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tWe des
ribe a general te
hnique to study Dira
 operators on non
ommutative spa
esunder some additional assumptions. The main idea is to 
apture the 
ompa
t resolvent
ondition in a 
ombinatorial set up. Using this, we then prove that for type A` 
ompa
tquantum groups, if ` > 1 then the L2-spa
e does not have any equivariant Dira
 operatorwith nontrivial sign a
ting on it. As a se
ond illustration of the te
hnique, we prove thatif ` > 1, then for a 
ertain 
lass of representations of the C�-algebra C(SUq(` + 1)), theredoes not exist any Dira
 operator that diagonalises with respe
t to the natural basis of theunderlying Hilbert spa
e and has nontrivial sign.AMS Subje
t Classi�
ation No.: 58B34, 46L87, 19K33Keywords. Spe
tral triples, non
ommutative geometry, quantum group.Contents1 Introdu
tion 11.1 The general s
heme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 The equivariant 
ase 42.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Left multipli
ation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Boundedness of 
ommutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4 Chara
terization of signD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Se
ond illustration 193.1 Irredu
ible representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.2 Boundedness of 
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terization . . . . . . . . . . . . . . . . . . . . 241 Introdu
tionThe purpose of this paper is twofold | one, to present a 
ombinatorial te
hnique of 
har-a
terizing spe
tral triples for a given representation of a C�-algebra, and two, to investigate1



the existen
e of meaningful spe
tral triples for type A quantum groups. A spe
tral triple, onemight re
all, is the starting point in non
ommutative geometry (NCG) where a geometri
 spa
eis des
ribed by a triple (A;H;D), with A being an involutive algebra represented as boundedoperators on a Hilbert spa
e H, and D being a selfadjoint operator with 
ompa
t resolvent andhaving bounded 
ommutators with the algebra elements. This D should be nontrivial in thesense that the asso
iated Kasparov module should give a nontrivial element in K-homology.Groups have always played a very 
ru
ial role in the study of geometry of a spa
e, mainlyas obje
ts that govern the symmetry of the spa
e. One would expe
t the same in NCG also.Moreover, sin
e one now deals with a larger 
lass of spa
es, mainly non
ommutative ones, it isnatural to expe
t that one would require a larger 
lass, Hopf algebras or the quantum groups,to play a similar role. In the 
lassi
al 
ase, groups whi
h govern symmetry are themselves ni
egeometri
 obje
ts. Here we want to look at quantum groups from the same angle. In [1℄, theauthors treated the 
ase of the quantum SU(2) group and 
hara
terized all spe
tral triplesa
ting on its L2-spa
e that are equivariant with respe
t to its natural left (
o)a
tion. This wassubsequently used by Connes ([6℄) to make elaborate 
omputations and illustrate that most ofthe ma
hinery of NCG work very well for SUq(2). One of our obje
tives in this paper is toinvestigate other quantum groups from the same point of view. In parti
ular, we will formu-late the notion of equivarian
e under a (quantum) group a
tion, and systemati
ally look forequivariant spe
tral triples for a large 
lass of 
ompa
t quantum groups.The other main obje
tive is to present a te
hnique that will enable us to do this. The(selfadjoint) operator D in a spe
tral triple 
omes with two restri
tions on it, namely, it has tohave 
ompa
t resolvent, and must have bounded 
ommutators with algebra elements. Variousanalyti
 
onsequen
es of the 
ompa
t resolvent 
ondition (growth properties of the 
ommuta-tors of the algebra elements with the sign of D) have been used in the past by various authors.Here we will take a new approa
h that will help us exploit it from a 
ombinatorial point ofview. The idea is very simple. Given a selfadjoint operator with 
ompa
t resolvent, one 
anasso
iate with it a 
ertain graph in a natural way. This makes it possible to do a detailed
ombinatorial analysis of the growth restri
tions (on the eigenvalues of D) that 
ome from theboundedness of the 
ommutators, and to 
hara
terize the sign of the operator D 
ompletely.In the remaining part of this se
tion, we will outline the above te
hnique. We then use thisgeneral s
heme in the remaining se
tions in two spe
i�
 
ases, both involving type A 
ompa
tquantum groups. In se
tion 2, we take A to be the C�-algebra of 
ontinuous fun
tions onG = SUq(` + 1), the Hilbert spa
e to be L2(G), the L2-spa
e of the haar state for G, whereelements of A a
t by left multipli
ation, and assume D to be equivariant under the naturalleft a
tion of G on A whi
h is implemented on L2(G). We show that for ` > 1, there does notexist any equivariant Dira
 operator with nontrivial sign a
ting on L2(G), whi
h in parti
ularshows that no equivariant spe
tral triple exists on L2(G) with nontrivial K-homology 
lass.This behaviour is very di�erent from the 
ase ` = 1, q 6= 1, whi
h was established in [1℄.In se
tion 3, we deal with a 
ase analogous to the one for SUq(2) treated in [2℄. We takethe `standard representations', whi
h are obtained by integrating 
ertain families of irredu
ible2



representations of the C�-algebra C(SUq(`+1)), and show the nonexisten
e of Dira
 operatorsthat diagonalise ni
ely and has nontrivial sign.1.1 The general s
hemeSuppose H is a Hilbert spa
e, and D is a self-adjoint operator on H with 
ompa
t resolvent.Then D admits a spe
tral resolution P
2� d
P
 , where the d
 's are all distin
t and ea
hP
 is a �nite dimensional proje
tion. Let 
 be a positive real. Let us now de�ne a graphG
 as follows: take the vertex set V to be �. Conne
t two verti
es 
 and 
0 by an edge ifjd
 � d
0 j < 
. Assume now onward that all the d
 's are nonzero. Let V + = f
 2 V : d
 > 0gand V � = f
 2 V : d
 < 0g. This will give us a partition of V .De�nition 1.1.1 Let G = (V;E) be an in�nite graph. A pair (V1; V2) of disjoint subsets of Vis said to admit an in�nite ladder if there are two sequen
es of points 
n 2 V1, Æn 2 V2, anda sequen
e of disjoint paths pn joining 
n to Æn.Lemma 1.1.2 The pair (V +; V �) does not admit any in�nite ladder.Proof : Observe that if there is a path from 
 to Æ and d
 > 0, dÆ < 0, then for some � on thepath, one must have d� 2 [�
; 
℄. Therefore the existen
e of an in�nite ladder would 
ontradi
tthe 
ompa
t resolvent 
ondition. 2De�nition 1.1.3 Let G = (V;E) be an in�nite graph. We 
all it sign determining if thereis a partition of the vertex set that does not admit any in�nite ladder.Thus the previous lemma says that the graph G
 is sign determining.The idea here will be to start from the opposite dire
tion. Suppose A is a C�-algebrarepresented on a Hilbert spa
e, and suppose we want to have an idea about all operators Dthat will make (A;H;D) into a spe
tral triple. Of 
ourse, in this generality, the problem wouldbe intra
table in most 
ases. We will impose some extra 
onditions on this D that will benatural from the 
ontext. For example, if a group or a quantum group has an a
tion on A, wemight demand equivarian
e under that a
tion. This would give some idea about the spe
tralresolution P
2� d
P
 , more spe
i�
ally some idea about how the set � and the proje
tionsP
 look like. In other words, this would provide us with a diagonalising basis for D. Notethat sin
e D is known to be self-adjoint with dis
rete spe
trum, there always exists su
h abasis. Next we 
onstru
t a family of graphs G
 depending on a positive real parameter 
 byde
iding to join two points 
 and 
0 in the vertex set V := � if jd
 � d
0 j < 
. Sin
e this
omes from D, the graph must be sign-determining. Of 
ourse, for a given 
, the graph G
 mayhave no edges, or too few edges (if the singular values of D happen to grow too fast), in whi
h
ase, the statement that G
 is sign-determining will not provide us with anything worthwhile.Fortunately, the operators we are interested in are meant to be the Dira
 operators of some3




ommutative/non
ommutative manifold. Therefore the singular values of D will grow at therate of O(n1=d) for some d � 1. So one 
an 
hoose a large enough 
 and work with the graphG
. We 
all this the growth graph for the operator D. Now one looks at the a
tions of theelements from A on H and try and see what the boundedness of the 
ommutators [D; a℄ (fora 2 A) tell us. These 
onditions will give some growth restri
tions on the quantities d
 , whi
h,in turn, will give some information about the set of edges in the graph. Using this information,we then 
hara
terize those partitions of the vertex set that do not admit any in�nite ladder.2 The equivariant 
aseSuppose G is a 
ompa
t group, quantum or 
lassi
al, and A is a unital C�-algebra. Assumethat G has an a
tion on A given by � : A ! A 
 C(G), so that (id 
 �)� = (� 
 id)� , �being the 
oprodu
t. In other words, we have a C�-dynami
al system (A; G; �). Our goal isto study spe
tral triples for A equivariant under this a
tion. Let us �rst say what we mean by`equivariant' here.A 
ovariant representation (�; u) of (A; G; �) 
onsists of a unital *-representation � : A !L(H), a unitary representation u of G on H, i.e. a unitary element of the multiplier algebraM(K(H)
C(G)) su
h that they obey the 
ondition (�
 id)�(a) = u(�(a)
 I)u� for all a 2 A.De�nition 2.0.1 Suppose (A; G; �) is a C�-dynami
al system. An operator D a
ting on aHilbert spa
e H is said to be equivariant with respe
t to a 
ovariant representation (�; u) ofthe system if D 
 I 
ommutes with u.Sin
e the operator D is self-adjoint with 
ompa
t resolvent, it will admit a spe
tral resolu-tion P� d�P�, where the d�'s are distin
t and ea
h P� is �nite dimensional. Also, D has beenassumed to be equivariant | so that the P�'s 
ommute with u (to be pre
ise, the (P�
I)'s do),i.e. u keeps ea
h P�H invariant. As G is 
ompa
t, ea
h P�H will de
ompose further as ��P��Hsu
h that the restri
tion of u to ea
h P�� is irredu
ible. In other words, one 
an now write Din the form P
2� d
P
 for some index set � and a family of �nite dimensional proje
tions P
su
h that ea
h P
 
