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Charaterization of spetral triples: A ombinatorial approahPartha Sarathi Chakraborty and Arupkumar PalJune 19, 2003AbstratWe desribe a general tehnique to study Dira operators on nonommutative spaesunder some additional assumptions. The main idea is to apture the ompat resolventondition in a ombinatorial set up. Using this, we then prove that for type A` ompatquantum groups, if ` > 1 then the L2-spae does not have any equivariant Dira operatorwith nontrivial sign ating on it. As a seond illustration of the tehnique, we prove thatif ` > 1, then for a ertain lass of representations of the C�-algebra C(SUq(` + 1)), theredoes not exist any Dira operator that diagonalises with respet to the natural basis of theunderlying Hilbert spae and has nontrivial sign.AMS Subjet Classi�ation No.: 58B34, 46L87, 19K33Keywords. Spetral triples, nonommutative geometry, quantum group.Contents1 Introdution 11.1 The general sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 The equivariant ase 42.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Left multipliation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Boundedness of ommutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4 Charaterization of signD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Seond illustration 193.1 Irreduible representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.2 Boundedness of ommutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.3 The growth graph and sign haraterization . . . . . . . . . . . . . . . . . . . . 241 IntrodutionThe purpose of this paper is twofold | one, to present a ombinatorial tehnique of har-aterizing spetral triples for a given representation of a C�-algebra, and two, to investigate1



the existene of meaningful spetral triples for type A quantum groups. A spetral triple, onemight reall, is the starting point in nonommutative geometry (NCG) where a geometri spaeis desribed by a triple (A;H;D), with A being an involutive algebra represented as boundedoperators on a Hilbert spae H, and D being a selfadjoint operator with ompat resolvent andhaving bounded ommutators with the algebra elements. This D should be nontrivial in thesense that the assoiated Kasparov module should give a nontrivial element in K-homology.Groups have always played a very ruial role in the study of geometry of a spae, mainlyas objets that govern the symmetry of the spae. One would expet the same in NCG also.Moreover, sine one now deals with a larger lass of spaes, mainly nonommutative ones, it isnatural to expet that one would require a larger lass, Hopf algebras or the quantum groups,to play a similar role. In the lassial ase, groups whih govern symmetry are themselves niegeometri objets. Here we want to look at quantum groups from the same angle. In [1℄, theauthors treated the ase of the quantum SU(2) group and haraterized all spetral triplesating on its L2-spae that are equivariant with respet to its natural left (o)ation. This wassubsequently used by Connes ([6℄) to make elaborate omputations and illustrate that most ofthe mahinery of NCG work very well for SUq(2). One of our objetives in this paper is toinvestigate other quantum groups from the same point of view. In partiular, we will formu-late the notion of equivariane under a (quantum) group ation, and systematially look forequivariant spetral triples for a large lass of ompat quantum groups.The other main objetive is to present a tehnique that will enable us to do this. The(selfadjoint) operator D in a spetral triple omes with two restritions on it, namely, it has tohave ompat resolvent, and must have bounded ommutators with algebra elements. Variousanalyti onsequenes of the ompat resolvent ondition (growth properties of the ommuta-tors of the algebra elements with the sign of D) have been used in the past by various authors.Here we will take a new approah that will help us exploit it from a ombinatorial point ofview. The idea is very simple. Given a selfadjoint operator with ompat resolvent, one anassoiate with it a ertain graph in a natural way. This makes it possible to do a detailedombinatorial analysis of the growth restritions (on the eigenvalues of D) that ome from theboundedness of the ommutators, and to haraterize the sign of the operator D ompletely.In the remaining part of this setion, we will outline the above tehnique. We then use thisgeneral sheme in the remaining setions in two spei� ases, both involving type A ompatquantum groups. In setion 2, we take A to be the C�-algebra of ontinuous funtions onG = SUq(` + 1), the Hilbert spae to be L2(G), the L2-spae of the haar state for G, whereelements of A at by left multipliation, and assume D to be equivariant under the naturalleft ation of G on A whih is implemented on L2(G). We show that for ` > 1, there does notexist any equivariant Dira operator with nontrivial sign ating on L2(G), whih in partiularshows that no equivariant spetral triple exists on L2(G) with nontrivial K-homology lass.This behaviour is very di�erent from the ase ` = 1, q 6= 1, whih was established in [1℄.In setion 3, we deal with a ase analogous to the one for SUq(2) treated in [2℄. We takethe `standard representations', whih are obtained by integrating ertain families of irreduible2



representations of the C�-algebra C(SUq(`+1)), and show the nonexistene of Dira operatorsthat diagonalise niely and has nontrivial sign.1.1 The general shemeSuppose H is a Hilbert spae, and D is a self-adjoint operator on H with ompat resolvent.Then D admits a spetral resolution P2� dP , where the d 's are all distint and eahP is a �nite dimensional projetion. Let  be a positive real. Let us now de�ne a graphG as follows: take the vertex set V to be �. Connet two verties  and 0 by an edge ifjd � d0 j < . Assume now onward that all the d 's are nonzero. Let V + = f 2 V : d > 0gand V � = f 2 V : d < 0g. This will give us a partition of V .De�nition 1.1.1 Let G = (V;E) be an in�nite graph. A pair (V1; V2) of disjoint subsets of Vis said to admit an in�nite ladder if there are two sequenes of points n 2 V1, Æn 2 V2, anda sequene of disjoint paths pn joining n to Æn.Lemma 1.1.2 The pair (V +; V �) does not admit any in�nite ladder.Proof : Observe that if there is a path from  to Æ and d > 0, dÆ < 0, then for some � on thepath, one must have d� 2 [�; ℄. Therefore the existene of an in�nite ladder would ontraditthe ompat resolvent ondition. 2De�nition 1.1.3 Let G = (V;E) be an in�nite graph. We all it sign determining if thereis a partition of the vertex set that does not admit any in�nite ladder.Thus the previous lemma says that the graph G is sign determining.The idea here will be to start from the opposite diretion. Suppose A is a C�-algebrarepresented on a Hilbert spae, and suppose we want to have an idea about all operators Dthat will make (A;H;D) into a spetral triple. Of ourse, in this generality, the problem wouldbe intratable in most ases. We will impose some extra onditions on this D that will benatural from the ontext. For example, if a group or a quantum group has an ation on A, wemight demand equivariane under that ation. This would give some idea about the spetralresolution P2� dP , more spei�ally some idea about how the set � and the projetionsP look like. In other words, this would provide us with a diagonalising basis for D. Notethat sine D is known to be self-adjoint with disrete spetrum, there always exists suh abasis. Next we onstrut a family of graphs G depending on a positive real parameter  bydeiding to join two points  and 0 in the vertex set V := � if jd � d0 j < . Sine thisomes from D, the graph must be sign-determining. Of ourse, for a given , the graph G mayhave no edges, or too few edges (if the singular values of D happen to grow too fast), in whihase, the statement that G is sign-determining will not provide us with anything worthwhile.Fortunately, the operators we are interested in are meant to be the Dira operators of some3



ommutative/nonommutative manifold. Therefore the singular values of D will grow at therate of O(n1=d) for some d � 1. So one an hoose a large enough  and work with the graphG. We all this the growth graph for the operator D. Now one looks at the ations of theelements from A on H and try and see what the boundedness of the ommutators [D; a℄ (fora 2 A) tell us. These onditions will give some growth restritions on the quantities d , whih,in turn, will give some information about the set of edges in the graph. Using this information,we then haraterize those partitions of the vertex set that do not admit any in�nite ladder.2 The equivariant aseSuppose G is a ompat group, quantum or lassial, and A is a unital C�-algebra. Assumethat G has an ation on A given by � : A ! A 
 C(G), so that (id 
 �)� = (� 
 id)� , �being the oprodut. In other words, we have a C�-dynamial system (A; G; �). Our goal isto study spetral triples for A equivariant under this ation. Let us �rst say what we mean by`equivariant' here.A ovariant representation (�; u) of (A; G; �) onsists of a unital *-representation � : A !L(H), a unitary representation u of G on H, i.e. a unitary element of the multiplier algebraM(K(H)
C(G)) suh that they obey the ondition (�
 id)�(a) = u(�(a)
 I)u� for all a 2 A.De�nition 2.0.1 Suppose (A; G; �) is a C�-dynamial system. An operator D ating on aHilbert spae H is said to be equivariant with respet to a ovariant representation (�; u) ofthe system if D 
 I ommutes with u.Sine the operator D is self-adjoint with ompat resolvent, it will admit a spetral resolu-tion P� d�P�, where the d�'s are distint and eah P� is �nite dimensional. Also, D has beenassumed to be equivariant | so that the P�'s ommute with u (to be preise, the (P�
I)'s do),i.e. u keeps eah P�H invariant. As G is ompat, eah P�H will deompose further as ��P��Hsuh that the restrition of u to eah P�� is irreduible. In other words, one an now write Din the form P2� dP for some index set � and a family of �nite dimensional projetions Psuh that eah P ommutes with u and the restrition of u to eah P is irreduible.In this setion, we will deal with the ase G = SUq(` + 1), A = C(G), � is the naturalleft ation oming from the oprodut, H is L2(G), � is the representation of A on H by leftmultipliation, and u is the left regular representation. Struture of the regular representationof a ompat (quantum) group along with the remarks made above tell us the following. Let �be the set of unitary irreduible representation-types for G. Then H deomposes as ��2�H�,where the restrition of u to H� is equivalent to dim� opies of the irreduible �, and also thatD respets this deomposition. Further, restrition of D to H� is of the form P� d��P��, uommutes with eah of these P��'s, and the restrition of u to P��H is equivalent to �. Let N�be any set with jN�j = dim�. One an then hoose an orthonormal basis fe�ij : i; j 2 N�g suhthat the spaes P��H are preisely span fe�ij : j 2 N�g for distint values of i 2 N�. Sine D is4



