words, if h is a continuous,
strictly increasing function on [0,∞) with h(0) = 0, then the sequence {h(Xn) : n ≥ 0} will
represent the sequence of records from the distribution F ◦ h−1. Using this identification, we
may obtain that,

∑∞
n=0 h(Xn) <∞ almost surely if and only if∫ 1

0

h(u)F (du)
F (u)

<∞.

2.2 Properties of the infinite sum

In this subsection, we will consider the properties of the distribution of T . So, we will assume
throughout the section that the convergence criteria is satisfied, i.e.,

∫ 1
0 uF (du)/F (u) < ∞.

From (2.3.1) of Bondesson [3], a random variable taking values in R+, is infinitely divisible
(i.d.) if and only if the Laplace transform can be expressed as

m(−t) = exp
(
−at+

∫
(0,∞)

(exp(−tu)− 1)L(du)
)

where t > 0, a ≥ 0 and L, the Levy measure, is non-negative and satisfies∫
(0,∞)

min(1, u)L(du) <∞.

Setting a = 0 and L(du) = F (du)/F (u) = logF (du), we can write the Laplace transform of T
in (4), in the above form. Thus, we have the following result.

Proposition 2.2 The distribution of T is infinitely divisible.

One question that arises now is the following: what is the class of infinitely divisible distri-
butions which arise in this way? To answer this question, we observe first that for any x > 0,
the function hL : (0,∞)→ R+ defined by

hL(x) = L([x,∞)) =
∫ ∞
x

F (du)/F (u) = − logF (x) (8)

is a continuous function in x.

Now, suppose that a given infinitely divisible distribution has L as its Levy measure. Then
it satisfies the condition that

∫
(0,∞) min(1, u)L(du) < ∞. This implies that L([x,∞)) < ∞

for any x > 0. Further suppose that L satisfies the property that hL(x) = L([x,∞)) is
continuous in x. Given any such L, define F : [0,∞) → [0, 1] by the above relation (8), i.e.,
F (0) = exp(−L((0,∞))) and for any x > 0

F (x) = exp(−hL(x)) = exp(−L([x,∞))). (9)

Define, F (x) = 0 for all x < 0.

Clearly, F is a non-decreasing function. Since hL is continuous on (0,∞), so is F on (0,∞).
Further, limx→∞ F (x) = limx→∞ exp(−hL(x)) = 1. Also, note that F is right-continuous at
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0 since limx↓0 L([x,∞)) = L((0,∞)). The only possible point of discontinuity of F is at 0.
Clearly if the mass of L is infinite, i.e., L((0,∞)) = ∞, F (0) = 0, hence F is continuous.
However, if L((0,∞)) <∞, we have that F (0) > 0 and hence F admits a point of discontinuity
at 0.

Now, suppose that we have a sequence of records {Xn : n ≥ 0} from the distribution F .
First, we note that from (9), L(du) = F (du)/F (u) on the set {u > 0}. Thus,∫ 1

0

uF (du)
F (u)

=
∫

(0,1)
u logF (du)

≤
∫

(0,1]
u logF (du) +

∫ ∞
1

logF (du)

=
∫

(0,∞)
min(1, u) logF (du)

=
∫

(0,∞)
min(1, u)L(du)

< ∞.

Thus,
∑∞

n=0Xn <∞ almost surely. Further, it is obvious from above that the Laplace trans-
form of

∑∞
n=0Xn and the given infinitely divisible random variable match. Thus, we have

proved the following characterization theorem.

Theorem 3 If K is an infinitely divisible random variable on [0,∞) such that its Levy measure
L has the property that hL(x) = L([x,∞)) is a continuous function of x on (0,∞). Then, there
exists a distribution F with 0 as its only possible point of discontinuity such that

∞∑
n=0

Xn
d= K (10)

where Xn is the (n+1)-th record from the distribution F . Moreover, F is given by the equation
(9).