ommutes with u and the restri
tion of u to ea
h P
 is irredu
ible.In this se
tion, we will deal with the 
ase G = SUq(` + 1), A = C(G), � is the naturalleft a
tion 
oming from the 
oprodu
t, H is L2(G), � is the representation of A on H by leftmultipli
ation, and u is the left regular representation. Stru
ture of the regular representationof a 
ompa
t (quantum) group along with the remarks made above tell us the following. Let �be the set of unitary irredu
ible representation-types for G. Then H de
omposes as ��2�H�,where the restri
tion of u to H� is equivalent to dim� 
opies of the irredu
ible �, and also thatD respe
ts this de
omposition. Further, restri
tion of D to H� is of the form P� d��P��, u
ommutes with ea
h of these P��'s, and the restri
tion of u to P��H is equivalent to �. Let N�be any set with jN�j = dim�. One 
an then 
hoose an orthonormal basis fe�ij : i; j 2 N�g su
hthat the spa
es P��H are pre
isely span fe�ij : j 2 N�g for distin
t values of i 2 N�. Sin
e D is4



of the form P�P� d��P��, in this system of bases, D will look like e�ij 7! d(�; i)e�ij . In whatfollows, we will make a spe
ial 
hoi
e of N�, whi
h will make the 
ombinatorial analysis very
onvenient.2.1 PreliminariesLet g be a 
omplex simple Lie algebra of rank `. let ((aij)) be the asso
iated Cartan matrix,q be a real number lying in the interval (0; 1) and let qi = q(�i;�i)=2, where �i's are the simpleroots of g. Then the quantised universal envelopping algebra (QUEA) Uq(g) is the algebragenerated by Ei, Fi, Ki and K�1i , i = 1; : : : ; `, satisfying the following relationsKiKj = KjKi; KiK�1i = K�1i Ki = 1;KiEjK�1i = q 12aiji Ej ; KiFjK�1i = q� 12aiji Fj ;EiFj � FjEi = ÆijK2i �K�2iqi � q�1i ;1�aijXr=0 (�1)r�1� aijr �qiE1�aij�ri EjEri = 0 8 i 6= j;1�aijXr=0 (�1)r�1� aijr �qiF 1�aij�ri FjF ri = 0 8 i 6= j;where �nr�q denote the q-binomial 
oeÆ
ients. Hopf *-stru
ture 
omes from the following maps:�(Ki) = Ki 
Ki; �(K�1i ) = K�1i 
K�1i ;�(Ei) = Ei 
Ki +K�1i 
Ei; �(Fi) = Fi 
Ki +K�1i 
 Fi;�(Ki) = 1; �(Ei) = 0 = �(Fi);S((Ki) = K�1i ; S(Ei) = �qiEi; S(Fi) = �q�1i Fi;K�i = Ki; E�i = �q�1i Fi; F �i = �qiEi:In the type A 
ase, the asso
iated Cartan matrix is given byaij = 8<: 2 if i = j,�1 if i = j � 1,0 otherwise,and (�i; �i) = 2 so that qi = q for all i. The QUEA in this 
ase is denoted by uq(su(`+ 1)).Take the 
olle
tion of matrix entries of all �nite-dimensional unitarizable uq(su(` + 1))-modules. The algebra generated by these gets a natural Hopf*-stru
ture as the dual of uq(su(`+1)). One 
an also put a natural C�-norm on this. Upon 
ompletion with respe
t to this norm,one gets a unital C�-algebra that plays the role of the algebra of 
ontinuous fun
tions onSUq(` + 1). For a detailed a

ount of this, refer to 
hapter 3, [9℄. In [11℄, Woronowi
z gave a5



di�erent des
ription of this C�-algebra. whi
h was later shown by Rosso ([10℄) to be equivalentto the earlier one.For remainder of this arti
le, we will take G to be SUq(`+1) and A will be the C�-algebraof 
ontinuous fun
tions on G.Gelfand-Tsetlin tableaux. Irredu
ible unitary representations of the group SUq(`+1) areindexed by Young tableaux � = (�1; : : : ; �`+1), where �i's are nonnegative integers, �1 � �2 �: : : � �`+1 (Theorem 1.5, [11℄). Write H� for the Hilbert spa
e where the irredu
ible � a
ts.There are various ways of indexing the basis elements of H�. The one we will use is due toGelfand and Tsetlin. A

ording to their pres
ription, basis elements for H� are parametrizedby arrays of the form r = 0BBBBB� r11 r12 � � � r1;` r1;`+1r21 r22 � � � r2;`� � �r`;1 r`;2r`+1;1
1CCCCCA ;where rij's are integers satisfying r1j = �j for j = 1; : : : ; ` + 1, rij � ri+1;j � ri;j+1 � 0 forall i, j. Su
h arrays are known as Gelfand-Tsetlin tableaux, to be abreviated as GT tableauxfor the rest of this se
tion. For a GT tableaux r, the symbol ri� will denote its ith row. Itis well-known that two representations indexed respe
tively by � and �0 are equivalent if andonly if �j � �0j is independent of j ([11℄). Thus one gets an equivalen
e relation on the set ofYoung tableaux f� = (�1; : : : ; �`+1) : �1 � �2 � : : : � �`+1; �j 2 Ng. This, in turn, indu
es anequivalen
e relation on the set of all GT tableaux � = fr : rij 2 N; rij � ri+1;j � ri;j+1g: onesays r and s are equivalent if rij � sij is independent of i and j. By � we will mean the aboveset modulo this equivalen
e.We will denote by u� the irredu
ible unitary indexed by �, fe�r : r1� = �g will denote anorthonormal basis for H� and u�rs will stand for the matrix entries of u� in this basis. Thesymbol 11 will denote the Young tableaux (1; 0; : : : ; 0). We will often omit the symbol 11 andjust write u in order to denote u11. Noti
e that any GT tableaux r with �rst row 11 must be,for some i 2 f1; 2; : : : ; `+ 1g, of the form (rab), whererab = � 1 if 1 � a � i and b = 1,0 otherwise.Thus su
h a GT tableaux is uniquely determined by the integer i. We will often write just ifor this GT tableaux r. Thus for example, a typi
al matrix entry of u11 will be written simplyas uij.Let r = (rab) be a GT tableaux. Let Hab(r) := ra+1;b � ra;b+1 and Vab(r) := rab � ra+1;b.
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An element r of � is 
ompletely spe
i�ed by the following di�eren
esD(r) = 0BBB� V11(r) H11(r) H12(r) � � � H1;`�1(r) H1;`(r)V21(r) H21(r) H22(r) � � � H2;`�1(r)� � �V`;1(r) H`;1(r) 1CCCA :The di�eren
es satisfy the following inequalitiesbXk=0Ha�k;k+1(r) � Va+1;1(r) + bXk=0Ha�k+1;k+1(r); 1 � a � `; 0 � b � a� 1: (2.1.1)Conversely, if one has an array of the form0BBB� V11 H11 H12 � � � H1;`�1 H1;`V21 H21 H22 � � � H2;`�1� � �V`;1 H`;1 1CCCA ;where Vij 's and Hij's are in N and obey the inequalities (2.1.1), then the above array is of theform D(r) for some GT tableaux r. Thus the quantities Va1 and Hab give a 
oordinate systemfor elements in �. The following diagram explains this new 
oordinate system. The hollow
ir
les stand for the rij's. The entries are de
reasing along the dire
tion of the arrows, andthe Vij 's and theHij's are the di�eren
e between the two endpoints of the 
orresponding arrows.j //Æ //V11
��

Æ // Æ // Æi
��

Æ //V21
��

H11 ??
����������� Æ //

H12 ??
����������� Æ H13 ??