of the form P�P� d��P��, in this system of bases, D will look like e�ij 7! d(�; i)e�ij . In whatfollows, we will make a speial hoie of N�, whih will make the ombinatorial analysis veryonvenient.2.1 PreliminariesLet g be a omplex simple Lie algebra of rank `. let ((aij)) be the assoiated Cartan matrix,q be a real number lying in the interval (0; 1) and let qi = q(�i;�i)=2, where �i's are the simpleroots of g. Then the quantised universal envelopping algebra (QUEA) Uq(g) is the algebragenerated by Ei, Fi, Ki and K�1i , i = 1; : : : ; `, satisfying the following relationsKiKj = KjKi; KiK�1i = K�1i Ki = 1;KiEjK�1i = q 12aiji Ej ; KiFjK�1i = q� 12aiji Fj ;EiFj � FjEi = ÆijK2i �K�2iqi � q�1i ;1�aijXr=0 (�1)r�1� aijr �qiE1�aij�ri EjEri = 0 8 i 6= j;1�aijXr=0 (�1)r�1� aijr �qiF 1�aij�ri FjF ri = 0 8 i 6= j;where �nr�q denote the q-binomial oeÆients. Hopf *-struture omes from the following maps:�(Ki) = Ki 
Ki; �(K�1i ) = K�1i 
K�1i ;�(Ei) = Ei 
Ki +K�1i 
Ei; �(Fi) = Fi 
Ki +K�1i 
 Fi;�(Ki) = 1; �(Ei) = 0 = �(Fi);S((Ki) = K�1i ; S(Ei) = �qiEi; S(Fi) = �q�1i Fi;K�i = Ki; E�i = �q�1i Fi; F �i = �qiEi:In the type A ase, the assoiated Cartan matrix is given byaij = 8<: 2 if i = j,�1 if i = j � 1,0 otherwise,and (�i; �i) = 2 so that qi = q for all i. The QUEA in this ase is denoted by uq(su(`+ 1)).Take the olletion of matrix entries of all �nite-dimensional unitarizable uq(su(` + 1))-modules. The algebra generated by these gets a natural Hopf*-struture as the dual of uq(su(`+1)). One an also put a natural C�-norm on this. Upon ompletion with respet to this norm,one gets a unital C�-algebra that plays the role of the algebra of ontinuous funtions onSUq(` + 1). For a detailed aount of this, refer to hapter 3, [9℄. In [11℄, Woronowiz gave a5



di�erent desription of this C�-algebra. whih was later shown by Rosso ([10℄) to be equivalentto the earlier one.For remainder of this artile, we will take G to be SUq(`+1) and A will be the C�-algebraof ontinuous funtions on G.Gelfand-Tsetlin tableaux. Irreduible unitary representations of the group SUq(`+1) areindexed by Young tableaux � = (�1; : : : ; �`+1), where �i's are nonnegative integers, �1 � �2 �: : : � �`+1 (Theorem 1.5, [11℄). Write H� for the Hilbert spae where the irreduible � ats.There are various ways of indexing the basis elements of H�. The one we will use is due toGelfand and Tsetlin. Aording to their presription, basis elements for H� are parametrizedby arrays of the form r = 0BBBBB� r11 r12 � � � r1;` r1;`+1r21 r22 � � � r2;`� � �r`;1 r`;2r`+1;1
1CCCCCA ;where rij's are integers satisfying r1j = �j for j = 1; : : : ; ` + 1, rij � ri+1;j � ri;j+1 � 0 forall i, j. Suh arrays are known as Gelfand-Tsetlin tableaux, to be abreviated as GT tableauxfor the rest of this setion. For a GT tableaux r, the symbol ri� will denote its ith row. Itis well-known that two representations indexed respetively by � and �0 are equivalent if andonly if �j � �0j is independent of j ([11℄). Thus one gets an equivalene relation on the set ofYoung tableaux f� = (�1; : : : ; �`+1) : �1 � �2 � : : : � �`+1; �j 2 Ng. This, in turn, indues anequivalene relation on the set of all GT tableaux � = fr : rij 2 N; rij � ri+1;j � ri;j+1g: onesays r and s are equivalent if rij � sij is independent of i and j. By � we will mean the aboveset modulo this equivalene.We will denote by u� the irreduible unitary indexed by �, fe�r : r1� = �g will denote anorthonormal basis for H� and u�rs will stand for the matrix entries of u� in this basis. Thesymbol 11 will denote the Young tableaux (1; 0; : : : ; 0). We will often omit the symbol 11 andjust write u in order to denote u11. Notie that any GT tableaux r with �rst row 11 must be,for some i 2 f1; 2; : : : ; `+ 1g, of the form (rab), whererab = � 1 if 1 � a � i and b = 1,0 otherwise.Thus suh a GT tableaux is uniquely determined by the integer i. We will often write just ifor this GT tableaux r. Thus for example, a typial matrix entry of u11 will be written simplyas uij.Let r = (rab) be a GT tableaux. Let Hab(r) := ra+1;b � ra;b+1 and Vab(r) := rab � ra+1;b.
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An element r of � is ompletely spei�ed by the following di�erenesD(r) = 0BBB� V11(r) H11(r) H12(r) � � � H1;`�1(r) H1;`(r)V21(r) H21(r) H22(r) � � � H2;`�1(r)� � �V`;1(r) H`;1(r) 1CCCA :The di�erenes satisfy the following inequalitiesbXk=0Ha�k;k+1(r) � Va+1;1(r) + bXk=0Ha�k+1;k+1(r); 1 � a � `; 0 � b � a� 1: (2.1.1)Conversely, if one has an array of the form0BBB� V11 H11 H12 � � � H1;`�1 H1;`V21 H21 H22 � � � H2;`�1� � �V`;1 H`;1 1CCCA ;where Vij 's and Hij's are in N and obey the inequalities (2.1.1), then the above array is of theform D(r) for some GT tableaux r. Thus the quantities Va1 and Hab give a oordinate systemfor elements in �. The following diagram explains this new oordinate system. The hollowirles stand for the rij's. The entries are dereasing along the diretion of the arrows, andthe Vij 's and theHij's are the di�erene between the two endpoints of the orresponding arrows.j //Æ //V11
��

Æ // Æ // Æi
��

Æ //V21
��

H11 ??
����������� Æ //

H12 ??
����������� Æ H13 ??

