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Abstract

We study the stationary distribution of the standard Abelian sandpile model in the box Λn =

[−n, n]d ∩ Zd for d ≥ 2. We show that as n→∞, the finite volume stationary distributions weakly

converge to a translation invariant measure on allowed sandpile configurations in Zd. This allows

us to define infinite volume versions of the avalanche-size distribution and related quantities. The

proof is based on a mapping of the sandpile model to the uniform spanning tree due to Dhar and

Majumdar, and the existence of the wired uniform spanning forest measure on Zd. In the case d > 4

we also make use of Wilson’s method.

1 Introduction

In this paper we study an infinite volume limit of the Abelian sandpile model (ASM) on Zd. The
ASM was introduced in [2] as a simple model exhibiting self-organized criticality (SOC). The model has
received substantial interest in the physics literature and in recent years in the mathematical literature
as well. The concept of SOC was originally proposed in [1], [2].

The ASM is an interacting particle system (particles ≡ “grains of sand”) living on a finite subset Λ of
the d-dimensional integer lattice Zd. Every site i ∈ Λ is occupied by a number of particles zi ∈ Nd.
If 1 ≤ zi ≤ 2d then the site i is called stable, if zi > 2d, it is called unstable. The value zi is also
called the height of the site. The value zc = 2d is called the critical height. The height configuration
undergoes the following discrete-time dynamics. Given a configuration in which all sites are stable, we
add a particle at a random site i ∈ Λ which is chosen according to a distribution q, with q(i) > 0, i ∈ Λ.
If as a result, i becomes unstable, 2d particles jump from site i, one to each adjacent site, decreasing
the height of i by 2d and increasing the height at each nearest neighbor by 1. If the unstable site i
was on the boundary of Λ, we still decrease the height of i by 2d, and one or more particles leave the
system through the boundary. This operation is called toppling. It may happen that new unstable
sites are created by the toppling of i. We topple them as well, until eventually all sites become stable
again. (One can show that any possible sequence of topplings leads to the same stable configuration.)
This new stable configuration is the state of the system after a single time-step. The above description
defines a Markov-chain with state space ΩΛ = {1, . . . , 2d}Λ. It is known that there is a unique stationary
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distribution νΛ, independent of q [14]. In what follows we let q be the uniform measure and denote the
law of the stationary chain by PΛ.

For a definition of the ASM on a general graph, see [7, 14]. A thorough review of exactly solvable
models exhibiting SOC is carried out in the lecture notes by Dhar [7]. A unified mean field study of
SOC models, such as forest fires, can be found in [18]. Further background about SOC is provided by
[12, 8] and the references therein. The first mathematical results about the ASM has been obtained in
[4, 5, 6]. We refer the reader to [7] for background on basic facts regarding the ASM, and to [14] for a
more detailed introduction with complete proofs.

The sequence of topplings performed in one time-step is called an avalanche. A basic problem is to
determine the properties of avalanches under the stationary distribution νΛ. Some quantities of interest
are (a) the number of topplings in an avalanche (size), (b) the number of sites affected by an avalanche
(range), (c) the radius of the affected region (radius). These quantities are believed (and have numerically
been observed) to have distributions falling off as a power. It is believed that the power law holds on
some interval depending on the size of Λ, where the interval grows as Λ ↗ Zd. To the best of our
knowledge, there is no precise formulation or proof of such a statement, except when d = 1 [7].

As a step in analyzing the above question, we consider the limit Λ ↗ Zd, and define avalanche charac-
teristics in the infinite volume. In the two-dimensional case, Priezzhev [16] calculated the exact values
of limΛ↗Z2 νΛ(z0 = k), k = 1, . . . , 4. In this paper we prove the more general, although less explicit,
statement that νΛ converges weakly to a limit ν in dimensions d ≥ 2 (see Theorem 1). Since the dis-
tributions of the quantities (a)–(c) above can be defined in terms of νΛ alone (without referring to the
dynamics), we obtain that limiting distributions for (a)–(c) exist. It remains an important open problem
to describe the limit in more detail (when it is non-trivial), and determine the effect of the boundary
(which disappears in the limit). Recently, infinite volume versions of the sandpile process have been
constructed on the one-dimensional lattice [12] and on an infinite tree [11]. Unlike in these articles, we
do not construct a dynamics in the limit. However, our Theorem 1 is a necessary ingredient in such
constructions.