�����������Æ //V31
��

H21 ??����������� Æ H22 ??�����������Æ H31 ??�����������Clebs
h-Gordon 
oeÆ
ients. Look at the representation u11
u� a
ting on H11
H�. Therepresentation de
omposes as a dire
t sum ��u�, i.e. one has a 
orresponding de
omposition��H� of H11 
 H�. Thus one has two orthonormal bases fe�s g and fe11i 
 e�rg. The Clebs
h-Gordon 
oeÆ
ient Cq(11; �; �; i; r; s) is de�ned to be the inner produ
t he�s ; e11i 
 e�r i. Sin
e 11, �7



and � are just the �rst rows of i, r and s respe
tively, we will often denote the above quantityjust by Cq(i; r; s).Next, we will 
ompute the quantities Cq(i; r; s). We will use the 
al
ulations given in ([8℄,pp. 220), keeping in mind that for our 
ase (i.e. for SUq(`+ 1)), the top right entry of the GTtableaux is zero.Let M = (m1;m2; : : : ;mi) 2 Ni be su
h that 1 � mj � ` + 2 � j. Denote by M(r) thetableaux s de�ned by sjk = � rjk + 1 if k = mj , 1 � j � i,rjk otherwise. (2.1.2)With this notation, observe now that Cq(i; r; s) will be zero unless s is M(r) for some M 2 Ni .(One has to keep in mind though that not all tableaux of the formM(r) is a valid GT tableaux)From ([8℄, pp. 220), we haveCq(i; r;M(r)) = i�1Ya=1* (1;0) ra�(1;0) ra+1� ����� ra� + emara+1� + ema+1 +�* (1;0) ri�(0;0) ri+1� ����� ri� + emiri+1� + ;(2.1.3)where ek stands for a ve
tor (in the appropriate spa
e) whose kth 
oordinate is 1 and the restare all zero, and* (1;0) ra�(1;0) ra+1� ����� ra� + ejra+1� + ek +2 = q�raj+ra+1;k�k+j � `+2�aYi=1i6=j [ra;i � ra+1;k � i+ k℄q[ra;i � ra;j � i+ j℄q� `+1�aYi=1i6=k [ra+1;i � ra;j � i+ j � 1℄q[ra+1;i � ra+1;k � i+ k � 1℄q ; (2.1.4)* (1;0) ra�(0;0) ra+1� ����� ra� + ejra+1� +2 = q j+1+P`+1�ai=1 ra+1;i�P`+2�ai=1i6=j ra;i!�0�Q`+1�ai=1 [ra+1;i � raj � i+ j � 1℄qQ`+2�ai=1i6=j [ra;i � raj � i+ j℄q 1A ; (2.1.5)where for an integer n, [n℄q denotes the q-number (qn � q�n)=(q � q�1). After some lengthybut straightforward 
omputations, we get the following two equations:�����* (1;0) ra�(1;0) ra+1� ����� ra� + ejra+1� + ek +����� = A0qA; (2.1.6)�����* (1;0) ra�(0;0) ra+1� ����� ra� + ejra+1� +����� = B0qB; (2.1.7)where A = 8<: Xj^k<b<j_k(ra+1;b � ra;b) + (ra+1;j^k � ra;j_k) if j 6= k,0 if j = k.8



= Xj^k�b<j_k(ra+1;b � ra;b+1) + 2 Xk<b<j(ra;b � ra+1;b)= Xj^k�b<j_kHab(r) + 2 Xk<b<j Vab(r): (2.1.8)B = Xj�b<`+2�aHab(r); (2.1.9)and A0 and B0 both lie between two positive 
onstants independent of i, r and M .Combining these, one gets Cq(i; r;M(r)) = 
onst � qC(r;M); (2.1.10)whereC(r;M) = i�1Xa=10� Xma^ma+1�b<ma_ma+1Hab(r) + 2 Xma+1<b<ma Vab(r)1A+ Xmi�b<`+2�iHib(r):(2.1.11)2.2 Left multipli
ation operatorsThe matrix entries u�rs form a 
omplete orthogonal set of ve
tors in L2(G). Write e�rs forku�rsk�1u�rs. Then the e�rs's form a 
omplete orthonormal basis for L2(G). Let � denote therepresentation of A on L2(G) by left multipli
ations. We will now derive an expression for�(uij)e�rs.From the de�nition of matrix entries and that of the CG 
oeÆ
ients, one getsu�e(�; t) =Xs u�ste(�; s); (2.2.1)e(�;n) =Xj;s Cq(j; s;n)e(11; j)
 e(�; s): (2.2.2)Apply u
 u� on both sides and note that u
 u� a
ts on e(�;n) as u�:Xm u�mne(�;m) =Xj;s Xi;r Cq(j; s;n)uiju�rse(11; i)
 e(�; r): (2.2.3)Next, use (2.2.2) to expand e(�;m) on the left hand side to getXi;r;mu�mnCq(i; r;m)e(11; i)
 e(�; r) =Xj;s Xi;r Cq(j; s;n)uiju�rse(11; i)
 e(�; r): (2.2.4)Equating 
oeÆ
ients, one getsXm Cq(i; r;m)u�mn =Xj;s Cq(j; s;n)uiju�rs: (2.2.5)Now using orthogonality of the matrix ((Cq(11; �; �; j; s;n)))(�;n);(j;s) , we obtainuiju�rs = X�;m;nCq(i; r;m)Cq(j; s;n)u�mn: (2.2.6)9



From ([8℄, pp. 441), one has ku�rsk = d� 12� q�(�;�(r)), where � is the half-sum of positive roots,�(r) is the weight su
h that e(�; r) belongs to the 
orresponding weight spa
e (of V�), andd� = Pr:�(r)2P (�) q2(�;�(r)), P (�) being the set of weights 
orresponding to the weight spa
ede
omposition of V�.Therefore�(uij)e�rs = X�;m;nCq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)d 12� d� 12� q(�;�(r))�(�;�(m))e�mn: (2.2.7)Write k(r;m) = d 12�d� 12� q(�;�(r))�(�;�(m)): (2.2.8)Lemma 2.2.1 There exist 
onstants K2 > K1 > 0 su
h that K1 < k(r;M(r)) < K2 for all r.Proof : Observe that ([3℄, pp-365)d� = Y1�i�j�`+1 (�i � �j + j � i)q(j � i)q :Therefore one getsd�d�+ek = Yj:k<j (�k � �j + j � k)q(�k � �j + j � k + 1)q � Yi:i<k (�i � �k + k � i)q(�i � �k + k � i� 1)q :There are ` terms in the above produ
t, and ea
h term lies between two positive quantitiesthat depend just on q. Also one 
an 
ompute the quantity (�; �(r))� (�; �(m)) dire
tly, and itturns out to be bounded. Therefore the result follows. 22.3 Boundedness of 
ommutatorsLet D be an equivariant Dira
 operator a
ting on L2(G). It follows from the dis
ussion in thebeginning of this se
tion that D must be of the forme�rs 7! d(r)e�rs; (2.3.1)(Here, for a Young tableaux �, N� is the set of all GT tableaux, modulo the appropriateequivalen
e relation, with top row �). Then we have[D;�(uij)℄e�rs =X(d(m)� d(r))Cq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)k(r;m)e�mn: (2.3.2)Therefore the 
ondition for boundedness of 
ommutators reads as follows:j(d(m)� d(r))Cq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)k(r;m)j < 
; (2.3.3)where 
 is independent of i, j, �, �, r, s, m and n.10



Using lemma 2.2.1, we getj(d(m)� d(r))Cq(11; �; �; i; r;m)Cq(11; �; �; j; s;n)j < 
: (2.3.4)Choosing j, s and n suitably, one 
an ensure that (2.3.4) implies the following:j(d(m)� d(r))Cq(11; �; �; i; r;m)j < 
: (2.3.5)It is not too diÆ
ult to show that this 
ondition is also suÆ
ient for the boundedness of the
ommutators [D;uij ℄.From (2.1.10), one gets jd(r) � d(M(r))j � 
q�C(r;M): (2.3.6)Let us next form a graph G
 as des
ribed in se
tion 1 by 
onne
ting two elements r and r0if jd(r)� d(r0)j < 
. We will assume this graph to be sign determining. In other words, we willassume the existen
e of a partition (�+;��) that does not admit any in�nite ladder. For anysubset F of �, we will denote by F� the sets F \ ��. Our next job is to study this graph inmore detail using the boundedness 
onditions above. Let us start with a few de�nitions andnotations. By an elementary move, we will mean a map M from some subset of � to �su
h that 
 and M(
) are 
onne
ted by an edge. A move will mean a 
omposition of a �nitenumber of elementary moves. If M1 and M2 are two moves, M1M2 and M2M1 will in generalbe di�erent. For a family of moves M1;M2; : : : ;Mr, we will denote byrXj=1! Mj and rXj=1 Mjthe movesM1M2 : : :Mr andMr : : : M2M1 respe
tively. For a nonnegative integer n and a moveM , we will denote by nM the move obtained by applying M su

essively n times. Of spe
ialinterest to us will be moves of the form M : r 7! s, where s is given by (2.1.2) We will use theve
tor (m1; : : : ;mk) to denote M . The following families of moves will be parti
ularly usefulto us: Mik = (i; i� 1; : : : ; i� k + 1) 2 Nk ; Nik = (i+ 1; : : : ; i+ 1| {z }k ; i; i; : : : ; i) 2 N`+2�i :For des
ribing a path in our graph, we will often use phrases like `apply the move Pkj=1! Mj togo from r to s'. This will refer to the path given by�r; Mk(r);Mk�1Mk(r); : : : ; M1M2 : : :Mk(r) = s�:We will need the following 
onsequen
e of (2.3.6) subsequently.Lemma 2.3.1 Let Njk and Mik be the moves de�ned above. Then1. jd(r) � d(Nj0(r))j � 
,2. jd(r)� d(Mik(r))j � 
q�Pk�1a=1Ha;i+1�a�Pb̀=iHk;b+k�1 . In parti
ular, if Ha;i+1�a(r) = 0 for1 � a � k � 1 and Hk;b+k�1(r) = 0 for i � b � `, then jd(r)� d(Mik(r))j � 
.11