Remark : Equation (10) provides a way of simulating an infinite divisible random variables
K with a given Levy measure L. Simply define F as in (9) and approximate K by

∑N
n=0Xn

where {Xn : n ≥ 0} are the lower records from F and N is a sufficiently large integer. If
the Levy measure has finite mass, we can obtain the exact distribution by choosing N as a
random integer with N = min{n ≥ 0 : Xn = 0}. In the case when L has infinite mass it will
be interesting to study the rate of convergence of the sum

∑N
n=0Xn to

∑∞
n=0Xn as N →∞.

Observe that if F has density f , then the Levy density of T is given by f(y)/F (y). A
natural question is under what conditions on F will the distribution of T belong to specified
subclasses of the class of infinitely divisible laws. For a comprehensive description of interesting
subclasses of i.d. laws, see Bondesson ([3]). We give below three such classes:

The class L: This is the class of self decomposable laws, or the so called class L. It consists of
distributions of those random variables X for which for every c ∈ (0, 1], there exists a random
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variable εc independent of X such that X d= cX + εc. The proof of the following Proposition is
straightforward from Bondesson ([3], page 18) and is omitted.

Proposition 2.3 If F admits a density f such that
∫ 1

0 (uf(u)/F (u))du <∞ and uf(u)/F (u)
is decreasing in u, then T is self-decomposable. Conversely, for any self-decomposable random
variable T , there exists a density f with

∫ 1
0 (uf(u)/F (u)du <∞ and uf(u)/F (u) is decreasing

in u such that
∑∞

n=0Xn
d= T where {Xn : n ≥ 0} is the sequence of lower records from the

distribution with density f .

The subclass T2: This class consists of generalized mixtures of exponentials, arising as weak
limits of mixtures of exponentials and is characterized by complete monotonicity of the Levy
density (see Bondesson [3], page 138). Using this and noting that − log(F (·)) is completely
monotone if and only if f(y)/F (y) is, we derive the following proposition.

Proposition 2.4 The random variable T belongs to T2 if and only if − log(F (·)) is completely
monotone.

As a specific case, note that the Levy density l(y) = βy−1 exp(−ty)1{y>0} characterizes the
Gamma distribution G(β, t) where β, t > 0. This will arise as the distribution of T if

F (x) = exp
(
−β
∫ ∞
x

y−1 exp(−ty)dy
)
.

The class T : This is a subclass of both L and T2 and consists of generalized gamma convolutions
defined as weak limits of finite convolutions of Gamma distributions. By Theorem 3.1.1 of [3],
a distribution G which gives full mass to the set of nonnegative real numbers, belongs to the
class T if and only if its Levy density l(·) satisfies

yl(y) =
∫ ∞

0
exp(−yt)U(dt)

for all y > 0, and for some measure U on (0,∞) with
∫ 1

0 | log t|U(dt) <∞ and
∫∞

1 t−1U(dt) <
∞. Equivalently, if yl(y) is completely monotone on (0,∞). Thus, we have the following result.

Proposition 2.5 Suppose that F is a distribution so that
∫ 1

0 uf(u)/F (u)du <∞ and uf(u)/F (u)
is completely monotone. Then, the random variable T belongs to T . Conversely, if T is a ran-
dom variable in T , there exists F such that T =

∑∞
n=0Xn where {Xn : n ≥ 0} is the sequence

of lower records from F . Further, F admits a density which satisfies the above conditions.

The proof of the above proposition is straight forward, by noting that l(y) is completely
monotone if yl(y) is completely monotone. As example of the above, the positive stable distribu-
tions have l(y) ∝ y−α−1 for y > 0 where 0 < α < 1. These arise from F (x) = exp(−cx−α), x >
0.

When does the distribution of T admit a density? Using the infinite divisibility, we may
obtain answers to this question.

11



Proposition 2.6 Suppose that F (0) = 0, F admits a density f on the whole of (0,∞) such
that

∫ 1
0 x logF (dx) <∞ and

∫∞
0 xF (dx) <∞. Then T is absolutely continuous with respect to

the Lebesgue measure.

Proof: Hudson and Tucker [6] obtained sufficient conditions for an infinitely divisible distribu-
tion to be equivalent to the Lebesgue measure. Using Theorem 1 of Hudson and Tucker [6], it is
enough to verify that the Levy measure is absolutely continuous with respect to the Lebesgue
measure, has infinite mass and finite first moment.