Our proof is based on the deep observation of [13], that the set of recurrent states of the ASM can
be mapped onto the set of spanning trees on Λ. This observation has also been used in [16, 17]. It is
known that νΛ is the uniform measure on the set of recurrent states, and therefore νΛ corresponds to
the uniform spanning tree measure on Λ. It is also known that the uniform spanning tree has a limit as
Λ ↗ Zd [15, 3], called the uniform spanning forest (USF). Therefore it is not surprising that νΛ converges
as well, and in fact, when 2 ≤ d ≤ 4, a continuity property of the correspondence is indeed sufficient
to prove this. However, in the case d > 4, due to the non-locality of the correspondence, making the
argument precise requires effort. In particular, the correspondence breaks down in the infinite volume
when d > 4, and a bit of extra randomness is necessary to describe the limit.

The rest of the paper is organized in the following manner. In the next section we state some basic
notation and preliminaries. In the following Section 1.2 we state our main theorem and comment on its
implications. Section 2 contains a review of the burning test and the connections of the ASM with the
uniform spanning tree. Finally in Section 3, we provide a proof of Theorem 1, our main result.

Acknowledgment. We thank Akira Sakai and Bálint Tóth for useful and stimulating discussions.
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1.1 Notation and Preliminaries

When i and j are neighbors in Zd we write i ∼ j. We sometimes restrict our attention to graphs of the
form Λn = [−n, n]d ∩ Zd, and write νn = νΛn , Pn = PΛn etc. We regard νΛ as a measure on the space
Ω = {1, . . . , 2d}Zd

in the natural way. We denote by G the natural σ-algebra on Ω.

By a cylinder event we mean an event in G depending on the states of finitely many sites only. For
v ∈ Zd let τv denote translation by v. If E is a cylinder event depending on a set of sites A, then τvE

depends on the set of sites τvA = {u+ v : u ∈ A}. For a random variable Y we define τvY similarly.

Given a quantity f(Λ) defined for all (or all sufficiently large) finite subsets Λ of Zd we say that

lim
Λ↗Zd

f(Λ) = a,

if given any ε > 0 there is a finite Λ0 ⊂ Zd such that for all finite Λ ⊃ Λ0 we have |f(Λ)− a| < ε.

1.2 Results

Our main result is concerned with the limit of νΛ as Λ ↗ Zd. In its statement Xn denotes the position
where the first particle is dropped in the (stationary) sandpile process on Λn.

Theorem 1. Let d ≥ 2. The measures νn weakly converge to a translation invariant measure ν on Ω.
For any cylinder event E and any v ∈ Zd we have

ν(E) = lim
n→∞

νn(E) = lim
n→∞

νn(τvE) = lim
n→∞

Pn(τXn
E). (1)

Remark 1. (i) The first two limits in (1) exhibit the weak convergence and translation invariance. In
(9) and (32) we give expressions for ν(E) in terms of the USF on Zd. The third equality in (1) says that
in the stationary chain, the configuration at the position where the first (or any) particle is dropped has
the same limiting law as at the origin. This is a consequence of translation invariance.

(ii) As mentioned earlier, there is a difference in the proof according to whether 2 ≤ d ≤ 4 or d > 4. In the
former case the USF is a.s. a single tree, and in this case the one-to-one correspondence between spanning
trees and allowed configurations extends to configurations on Zd. When d > 4, the correspondence breaks
down on Zd, due to the fact that the USF has multiple trees. However, the limit can still be described
in terms of trees using extra randomness.

(iii) When 2 ≤ d ≤ 4, we establish the first two limits even as Λ ↗ Zd. We believe this stronger result
to hold also when d > 4, but it was convenient to restrict to regular volumes at certain points in the
proof. In the case of the third limit in (1) the restriction to volumes with regular boundary is necessary.
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(iv) It is known that for any Λ the set of recurrent states can be characterized as those that do not
contain any forbidden sub-configurations [14]. Since forbidden sub-configurations are finite, they do not
occur in the limit ν-a.s.

(v) Given a configuration in Ω, it makes sense to talk about the size, range, radius, etc. of an avalanche
when a particle is dropped at a fixed site, let’s say the origin. Let S denote one of these quantities. Then
Theorem 1 implies that p(s) = limn→∞ νn(S = s), 0 ≤ s <∞ is well defined, since the event {S = s} is
a cylinder event. By the third equality in (1), p(s) also equals the limiting probability of {S = s} when
a particle is dropped at a random site Xn. In particular, when S = avalanche size, p(s) is the limiting
avalanche-size distribution. It remains an open problem to determine whether

∑∞
s=0 p(s) < 1 or = 1,

or even whether p(s) > 0 for s ≥ 1. We expect that the latter holds when d ≥ 3, and fails when d = 2,
and that transience/recurrence of random walk plays a role.