2.4 Chara
terization of signDIn this se
tion, we will use lemma 2.3.1 to prove a 
hara
terization theorem for the sign of theoperator D. The main ingredients in the proof are the �niteness of exa
tly one of the sets F+and F� for appropriately 
hosen subsets F of �. General form of the argument for provingthis will be as follows: for a 
arefully 
hosen 
oordinate C (in the present 
ase, C would beone of the Va1's or Hab's), a sweepout argument will show that any 
 
an be 
onne
ted by apath, throughout whi
h C(�) remains 
onstant, to another point 
0 for whi
h C(
0) = C(
)and all other 
oordinates of 
0 are zero. This would help 
onne
t any two points 
 and Æby a path su
h that C(�) would lie between C(
) and C(Æ) on the path. This would �nallyresult in the �niteness of at least one (and hen
e exa
tly one) of C(F+) and C(F�). Next,assuming one of these, say C(F�) is �nite, one shows that for any other 
oordinate C 0, C 0(F�)is also �nite. This is done as follows. If C 0(F�) is in�nite, one 
hooses elements yn 2 F� withC 0(yn) < C 0(yn+1) for all n. Now starting at ea
h yn, produ
e paths keeping the C 0-
oordinate
onstant and taking the C-
oordinate above the plane C(�) = K, where C(F�) � [�K;K℄.This will produ
e an in�nite ladder. The argument is explained in the following diagram.C
K

all other
oordinates
C0y2y1x1 y3x3

x2

Our next job is to de�ne an important 
lass of subsets of �. Observe that lemma 2.3.1 tellsus that for any r and any j, the points r and Nj0(r) are 
onne
ted by an edge, whenever Nj0(r)is a GT tableaux. Let r be an element of �. De�ne the free plane passing through r to bethe minimal subset of � that 
ontains r and is 
losed under appli
ation of the moves Nj0. Wewill denote this set by Fr. The following is an easy 
onsequen
e of this de�nition.Lemma 2.4.1 Let r and s be two GT tableaux. Then s 2 Fr if and only if Va;1(r) = Va;1(s)for all a and for ea
h b, the di�eren
e Ha;b(r)�Ha;b(s) is independent of a.12



Corollary 2.4.2 Let r; s 2 �. Then either Fr = Fs or Fr \Fs = �.Let r 2 �. For 1 � j � ` + 1, de�ne aj to be an integer su
h that Haj ;j(r) = miniHij(r).Note three things here:1. de�nition of aj depends on r,2. for a given j and given r, aj need not be unique, and3. if s 2 Fr, then for ea
h j, the set of k's for whi
h Hkj(s) = miniHij(s) is same as the setof all k's for whi
h Hkj(r) = miniHij(r). Therefore, the aj 's 
an be 
hosen in a manner su
hthat they remain the same for all elements lying on a given free plane.Lemma 2.4.3 Let s 2 Fr. Let s0 be another GT tableaux given byVa1(s0) = Va1(s) and Ha1(s0) = Ha1(s) for all a; Hab;b(s0) = 0 for all b > 1;where the aj's are as de�ned above. Then there is a path in Fr from s to s0 su
h that H11(�)remains 
onstant throughout this path.Proof : Apply the move P b̀=2 �Pbj=2Haj ;j(s)�Nb+1;0. 2The following diagram will help explain the steps involved in the above proof in the 
asewhere r is the 
onstant tableaux.� � � � �0 a b 
 d� � � �0 a b 
� � �0 a b� �0 a�
bN30 //

� � � � �0 a 0 b+ 
 d� � � �0 a 0 b+ 
� � �0 a 0� �0 a�
(b+
)N40

//

� � � � �0 a 0 0 b+ 
+ d� � � �0 a 0 0� � �0 a 0� �0 a�(b+
+d)N50//

� � � � �0 a 0 0 0� � � �0 a 0 0� � �0 a 0� �0 a�A dotted line joining two 
ir
led dots signi�es a move that in
reases the rij's lying on thedotted line by one. Where there is one 
ir
led dot and no dotted line, it means one applies themove that raises the rij 
orresponding to the 
ir
led dot by one.Proposition 2.4.4 Let r be a GT tableaux. Then either F+r is �nite or F�r is �nite.13



Proof : Suppose, if possible, both H11(F+r ) and H11(F�r ) are in�nite. Then there exist twosequen
es of elements rn and sn with rn 2 F+r and sn 2 F�r , su
h thatH11(r1) < H11(s1) < H11(r2) < H11(s2) < � � � :Now starting from rn, employ the forgoing lemma to rea
h a point r0n 2 Fr for whi
hVa1(r0n) = Va1(rn) and Ha1(r0n) = Ha1(rn) for all a; Hab;b(r0n) = 0 for all b > 1:Similarly, start at sn and go to a point s0n 2Fr for whi
hVa1(s0n) = Va1(sn) and Ha1(s0n) = Ha1(sn) for all a; Hab;b(s0n) = 0 for all b > 1:Now use the move N10 to get to s0n from r0n. The paths thus 
onstru
ted are all disjoint, be
ausefor the path from rn to sn, the H11 
oordinate lies between H11(rn) and H11(sn). This means(F+r ;F�r ) admits an in�nite ladder. So one of the sets H11(F+r ) and H11(F�r ) must be �nite.Let us assume that H11(F�r ) is �nite.Let us next show that for any b > 1, Hab(F�r ) is �nite. Let K be an integer su
h thatH11(s) < K for all s 2 F�r . If Hab(F�r ) was in�nite, there would exist elements rn 2 F�r su
hthat Hab(r1) < Hab(r2) < � � � :Now start at rn and employ the move N10 su

essively K times to rea
h a point in F+r =FrnF�r . These paths will all be disjoint, as throughout the path, Hab remains �xed.Sin
e the 
oordinates (H11;H12; : : : ;H1;`) 
ompletely spe
ify a point in Fr, it follows thatF�r is �nite. 2Next we need a set that 
an be used for a proper indexing of the free planes. Su
h a setwill be 
alled a 
omplementary axis.De�nition 2.4.5 A subset C of � is 
alled a 
omplementary axis if1. [r2CFr = �,2. if r; s 2 C , and r 6= s, then Fr and Fs are disjoint.Let us next give a 
hoi
e of a 
omplementary axis.Lemma 2.4.6 De�ne C = fr 2 � : �`+1�ba=1 Hab(r) = 0 for 1 � b � `g:The set C de�ned above is a 
omplementary axis.Proof : Let s 2 �. A sweepout argument almost identi
al to that used in lemma 2.4.3 (appli
a-tion of the move P b̀=1 �Pbj=1Haj ;j(s)�Nb+1;0 ) will 
onne
t s to another element s0 for whi
h14



Hab;b(s0) = 0 for 1 � b � ` by a path that lies entirely on Fs. Clearly, s0 2 C . Sin
e s0 2 Fs,by 
orollary 2.4.2, s 2 Fs0 .It remains to show that if r and s are two distin
t elements of C , then s 62 Fr. Sin
e r 6= s,there exist two integers a and b, 1 � b � ` and 1 � a � ` + 2� b, su
h that Hab(r) 6= Hab(s).Observe that H1`(�) must be zero for both, as they are members of C . So b 
an not be `here. Next we will produ
e two integers i and j su
h that the di�eren
es Hib(r) �Hib(s) andHjb(r)�Hjb(s) are distin
t. If there is an integer k for whi
h Hkb(r) = Hkb(s) = 0, then takei = a, j = k. If not, there would exist two integers i and j su
h that Hib(r) = 0, Hib(s) > 0and Hjb(r) > 0, Hjb(s) = 0. Take these i and j. Sin
e Hib(r)�Hib(s) and Hjb(r)�Hjb(s) aredistin
t, by lemma 2.4.1, r and s 
an not lie on the same free plane. 2Lemma 2.4.7 Let r be a GT tableaux. Let s be the GT tableaux de�ned by the pres
riptionVa1(s) = Va1(r) for all a; Hab(s) = Hab(r) for all a � 2; for all b; H1;b(s) = 0 for all b:Then there is a path from r to s su
h that Va1(�) remains 
onstant throughout the path.Proof : Apply the move X̀b=1! H1;b(r)Mb+1;1. 2The above lemma is a
tually the �rst step in the following slightly more general sweepoutalgorithm.Lemma 2.4.8 Let r be a GT tableaux. Let s be the GT tableaux de�ned by the pres
riptionV11(s) = V11(r); Va1(s) = 0 for all a > 1; Hab(s) = 0 for all a; b:Then there is a path from r to s su
h that V11(�) remains 
onstant throughout the path.Proof : Apply su

essively the movesX̀b=1! H1;b(r)Mb+1;1; `�1Xb=1! H2;b(r)Mb+2;2; : : : ; H`;1(r)M`+1;`;followed by V21(r)M33; (V21(r) + V31(r))M44; : : : ;  X̀a=2 Va1(r)!M`+1;`+1: (2.4.1)2The following diagram will help explain the pro
edure des
ribed above in a simple 
ase.�? � � ��? ? � ? � ?�? ? � ?� ? M41 //