�����������Æ //V31
��

H21 ??����������� Æ H22 ??�����������Æ H31 ??�����������Clebsh-Gordon oeÆients. Look at the representation u11
u� ating on H11
H�. Therepresentation deomposes as a diret sum ��u�, i.e. one has a orresponding deomposition��H� of H11 
 H�. Thus one has two orthonormal bases fe�s g and fe11i 
 e�rg. The Clebsh-Gordon oeÆient Cq(11; �; �; i; r; s) is de�ned to be the inner produt he�s ; e11i 
 e�r i. Sine 11, �7



and � are just the �rst rows of i, r and s respetively, we will often denote the above quantityjust by Cq(i; r; s).Next, we will ompute the quantities Cq(i; r; s). We will use the alulations given in ([8℄,pp. 220), keeping in mind that for our ase (i.e. for SUq(`+ 1)), the top right entry of the GTtableaux is zero.Let M = (m1;m2; : : : ;mi) 2 Ni be suh that 1 � mj � ` + 2 � j. Denote by M(r) thetableaux s de�ned by sjk = � rjk + 1 if k = mj , 1 � j � i,rjk otherwise. (2.1.2)With this notation, observe now that Cq(i; r; s) will be zero unless s is M(r) for some M 2 Ni .(One has to keep in mind though that not all tableaux of the formM(r) is a valid GT tableaux)From ([8℄, pp. 220), we haveCq(i; r;M(r)) = i�1Ya=1* (1;0) ra�(1;0) ra+1� ����� ra� + emara+1� + ema+1 +�* (1;0) ri�(0;0) ri+1� ����� ri� + emiri+1� + ;(2.1.3)where ek stands for a vetor (in the appropriate spae) whose kth oordinate is 1 and the restare all zero, and* (1;0) ra�(1;0) ra+1� ����� ra� + ejra+1� + ek +2 = q�raj+ra+1;k�k+j � `+2�aYi=1i6=j [ra;i � ra+1;k � i+ k℄q[ra;i � ra;j � i+ j℄q� `+1�aYi=1i6=k [ra+1;i � ra;j � i+ j � 1℄q[ra+1;i � ra+1;k � i+ k � 1℄q ; (2.1.4)* (1;0) ra�(0;0) ra+1� ����� ra� + ejra+1� +2 = q j+1+P`+1�ai=1 ra+1;i�P`+2�ai=1i6=j ra;i!�0�Q`+1�ai=1 [ra+1;i � raj � i+ j � 1℄qQ`+2�ai=1i6=j [ra;i � raj � i+ j℄q 1A ; (2.1.5)where for an integer n, [n℄q denotes the q-number (qn � q�n)=(q � q�1). After some lengthybut straightforward omputations, we get the following two equations:�����* (1;0) ra�(1;0) ra+1� ����� ra� + ejra+1� + ek +����� = A0qA; (2.1.6)�����* (1;0) ra�(0;0) ra+1� ����� ra� + ejra+1� +����� = B0qB; (2.1.7)where A = 8<: Xj^k<b<j_k(ra+1;b � ra;b) + (ra+1;j^k � ra;j_k) if j 6= k,0 if j = k.8



= Xj^k�b<j_k(ra+1;b � ra;b+1) + 2 Xk<b<j(ra;b � ra+1;b)= Xj^k�b<j_kHab(r) + 2 Xk<b<j Vab(r): (2.1.8)B = Xj�b<`+2�aHab(r); (2.1.9)and A0 and B0 both lie between two positive onstants independent of i, r and M .Combining these, one gets Cq(i; r;M(r)) = onst � qC(r;M); (2.1.10)whereC(r;M) = i�1Xa=10� Xma^ma+1�b<ma_ma+1Hab(r) + 2 Xma+1<b<ma Vab(r)1A+ Xmi�b<`+2�iHib(r):(2.1.11)2.2 Left multipliation operatorsThe matrix entries u�rs form a omplete orthogonal set of vetors in L2(G). Write e�rs forku�rsk�1u�rs. Then the e�rs's form a omplete orthonormal basis for L2(G). Let � denote therepresentation of A on L2(G) by left multipliations. We will now derive an expression for�(uij)e�rs.From the de�nition of matrix entries and that of the CG oeÆients, one getsu�e(�; t) =Xs u�ste(�; s); (2.2.1)e(�;n) =Xj;s Cq(j; s;n)e(11; j)
 e(�; s): (2.2.2)Apply u
 u� on both sides and note that u
 u� ats on e(�;n) as u�:Xm u�mne(�;m) =Xj;s Xi;r Cq(j; s;n)uiju�rse(11; i)
 e(�; r): (2.2.3)Next, use (2.2.2) to expand e(�;m) on the left hand side to getXi;r;mu�mnCq(i; r;m)e(11; i)
 e(�; r) =Xj;s Xi;r Cq(j; s;n)uiju�rse(11; i)
 e(�; r): (2.2.4)Equating oeÆients, one getsXm Cq(i; r;m)u�mn =Xj;s Cq(j; s;n)uiju�rs: (2.2.5)Now using orthogonality of the matrix ((Cq(11; �; �; j; s;n)))(�;n);(j;s) , we obtainuiju�rs = X�;m;nCq(i; r;m)Cq(j; s;n)u�mn: (2.2.6)9



From ([8℄, pp. 441), one has ku�rsk = d� 12� q�(�;�(r)), where � is the half-sum of positive roots,�(r) is the weight suh that e(�; r) belongs to the orresponding weight spae (of V�), andd� = Pr:�(r)2P (�) q2(�;�(r)), P (�) being the set of weights orresponding to the weight spaedeomposition of V�.Therefore�(uij)e�rs = X�;m;nCq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)d 12� d� 12� q(�;�(r))�(�;�(m))e�mn: (2.2.7)Write k(r;m) = d 12�d� 12� q(�;�(r))�(�;�(m)): (2.2.8)Lemma 2.2.1 There exist onstants K2 > K1 > 0 suh that K1 < k(r;M(r)) < K2 for all r.Proof : Observe that ([3℄, pp-365)d� = Y1�i�j�`+1 (�i � �j + j � i)q(j � i)q :Therefore one getsd�d�+ek = Yj:k<j (�k � �j + j � k)q(�k � �j + j � k + 1)q � Yi:i<k (�i � �k + k � i)q(�i � �k + k � i� 1)q :There are ` terms in the above produt, and eah term lies between two positive quantitiesthat depend just on q. Also one an ompute the quantity (�; �(r))� (�; �(m)) diretly, and itturns out to be bounded. Therefore the result follows. 22.3 Boundedness of ommutatorsLet D be an equivariant Dira operator ating on L2(G). It follows from the disussion in thebeginning of this setion that D must be of the forme�rs 7! d(r)e�rs; (2.3.1)(Here, for a Young tableaux �, N� is the set of all GT tableaux, modulo the appropriateequivalene relation, with top row �). Then we have[D;�(uij)℄e�rs =X(d(m)� d(r))Cq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)k(r;m)e�mn: (2.3.2)Therefore the ondition for boundedness of ommutators reads as follows:j(d(m)� d(r))Cq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)k(r;m)j < ; (2.3.3)where  is independent of i, j, �, �, r, s, m and n.10



Using lemma 2.2.1, we getj(d(m)� d(r))Cq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)j < : (2.3.4)Choosing j, s and n suitably, one an ensure that (2.3.4) implies the following:j(d(m)� d(r))Cq(11; �; �; i; r;m)j < : (2.3.5)It is not too diÆult to show that this ondition is also suÆient for the boundedness of theommutators [D;uij ℄.From (2.1.10), one gets jd(r) � d(M(r))j � q�C(r;M): (2.3.6)Let us next form a graph G as desribed in setion 1 by onneting two elements r and r0if jd(r)� d(r0)j < . We will assume this graph to be sign determining. In other words, we willassume the existene of a partition (�+;��) that does not admit any in�nite ladder. For anysubset F of �, we will denote by F� the sets F \ ��. Our next job is to study this graph inmore detail using the boundedness onditions above. Let us start with a few de�nitions andnotations. By an elementary move, we will mean a map M from some subset of � to �suh that  and M() are onneted by an edge. A move will mean a omposition of a �nitenumber of elementary moves. If M1 and M2 are two moves, M1M2 and M2M1 will in generalbe di�erent. For a family of moves M1;M2; : : : ;Mr, we will denote byrXj=1! Mj and rXj=1 Mjthe movesM1M2 : : :Mr andMr : : : M2M1 respetively. For a nonnegative integer n and a moveM , we will denote by nM the move obtained by applying M suessively n times. Of speialinterest to us will be moves of the form M : r 7! s, where s is given by (2.1.2) We will use thevetor (m1; : : : ;mk) to denote M . The following families of moves will be partiularly usefulto us: Mik = (i; i� 1; : : : ; i� k + 1) 2 Nk ; Nik = (i+ 1; : : : ; i+ 1| {z }k ; i; i; : : : ; i) 2 N`+2�i :For desribing a path in our graph, we will often use phrases like `apply the move Pkj=1! Mj togo from r to s'. This will refer to the path given by�r; Mk(r);Mk�1Mk(r); : : : ; M1M2 : : :Mk(r) = s�:We will need the following onsequene of (2.3.6) subsequently.Lemma 2.3.1 Let Njk and Mik be the moves de�ned above. Then1. jd(r) � d(Nj0(r))j � ,2. jd(r)� d(Mik(r))j � q�Pk�1a=1Ha;i+1�a�Pb̀=iHk;b+k�1 . In partiular, if Ha;i+1�a(r) = 0 for1 � a � k � 1 and Hk;b+k�1(r) = 0 for i � b � `, then jd(r)� d(Mik(r))j � .11