(vi) A detailed study of the case d = 1 has been done in [12], where an infinite volume dynamics has
been constructed. We do not know whether a similar construction works when d ≥ 2. A first step
towards understanding the dynamics would be to determine whether there are infinite avalanches. This
is not the case on an infinite regular tree, and this fact was important for the construction in [11].

2 Relation to the uniform spanning tree

Below we review the correspondence between the ASM and the uniform spanning tree [13], and then
quote the necessary results about the USF.

2.1 The burning test

The following algorithm, called the “burning test” [13, 14], checks whether a configuration in ΩΛ is
recurrent. At the same time, it establishes a one-to-one map between recurrent configurations and
spanning trees on a suitable modification of Λ. Define the graph Λ̃ by adding a new site δΛ to Λ which
is joined to each i in the boundary ∂Λ by 2d − deg(i) edges. Given a stable configuration, we set
A0 = {δΛ}, and call A0 the set of sites burning at time 0. For t ≥ 1 we recursively define At (the set of
sites burning at time t) as follows. Site i is burning at time t if its height is larger than the number of
its unburnt neighbors.

In other words, for j ∈ Λ let

nt(j) = #{i ∈ Λ : i ∼ j, i 6∈ ∪t−1
r=0Ar} and At = {j ∈ Λ : zj > nt(j), j 6∈ ∪t−1

r=0Ar}.

Given a recurrent configuration z = (zi)i∈Λ we define a spanning tree TΛ = φ(z) of Λ̃ rooted at δΛ. We
build the tree in such a way that At is the set of sites at graph distance t from the root. It is easy to
see from the definitions that any site j ∈ At has at least one neighbor in At−1 (t ≥ 1). So to complete
the definition of TΛ, we only need to specify how to choose the parent of j ∈ At, when there are more
than one neighbors in At−1. For this first observe that for t ≥ 1 we have

j ∈ At if and only if nt−1(j) ≥ zj > nt(j), (2)
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where we set n0(j) ≡ zc = 2d. The number of possible parents of j, that is

r(j) = nt−1(j)− nt(j), (3)

is therefore equal to the number of possible values of zj that are allowed by (2). Thus we can choose
the parent of j depending on the value of zj in a one-to-one fashion according to some fixed rule.

The above algorithm produces a tree TΛ, which spans Λ̃ if and only if the sets (At)t≥1 exhaust Λ. It is
known that this happens if and only if z was recurrent [14].

The procedure can be reversed to show that φ is one-to-one and onto. We also describe φ−1 in detail.
Given a spanning tree TΛ, let Bt denote the set of sites at graph distance t from the root, t ≥ 0.
Let mt(j) = #{i : i ∼ j, i 6∈ ∪t−1

r=0Br}. For any j ∈ Bt the number of neighbors of j in Bt−1 is
mt−1(j)−mt(j), and one of these neighbors is the parent of j. We set the value of zj in such a way that
for j ∈ Bt the inequalities mt−1(j) ≥ zj > mt(j) are satisfied, and we pick that value which corresponds
to the parent of j according to our fixed rule. It is clear that the resulting configuration z is such that
in the burning test At = Bt, nt(j) = mt(j) and φ(z) = TΛ.

Remark 2. (i) In order to reconstruct zj , it is enough to know the distance of j from the root of
TΛ relative to the distances of its neighbors from the root. This usually allows one to reconstruct zj

knowing only a small portion of TΛ. Let v denote the earliest common ancestor of all the neighbors of
j (earliest means furthest from δΛ), and let F denote the subtree consisting of all descendants of v. We
regard the site v as the root of F . The pair (F, v) already determines the value of zj . This is because
the distances of j and its neighbors from v in F give us the necessary information about mt−1(j) and
mt(j), even without knowing for which t we have j ∈ Bt.

(ii) By the argument of (i), it is enough to know, in fact, the relative order of the distances from each
neighbor of j to the root. This observation will play a role in the case d > 4.

Since all recurrent states have equal weight under νΛ, the image of νΛ under φ is uniform on all spanning
trees of Λ̃. It is called the uniform spanning tree on Λ with wired boundary conditions. We denote its
law by µΛ. It is known (see Theorem 2 below) that as Λ ↗ Zd, µΛ weakly converges to a limit called
the wired uniform spanning forest [3]. We refer to the limit simply as the USF. (On Zd the wired and
free spanning forests coincide [3].)