�? � � ��? ? � ? � 0�? ? � ?� ? M31 //

�? � � ��? ? � 0 � 0�? ? � ?� ? M21 //

�? � � ��? 0 � 0 � 0�? ? � ?� ?15



M42 //

�? � � ��? 0 � 0 � 0�? ? � 0� ? M32 //

�? � � ��? 0 � 0 � 0�? 0 � 0� ? M43 //

�? � � ��? 0 � 0 � 0�? 0 � 0� 0M33 //

�? � � ��0 0 � 0 � 0�? 0 � 0� 0 M44 //

�? � � ��0 0 � 0 � 0�0 0 � 0� 0Corollary 2.4.9 jd(r)j = O(r11).Proof : If one employs the sequen
e of movesV11(r)M22; (V11(r) + V21(r))M33; : : : ;  X̀a=1 Va1(r)!M`+1;`+1instead of the sequen
e given in (2.4.1), one would rea
h the 
onstant (or zero) tableaux. Totallength of this path from r to the zero tableaux isX̀a=1 `+1�aXb=1 Hab(r) + X̀b=1 bXa=1 Va1(r);whi
h 
an easily be shown to be bounded by `r11. 2Remark 2.4.10 Let D be the following operator:D : e�r;s 7! r11e�r;s (2.4.2)Then (A;H;D) is an equivariant `(` + 2)-summable odd spe
tral triple. Moreover, if D isany equivariant odd Dira
 Operator a
ting on the L2 spa
e of SUq(` + 1), then D 
annotbe p-summable for p < `(` + 2). However, this D has trivial sign, and 
onsequently trivialK-homology 
lass.Both the statements above follow from 
orollary 2.4.9 and the following two elementaryfa
ts:1. The number of Young tableaux with ` or less rows and with n 
ells in the top row is O(n`�1).2. the dimension of an irredu
ible representation 
orresponding to a Young tableaux with ` orless rows and n 
ells in the top row is O(n 12 `(`+1)).Lemma 2.4.11 The sets V11(�+) and V11(��) 
an not both be in�nite.16



Proof : If both the sets are in�nite, then one 
an 
hoose two sequen
es of points rn and sn su
hthat rn 2 �+, sn 2 �� andV11(r1) < V11(s1) < V11(r2) < V11(s2) < : : : :Start at rn and use lemma 2.4.8 above to rea
h a point r0n for whi
h V11(r0n) = V11(rn) and allother 
oordinates are zero through a path where the V11 
oordinate remains 
onstant. Similarly,from sn, go to a point s0n for whi
h V11(s0n) = V11(sn) and all other 
oordinates are zero. Nowapply the move (V11(sn) � V11(rn))M11 to go from r0n to s0n. This will give us a path pn fromrn to sn on whi
h V11(�) remains between V11(rn) and V11(sn). Therefore all the paths pn aredisjoint. Thus (�+;��) admits an in�nite ladder. So at least one of V11(�+) and V11(��) mustbe �nite. 2Lemma 2.4.12 Let C be any of the 
oordinates Va1 or Hab where a > 1. If V11(��) is �nite,then C(��) is also �nite.Proof : Assume K is a positive integer su
h that V11(��) � [0;K℄. Now suppose, if possible,that C(��) is in�nite. Let rn be a sequen
e of points in �� su
h thatC(r1) < C(r2) < : : : :Start at rn, and use lemma 2.4.7 to rea
h a point r0n and then applyM11 for K+1 times to getto a point sn for whi
h V11(sn) > K. Throughout this path, C(�) is 
onstant, so that the pathsare all disjoint. Sin
e V11(sn) > K, we have sn 2 �+. Thus this gives us an in�nite ladder for(�+;��), whi
h is impossible. 2Lemma 2.4.13 Suppose H1`(F ) is bounded. If V11(��) is �nite, then F� is �nite.Proof : The previous lemma, along with the assumption here tells us that the sets Va1(F�) andHa;`+1�a(F�) are all bounded for 1 � a � `. Sin
e for an r 2 V , one has r11 =Pà=1 Va1(r) +Pà=1Ha;`+1�a(r), the set fr11 : r 2 F�g is bounded. It follows that F� is �nite. 2Corollary 2.4.14 If V11(��) is �nite, then C� is �nite.Proof : Follows from the observation that H1`(r) = 0 for all r 2 C . 2Theorem 2.4.15 Let D be an equivariant Dira
 operator on L2(SUq(` + 1)). Then signDmust be of the form 2P � I or I � 2P where P is, up to a 
ompa
t perturbation, the proje
tiononto the 
losed span of fe�r;s : r 2 Fri for some ig, with r1; : : : ; rk being a �nite 
olle
tion ofGT-tableaux.Proof : Let C 0 = fr 2 C : F+r 6= � 6= F�r g. Let us �rst show that C 0 is �nite, i.e. ex
ept for�nitely many r's in C , one has either Fr � �+ or Fr � ��. It follows from the argument used17



in the proof of lemma 2.4.6 that any two points on a free plane 
an be 
onne
ted by a pathlying entirely on the plane. If C 0 is in�nite, one 
an easily produ
e an in�nite ladder using thisfa
t.Next, observe that1. either Fr � �+ or Fr � �� for all r 2 C nC 0,2. if V11(��) is �nite, then C� is �nite, and3. C \Fr = frg.It is now 
lear from the above observations that if V11(��) is �nite, then ex
ept possibly for�nitely many r's in C nC 0, one has Fr � �+.Finally, employing an appropriate 
ompa
t perturbation, one 
an ensure that for ea
hr 2 C 0, either Fr � �+ or Fr � ��. Hen
e the result. 2As a 
onsequen
e of this sign 
hara
terization, we now get the following theorem.Theorem 2.4.16 Let ` > 1. Then there does not exist any equivariant Dira
 operator onL2(G) with nontrivial sign.Proof : We will show that if P is as in the earlier theorem, then the 
ommutators [P; �(uij)℄
an not all be 
ompa
t.Let us �rst prove it in the 
ase when P is the proje
tion onto the span of fers : r 2 F0g,where F0 is the free plane passing through the 
onstant tableaux. We have[P; �(uij)℄ers = �P�(uij)ers if r 62 F0,(P � I)�(uij)ers if r 2 F0 :Re
all (subse
tion 2.2) the expression for �(uij)ers:�(uij)ers = XR2Ni;S2NjR(1)=S(1) Cq(i; r; R(r))Cq(j; s; S(s))k(r; R(r))eR(r)S(s) :Hen
e for r 2 F0,[P; �(uij)℄ers = (P � I)�(uij)ers= � XR2Ni;S2NjR(1)=S(1);R6=Ni0 Cq(i; r; R(r))Cq(j; s; S(s))k(r; R(r))eR(r)S(s) :In parti
ular, for i = j = 1, one gets[P; �(u11)℄ers = �X̀k=1Cq(1; r;Mk1(r))Cq(1; s;Mk1(s))k(r;Mk1(r))eMk1(r)Mk1(s):Now suppose r 2 F0 satis�es r1;` = 0 = r2;` = r1;`+1: (2.4.3)Then heM`1(r)M`1(r); [P; �(u11)℄erri = �Cq(1; r;M`1(r))2k(r;M`1(r)):18



It follows from (2.1.10) and (2.1.11) that Cq(1; r;M`1(r)) is bounded away from zero, so longas r obeys (2.4.3). We have also seen (lemma 2.2.1) that k(r;M`1(r)) is bounded away fromzero. Now it is easy to see that if ` > 1, then there are in�nitely many 
hoi
es of r satisfying(2.4.3) su
h that they all lie in F0. Therefore [P; �(u11)℄ is not 
ompa
t.For more general P (as in the previous theorem), the idea would be similar, but this timeone has to get hold of a positive integer n su
h that for any r 2 [ki=1Fri , nM`1(r) 62 [ki=1Fri ,and then 
ompute henM`1(r)nM`1(r); (P � I)�(u11)nerri. 23 Se
ond illustrationIn this se
tion, we will ignore the group nature of SUq(`+1) and fo
us only on the C�-algebraA = C(SUq(`+1)). All irredu
ible representations of this C�-algebra are well-known ([9℄). Wewill take a large 
lass of representations, whi
h in
ludes the irredu
ibles in parti
ular, and usethe s
heme des
ribed in se
tion 1 to prove that for a large majority of these representations, noDira
 operator with nontrivial sign exists that diagonalises ni
ely with respe
t to the 
anoni
alorthonormal basis.3.1 Irredu
ible representationsThe Weyl group for SUq(`+1) is isomorphi
 to the permutations group S`+1 on `+1 symbols.Denote by si the transposition (i; i + 1). Then fs1; : : : ; s`g form a set of generators for S`+1.Any ! 2 S`+1 
an be written as a produ
t! = (sk`sk`+1 : : : s`)(sk`�1sk`�1+1 : : : s`�1) : : : (sk2s2)(sk1);where ki's are integers satisfying 0 � ki � i, with the understanding that ki = 0 meansthat the string (skiski+1 : : : si) is missing. It follows from the strong deletion 
ondition in the
hara
terization of Coxeter system by Tits (see [7℄) that the expression for ! given above is aredu
ed word in the generators si. We will denote the length of an element ! by `(!).Let S and N be the following operators on L2(Z):Sen = en�1; Nen = nen:We will denote by the same symbols their restri
tions to L2(N) whenever there is no 
han
e ofambiguity. Denote by  si the following representation of A on L2(N): si(uab) = 8>>>>>><>>>>>>:
pI � q2N+2S if a = b = i,S�pI � q2N+2 if a = b = i+ 1,�qN+1 if a = i, b = i+ 1,qN if a = i+ 1, b = i,ÆabI otherwise.Now suppose ! 2 S`+1 is given by si1si2 : : : sik . De�ne  ! to be  si1 �  si2 � : : : �  sik (for tworepresentations � and  , � �  denote the representation (�
  )�).19