2.4 Charaterization of signDIn this setion, we will use lemma 2.3.1 to prove a haraterization theorem for the sign of theoperator D. The main ingredients in the proof are the �niteness of exatly one of the sets F+and F� for appropriately hosen subsets F of �. General form of the argument for provingthis will be as follows: for a arefully hosen oordinate C (in the present ase, C would beone of the Va1's or Hab's), a sweepout argument will show that any  an be onneted by apath, throughout whih C(�) remains onstant, to another point 0 for whih C(0) = C()and all other oordinates of 0 are zero. This would help onnet any two points  and Æby a path suh that C(�) would lie between C() and C(Æ) on the path. This would �nallyresult in the �niteness of at least one (and hene exatly one) of C(F+) and C(F�). Next,assuming one of these, say C(F�) is �nite, one shows that for any other oordinate C 0, C 0(F�)is also �nite. This is done as follows. If C 0(F�) is in�nite, one hooses elements yn 2 F� withC 0(yn) < C 0(yn+1) for all n. Now starting at eah yn, produe paths keeping the C 0-oordinateonstant and taking the C-oordinate above the plane C(�) = K, where C(F�) � [�K;K℄.This will produe an in�nite ladder. The argument is explained in the following diagram.C
K

all otheroordinates
C0y2y1x1 y3x3

x2

Our next job is to de�ne an important lass of subsets of �. Observe that lemma 2.3.1 tellsus that for any r and any j, the points r and Nj0(r) are onneted by an edge, whenever Nj0(r)is a GT tableaux. Let r be an element of �. De�ne the free plane passing through r to bethe minimal subset of � that ontains r and is losed under appliation of the moves Nj0. Wewill denote this set by Fr. The following is an easy onsequene of this de�nition.Lemma 2.4.1 Let r and s be two GT tableaux. Then s 2 Fr if and only if Va;1(r) = Va;1(s)for all a and for eah b, the di�erene Ha;b(r)�Ha;b(s) is independent of a.12



Corollary 2.4.2 Let r; s 2 �. Then either Fr = Fs or Fr \Fs = �.Let r 2 �. For 1 � j � ` + 1, de�ne aj to be an integer suh that Haj ;j(r) = miniHij(r).Note three things here:1. de�nition of aj depends on r,2. for a given j and given r, aj need not be unique, and3. if s 2 Fr, then for eah j, the set of k's for whih Hkj(s) = miniHij(s) is same as the setof all k's for whih Hkj(r) = miniHij(r). Therefore, the aj 's an be hosen in a manner suhthat they remain the same for all elements lying on a given free plane.Lemma 2.4.3 Let s 2 Fr. Let s0 be another GT tableaux given byVa1(s0) = Va1(s) and Ha1(s0) = Ha1(s) for all a; Hab;b(s0) = 0 for all b > 1;where the aj's are as de�ned above. Then there is a path in Fr from s to s0 suh that H11(�)remains onstant throughout this path.Proof : Apply the move P b̀=2 �Pbj=2Haj ;j(s)�Nb+1;0. 2The following diagram will help explain the steps involved in the above proof in the asewhere r is the onstant tableaux.� � � � �0 a b  d� � � �0 a b � � �0 a b� �0 a�
bN30 //

� � � � �0 a 0 b+  d� � � �0 a 0 b+ � � �0 a 0� �0 a�
(b+)N40

//

� � � � �0 a 0 0 b+ + d� � � �0 a 0 0� � �0 a 0� �0 a�(b++d)N50//

� � � � �0 a 0 0 0� � � �0 a 0 0� � �0 a 0� �0 a�A dotted line joining two irled dots signi�es a move that inreases the rij's lying on thedotted line by one. Where there is one irled dot and no dotted line, it means one applies themove that raises the rij orresponding to the irled dot by one.Proposition 2.4.4 Let r be a GT tableaux. Then either F+r is �nite or F�r is �nite.13



Proof : Suppose, if possible, both H11(F+r ) and H11(F�r ) are in�nite. Then there exist twosequenes of elements rn and sn with rn 2 F+r and sn 2 F�r , suh thatH11(r1) < H11(s1) < H11(r2) < H11(s2) < � � � :Now starting from rn, employ the forgoing lemma to reah a point r0n 2 Fr for whihVa1(r0n) = Va1(rn) and Ha1(r0n) = Ha1(rn) for all a; Hab;b(r0n) = 0 for all b > 1:Similarly, start at sn and go to a point s0n 2Fr for whihVa1(s0n) = Va1(sn) and Ha1(s0n) = Ha1(sn) for all a; Hab;b(s0n) = 0 for all b > 1:Now use the move N10 to get to s0n from r0n. The paths thus onstruted are all disjoint, beausefor the path from rn to sn, the H11 oordinate lies between H11(rn) and H11(sn). This means(F+r ;F�r ) admits an in�nite ladder. So one of the sets H11(F+r ) and H11(F�r ) must be �nite.Let us assume that H11(F�r ) is �nite.Let us next show that for any b > 1, Hab(F�r ) is �nite. Let K be an integer suh thatH11(s) < K for all s 2 F�r . If Hab(F�r ) was in�nite, there would exist elements rn 2 F�r suhthat Hab(r1) < Hab(r2) < � � � :Now start at rn and employ the move N10 suessively K times to reah a point in F+r =FrnF�r . These paths will all be disjoint, as throughout the path, Hab remains �xed.Sine the oordinates (H11;H12; : : : ;H1;`) ompletely speify a point in Fr, it follows thatF�r is �nite. 2Next we need a set that an be used for a proper indexing of the free planes. Suh a setwill be alled a omplementary axis.De�nition 2.4.5 A subset C of � is alled a omplementary axis if1. [r2CFr = �,2. if r; s 2 C , and r 6= s, then Fr and Fs are disjoint.Let us next give a hoie of a omplementary axis.Lemma 2.4.6 De�ne C = fr 2 � : �`+1�ba=1 Hab(r) = 0 for 1 � b � `g:The set C de�ned above is a omplementary axis.Proof : Let s 2 �. A sweepout argument almost idential to that used in lemma 2.4.3 (applia-tion of the move P b̀=1 �Pbj=1Haj ;j(s)�Nb+1;0 ) will onnet s to another element s0 for whih14



Hab;b(s0) = 0 for 1 � b � ` by a path that lies entirely on Fs. Clearly, s0 2 C . Sine s0 2 Fs,by orollary 2.4.2, s 2 Fs0 .It remains to show that if r and s are two distint elements of C , then s 62 Fr. Sine r 6= s,there exist two integers a and b, 1 � b � ` and 1 � a � ` + 2� b, suh that Hab(r) 6= Hab(s).Observe that H1`(�) must be zero for both, as they are members of C . So b an not be `here. Next we will produe two integers i and j suh that the di�erenes Hib(r) �Hib(s) andHjb(r)�Hjb(s) are distint. If there is an integer k for whih Hkb(r) = Hkb(s) = 0, then takei = a, j = k. If not, there would exist two integers i and j suh that Hib(r) = 0, Hib(s) > 0and Hjb(r) > 0, Hjb(s) = 0. Take these i and j. Sine Hib(r)�Hib(s) and Hjb(r)�Hjb(s) aredistint, by lemma 2.4.1, r and s an not lie on the same free plane. 2Lemma 2.4.7 Let r be a GT tableaux. Let s be the GT tableaux de�ned by the presriptionVa1(s) = Va1(r) for all a; Hab(s) = Hab(r) for all a � 2; for all b; H1;b(s) = 0 for all b:Then there is a path from r to s suh that Va1(�) remains onstant throughout the path.Proof : Apply the move X̀b=1! H1;b(r)Mb+1;1. 2The above lemma is atually the �rst step in the following slightly more general sweepoutalgorithm.Lemma 2.4.8 Let r be a GT tableaux. Let s be the GT tableaux de�ned by the presriptionV11(s) = V11(r); Va1(s) = 0 for all a > 1; Hab(s) = 0 for all a; b:Then there is a path from r to s suh that V11(�) remains onstant throughout the path.Proof : Apply suessively the movesX̀b=1! H1;b(r)Mb+1;1; `�1Xb=1! H2;b(r)Mb+2;2; : : : ; H`;1(r)M`+1;`;followed by V21(r)M33; (V21(r) + V31(r))M44; : : : ;  X̀a=2 Va1(r)!M`+1;`+1: (2.4.1)2The following diagram will help explain the proedure desribed above in a simple ase.�? � � ��? ? � ? � ?�? ? � ?� ? M41 //