2.2 Properties of the USF

The theorem below summarizes the results we need about the USF. For more background on spanning
trees see [3]. In the statement of the theorem below, µΛ is the law of a random subset TΛ of edges of
Zd.

Theorem 2. Let d ≥ 1.

(i) If B is any finite set of edges in Zd, and B ⊂ Λ ⊂ Λ′ with Λ′ finite, then

µΛ(B ⊂ TΛ) ≤ µΛ′(B ⊂ TΛ′). (4)
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(ii) For any finite sets B ⊂ K of edges in Zd the limit

µ(T ∩K = B) def= lim
Λ↗Zd

µΛ(TΛ ∩K = B) (5)

exists, and defines a translation invariant probability measure, called the USF.

(iii) The USF has no cycles µ-a.s. If d ≤ 4, the USF is a single tree a.s. For 2 ≤ d ≤ 4 the USF has
one end a.s., meaning that any two infinite paths in T have infinitely many vertices in common.

(iv) If d > 4 then a.s. the USF has infinitely many components, each component is infinite and has a
single end.

Proof. All statements are proved in [3]. In particular, (i) follows directly from [3, Corollary 4.3]. For
the special case K = B, the existence of the limit in (5) follows from the monotonicity in (4). The
general case B ⊂ K follows by inclusion-exclusion. The statements (iii) and (iv) (with free boundary
conditions) already appear in [15], except for the last statement in (iv), which is proved in [3].

3 Proof of Theorem 1

3.1 The case 2 ≤ d ≤ 4

As indicated earlier, the proof of Theorem 1 in this case is accomplished by exploiting the continuity
of the correspondence between spanning trees and the sandpile model. In Section 3.2 we use a more
concrete approach that would also apply here. We begin by listing some conventions and definitions.

1. It will be convenient to regard µΛ and µ (from Theorem 2) as measures on the space Ω′ = {0, 1}Ed

,
where Ed denotes the set of all bonds of Zd, and 1 represents an edge being present. We consider
Ω′ with the metrizable product topology. For ω ∈ Ω′ let ω|Λ denote the restriction of ω to edges
joining vertices in Λ. Let X ⊂ Ω′ denote the set of spanning trees of Zd with one end.

2. Let F be a finite rooted tree in Zd with root x. F will be assumed to denote the edge set and
V (F ) the vertex set. For a set of sites B ⊂ V (F ), we define eca(B;F ) as the ‘earliest common
ancestor’ of B in F . More formally, this can be described as the unique site furthest from x and
common to all paths that start in B, end at x and stay in F . It may so happen that for certain
B, eca(B;F ) = x. Let desc(B;F ) denote the tree (or forest) consisting of all descendants of B in
F .

3. We consider the sandpile configuration in a fixed finite set A0 ⊂ Zd for Λ ⊃ A0. Let A denote the
set of sites that are either in A0 or have a neighbor in A0. Let

F = F(A) =
{

(F, x) :
F is a finite rooted tree in Zd with
root x, A ⊂ V (F ), eca(A;F ) = x

}
.

Given (F, x) ∈ F , let HF,x denote the set of edges incident on a site in V (F ), excluding those
edges incident on x that do not belong to F . In particular, F ⊂ HF,x.
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4. We write T for the USF, that is, T ∈ Ω′ with distribution µ. If we define the “root” of T to be at
infinity, we call x∗ = eca(A;T ) and F ∗ = desc(x∗;T ).

5. We use the notation H∗(ω) for the set valued random variable whose value is HF,x on the event
ω ∩HF,x = F and Zd otherwise. We also extend the definition of F ∗ and x∗ whenever H∗(ω) is
finite by letting F ∗(ω) = F , x∗(ω) = x on the event ω ∩HF,x = F .

Before we proceed to the proof, we observe the consistency of the above list. First, note that due to
Theorem 2 (iii), µ(X ) = 1. Similarly, µΛ(XΛ) = 1 for the set XΛ defined by

XΛ =
{
ω ∈ Ω′ :

ω|Λ has no cycles, and each component
of ω|Λ is joined to Λc by a unique edge

}
.

Secondly, Theorem 2 (iii), ensures that (F ∗, x∗) is µ-a.s. well-defined for 2 ≤ d ≤ 4, and we have
(F ∗, x∗) ∈ F . Thirdly, for different (F, x) ∈ F , the events {ω ∩HF,x = F} are disjoint, which implies
that H∗ is well defined. Finally, observe that

{(F ∗, x∗) = (F, x)} = {T ∩HF,x = F}, µ-a.s., (6)

which means that the extended definition of F ∗ and x∗ makes sense. We will assume the last observation
for now and provide a proof at the end of this subsection.