Next, let z = (z1; : : : ; z`) 2 (S1)`. De�ne�z(uab) = 8<: zaÆab if a = 1,�z`Æab if a = `+ 1,�za�1zaÆab otherwise.De�ne � to be the integral Rz2(S1)` �zdz. Finally, de�ne �!;z =  ! � �z and �! =  ! � �. It isknown ([9℄) that �!;z's 
onstitute all the iredu
ible representations of the C�-algebra A.Let us introdu
e a few notations that will be handy later. For a subset � = fi1; : : : ; ikg �f1; 2; : : : ; `g, where i1 < i2 < : : : < ik, denote by s� the element si1si2 : : : sik of S`+1. Call asubset J of f1; 2; : : : ; `g an interval if it is of the form fj; j+1; : : : ; j+sg. Then for any element! of the Weyl group, there are intervals �1;�2; : : : ;�t with max�r > max�s for r > s su
hthat ! = s�ts�t�1 : : : s�1 : (3.1.1)Moreover, as long as we demand that �j 's are intervals and obey max�r > max�s for r > s,an element ! determines the subsets �t; : : : ;�1 uniquely. Let � be the disjoint union of the�j 's, that is, � = [tj=1f(j; i) : i 2 �jg. Write �0 = f(0; i) : i = 1; 2; : : : ; `g. Often we willidentify �0 with the set f1; 2; : : : ; `g. Let � = N� � Z�0 = N�t � N�t�1 � : : : � N�1 � Z�0.The Hilbert spa
e on whi
h �! a
ts is L2(�). We will denote by fe
 : 
 2 �g the 
anoni
alorthonormal basis for this Hilbert spa
e.Diagram representation of �!. Let us des
ribe how to use a diagram to represent theirredu
ible  si . `+1� // �`+1` � // � `::::::i+1� + //

!!CC
C �i+1i � � //

=={{{ � i::::::1 � // � 1HIn this diagram, ea
h path from a node k on the left to a node l on the right stands foran operator on H = L2(N). A horizontal unlabelled line stands for the identity operator, ahorizontal line labelled with a + sign stands for S�pI � q2N+2 and one labelled with a � signstands for pI � q2N+2S. A diagonal line going upward represents �qN+1 and a diagonal linegoing downward represents qN . Now  si(ukl) is the operator represented by the path from kto l, and is zero if there is no su
h path. Thus, for example,  si(u11) is I,  si(u12) is zero,whereas  si(uii+1) = �qN+1, if i > 1.Next, let us explain how to represent  si �  sj . Simply put the two diagrams representing si and  sj adja
ent to ea
h other, and identify, for ea
h row, the node on the right side of the20



diagram for  si with the node on the left in the diagram for  sj . Now,  si � sj (ukl) would bean operator on L2(N) 
 L2(N) determined by all the paths from the node k on the left to thenode l on the right. It would be zero if there is no su
h path and if there are more than onepaths, then it would be the sum of the operators given by ea
h su
h path. Thus, we have thefollowing operation on the elementary diagrams des
ribed above:`+1� // �`+1 `+1� // �`+1 `+1� // � // �`+1:::::: :::::: ::::::i+1� + //

!!CC
C �i+1 i+1� // �i+1 i+1� + //

""EE
E � // �i+1i � � //

=={{{ � i i � // � i i � � //

<<yyy � // � i:::::: 
 :::::: = ::::::j+1� // �j+1 j+1� + //

!!C
CC
�j+1 j+1� // � + //

""EE
E �j+1j � // � j j � � //

=={{{ � j j � // � � //

<<yyy � j:::::: :::::: ::::::1 � // � 1 1 � // � 1 1 � // � // � 1H H H 
 HNext, we 
ome to �. The underlying Hilbert spa
e now is L2(Z�0) �= L2(Z)
` (to avoid anyambiguity, we have used hollow 
ir
les to denote the nodes as opposed to the bullets used inthe earlier 
ase); an unlabelled horizontal arrow stands for I in the 
orresponding 
omponentof L2(Z)
`, an arrow labelled with a `+' above it indi
ates S� and one labelled `�' below itstands for S. As earlier, �(ukl) stands for the operator on L2(Z)
` represented by the pathfrom k on the left to l on the right. In the diagram below, K will stand for L2(Z).`+1Æ // Æ // Æ // Æ : : : Æ // Æ � // Æ`+1` Æ // Æ // Æ // Æ : : : Æ � // Æ + // Æ `:::::: : : : ::::::3 Æ // Æ � // Æ + // Æ : : : Æ // Æ // Æ 32 Æ � // Æ + // Æ // Æ : : : Æ // Æ // Æ 21 Æ + // Æ // Æ // Æ : : : Æ // Æ // Æ 1K 
 K 
 K 
 : : : 
 K 
 KFinally, we 
ome to the des
ription of �!. As we have already remarked, redu
ed expressionfor ! is of the form ! = (sknskn+1 : : : sn)(skn�1 : : : sn�1) : : : (sk2s2)(sk1). To get the diagramfor �!, we simply put the diagram for  skn � : : : �  sk1 and that for � side by side and identifythe nodes on the right of the �rst diagram with the 
orresponding ones on the left of these
ond diagram. Thus for example, if ! = (s2s3s4)(s3)(s1s2)(s1), then the following diagramrepresents �!:
21



`+1� // � // � // � // � // � // � // �Æ // Æ // Æ : : : Æ // Æ � // Æ`+1:::::: :::::: : : : ::::::5 � // � // � + //

##FF
FF
� // � // � // � // �Æ // Æ // Æ : : : Æ // Æ // Æ 54 � // � + //

##FF
FF
� � //

;;xxxx � + //

##FF
FF
� // � // � // �Æ // Æ // Æ : : : Æ // Æ // Æ 43 � + //

""EE
E � � //

;;xxxx � // � � //

;;xxxx � // � + //

##FF
FF
� // �Æ // Æ � // Æ : : : Æ // Æ // Æ 32 � � //

<<yyy � // � // � // � + //

##FF
FF
� � //

;;xxxx � + //

##HH
HH
�Æ � // Æ + // Æ : : : Æ // Æ // Æ 21 � // � // � // � // � � //

;;xxxx � // � � //

;;vvvv �Æ + // Æ // Æ : : : Æ // Æ // Æ 1H 
 H 
 H 
 H 
 H 
 H 
 H 
 K 
 K 
 : : : 
 K 
 KThe diagram for �! introdu
ed above will play an important role in what follows.3.2 Boundedness of 
ommutatorsOur goal is to study operators D on the spa
e H! = L2(�) that diagonalize with respe
t to thenatural 
anoni
al basis, and makes (�!(A);H!;D) a spe
tral triple. Sin
e D is a self-adjointoperator with dis
rete spe
trum, it is of the form P
2� d(
)e
 .De�nition 3.2.1 Amove will mean a path from a node on the left to a node on the right in thediagram representing �!. More formally, a move is a (t+ 1)-tuple of pairs ((it; jt); : : : ; (i0; j0))su
h that1. jk = ik�1 for k � 1, i0 = j0,2. for k � 1, jk < ik implies jk = ik � 1 and jk 2 �k,3. for k � 1, jk > ik implies ik; ik + 1; : : : ; jk � 1 2 �k.(the pair (ik; jk) will be referred as the kth segment of the move lying in the kth string fromthe right).We will use the spe
ial notation Hr for the move for whi
h ea
h ik and jk equals r.Given a move p, we will next de�ne an element mp 2 Z��Z�0 whose 
oordinates are all 0or �1. Let p = ((it; jt); : : : ; (i0; j0)). De�ne mp by the following pres
ription:mp(r; s) = 8<:�1 if r = 0; s = i0 � 1 or r � 1; s = jr � ir,+1 if r = 0; s = i0 or r � 1; jr � ir = s+ 1,0 otherwise.Thus mp(r; �) will look like8>>>>><>>>>>: (0; 0; : : : ; 0) if ir < min�r or ir > max�r + 1 or jr = ir � 1,(�1; 0; : : : ; 0) if ir = jr = min�r,(0; 0; : : : ; 0; 1) if ir = jr = max�r + 1,(0; : : : ; 0| {z }ir�2 ; 1; 0; : : : ; 0| {z }jr�ir ;�1; 0; : : : ; 0) if min�r < ir � jr,22