In our case, we have the Levy measure as f(x)/F (x)1{x>0}dx and satisfies the properties
of absolute continuity and the infinite mass (see the discussion before Theorem 3). It is clear
that ∫ ∞

0

xf(x)
F (x)

dx ≤
∫ 1

0

xf(x)
F (x)

dx+
∫ ∞

1

xf(x)
F (x)

dx

≤
∫ 1

0

xf(x)
F (x)

dx+
1

F (1)

∫ ∞
1

xf(x)dx

< ∞.

This proves the result.

From our discussion so far about the behaviour of T , it is clear that the behaviour of F
near the origin plays a crucial role. Therefore, one might expect that if F admits a density only
near the origin, T might still admit a density. We give a partial answer to the above question
using sufficient conditions available in terms of the characteristic function.

Proposition 2.7 Suppose that F admits a density f in a neighbourhood of the origin such
that for some γ > 0, we have

lim inf
u→0

f(u)
uγ−1

= C5 and lim sup
u→0

f(u)
uγ−1

= C7

and 2C5γ > C7. Then T admits a density.

Proof: Fix an ε ∈ (0, C5) such that c(ε) := (C5 − ε)γ/(C6 + ε) > 1/2 and choose δ > 0 so that
(C5 − ε)xγ−1 ≤ f(x) ≤ (C6 + ε)xγ−1 for all x ≤ δ. Then, we have, for all x ≤ δ,

F (x) ≤ (C6 + ε)xγ/γ.

Let ξ(t) = E(exp(itT )) be the characteristic function of T . Hence, for any t ∈ R, we have

| ξ(t) | = | exp
(∫ ∞

0

(cos(tu)− 1)
F (u)

F (du) + i

∫ ∞
0

sin(tu)
F (u)

F (du)
)
|

= exp
(
−
∫ ∞

0

(1− cos(tu))
F (u)

F (du)
)

≤ exp
(
−
∫ δ

0

(1− cos(tu))
F (u)

F (du)
)
.
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Now we have, for any t > 0,∫ δ

0

(1− cos(tu))
F (u)

F (du) ≥
∫ δ

0

(1− cos(tu))(C5 − ε)uγ−1γ

(C6 + ε)uγ
du

= c(ε)
∫ δ

0

(1− cos(tu))du
u

= c(ε)
∫ tδ

0

(1− cos(u))du
u

≥ c(ε)
[tδ/π]−1∑
j=0

∫ (j+1)π

jπ

(1− cos(u))du
u

≥ c(ε)
[tδ/π]−1∑
j=0

1
(j + 1)π

∫ (j+1)π

jπ
(1− cos(u))du

≥ c(ε)
[tδ/π]−1∑
j=0

1
j + 1

≥ c(ε) log(1 + [tδ/π])

≥ c(ε) log(tδ/π).

Thus, we obtain, for t > 0,

| ξ(t) |≤ exp(−c(ε) log(tδ/π)) = C7t
−c(ε) (11)

where C7 = 1/(δ/π)c(ε). Again, for t < 0, since cosine is an even function, we have the same
estimate. Now, noting that c(ε) > 1/2, we have that

∫∞
−∞ |ξ(t)|

2dt < ∞. Therefore, using
exercise 11, page 159 of Chung [4], we have that T admits a density.

3 The discrete case

In this section, we will derive similar results for the case when F is concentrated on non-
negative integers. In this case, with our definition, we may have repetition of records. Let
N0 = {0, 1, . . . }. Suppose that F is a distribution with mass only on N0. Then, define pk =
F (k)−F (k−) where F (k−) is the left limit as u ↑ k. Then, we have 0 ≤ pk ≤ 1 and

∑∞
k=0 pk = 1

and F (k) =
∑k

j=0 pj for k = 0, 1, . . . .

Let X0 ∼ F . Then {Xn : n ≥ 0} is a sequence of lower record values if it is a Markov chain
with the stationary transition probabilities given by the truncated distribution

P(Xn+1 = j|Xn = i) = pj/

i∑
l=0

pl if j ≤ i.