Proof of Theorem 1. We observe that by Remark 2 (i), for ω ∈ XΛ, the sandpile configuration in A0

is already determined by (F ∗, x∗), independently of Λ, when H∗ ⊂ Λ. More precisely, defining the
auxiliary space ΩA0 = {1, . . . , 2d}A0 , the configuration is given in terms of a function ψ : F → ΩA0 .
The correspondence in Section 2.1 can be recast in terms of functions fΛ, f : Ω′ → Ω̄A0 defined below.
Let Ω̄A0 = ΩA0 ∪ {∗} (endowed with the discrete topology), and define

fΛ(ω) =

φ−1
Λ (ω|Λ)|A0 ω ∈ XΛ,

∗ ω ∈ Ω′ \ XΛ.

f(ω) =

ψ(F, x) when H∗(ω) = HF,x,

∗ otherwise.

By the observations above, for ω ∈ XΛ and H∗(ω) ⊂ Λk ⊂ Λ we have fΛ(ω) = f(ω) = ψ(F ∗, x∗). This
implies that for u ∈ ΩA0

lim sup
Λ↗Zd

∫
|I[fΛ = u]− I[f = u]| dµΛ ≤ lim

k→∞
lim

Λ↗Zd
µΛ(H∗ 6⊂ Λk) = 0. (7)

Here in the last step we used that {H∗ ⊂ Λk} is a cylinder event, and that H∗ is finite µ-a.s. It is
easy to see using the definition of H∗ that f is continuous at every ω ∈ X , and therefore by the general
theory of weak convergence [10, Section 12]

lim
Λ↗Zd

∫
I[f = u]dµΛ =

∫
I[f = u]dµ. (8)

Now (7) and (8) imply that for any u ∈ ΩA0

lim
Λ↗Zd

νΛ(z|A0 = u) = lim
Λ↗Zd

∫
I[fΛ = u]dµΛ =

∫
I[f = u]dµ def= ν(z|A0 = u).
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This exhibits the weak convergence of νΛ to a limit ν. For a cylinder E depending on the set of sites
A0 we have

ν(E) =
∑

(F,x)∈FE

µ(T ∩HF,x = F ), (9)

where
FE = {(F, x) ∈ F : ψ(F, x) ∈ E}. (10)

Translation invariance of the limit follows, since for any fixed v ∈ Zd we have

lim
Λ↗Zd

νΛ(τvE) = lim
Λ↗Zd

ντ−vΛ(E) = lim
Λ↗Zd

νΛ(E) = ν(E). (11)

For the third equality in (1), observe that for fixed N and n > N

Pn(τXn
E) = Pn(τXn

E,dist(Xn, ∂Λn) ≤ N) +
∑

v∈Λn:
dist(v,∂Λn)>N

νn(τvE)q(v).

The first term is bounded by Pn(dist(Xn, ∂Λn) ≤ N), and goes to 0 as n → ∞. By (11) the second
term is arbitrarily close to ν(E) when N is large, and n→∞..

Proof of (6). First we show that (F ∗, x∗) = (F, x) implies the event on the right hand side. Since
F = F ∗, we have F ⊂ T , and hence F ⊂ T ∩ HF,x. Consider an edge f = 〈u1, u2〉 ∈ HF,x \ F , with
u1 ∈ V (F ). We show that f 6∈ T . In the case when we also have u2 ∈ V (F ), we are done, since T has
no cycles. If u2 6∈ V (F ), then first note that u1 6= x, by the definition of HF,x. Therefore, if we had
f ∈ T , then u2 would be a descendant of x∗ in T , and we would have f ∈ F ∗ = F , a contradiction.

Now assume that T ∩ HF,x = F occurs. First, this implies F ⊂ T . It also implies, by the definition
of HF,x, that if an edge incident on any u ∈ V (F ) with u 6= x does not belong to F , then it does not
belong to T either. Hence the only site in V (F ) that is connected (in T ) to infinity without using edges
of F is x. This implies that V (F ) is precisely the set of descendants of x in T , and that F consists
precisely of those edges of T that are descendants of x. It is simple to deduce from this that x∗ = x and
F ∗ = F .

3.2 The case d > 4

We will be borrowing most of the definitions and conventions from the previous case. The few modifi-
cations we will make are due to the fact that there are multiple components in the USF.