We will often refer to this asso
iated element mp when we talk about a move p.Let us denote by Pij the set of moves from node i on the left to node j on the right. For amove p, denote by Tp the 
orresponding operator on H
`(!) 
K
`. Then�!(uij) = Xp2Pij Tp: (3.2.1)Denote byWp the operator obtained from Tp by repla
ingpI � q2N+2S by S and S�pI � q2N+2by S�. One 
an show easily that mp is the unique element in Z��Z�0 whose entries are all 0or �1 su
h that hWpe
 ; e
+mpi 6= 0 for some 
 2 �.Lemma 3.2.2 Let p; p0 2 Pij. If p and p0 are di�erent, then for some (r; n), where 1 � r � tand n 2 �r, one has either mp(r; n) = 0;mp0(r; n) = �1 or mp(r; n) = �1;mp0(r; n) = 0.Proof : Sin
e p and p0 both belong to Pij and are di�erent, mp(r; n) 6= mp0(r; n) for some pair(r; n). Now look at the 
oordinate where they are unequal for the �rst time (from the left),that is, let (r; n) be the pair su
h thatr = maxf1 � j � t : mp(j; i) 6= mp0(j; i) for some ig; n = minfi 2 �r : mp(r; i) 6= mp0(r; i)g:It is easy to see now that for this pair (r; n), the required 
on
lusion holds. 2Lemma 3.2.3 Let F be a �nite set of moves. For p 2 F , let Dp be a (not ne
essarily bounded)number operator, i.e. an operator of the form e
 7! t
e
. If Pp2F DpWp is bounded, thenDpWp is bounded for ea
h p 2 F .Proof : Take p0 2 F . Assume that jF j > 1. We will show that boundedness of Pp2F DpWpimplies that of Pp2F 0 DpWp for some subset F 0 of F su
h that p0 2 F 0 and jF 0j < jF j.Let p00 2 F be an element of F other than p0. By the previous lemma, there is a pair (r; n)su
h that either mp0(r; n) = 0 and mp00(r; n) = �1 or mp0(r; n) = �1 and mp00(r; n) = 0. Forz 2 S1, let Uz be the unitary operator on L2(�) given by Uze
 = z
(r;n)e
 . Now the proof willfollow from the boundedness of the operator Rz2S1 Uz(Pp2F DpWp)U�z dz. 2Proposition 3.2.4 [D;�!(uij)℄ is bounded for all i and j if and only if [D;Wp℄ is bounded forall moves p.Proof : It is enough to show that if [D;�!(uij)℄ is bounded, and if p 2 Pij , then [D;Wp℄ isbounded. Sin
e �!(uij) =Pp2Pij Tp and ea
h [D;Tp℄ is of the form DpWp, it follows from theforgoing lemma that ea
h [D;Tp℄ is bounded. Sin
e p1� q2n+2 is a bounded quantity whoseinverse is also bounded, it follows that [D;Tp℄ is bounded if and only if [D;Wp℄ is bounded. 2Thus there is a positive 
onstant 
 su
h that D will have bounded 
ommutators with allthe �!(uij)'s if and only if k[D;Wp℄k � 
. 23



Let p = ((it; jt); : : : ; (i0; j0)) be a move. A 
oordinate (r; n) is said to be a diagonal
omponent of p if either ir < jr and s 2 fir; ir + 1; : : : ; jr � 1g, or jr = ir � 1 = s. One
an 
he
k that this would 
orrespond exa
tly to the diagonal parts of the move in the diagramrepresenting !. Denote by 
(
; p) the quantity P(j;i) 
(j; i), the sum being taken over alldiagonal 
omponents of p.Lemma 3.2.5 [D;Wp℄ is bounded if and only if jd(
 +mp)� d(
)j � 
q�
(
;p).Proof : Follows easily on
e one writes down the expression of the 
ommutator. 2An immediate 
orollary is the following.Corollary 3.2.6 Let Hi be as in de�nition 3.2.1. Then jd(
 +Hi) � d(
)j � 
 for all 
 2 �and 1 � i � `+ 1.3.3 The growth graph and sign 
hara
terizationLet us now form the graph G
 by 
onne
ting two verti
es 
 and 
0 if jd(
) � d(
0)j � 
.Chara
terization of signD will then pro
eed as outlined in the beginning of subse
tion 2.4.De�nition 3.3.1 For i 2 �0, let Ji be the set fj � 1 : i 2 �jg. The set F = f
 2 Z�� Z�0 :�
(0; i) = 
(0; i � 1) = 
(j; i) for all j 2 Jig will be 
alled the free plane. For a point 
 2 �,we 
all the set F
 = f
 + 
0 2 � : 
0 2 Fg the free plane passing through 
.Note that for 
 2 F , the 
oordinates 
(j; i) are all equal for j 2 Ji.For 1 � i � `, de�ne ji to be 0 if Ji is empty, and to be that element j 2 Ji for whi
h
(ji; i) = minf
(j; i) : j 2 Jig.Remark 3.3.2 1. If Ji is nonempty, ji need not be unique.2. If 
0 2 F
 , then minj 
(j; i) and minj 
0(j; i) are attained for the same set of values of j.Then, given a 
 2 �, elements in F
 are determined by the 
oordinates (ji; i), i = 1; : : : ; `.Lemma 3.3.3 Let 
 2 �, and 
0 2 F
. Let 
00 be the element in F
 for whi
h
00(j`; `) = 
0(j`; `); 
00(ji; i) = 0 for all i < `:Then there is a path in F
 joining 
0 to 
00 su
h that throughout this path, the (j`; `)-
oordinateremains 
onstant.Proof : Apply su

essively the moves
(j`�1; `� 1)H`�1; (
(j`�2; `� 2) + 
(j`�1; `� 1))H`�2; : : : ;  `�1Xi=1 
(ji; i)!H1:As none of these moves tou
h the (j`; `)-
oordinate, it remains 
onstant throughout the path.224



Lemma 3.3.4 Let 
 2 �. Then either F+
 is �nite or F�
 is �nite.Proof : Write C(
) = 
(j`; `). We will �rst show that C(F+
 ) and C(F�
 ) 
an not both bein�nite. This is done exa
tly as in the proof of proposition 2.4.4, using the above sweepoutlemma instead of lemma 2.4.3.Next, suppose C(F�
 ) � [�K;K℄. If f
0(ji; i) : 
0 2 F
g is not bounded for some i with1 � i � ` � 1, get a sequen
e of points 
n 2 F
 su
h that 
n(ji; i) < 
n+1(ji; i) for all n.Starting at ea
h 
n, apply the move H`+1 enough (e.g. 2K + 1) times to produ
e an in�niteladder. 2Let us next de�ne a set that will play the role of a 
omplementary axis. LetC = f
 2 � : Yj2Ji 
(j; i) = 0 for all ig:It follows from the sweepout argument used in the proof of lemma 3.3.3 that for any 
0 2 �,there is a 
 2 C su
h that 
0 2 F
 . But it is not ne
essary that for two distin
t elements 
and 
0 in C , F
 and F
0 are disjoint. However, this will not be of serious 
on
ern to us.Let imin = minfi 2 �0 : jJij > 1g; jmin = minJimin ; jmax = max Jimin :Thus imin is the minimum i for whi
h si appears more than on
e in !, jmin and jmax are the�rst and the last string where it appears. Suppose now that we have removed the horizontalarrows labelled + or � 
orresponding to all the si's for whi
h jJij = 1. Note that this wouldin parti
ular remove all labelled horizontal lines 
orresponding to si's for i < imin. Supposethe jminth segment of a move is (imin; imin). This will uniquely spe
ify the 0th segment whi
hwill be of the form (i0; i0) for some i0 � imin. Now de�ne C0(
) := 
(jmin; imin) + 
(0; i0) andC1(
) = 
(jmax; imin) for 
 2 �.Lemma 3.3.5 Let 
 2 C . De�ne an element 
0 2 � by the following pres
ription:
0(j; i) = 0 for all j � 1; 
0(0; i) = � 0 if i 6= i0,C0(
) if i = i0.Then there is a path 
onne
ting 
 to 
0 su
h that C0(�) remains 
onstant throughout this path.Proof : We will des
ribe a re
ursive algorithm to go from 
 to 
0. Observe that sin
e 
 2 C ,we have 
(t;max�t) = 0. To begin with, remove all the horizontal arrows labelled + or �
orresponding to the si's for whi
h jJij = 1, and work with the resulting diagram.Now suppose we are at Æ 2 � whi
h satis�esÆ(j; i) = 0 for all j > r; Æ(r; i) = 0 for all i > n 2 �r:Step I. 25



Case I. r = jmin and n = imin: then apply the move whose jminth segmentis (imin; imin). Apply this Æ(jmin; imin) times. This will make the (jmin; imin)-
oordinate zero and the (0; i0)-
oordinate C0(
). Now pro
eed to step II.Case II. r 6= jmin or n 6= imin: Pro
eed with the following algorithm.Algorithm A(r; n). (min�r � n � max�r)Remove all horizontal arrows labelled + or � from the si's in the strings s�t , s�t�1 ,: : :, s�r+1 as well as from the si's 
orresponding to i 2 �r, i > n. What this willa
hieve is the following: any permissible move in the resulting diagram will not
hange the 
oordinates (j; i) where either r + 1 � j � t or j = r and i > n.Apply the negative of the move whose rth segment is (n+ 1;max�r + 1) for Æ(r; n)number of times. This would kill the (r; n)-
oordinate, i.e. will make it zero. Nowremove the two horizontal lines labelled `+' and `�' 
orresponding to sn appearingin the string s�r .Step II.Case I. n > min�r: keep r inta
t, redu
e the value of n by 1 and go ba
k to stepI.Case II. r > 1 and n = min�r: 
hange n to max�r�1, then redu
e the value of rby 1, and go ba
k to step I.Case III. r = 1 and n = min�1: pro
eed to step III.Step III. All the (j; i)-
oordinates for j � 1 are now zero. Next, apply moves ending at i fori > i0 + 1 appropriate number of times starting from the top to kill the 
oordinates (0; i) fori > i0. Thus we have now rea
hed an element Æ for whi
h Æ(j; i) = 0 whenever j � 1; i 2 �j orj = 0; i > i0. Therefore we now need to kill the 
oordinates (0; i) for i < i0. This is a
hievedas follows. Remove the horizontal arrows labelled + or � from all si's. Now apply the movesending at i for i < i0 appropriate number of times starting from the bottom. 2The next diagram and the table that follows it will explain the proof in a simple 
ase.
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m3
m2m4
m1