�? � � ��? ? � ? � 0�? ? � ?� ? M31 //

�? � � ��? ? � 0 � 0�? ? � ?� ? M21 //

�? � � ��? 0 � 0 � 0�? ? � ?� ?15



M42 //

�? � � ��? 0 � 0 � 0�? ? � 0� ? M32 //

�? � � ��? 0 � 0 � 0�? 0 � 0� ? M43 //

�? � � ��? 0 � 0 � 0�? 0 � 0� 0M33 //

�? � � ��0 0 � 0 � 0�? 0 � 0� 0 M44 //

�? � � ��0 0 � 0 � 0�0 0 � 0� 0Corollary 2.4.9 jd(r)j = O(r11).Proof : If one employs the sequene of movesV11(r)M22; (V11(r) + V21(r))M33; : : : ;  X̀a=1 Va1(r)!M`+1;`+1instead of the sequene given in (2.4.1), one would reah the onstant (or zero) tableaux. Totallength of this path from r to the zero tableaux isX̀a=1 `+1�aXb=1 Hab(r) + X̀b=1 bXa=1 Va1(r);whih an easily be shown to be bounded by `r11. 2Remark 2.4.10 Let D be the following operator:D : e�r;s 7! r11e�r;s (2.4.2)Then (A;H;D) is an equivariant `(` + 2)-summable odd spetral triple. Moreover, if D isany equivariant odd Dira Operator ating on the L2 spae of SUq(` + 1), then D annotbe p-summable for p < `(` + 2). However, this D has trivial sign, and onsequently trivialK-homology lass.Both the statements above follow from orollary 2.4.9 and the following two elementaryfats:1. The number of Young tableaux with ` or less rows and with n ells in the top row is O(n`�1).2. the dimension of an irreduible representation orresponding to a Young tableaux with ` orless rows and n ells in the top row is O(n 12 `(`+1)).Lemma 2.4.11 The sets V11(�+) and V11(��) an not both be in�nite.16



Proof : If both the sets are in�nite, then one an hoose two sequenes of points rn and sn suhthat rn 2 �+, sn 2 �� andV11(r1) < V11(s1) < V11(r2) < V11(s2) < : : : :Start at rn and use lemma 2.4.8 above to reah a point r0n for whih V11(r0n) = V11(rn) and allother oordinates are zero through a path where the V11 oordinate remains onstant. Similarly,from sn, go to a point s0n for whih V11(s0n) = V11(sn) and all other oordinates are zero. Nowapply the move (V11(sn) � V11(rn))M11 to go from r0n to s0n. This will give us a path pn fromrn to sn on whih V11(�) remains between V11(rn) and V11(sn). Therefore all the paths pn aredisjoint. Thus (�+;��) admits an in�nite ladder. So at least one of V11(�+) and V11(��) mustbe �nite. 2Lemma 2.4.12 Let C be any of the oordinates Va1 or Hab where a > 1. If V11(��) is �nite,then C(��) is also �nite.Proof : Assume K is a positive integer suh that V11(��) � [0;K℄. Now suppose, if possible,that C(��) is in�nite. Let rn be a sequene of points in �� suh thatC(r1) < C(r2) < : : : :Start at rn, and use lemma 2.4.7 to reah a point r0n and then applyM11 for K+1 times to getto a point sn for whih V11(sn) > K. Throughout this path, C(�) is onstant, so that the pathsare all disjoint. Sine V11(sn) > K, we have sn 2 �+. Thus this gives us an in�nite ladder for(�+;��), whih is impossible. 2Lemma 2.4.13 Suppose H1`(F ) is bounded. If V11(��) is �nite, then F� is �nite.Proof : The previous lemma, along with the assumption here tells us that the sets Va1(F�) andHa;`+1�a(F�) are all bounded for 1 � a � `. Sine for an r 2 V , one has r11 =Pà=1 Va1(r) +Pà=1Ha;`+1�a(r), the set fr11 : r 2 F�g is bounded. It follows that F� is �nite. 2Corollary 2.4.14 If V11(��) is �nite, then C� is �nite.Proof : Follows from the observation that H1`(r) = 0 for all r 2 C . 2Theorem 2.4.15 Let D be an equivariant Dira operator on L2(SUq(` + 1)). Then signDmust be of the form 2P � I or I � 2P where P is, up to a ompat perturbation, the projetiononto the losed span of fe�r;s : r 2 Fri for some ig, with r1; : : : ; rk being a �nite olletion ofGT-tableaux.Proof : Let C 0 = fr 2 C : F+r 6= � 6= F�r g. Let us �rst show that C 0 is �nite, i.e. exept for�nitely many r's in C , one has either Fr � �+ or Fr � ��. It follows from the argument used17



in the proof of lemma 2.4.6 that any two points on a free plane an be onneted by a pathlying entirely on the plane. If C 0 is in�nite, one an easily produe an in�nite ladder using thisfat.Next, observe that1. either Fr � �+ or Fr � �� for all r 2 C nC 0,2. if V11(��) is �nite, then C� is �nite, and3. C \Fr = frg.It is now lear from the above observations that if V11(��) is �nite, then exept possibly for�nitely many r's in C nC 0, one has Fr � �+.Finally, employing an appropriate ompat perturbation, one an ensure that for eahr 2 C 0, either Fr � �+ or Fr � ��. Hene the result. 2As a onsequene of this sign haraterization, we now get the following theorem.Theorem 2.4.16 Let ` > 1. Then there does not exist any equivariant Dira operator onL2(G) with nontrivial sign.Proof : We will show that if P is as in the earlier theorem, then the ommutators [P; �(uij)℄an not all be ompat.Let us �rst prove it in the ase when P is the projetion onto the span of fers : r 2 F0g,where F0 is the free plane passing through the onstant tableaux. We have[P; �(uij)℄ers = �P�(uij)ers if r 62 F0,(P � I)�(uij)ers if r 2 F0 :Reall (subsetion 2.2) the expression for �(uij)ers:�(uij)ers = XR2Ni;S2NjR(1)=S(1) Cq(i; r; R(r))Cq(j; s; S(s))k(r; R(r))eR(r)S(s) :Hene for r 2 F0,[P; �(uij)℄ers = (P � I)�(uij)ers= � XR2Ni;S2NjR(1)=S(1);R6=Ni0 Cq(i; r; R(r))Cq(j; s; S(s))k(r; R(r))eR(r)S(s) :In partiular, for i = j = 1, one gets[P; �(u11)℄ers = �X̀k=1Cq(1; r;Mk1(r))Cq(1; s;Mk1(s))k(r;Mk1(r))eMk1(r)Mk1(s):Now suppose r 2 F0 satis�es r1;` = 0 = r2;` = r1;`+1: (2.4.3)Then heM`1(r)M`1(r); [P; �(u11)℄erri = �Cq(1; r;M`1(r))2k(r;M`1(r)):18



It follows from (2.1.10) and (2.1.11) that Cq(1; r;M`1(r)) is bounded away from zero, so longas r obeys (2.4.3). We have also seen (lemma 2.2.1) that k(r;M`1(r)) is bounded away fromzero. Now it is easy to see that if ` > 1, then there are in�nitely many hoies of r satisfying(2.4.3) suh that they all lie in F0. Therefore [P; �(u11)℄ is not ompat.For more general P (as in the previous theorem), the idea would be similar, but this timeone has to get hold of a positive integer n suh that for any r 2 [ki=1Fri , nM`1(r) 62 [ki=1Fri ,and then ompute henM`1(r)nM`1(r); (P � I)�(u11)nerri. 23 Seond illustrationIn this setion, we will ignore the group nature of SUq(`+1) and fous only on the C�-algebraA = C(SUq(`+1)). All irreduible representations of this C�-algebra are well-known ([9℄). Wewill take a large lass of representations, whih inludes the irreduibles in partiular, and usethe sheme desribed in setion 1 to prove that for a large majority of these representations, noDira operator with nontrivial sign exists that diagonalises niely with respet to the anonialorthonormal basis.3.1 Irreduible representationsThe Weyl group for SUq(`+1) is isomorphi to the permutations group S`+1 on `+1 symbols.Denote by si the transposition (i; i + 1). Then fs1; : : : ; s`g form a set of generators for S`+1.Any ! 2 S`+1 an be written as a produt! = (sk`sk`+1 : : : s`)(sk`�1sk`�1+1 : : : s`�1) : : : (sk2s2)(sk1);where ki's are integers satisfying 0 � ki � i, with the understanding that ki = 0 meansthat the string (skiski+1 : : : si) is missing. It follows from the strong deletion ondition in theharaterization of Coxeter system by Tits (see [7℄) that the expression for ! given above is aredued word in the generators si. We will denote the length of an element ! by `(!).Let S and N be the following operators on L2(Z):Sen = en�1; Nen = nen:We will denote by the same symbols their restritions to L2(N) whenever there is no hane ofambiguity. Denote by  si the following representation of A on L2(N): si(uab) = 8>>>>>><>>>>>>:
pI � q2N+2S if a = b = i,S�pI � q2N+2 if a = b = i+ 1,�qN+1 if a = i, b = i+ 1,qN if a = i+ 1, b = i,ÆabI otherwise.Now suppose ! 2 S`+1 is given by si1si2 : : : sik . De�ne  ! to be  si1 �  si2 � : : : �  sik (for tworepresentations � and  , � �  denote the representation (�
  )�).19