Again, it is clear that Xn converges almost surely to the constant min{j : pj > 0}. In case
this minimum is 0, one can then naturally raise the question of the convergence of the sequence
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of partial sums of these records. As we have already discussed in Section 2.1, the minimum is
actually hit in a finite time and the sum is finite with probability 1.

Let T =
∑∞

n=0Xn. It is easy to see that T < ∞ almost surely if and only if p0 > 0.
Henceforth, we will assume that p0 > 0. Now, we turn to distributional properties of T .
First, let us obtain a formula for its characteristic function by using our familiar conditioning
argument. This formula readily yields infinite divisibility of T .

Let us fix any t ∈ R, and define

φk(t) = E(exp(itT )|X0 ≤ k). (12)

Clearly if k = 0, T = 0 almost surely. Thus, φ0(t) = 1 for all t ∈ R.

Proposition 3.1 The characteristic function of T is given by

φ(t) = lim
k→∞

φk(t) =
∞∏
j=1

F (j − 1)
F (j)− pj exp(itj)

. (13)

(Note that the product on the right side is non-zero since
∑∞

j=1 |1−F (j−1)/(F (j)−pj exp(itj))| <
C8
∑∞

j=1 pj <∞ where C8 > 0 is a constant).

Proof: For the first equality, note that, φk(t) = E(exp(itT )1{X0≤k})/F (k). Now, as k → ∞,
F (k)→ 1; and also 1{X0≤k} → 1 almost surely. Thus, by dominated convergence theorem, we
have φk(t)→ φ(t).

Now, we have, for any k ≥ 0,

φk(t) = E(exp(itT )|X0 ≤ k) =
k∑
j=0

E(exp(itT )1{X0=j})/F (k)

=
k∑
j=0

E(exp(it(j +
∞∑
n=1

Xn))1{X0=j})/F (k)

=
k∑
j=0

exp(itj)pjE(exp(it
∞∑
n=1

Xn)|X1 ≤ j)/F (k)

=
k∑
j=0

exp(itj)pjφj(t)/F (k)

Thus, we have

φk(t)F (k) =
k∑
j=0

exp(itj)pjφj(t).

Therefore, for k ≥ 1,

φk(t)F (k)− φk−1(t)F (k − 1) = exp(itk)pkφk(t).

14



This implies that for k ≥ 1,

φk(t) =
φk−1(t)

1 + pk(1− exp(itk))/F (k − 1)
. (14)

Thus, from the fact that φ0(t) = 1 for all t ∈ R, using the above recursion formula, we have

φk(t) =
k∏
j=1

1
1 + pj(1− exp(itj))/F (j − 1)

.

Hence, letting k →∞ in the above expression, the characteristic function of T is given

φ(t) =
∞∏
j=1

1
1 + pj(1− exp(itj))/F (j − 1)

,

which simplifies to (13).

Towards obtaining the representation for T that yields infinite divisibility, we start with a
definition.

Definition 1 A random variable G taking values in N0 = {0, 1, . . . , } will be said to have a
geometric distribution with multiplicity k and parameter α, (denoted by G ∼ Geo(k, α)) if

P(G = n) =

(1− α)αj if n = jk

0 otherwise,
(15)

where k ≥ 1 and 0 < α < 1.

In other words, G ∼ Geo(k, α) if and only if G/k follows the usual geometric distribution
with parameter α. In this case, the characteristic function of G can be written as

φG(t) =
1− α

1− α exp(itk)

= exp
( ∞∑
n=1

(
exp(itkn)− 1

)αn
n

)
= exp

( ∞∑
n=1

(
exp(itn)− 1

)
µ′(n; k, α)

)
where

µ′(n; k, α) =

αj

j if n = jk

0 otherwise.