1. We need to modify the definition of the set F . We let

F̄ = F̄(A) =

(Fi, xi)r
i=1 :

Fi are vertex-disjoint finite rooted trees in
Zd with root xi, eca(A ∩ V (Fi);Fi) = xi,
i = 1, . . . , r, and A ⊂ ∪r

i=1V (Fi), r ≥ 1

 .

We write (F̄ , x̄) to denote an element of F̄ .
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2. For Λ ⊃ A, recall TΛ from Section 2.1. Since TΛ falls apart into multiple components as Λ ↗ Zd,
any two fixed sites u and v are either connected within a ‘short distance’, or the connection occurs
through the root δΛ. We decompose TΛ into vertex disjoint trees by removing δΛ. With slight
abuse of language, we refer to these trees as the components of TΛ. The decomposition of TΛ

induces a decomposition of A into (random) sets Ai, 1 ≤ i ≤ r, where u, v ∈ A belong to the
same Ai if and only if eca({u, v};TΛ) 6= δΛ. Here r is random, and the indexing of the Ai’s is
determined by some fixed rule that assigns a particular indexing to any partition of A. We let
x∗Λ,i = eca(Ai;TΛ) and F ∗Λ,i = desc(x∗Λ,i;TΛ). It is clear that (F̄ ∗Λ, x̄

∗
Λ) = {(F ∗Λ,i, x

∗
Λ,i)

r
i=1} ∈ F̄ .

It is straightforward to extend these definitions to the case Λ = Zd, noting that each component
of the USF has one end a.s. Letting Ai, 1 ≤ i ≤ r denote the non-empty intersections of A
with a component of T , we define x∗i = eca(Ai;T ) and F ∗i = desc(x∗i ;T ). By Theorem 2 (iv),
(F̄ ∗, x̄∗) = (F ∗i , x

∗
i )

r
i=1 is µ-a.s. well-defined, and is an element of F̄ .

3. Define
XΛ,i = distTΛ(x∗Λ,i, δΛ), 1 ≤ i ≤ r,

where distTΛ denotes the graph distance in TΛ. Let Σr denote the set of permutations of {1, . . . , r}.
We define the random permutation σ∗Λ ∈ Σr by the conditions XΛ,σ∗Λ(1) ≤ · · · ≤ XΛ,σ∗Λ(r), where
in case of ties we make a choice for σ∗Λ in a fixed but arbitrary manner. We also define

YΛ = min
1≤i<j≤r

|XΛ,i −XΛ,j |.

For convenience, we set YΛ = ∞ when r = 1.

4. We need some more notation in order to formulate the analogue of (10). We define the events

DΛ(x̄) = DΛ

(
(xi)r

i=1

)
= {x1, . . . , xr belong to distinct components of TΛ},

for x1, . . . , xr ∈ Zd, and

BΛ(F̄ , x̄) = DΛ(x̄) ∩ {TΛ ∩HFi,xi
= Fi, 1 ≤ i ≤ r}, (12)

for (F̄ , x̄) = (Fi, xi)r
i=1 ∈ F̄ . When Λ = Zd, we denote the corresponding events by D(x̄) and

B(F̄ , x̄). Analogously to the case 2 ≤ d ≤ 4, we can show

{(F̄ ∗Λ, x̄∗Λ) = (F̄ , x̄)} = BΛ(F̄ , x̄) {(F̄ ∗, x̄∗) = (F̄ , x̄)} = B(F̄ , x̄), (13)

for any (F̄ , x̄) ∈ F̄ and Λ ⊃ ∪r
i=1HFi,xi

.

Remark 3. Note that the events on the right hand side of (13) are disjoint for different (F̄ , x̄) ∈ F̄ . By
Remark 2 (i), the occurrence or not of E is already determined by (F̄ ∗Λ, x̄

∗
Λ) and (XΛ,i)r

i=1. In fact, it is
enough to know the value of all differences XΛ,i −XΛ,j , 1 ≤ i < j ≤ r. Moreover, we can expect that
the fluctuations of these differences grow as Λ ↗ Zd, and for large Λ there exists a random permutation
σ of {1, . . . , r}, such that XΛ,σ(i+1) −XΛ,σ(i) � 1, 1 ≤ i ≤ r − 1 with large probability. If the variables
XΛ,i are in this sense ‘well separated’ (we will give a more precise definition shortly), then by Remark
2 (ii), already the permutation σ and (F̄ ∗Λ, x̄

∗
Λ) determine the occurrence or not of E.