Next, let z = (z1; : : : ; z`) 2 (S1)`. De�ne�z(uab) = 8<: zaÆab if a = 1,�z`Æab if a = `+ 1,�za�1zaÆab otherwise.De�ne � to be the integral Rz2(S1)` �zdz. Finally, de�ne �!;z =  ! � �z and �! =  ! � �. It isknown ([9℄) that �!;z's onstitute all the ireduible representations of the C�-algebra A.Let us introdue a few notations that will be handy later. For a subset � = fi1; : : : ; ikg �f1; 2; : : : ; `g, where i1 < i2 < : : : < ik, denote by s� the element si1si2 : : : sik of S`+1. Call asubset J of f1; 2; : : : ; `g an interval if it is of the form fj; j+1; : : : ; j+sg. Then for any element! of the Weyl group, there are intervals �1;�2; : : : ;�t with max�r > max�s for r > s suhthat ! = s�ts�t�1 : : : s�1 : (3.1.1)Moreover, as long as we demand that �j 's are intervals and obey max�r > max�s for r > s,an element ! determines the subsets �t; : : : ;�1 uniquely. Let � be the disjoint union of the�j 's, that is, � = [tj=1f(j; i) : i 2 �jg. Write �0 = f(0; i) : i = 1; 2; : : : ; `g. Often we willidentify �0 with the set f1; 2; : : : ; `g. Let � = N� � Z�0 = N�t � N�t�1 � : : : � N�1 � Z�0.The Hilbert spae on whih �! ats is L2(�). We will denote by fe :  2 �g the anonialorthonormal basis for this Hilbert spae.Diagram representation of �!. Let us desribe how to use a diagram to represent theirreduible  si . `+1� // �`+1` � // � `::::::i+1� + //

!!CC
C �i+1i � � //

=={{{ � i::::::1 � // � 1HIn this diagram, eah path from a node k on the left to a node l on the right stands foran operator on H = L2(N). A horizontal unlabelled line stands for the identity operator, ahorizontal line labelled with a + sign stands for S�pI � q2N+2 and one labelled with a � signstands for pI � q2N+2S. A diagonal line going upward represents �qN+1 and a diagonal linegoing downward represents qN . Now  si(ukl) is the operator represented by the path from kto l, and is zero if there is no suh path. Thus, for example,  si(u11) is I,  si(u12) is zero,whereas  si(uii+1) = �qN+1, if i > 1.Next, let us explain how to represent  si �  sj . Simply put the two diagrams representing si and  sj adjaent to eah other, and identify, for eah row, the node on the right side of the20



diagram for  si with the node on the left in the diagram for  sj . Now,  si � sj (ukl) would bean operator on L2(N) 
 L2(N) determined by all the paths from the node k on the left to thenode l on the right. It would be zero if there is no suh path and if there are more than onepaths, then it would be the sum of the operators given by eah suh path. Thus, we have thefollowing operation on the elementary diagrams desribed above:`+1� // �`+1 `+1� // �`+1 `+1� // � // �`+1:::::: :::::: ::::::i+1� + //

!!CC
C �i+1 i+1� // �i+1 i+1� + //

""EE
E � // �i+1i � � //

=={{{ � i i � // � i i � � //

<<yyy � // � i:::::: 
 :::::: = ::::::j+1� // �j+1 j+1� + //

!!C
CC
�j+1 j+1� // � + //

""EE
E �j+1j � // � j j � � //

=={{{ � j j � // � � //

<<yyy � j:::::: :::::: ::::::1 � // � 1 1 � // � 1 1 � // � // � 1H H H 
 HNext, we ome to �. The underlying Hilbert spae now is L2(Z�0) �= L2(Z)
` (to avoid anyambiguity, we have used hollow irles to denote the nodes as opposed to the bullets used inthe earlier ase); an unlabelled horizontal arrow stands for I in the orresponding omponentof L2(Z)
`, an arrow labelled with a `+' above it indiates S� and one labelled `�' below itstands for S. As earlier, �(ukl) stands for the operator on L2(Z)
` represented by the pathfrom k on the left to l on the right. In the diagram below, K will stand for L2(Z).`+1Æ // Æ // Æ // Æ : : : Æ // Æ � // Æ`+1` Æ // Æ // Æ // Æ : : : Æ � // Æ + // Æ `:::::: : : : ::::::3 Æ // Æ � // Æ + // Æ : : : Æ // Æ // Æ 32 Æ � // Æ + // Æ // Æ : : : Æ // Æ // Æ 21 Æ + // Æ // Æ // Æ : : : Æ // Æ // Æ 1K 
 K 
 K 
 : : : 
 K 
 KFinally, we ome to the desription of �!. As we have already remarked, redued expressionfor ! is of the form ! = (sknskn+1 : : : sn)(skn�1 : : : sn�1) : : : (sk2s2)(sk1). To get the diagramfor �!, we simply put the diagram for  skn � : : : �  sk1 and that for � side by side and identifythe nodes on the right of the �rst diagram with the orresponding ones on the left of theseond diagram. Thus for example, if ! = (s2s3s4)(s3)(s1s2)(s1), then the following diagramrepresents �!:
21



`+1� // � // � // � // � // � // � // �Æ // Æ // Æ : : : Æ // Æ � // Æ`+1:::::: :::::: : : : ::::::5 � // � // � + //

##FF
FF
� // � // � // � // �Æ // Æ // Æ : : : Æ // Æ // Æ 54 � // � + //

##FF
FF
� � //

;;xxxx � + //

##FF
FF
� // � // � // �Æ // Æ // Æ : : : Æ // Æ // Æ 43 � + //

""EE
E � � //

;;xxxx � // � � //

;;xxxx � // � + //

##FF
FF
� // �Æ // Æ � // Æ : : : Æ // Æ // Æ 32 � � //

<<yyy � // � // � // � + //

##FF
FF
� � //

;;xxxx � + //

##HH
HH
�Æ � // Æ + // Æ : : : Æ // Æ // Æ 21 � // � // � // � // � � //

;;xxxx � // � � //

;;vvvv �Æ + // Æ // Æ : : : Æ // Æ // Æ 1H 
 H 
 H 
 H 
 H 
 H 
 H 
 K 
 K 
 : : : 
 K 
 KThe diagram for �! introdued above will play an important role in what follows.3.2 Boundedness of ommutatorsOur goal is to study operators D on the spae H! = L2(�) that diagonalize with respet to thenatural anonial basis, and makes (�!(A);H!;D) a spetral triple. Sine D is a self-adjointoperator with disrete spetrum, it is of the form P2� d()e .De�nition 3.2.1 Amove will mean a path from a node on the left to a node on the right in thediagram representing �!. More formally, a move is a (t+ 1)-tuple of pairs ((it; jt); : : : ; (i0; j0))suh that1. jk = ik�1 for k � 1, i0 = j0,2. for k � 1, jk < ik implies jk = ik � 1 and jk 2 �k,3. for k � 1, jk > ik implies ik; ik + 1; : : : ; jk � 1 2 �k.(the pair (ik; jk) will be referred as the kth segment of the move lying in the kth string fromthe right).We will use the speial notation Hr for the move for whih eah ik and jk equals r.Given a move p, we will next de�ne an element mp 2 Z��Z�0 whose oordinates are all 0or �1. Let p = ((it; jt); : : : ; (i0; j0)). De�ne mp by the following presription:mp(r; s) = 8<:�1 if r = 0; s = i0 � 1 or r � 1; s = jr � ir,+1 if r = 0; s = i0 or r � 1; jr � ir = s+ 1,0 otherwise.Thus mp(r; �) will look like8>>>>><>>>>>: (0; 0; : : : ; 0) if ir < min�r or ir > max�r + 1 or jr = ir � 1,(�1; 0; : : : ; 0) if ir = jr = min�r,(0; 0; : : : ; 0; 1) if ir = jr = max�r + 1,(0; : : : ; 0| {z }ir�2 ; 1; 0; : : : ; 0| {z }jr�ir ;�1; 0; : : : ; 0) if min�r < ir � jr,22