It is clear from the above that this characteristic function is infinitely divisible. Indeed, we can
write it down in the Lévy-Khintchine form (see e.g. Lukacs [7], Theorem 5.5.1) easily from the
above. Taking logarithm of φG(t) and denoting it by wG(t), we have

wG(t) = ibGt+
∞∑
n=1

(
exp(itn)− 1− itn

1 + n2

)1 + n2

n2
µ(n; k, α) (16)
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where

µ(n; k, α) =
n2

1 + n2
µ′(n; k, α) =


k2jαj

1+(jk)2 if n = jk, j ≥ 1,

0 otherwise
(17)

and

bG =
∞∑
n=1

n

1 + n2
µ′(n; k, α) = k

∞∑
j=1

αj

1 + (jk)2
<∞. (18)

It is also clear that
∑∞

n=1 µ(n; k, α) <∞.

Proposition 3.2 Let {Gn : n ≥ 1} be a sequence of independent variables with Gn having
Geo(kn, αn) distribution. Then, G =

∑∞
n=1Gn <∞ almost surely if and only if

∑∞
n=1 αn <∞

and in that case G is infinitely divisble.

Proof: Since each Gn takes values in N0, we have G < ∞ almost surely if and only if
P(lim supn→∞{Gn > 0}) = 0. Indeed, if ω ∈ lim supn→∞{Gn > 0}, then there exist a se-
quence nj ↑ ∞ such that ω ∈ {Gnj > 0} for every j ≥ 1. This implies, owing to the discrete
nature of Gn’s, that G = ∞. Conversely, if ω 6∈ lim supn→∞{Gn > 0}, then there exists n0

such that Gn = 0 for all n > n0, which implies that G =
∑n0

n=1Gn <∞.

Now, for the “if” part, since
∑∞

n=1 P(Gn > 0) =
∑∞

n=1 αn <∞, by the first Borel-Cantelli
lemma, we have P(lim supn→∞{Gn > 0}) = 0. Conversely, if

∑∞
n=1 αn = ∞, then from

the independence of the events {Gn > 0}, we have, by the second Borel-Cantelli lemma,
P(lim supn→∞{Gn > 0}) = 1. This proves the ”if” part. To show that G is infinitely divisible,
define Hn =

∑n
j=1Gj . Since each Gj is infinitely divisible, so is Hn. Now Hn → G almost

surely, hence also in distribution. Thus, by Theorem 7.6.5 of Chung ([4], page 244), G is
infinitely divisible.

Remark The Levy measure of G can be written from (17) and (18). Indeed, the logarithm
of the characteristic function of G, denoted by w∑∞

n=1 Gn
(t) can be written as

w∑∞
n=1 Gn

(t) = ibt+
∞∑
j=1

(
exp(itj)− 1− itj

1 + j2

)1 + j2

j2
µj (19)

where

b =
∞∑
n=1

bn and µj =
∞∑
n=1

µ(j; kn, αn). (20)

It is fairly easy to verify that b <∞ and
∑∞

j=1 µj <∞.

We may now state the representation for T .

Theorem 4 (Representation Theorem) For any F having support in N0 with F (0) > 0,
we have

T
d=
∞∑
k=1

Gk
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where {Gk : k ≥ 1} is a sequence of independent random variables with Gk having the distri-
bution Geo(k, pk

F (k)). Hence T is infinitely divisible. Conversely, given any infinite convolution
of {Geo(k, αk) : k ≥ 1} such that

∑∞
k=1 αk <∞, there exists F having support in N0 such that

the above representation holds.

Proof: From the fact that
∑∞

k=0 pk = 1 and F (k) → 1 as k → ∞, it readily follows that∑∞
k=1 pk/F (k) < ∞. Hence from the Proposition 3.2, G =

∑∞
k=1Gk is finite and infinitely

divisible.

Now note that T and G have the same characteristic function. This proves the representa-
tion and that T is infinitely divisible.

For the last part, given any {αk : k ≥ 1} such that
∑∞

k=1 αk <∞, define for any k ≥ 0,

F (k) =
∞∏

j=k+1

(1− αj).

Since
∑∞

k=1 αk < ∞, we have that F (0) > 0 and F (k) ↑ 1 as k → ∞. Clearly for this
distribution function, we will have αk = 1−F (k−1)/F (k) for all k ≥ 1. This proves the result.
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