5. Fix (F̄ , x̄) ∈ F̄ and σ ∈ Σr, where r is the number of components of (F̄ , x̄). Assume that the
events BΛ(F̄ , x̄) and {σ∗Λ = σ} occur. By the above consideration, this already determines whether
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E occurs or not, independently of Λ, whenever YΛ is larger than some constant K = K(F̄ ). We
take K(F̄ ) = max1≤i≤r diam(Fi), where diam(F ) denotes the graph diameter of F . Let

F̄E =
{

(F̄ , x̄, σ) :
BΛ(F̄ , x̄) and σ∗Λ = σ imply φ−1(TΛ) ∈ E,
whenever YΛ > K(F̄ ) and Λ ⊃ ∪r

i=1HFi,xi

}
. (14)

6. Let H∗Λ denote the random set whose value equals ∪r
i=1HFi,xi

on the event BΛ(F̄ , x̄), (F̄ , x̄) ∈ F̄ .

We will need the following Lemma.

Lemma 3. Let d > 4. We have

lim
k→∞

lim inf
Λ↗Zd

µΛ(H∗Λ ⊂ Λk) = 1. (15)

For fixed (F̄ , x̄, σ) ∈ F̄E, we have

lim
n→∞

µn

(
Bn(F̄ , x̄), Yn ≤ K(F̄ )

)
= 0, (16)

and
lim

n→∞
µn

(
Bn(F̄ , x̄), σ∗n = σ, Yn > K(F̄ )

)
=

1
r!
µ(B(F̄ , x̄)). (17)

Proof of Lemma 3. Denote by x↔ y the event that sites x and y belong to the same component of TΛ

(or T ). The first step in showing (15) is to prove that for any x, y ∈ A

lim sup
Λ↗Zd

µΛ(x↔ y, but not inside Λm) → 0, as m→∞. (18)

To see this, note that when x ↔ y, there is a unique self-avoiding path ω : x → y in Λ (or in Zd) such
that the edges of ω belong to TΛ (or T ). Therefore, using (4), the expression in (18) can be bounded by

lim sup
Λ↗Zd

∑
ω:x→y
ω⊂Λ

ω 6⊂Λm

µΛ(ω ⊂ TΛ) ≤
∑

ω:x→y
ω 6⊂Λm

µ(ω ⊂ T ) = µ(x↔ y, but not inside Λm).

Here the right hand side goes to 0 as m → ∞. Now assume that m is such that for any x, y ∈ A

either x ↔ y inside Λm, or x 6↔ y. Then H∗Λ ⊂ Λk can be ensured if desc(Λm;TΛ) ⊂ Λk−1. Since each
component of T has a single end, for fixed m we have limk→∞ µ(desc(Λm;T ) ⊂ Λk−1) = 1. By Theorem
2 (ii) this implies

lim
k→∞

lim inf
Λ↗Zd

µΛ(desc(Λm;TΛ) ⊂ Λk−1) = 1.

This proves (15).

We next turn to the proof of (16). For a site x, let ZΛ(x) = distTΛ(x, δΛ). Then it is sufficient to prove
that for any x, y ∈ A

lim
n→∞

µn(x 6↔ y, |Zn(x)− Zn(y)| ≤ 2K(F̄ )) = 0. (19)

Indeed, YΛ ≤ K(F̄ ) and the occurrence of BΛ(F̄ , x̄) would imply that there exist x, y ∈ A such that
x 6↔ y, and |ZΛ(x) − ZΛ(y)| ≤ 2K(F̄ ). Therefore we are going to study the paths from x and y to
the boundary of Λ conditional on x 6↔ y. The key tool for this is Wilson’s method. It is described for
example in [3, 19].
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Wilson’s method gives a construction of TΛ via loop-erased random walks [9]. In particular, using the
method with root at δΛ, it follows that the paths from x and y to δΛ can be generated in the following
way. Let {S(i)(n)}n≥0, i = 1, 2 be two independent simple random walks starting at S(1)(0) = x and
S(2)(0) = y. Let T (i) = T

(i)
Λ be the hitting time of Λc by the two walks. Let LE denote the operation

of erasing loops from a path in sequence, as they are created, and let γ(i)
Λ = LE

{
S(i)[0, T (i))

}
, i = 1, 2.

Then conditional on GΛ = {S(2)[0, T (2))∩ γ(1)
Λ = ∅}, the joint law of (γ(1)

Λ , γ
(2)
Λ ) is the same as the joint

law of the paths in TΛ from x and y to δΛ conditional on x 6↔ y. In the sequel we assume that the
latter paths have been generated by the random walks in this way. In particular, we assume that the
constructions in different volumes Λ are coupled by using the same infinite random walks S(1) and S(2).