t = 4, imin = 2, jmin = 2, jmax = 4, i0 = 1

+++ + + +
��� ���

+ + +� � �+�
N part Z part

! = (s2s3s4)(s3)(s2)(s1)m7m5m6

The table below illustrates the sweepout pro
edure des
ribed in the proof of lemma 3.3.5.Starting from a point 
 2 C , it shows the su

essive moves applied and how the resulting el-ement looks like at ea
h stage. Observe that for any 
 2 C , one must have 
(4; 4) = 0 = 
(1; 1).
oordinate (4,2) (4,3) (4,4) (3,3) (2,2) (1,1) (0,1) (0,2) (0,3) (0,4)
 � � 0 � a 0 b � � �move m1 0 +1 0 0 0 0 0 0 0 �1
1 = �
(4; 3)m1(
) � 0 0 � a 0 b � � �move m2 +1 0 0 0 0 0 0 0 0 �1
2 = �
(4; 2)m2(
1) 0 0 0 � a 0 b � � �move m3 0 0 0 +1 0 0 0 0 �1 +1
3 = �
(3; 3)m3(
2) 0 0 0 0 a 0 b � � �move m4 0 0 0 0 �1 0 +1 0 0 0
4 = 
(2; 2)m4(
3) 0 0 0 0 0 0 a+ b � � �move m5 0 0 0 0 0 0 0 �1 +1 0
5 = 
4(0; 2)m5(
4) 0 0 0 0 0 0 a+ b 0 � �move m6 0 0 0 0 0 0 0 0 �1 +1
6 = 
5(0; 3)m6(
5) 0 0 0 0 0 0 a+ b 0 0 �move m7 0 0 0 0 0 0 0 0 0 �1
0 = 
6(0; 4)m7(
6) 0 0 0 0 0 0 a+ b 0 0 0Lemma 3.3.6 Both C0(C+) and C0(C�) 
an not be in�nite.Proof : If both are in�nite, there would exist elements 
n 2 C+ and Æn 2 C� su
h thatC0(
1) < C0(Æ1) < C0(
2) < C0(Æ2) < : : : :27



Let 
0n and Æ0n be given by
0n(j; i) = 0 for all j � 1; 
0n(0; i) = � 0 if i 6= i0,C0(
n) if i = i0,Æ0n(j; i) = 0 for all j � 1; Æ0n(0; i) = � 0 if i 6= i0,C0(Æn) if i = i0.Use the earlier lemma to get paths between 
n and 
0n and between Æn and Æ0n. Remove allthe labelled arrows from all the si's. Let mi be the move in the resulting diagram whose 0thsegment is (i; i), and let m =Pi0i=1 mi. Apply this move C0(Æn)� C0(
n) times to 
onne
t 
0nand Æ0n. Thus there is a path pn 
onne
ting 
n and Æn, and throughout this path, C0(�) liesbetween C0(
n) and C0(Æn). Therefore the paths pn are disjoint. 2We will assume from now onward that C0(C�) is �nite. We will also assume that K 2 Nis su
h that C0(C�) � [�K;K℄.Lemma 3.3.7 Let C1 be as de�ned prior to lemma 3.3.5, i.e. C1(
) = 
(jmax; imin). Thenthe set C1(C�) is �nite.Proof : If not, get 
n 2 C� su
h thatC1(
1) < C1(
2) < C1(
3) < : : : :Now the idea is to get a path pn joining 
n to some Æn su
h that C1(�) remains 
onstantthroughout pn, and C0(Æn) > K, so that ea
h Æn 2 C+.Start at 
n. Apply algorithm A(r; n) forr = t; t� 1; : : : ; jmax + 1; min�r � n � max�r;r = jmax; imin + 1 � n;r < jmax; min�r � n � max�r:Now apply the move mi0 , where mi's are the moves des
ribed in the proof of the previouslemma, 3K times. 2Again we give a diagram and a table to illustrate the above proof for the 
ase ! =(s2s3s4)(s3)(s2)(s1).
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t = 4, imin = 2, jmin = 2, jmax = 4, i0 = 1

+++ + + +
��� ���

+ + +� � �+�
N part Z part

! = (s2s3s4)(s3)(s2)(s1)
m1m4m2m3

The next table illustrates the argument in the above proof. Starting from a point 
 2 C�,it shows the su

essive moves applied and how the resulting element looks like at ea
h stage.
oordinate (4,2) (4,3) (4,4) (3,3) (2,2) (1,1) (0,1) (0,2) (0,3) (0,4)
 a � 0 � � 0 b � � �move m1 0 +1 0 0 0 0 0 0 0 �1
1 = �
(4; 3)m1(
) a 0 0 � � 0 b � � �move m2 0 0 0 +1 0 0 0 0 �1 +1
2 = �
(3; 3)m2(
1) a 0 0 0 � 0 b � � �move m3 0 0 0 0 +1 0 0 �1 +1 0
3 = �
(2; 2)m3(
2) a 0 0 0 0 0 b � � �move m4 0 0 0 0 0 0 +1 0 0 0
4 = 3Km4(
3) a 0 0 0 0 0 b+ 3K � � �Assume without loss in generality that K is a bound for C1(C�) also.Lemma 3.3.8 Let C � (j; i) be any 
oordinate other than C1 � (jmax; imin). Then C(C�) is�nite.Proof : The strategy would be the same as in the proof of the earlier lemma with a slightmodi�
ation. If C(C�) is in�nite, we 
an 
hoose 
n 2 C� su
h thatC(
n) +K + 1 < C(
n+1)for every n 2 N. Now 
onne
t every 
n to an element Æn 2 C+ by a path pn su
h that on pn,the C1 
oordinate does not vary by more than K. This will ensure that the paths pn are alldisjoint. 29



For getting pn as des
ribed above, start at 
n and apply su

essively the movesH`+1;H`; : : : ;Himin+1;ea
h one K + 1 times. This will in
rease the C1-
oordinate by K + 1. Therefore the endpointof the path will lie in C+. 2Thus it now follows that C� is �nite. This, together with proposition 2.4.4 will give us thefollowing theorem.Theorem 3.3.9 Let D be a Dira
 operator on L2(�) that diagonalises with respe
t to the
anoni
al orthonormal basis. Then signD has to be of the form 2P � I or I � 2P where Pis a proje
tion onto the 
losed linear span of fe
 : 
 2 [ki=1F
ig for some �nite 
olle
tion
1; 
2; : : : ; 
k in �.Proof : The argument is exa
tly as in theorem 2.4.15. 2We next show that under this restri
tion, 
ompa
tness of the 
ommutator [sign D;uij ℄, or,equivalently, that of [P; uij ℄'s will imply that sign D is trivial.Let 
1; 
2; : : : ; 
k be elements in � and let P be the proje
tion onto span fe
 : 
 2 [iF
ig.Then for any operator T , we have[P; T ℄e
 = �PTe
 if 
 62 [iF
i ,(P � I)Te
 if 
 2 [iF
i .Now let r = max�t and take T = �!(ur+1;r). ThenT (t; r) = qN ; T (0; r � 1) = S; T (0; r) = S�; (3.3.1)and T (j; i) = I for all other pairs (j; i), ex
ept possibly T (t�1; r�1), whi
h is S� if t�1 2 Jr�1,and I otherwise. It is easy to 
he
k that for 
 2 F
i , 
(t; r) + 
(0; r) = 
i(t; r) + 
i(0; r).Therefore the set f
(t; r) + 
(0; r) : 
 2 [iF
ig is bounded. Let n 2 N be su
h that this setis 
ontained in [�n; n℄. Suppose 
 2 [iF
i obey 
(t; r) = 0. Then it follows from (3.3.1) thatT 2n+1e
 = e
0 , where
0(0; r) = 
(0; r) + 2n+ 1; 
0(0; r � 1) = 
(0; r � 1)� 2n� 1; 
0(t; r) = 
(t; r):It is 
lear from this that 
0 62 [iF
i , so that PT 2n+1e
 = 0. This means [P; T 2n+1℄e
 = �e
0for all 
 2 [iF
i with 
(t; r) = 0. Sin
e there are in�nitely many 
hoi
es of su
h 
, it followsthat [P; T 2n+1℄ 
an not be 
ompa
t.We thus have the following theorem.Theorem 3.3.10 Let ` > 1. Then there does not exist any Dira
 operator on L2(�) thatdiagonalises with respe
t to the 
anoni
al orthonormal basis and has nontrivial sign.
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Remark 3.3.11 Let F be a subset of f1; 2; : : : ; `g. De�ne �!;F to be the representationobtained by integrating  ! � �z with respe
t to those 
omponents zi of z for whi
h i 2 F . Ifone looks at the representations �!;F instead of �!, a similar analysis will show that nontrivialspe
tral triples would exist only in the 
ase where ! is of the form sk (so that `(!) = 1), andF = fkg. The nontrivial triples in this 
ase will essentially be those of SUq(2) obtained in [2℄and will 
orrespond to the `kth 
opy' of SUq(2) sitting inside SUq(`+ 1) via the map
uij 7! 8>>>>>>><>>>>>>>:

� if j = i = k,�� if j = i = k + 1,�q�� if j = k + 1; i = k,� if j = k; i = k + 1,I if i = j,0 otherwise.A
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