We will often refer to this assoiated element mp when we talk about a move p.Let us denote by Pij the set of moves from node i on the left to node j on the right. For amove p, denote by Tp the orresponding operator on H
`(!) 
K
`. Then�!(uij) = Xp2Pij Tp: (3.2.1)Denote byWp the operator obtained from Tp by replaingpI � q2N+2S by S and S�pI � q2N+2by S�. One an show easily that mp is the unique element in Z��Z�0 whose entries are all 0or �1 suh that hWpe ; e+mpi 6= 0 for some  2 �.Lemma 3.2.2 Let p; p0 2 Pij. If p and p0 are di�erent, then for some (r; n), where 1 � r � tand n 2 �r, one has either mp(r; n) = 0;mp0(r; n) = �1 or mp(r; n) = �1;mp0(r; n) = 0.Proof : Sine p and p0 both belong to Pij and are di�erent, mp(r; n) 6= mp0(r; n) for some pair(r; n). Now look at the oordinate where they are unequal for the �rst time (from the left),that is, let (r; n) be the pair suh thatr = maxf1 � j � t : mp(j; i) 6= mp0(j; i) for some ig; n = minfi 2 �r : mp(r; i) 6= mp0(r; i)g:It is easy to see now that for this pair (r; n), the required onlusion holds. 2Lemma 3.2.3 Let F be a �nite set of moves. For p 2 F , let Dp be a (not neessarily bounded)number operator, i.e. an operator of the form e 7! te. If Pp2F DpWp is bounded, thenDpWp is bounded for eah p 2 F .Proof : Take p0 2 F . Assume that jF j > 1. We will show that boundedness of Pp2F DpWpimplies that of Pp2F 0 DpWp for some subset F 0 of F suh that p0 2 F 0 and jF 0j < jF j.Let p00 2 F be an element of F other than p0. By the previous lemma, there is a pair (r; n)suh that either mp0(r; n) = 0 and mp00(r; n) = �1 or mp0(r; n) = �1 and mp00(r; n) = 0. Forz 2 S1, let Uz be the unitary operator on L2(�) given by Uze = z(r;n)e . Now the proof willfollow from the boundedness of the operator Rz2S1 Uz(Pp2F DpWp)U�z dz. 2Proposition 3.2.4 [D;�!(uij)℄ is bounded for all i and j if and only if [D;Wp℄ is bounded forall moves p.Proof : It is enough to show that if [D;�!(uij)℄ is bounded, and if p 2 Pij , then [D;Wp℄ isbounded. Sine �!(uij) =Pp2Pij Tp and eah [D;Tp℄ is of the form DpWp, it follows from theforgoing lemma that eah [D;Tp℄ is bounded. Sine p1� q2n+2 is a bounded quantity whoseinverse is also bounded, it follows that [D;Tp℄ is bounded if and only if [D;Wp℄ is bounded. 2Thus there is a positive onstant  suh that D will have bounded ommutators with allthe �!(uij)'s if and only if k[D;Wp℄k � . 23



Let p = ((it; jt); : : : ; (i0; j0)) be a move. A oordinate (r; n) is said to be a diagonalomponent of p if either ir < jr and s 2 fir; ir + 1; : : : ; jr � 1g, or jr = ir � 1 = s. Onean hek that this would orrespond exatly to the diagonal parts of the move in the diagramrepresenting !. Denote by (; p) the quantity P(j;i) (j; i), the sum being taken over alldiagonal omponents of p.Lemma 3.2.5 [D;Wp℄ is bounded if and only if jd( +mp)� d()j � q�(;p).Proof : Follows easily one one writes down the expression of the ommutator. 2An immediate orollary is the following.Corollary 3.2.6 Let Hi be as in de�nition 3.2.1. Then jd( +Hi) � d()j �  for all  2 �and 1 � i � `+ 1.3.3 The growth graph and sign haraterizationLet us now form the graph G by onneting two verties  and 0 if jd() � d(0)j � .Charaterization of signD will then proeed as outlined in the beginning of subsetion 2.4.De�nition 3.3.1 For i 2 �0, let Ji be the set fj � 1 : i 2 �jg. The set F = f 2 Z�� Z�0 :�(0; i) = (0; i � 1) = (j; i) for all j 2 Jig will be alled the free plane. For a point  2 �,we all the set F = f + 0 2 � : 0 2 Fg the free plane passing through .Note that for  2 F , the oordinates (j; i) are all equal for j 2 Ji.For 1 � i � `, de�ne ji to be 0 if Ji is empty, and to be that element j 2 Ji for whih(ji; i) = minf(j; i) : j 2 Jig.Remark 3.3.2 1. If Ji is nonempty, ji need not be unique.2. If 0 2 F , then minj (j; i) and minj 0(j; i) are attained for the same set of values of j.Then, given a  2 �, elements in F are determined by the oordinates (ji; i), i = 1; : : : ; `.Lemma 3.3.3 Let  2 �, and 0 2 F. Let 00 be the element in F for whih00(j`; `) = 0(j`; `); 00(ji; i) = 0 for all i < `:Then there is a path in F joining 0 to 00 suh that throughout this path, the (j`; `)-oordinateremains onstant.Proof : Apply suessively the moves(j`�1; `� 1)H`�1; ((j`�2; `� 2) + (j`�1; `� 1))H`�2; : : : ;  `�1Xi=1 (ji; i)!H1:As none of these moves touh the (j`; `)-oordinate, it remains onstant throughout the path.224



Lemma 3.3.4 Let  2 �. Then either F+ is �nite or F� is �nite.Proof : Write C() = (j`; `). We will �rst show that C(F+ ) and C(F� ) an not both bein�nite. This is done exatly as in the proof of proposition 2.4.4, using the above sweepoutlemma instead of lemma 2.4.3.Next, suppose C(F� ) � [�K;K℄. If f0(ji; i) : 0 2 Fg is not bounded for some i with1 � i � ` � 1, get a sequene of points n 2 F suh that n(ji; i) < n+1(ji; i) for all n.Starting at eah n, apply the move H`+1 enough (e.g. 2K + 1) times to produe an in�niteladder. 2Let us next de�ne a set that will play the role of a omplementary axis. LetC = f 2 � : Yj2Ji (j; i) = 0 for all ig:It follows from the sweepout argument used in the proof of lemma 3.3.3 that for any 0 2 �,there is a  2 C suh that 0 2 F . But it is not neessary that for two distint elements and 0 in C , F and F0 are disjoint. However, this will not be of serious onern to us.Let imin = minfi 2 �0 : jJij > 1g; jmin = minJimin ; jmax = max Jimin :Thus imin is the minimum i for whih si appears more than one in !, jmin and jmax are the�rst and the last string where it appears. Suppose now that we have removed the horizontalarrows labelled + or � orresponding to all the si's for whih jJij = 1. Note that this wouldin partiular remove all labelled horizontal lines orresponding to si's for i < imin. Supposethe jminth segment of a move is (imin; imin). This will uniquely speify the 0th segment whihwill be of the form (i0; i0) for some i0 � imin. Now de�ne C0() := (jmin; imin) + (0; i0) andC1() = (jmax; imin) for  2 �.Lemma 3.3.5 Let  2 C . De�ne an element 0 2 � by the following presription:0(j; i) = 0 for all j � 1; 0(0; i) = � 0 if i 6= i0,C0() if i = i0.Then there is a path onneting  to 0 suh that C0(�) remains onstant throughout this path.Proof : We will desribe a reursive algorithm to go from  to 0. Observe that sine  2 C ,we have (t;max�t) = 0. To begin with, remove all the horizontal arrows labelled + or �orresponding to the si's for whih jJij = 1, and work with the resulting diagram.Now suppose we are at Æ 2 � whih satis�esÆ(j; i) = 0 for all j > r; Æ(r; i) = 0 for all i > n 2 �r:Step I. 25



Case I. r = jmin and n = imin: then apply the move whose jminth segmentis (imin; imin). Apply this Æ(jmin; imin) times. This will make the (jmin; imin)-oordinate zero and the (0; i0)-oordinate C0(). Now proeed to step II.Case II. r 6= jmin or n 6= imin: Proeed with the following algorithm.Algorithm A(r; n). (min�r � n � max�r)Remove all horizontal arrows labelled + or � from the si's in the strings s�t , s�t�1 ,: : :, s�r+1 as well as from the si's orresponding to i 2 �r, i > n. What this willahieve is the following: any permissible move in the resulting diagram will nothange the oordinates (j; i) where either r + 1 � j � t or j = r and i > n.Apply the negative of the move whose rth segment is (n+ 1;max�r + 1) for Æ(r; n)number of times. This would kill the (r; n)-oordinate, i.e. will make it zero. Nowremove the two horizontal lines labelled `+' and `�' orresponding to sn appearingin the string s�r .Step II.Case I. n > min�r: keep r intat, redue the value of n by 1 and go bak to stepI.Case II. r > 1 and n = min�r: hange n to max�r�1, then redue the value of rby 1, and go bak to step I.Case III. r = 1 and n = min�1: proeed to step III.Step III. All the (j; i)-oordinates for j � 1 are now zero. Next, apply moves ending at i fori > i0 + 1 appropriate number of times starting from the top to kill the oordinates (0; i) fori > i0. Thus we have now reahed an element Æ for whih Æ(j; i) = 0 whenever j � 1; i 2 �j orj = 0; i > i0. Therefore we now need to kill the oordinates (0; i) for i < i0. This is ahievedas follows. Remove the horizontal arrows labelled + or � from all si's. Now apply the movesending at i for i < i0 appropriate number of times starting from the bottom. 2The next diagram and the table that follows it will explain the proof in a simple ase.
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m3
m2m4
m1

