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Abstract
Let {X,,—00 < n < oo} be a stationary ¢-mixing process with the one-dimensional
marginal distribution function F' and the density function f. Let F,,(z) be the empirical distri-
bution function based on the observations {X;,1 <i < n} and W} = sup_ o ,co0 V1| Fn(2) —
F(z)|. We obtain upper bounds for E(W;). We give an application to get bounds on the
expectation of the supremum of the deviation of a kernel density estimator fn(x) from true
density function f(z) . Similar results were obtained for a kernel type estimator F),(x) for the

true distribution function F'(z).
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1 Introduction

Moment inequalities for the supremum of empirical processes with applications to kernel type
estimation of a density function and a distribution function for identically distributed observa-

tions were investigated in Ahmad (2002). We obtain similar results for mixing procesess.

2 Preliminaries

Let {X,,—00 < n < oo} be a stationary ¢-mixing sequence defined on a probability space
(Q, F, P) with each X; having a continuous distribution function F(x) and density function
f(z). Let Y; = F(X;), —00 < i < oo. Define G(t) = P(Y; <t). Let F,,(xz) denote the empirical
distribution function based on the observations {X;,1 < i < n} and G, (t) denote the empirical
distribution function based on the observations {Y;,1 <i < n}. It is easy to see that

sup |F,(z) — F(x)| < D, = sup |Gn(t) —t|. (2. 1)
—oo<r<o0 0<t<1

The following result is due to Kim (1999).
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Theorem 2.1: Let {X,,,n > 1} be a stationary and ¢-mixing sequence of random variables
such that

iqﬁz < 00. (2. 2)
=1

Then, for every positive integer k > 1, there corresponds a constant C > 0 such that for any
A>1,
sup P(v/nD,, > \) < Cp A2, (2. 3)
n

Let

Note that for any positive integer k > 1,

E(D,) = /O P(D,, > z)dx (2. 5)
< 1—|—/ P(D,, > z)dx
1
< 1—|—/ Crz 2k dx
1
4O ()
B Mok —1

and, in general, it is easy to see that for 7 > 1 and positive integer k > 3,

r

E(Dn) < {1+ Cil(g— 3" (2. 6)

3 Application to Density Estimation

Suppose a stationary ¢-mixing process {X;,i > 1} is observed up to time n with the ¢-
mixing sequence satisfying the condition (2.2) and with the one-dimensional probability density
function f. The problem is to estimate the density fuction f based on the observations {X;, 1 <
i <n}.

Let J(.) be a bounded symmetric probability density function with mean zero and finite
variance a?]. Further suppose that it is of bounded variation with total variation V. Let h,, be

a sequence of positive numbers such that

hyn, — 0 and nh, — oo as n — oo. (3. 1)
Define, for any =,
« 1 & z— X;
n = — J . 3. 2
fole) = oI . 2)

The estimator fn(az) is a kernel type estimator of the probability density function f(z). Prop-

erties of such estimators are discussed in Prakasa Rao (1983).



Suppose that the probability density function f has continuous and bounded second deriva-
tive with sup, | f”| = Cy < oo. Let

Wyp= sup |[fulz)— f(2). (3. 3)
—oo<xr<0oo
Observe that
. T —y
fale) - @) < Eharw - o [ IRl 6
=Y
dF(y) —
+|hn _OOJ< Ddr() - (@)
1
< — sup |Eu(y h a%C’f
hn —oo<Yy<oo
1
= — sup |Fu(y)—F(y )IVJ+fUJCf
hn —oo<y<oo
1 R
S mDnVJ‘i‘ 9 O'JCf
Hence
BE(W,) < ——E(D )V+h2 20 (3. 5)
n g .
hn\/> J JYf-
Applying the bound on F(D,,) derived in the equation (2.5), we have
E(W,) < L (1+ Ci( ! ))V+h’% 2c (3. 6)
"= ha/n Hog -1/ T g '

for any positive integer k > 1. Choosing h,, such that i 1\/5 = h2, that is, h, = n~1/6, one can

get an optimum bound on E(W),,) as far as the rate of convergence is concerned and

1

E(Wy) < 0”21+ Cil(g—

D+ 503CH. (3.7)

Let us now consider the problem of estimation of

= /_O; f2(z)d. (3. 8)

An estimator of I(f) is I(f,). Note that

1) =10 = | [ (Gale) = @) (Fula) + F(@)da
| 1al@) = @) nl@) + £(a))lda

< 2 sup |falz) — f(2)]

—oo<r<o0

= 2W,.
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Hence

» 1 hZ
BII(f.) = 1) € 2= (1 + Culgrp)Vi + Po3Cl (3. 9)
If h,, = n~ /% then the above bound reduces to
. 1 1
BII(fa) = I(F)] < 2071+ Cul g Vi + 503C) (3. 10)

4 Application to Estimation of Distribution Function

Suppose a stationary ¢-mixing process {X;,7 > 1} is observed up to time n with the ¢-mixing
sequence satisfying the condition (2.2) and with the one-dimensional probability distribution
function F. The problem is to estimate the distribution function F based on the observations
{X;,1 <i<n}.

Let R, (z) be a sequence of distribution functions converging weakly to the distribution

function R(x) degenerate at zero such that

sup  |Ru(x) — R(x)| = 0(d,) (4. 1)
—oo<xr<0oo
where §,, — 0 as n — oo. Define
. 1 X
F,(z) =~ Wz — X; 4. 2
()= 3 Rl = X0 (1. 2
Let
Zn = sup |E,(z)— F(z)| (4. 3)
—oo<Tr<oo
< sup |Fu(z) - ()| + sup |EF,(z) - F(z))|
—oo<xr<0oo —oo<Tr<o0
But
(4. 4)
A ~ o0
sup |Fu(@) = EFu(a)| = swp | [ Ralo—y)dFay)
—oo<r<oo —oo<Tr<0oo —00
| Bule = y)iF )
= sw_ | [ (Fulw) - Fu)dRa(o )
—oo<r<o0
< —.
B \/ﬁ
Therefore
Z<—+ sup |EE,(z) — F(z)|. 4.5
Jht sw|BE (@) - Flz) (1. 5)



It can be checked that

sup |EF(@) = F@)l < swp | [ [R(e—y) = Rla—y)lf)dy (4.0
—oo<r<o0 —oo<r<oo —00
< sw |Ra(@) - R@)| [ )y
—oo<x<00 —0o0
< I
Hence E(Dy)
E(Z,) < L - 4.7
(Zn) < NG + 0 (4. 7)
Applying the inequality (2.5), we get that
1+ Cr(st+
E(Z,) < 1+ Ol | 5 (4. 8)
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