t = 4, imin = 2, jmin = 2, jmax = 4, i0 = 1

+++ + + +
��� ���

+ + +� � �+�
N part Z part

! = (s2s3s4)(s3)(s2)(s1)m7m5m6

The table below illustrates the sweepout proedure desribed in the proof of lemma 3.3.5.Starting from a point  2 C , it shows the suessive moves applied and how the resulting el-ement looks like at eah stage. Observe that for any  2 C , one must have (4; 4) = 0 = (1; 1).oordinate (4,2) (4,3) (4,4) (3,3) (2,2) (1,1) (0,1) (0,2) (0,3) (0,4) � � 0 � a 0 b � � �move m1 0 +1 0 0 0 0 0 0 0 �11 = �(4; 3)m1() � 0 0 � a 0 b � � �move m2 +1 0 0 0 0 0 0 0 0 �12 = �(4; 2)m2(1) 0 0 0 � a 0 b � � �move m3 0 0 0 +1 0 0 0 0 �1 +13 = �(3; 3)m3(2) 0 0 0 0 a 0 b � � �move m4 0 0 0 0 �1 0 +1 0 0 04 = (2; 2)m4(3) 0 0 0 0 0 0 a+ b � � �move m5 0 0 0 0 0 0 0 �1 +1 05 = 4(0; 2)m5(4) 0 0 0 0 0 0 a+ b 0 � �move m6 0 0 0 0 0 0 0 0 �1 +16 = 5(0; 3)m6(5) 0 0 0 0 0 0 a+ b 0 0 �move m7 0 0 0 0 0 0 0 0 0 �10 = 6(0; 4)m7(6) 0 0 0 0 0 0 a+ b 0 0 0Lemma 3.3.6 Both C0(C+) and C0(C�) an not be in�nite.Proof : If both are in�nite, there would exist elements n 2 C+ and Æn 2 C� suh thatC0(1) < C0(Æ1) < C0(2) < C0(Æ2) < : : : :27



Let 0n and Æ0n be given by0n(j; i) = 0 for all j � 1; 0n(0; i) = � 0 if i 6= i0,C0(n) if i = i0,Æ0n(j; i) = 0 for all j � 1; Æ0n(0; i) = � 0 if i 6= i0,C0(Æn) if i = i0.Use the earlier lemma to get paths between n and 0n and between Æn and Æ0n. Remove allthe labelled arrows from all the si's. Let mi be the move in the resulting diagram whose 0thsegment is (i; i), and let m =Pi0i=1 mi. Apply this move C0(Æn)� C0(n) times to onnet 0nand Æ0n. Thus there is a path pn onneting n and Æn, and throughout this path, C0(�) liesbetween C0(n) and C0(Æn). Therefore the paths pn are disjoint. 2We will assume from now onward that C0(C�) is �nite. We will also assume that K 2 Nis suh that C0(C�) � [�K;K℄.Lemma 3.3.7 Let C1 be as de�ned prior to lemma 3.3.5, i.e. C1() = (jmax; imin). Thenthe set C1(C�) is �nite.Proof : If not, get n 2 C� suh thatC1(1) < C1(2) < C1(3) < : : : :Now the idea is to get a path pn joining n to some Æn suh that C1(�) remains onstantthroughout pn, and C0(Æn) > K, so that eah Æn 2 C+.Start at n. Apply algorithm A(r; n) forr = t; t� 1; : : : ; jmax + 1; min�r � n � max�r;r = jmax; imin + 1 � n;r < jmax; min�r � n � max�r:Now apply the move mi0 , where mi's are the moves desribed in the proof of the previouslemma, 3K times. 2Again we give a diagram and a table to illustrate the above proof for the ase ! =(s2s3s4)(s3)(s2)(s1).
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t = 4, imin = 2, jmin = 2, jmax = 4, i0 = 1

+++ + + +
��� ���

+ + +� � �+�
N part Z part

! = (s2s3s4)(s3)(s2)(s1)
m1m4m2m3

The next table illustrates the argument in the above proof. Starting from a point  2 C�,it shows the suessive moves applied and how the resulting element looks like at eah stage.oordinate (4,2) (4,3) (4,4) (3,3) (2,2) (1,1) (0,1) (0,2) (0,3) (0,4) a � 0 � � 0 b � � �move m1 0 +1 0 0 0 0 0 0 0 �11 = �(4; 3)m1() a 0 0 � � 0 b � � �move m2 0 0 0 +1 0 0 0 0 �1 +12 = �(3; 3)m2(1) a 0 0 0 � 0 b � � �move m3 0 0 0 0 +1 0 0 �1 +1 03 = �(2; 2)m3(2) a 0 0 0 0 0 b � � �move m4 0 0 0 0 0 0 +1 0 0 04 = 3Km4(3) a 0 0 0 0 0 b+ 3K � � �Assume without loss in generality that K is a bound for C1(C�) also.Lemma 3.3.8 Let C � (j; i) be any oordinate other than C1 � (jmax; imin). Then C(C�) is�nite.Proof : The strategy would be the same as in the proof of the earlier lemma with a slightmodi�ation. If C(C�) is in�nite, we an hoose n 2 C� suh thatC(n) +K + 1 < C(n+1)for every n 2 N. Now onnet every n to an element Æn 2 C+ by a path pn suh that on pn,the C1 oordinate does not vary by more than K. This will ensure that the paths pn are alldisjoint. 29



For getting pn as desribed above, start at n and apply suessively the movesH`+1;H`; : : : ;Himin+1;eah one K + 1 times. This will inrease the C1-oordinate by K + 1. Therefore the endpointof the path will lie in C+. 2Thus it now follows that C� is �nite. This, together with proposition 2.4.4 will give us thefollowing theorem.Theorem 3.3.9 Let D be a Dira operator on L2(�) that diagonalises with respet to theanonial orthonormal basis. Then signD has to be of the form 2P � I or I � 2P where Pis a projetion onto the losed linear span of fe :  2 [ki=1Fig for some �nite olletion1; 2; : : : ; k in �.Proof : The argument is exatly as in theorem 2.4.15. 2We next show that under this restrition, ompatness of the ommutator [sign D;uij ℄, or,equivalently, that of [P; uij ℄'s will imply that sign D is trivial.Let 1; 2; : : : ; k be elements in � and let P be the projetion onto span fe :  2 [iFig.Then for any operator T , we have[P; T ℄e = �PTe if  62 [iFi ,(P � I)Te if  2 [iFi .Now let r = max�t and take T = �!(ur+1;r). ThenT (t; r) = qN ; T (0; r � 1) = S; T (0; r) = S�; (3.3.1)and T (j; i) = I for all other pairs (j; i), exept possibly T (t�1; r�1), whih is S� if t�1 2 Jr�1,and I otherwise. It is easy to hek that for  2 Fi , (t; r) + (0; r) = i(t; r) + i(0; r).Therefore the set f(t; r) + (0; r) :  2 [iFig is bounded. Let n 2 N be suh that this setis ontained in [�n; n℄. Suppose  2 [iFi obey (t; r) = 0. Then it follows from (3.3.1) thatT 2n+1e = e0 , where0(0; r) = (0; r) + 2n+ 1; 0(0; r � 1) = (0; r � 1)� 2n� 1; 0(t; r) = (t; r):It is lear from this that 0 62 [iFi , so that PT 2n+1e = 0. This means [P; T 2n+1℄e = �e0for all  2 [iFi with (t; r) = 0. Sine there are in�nitely many hoies of suh , it followsthat [P; T 2n+1℄ an not be ompat.We thus have the following theorem.Theorem 3.3.10 Let ` > 1. Then there does not exist any Dira operator on L2(�) thatdiagonalises with respet to the anonial orthonormal basis and has nontrivial sign.
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Remark 3.3.11 Let F be a subset of f1; 2; : : : ; `g. De�ne �!;F to be the representationobtained by integrating  ! � �z with respet to those omponents zi of z for whih i 2 F . Ifone looks at the representations �!;F instead of �!, a similar analysis will show that nontrivialspetral triples would exist only in the ase where ! is of the form sk (so that `(!) = 1), andF = fkg. The nontrivial triples in this ase will essentially be those of SUq(2) obtained in [2℄and will orrespond to the `kth opy' of SUq(2) sitting inside SUq(`+ 1) via the map
uij 7! 8>>>>>>><>>>>>>>:
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