Denote by ρ(n) the number of points remaining of the first n points after loops are erased from a random
walk S[0,∞). It is shown in [9, Theorem 7.7.2], that for d ≥ 5 there exists a constant a > 0 such that

lim
n→∞

ρ(n)
n

= a, a.s. (20)

We claim
ZΛ(x) = ρ(1)(T (1)

Λ ) + E1, (21)

where E1/T
(1) → 0 a.s. as Λ ↗ Zd. We use the notion of a (two-sided) loop-free point, a concept

introduced in [9]. A random walk S[0,∞) has a natural extension to a two-sided random walk S(−∞,∞).
We call a point j loop-free for S, if S(−∞, j]∩S(j,∞) = ∅. If j0 < j1 < j2 are loop-free, then loop-erasure
on [j0, j1] does not interfere with loop-erasure on [j1, j2]. Let

j
(1)
Λ = max{j < T

(1)
Λ : j is loop-free}.

Note that E1 ≤ T
(1)
Λ − j

(1)
Λ . Let π(1)(n) denote the number of loop-free points in [0, n) for the random

walk S(1). By the ergodic theorem,

lim
n→∞

π(1)(n)
n

= b = P (0 is loop-free) > 0, a.s.

This implies that for any δ > 0, as Λ ↗ Zd we have

(1 + δ)bj(1)Λ ≥ π(1)(j(1)Λ ) = π(1)(T (1)
Λ )− 1 ≥ (1− δ)bT (1)

Λ

eventually a.s. This implies that (1−δ)/(1+δ) ≤ j
(1)
Λ /T

(1)
Λ ≤ 1 eventually a.s., and therefore E1/T

(1) → 0
follows. Similarly to the above one can show that on the event GΛ,

ZΛ(y) = ρ(2)(T (2)
Λ ) + E2, (22)

where E2/T
(2) → 0 as Λ ↗ Zd a.s.

It follows from (20), (21) and (22), that

ZΛ(x)
ZΛ(y)

T
(2)
Λ

T
(1)
Λ

→ 1, as Λ ↗ Zd a.s. on G, (23)

where G =
{
S(2)[0,∞) ∩ LE

{
S(1)[0,∞)

}
= ∅

}
. Since for d ≥ 5 the walks S(1)[0,∞) and S(2)[0,∞)

have finitely many intersections a.s. [9, Proposition 3.2.3], we have limΛ↗Zd I[GΛ] = I[G] a.s.

For simplicity, let us restrict to Λ = Λn, and consider n→∞.
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Consider two independent Brownian motions in Rd started at 0, and let τ (i), i = 1, 2 denote their first
exit times from (−1, 1)d.

It follows from Donsker’s theorem [10, Section 42.2] that

T
(1)
n

T
(2)
n

⇒ τ (1)

τ (2)
, as n→∞, (24)

where ⇒ denotes weak convergence. It is simple to deduce from (24), (23) and I[Gn] → I[G] that

lim
δ→0

lim sup
n→∞

P

(
Gn,

Zn(x)
Zn(y)

∈ [1− δ, 1 + δ]
)

= 0. (25)

This in turn implies (19).

Finally, we show that a strengthening of the preceding argument also proves (17). For this we describe
the event in (17) in terms of Wilson’s algorithm. Enumerate the sites in ∪r

i=1V (Fi) starting with
x1, . . . , xr and followed by an arbitrary list y1, y2, . . . of the rest of the sites. We apply Wilson’s method
with root δΛ and with paths starting successively at the sites enumerated above. Let S(i), i = 1, . . . , r
be independent simple random walks started at xi, with T (i) the hitting time of Λc. Let γ(i)

Λ be the
loop-erasure of S(i)[0, T (i)) as before. For the event DΛ(x̄) we require the occurrence of the event

GΛ =
{
S(i)[0, T (i)) ∩

(
∪i−1

j=1γ
(j)
Λ

)
= ∅, i = 1, . . . , r

}
. (26)

In addition, BΛ(F̄ , x̄) gives conditions on the paths starting at y1, y2, . . . , namely these paths have to
realize the events TΛ ∩HFi,xi = Fi, given the paths γ(i)

Λ . We denote the latter event by CΛ. Thus CΛ is
a subevent of GΛ, which occurs if and only if given the paths implicit in the event GΛ, the loop-erased
random walks started at y1, y2, . . . realize TΛ ∩ HFi,xi

= Fi. Analogously we can define events G and
C ⊂ G, which are the Λ = Zd versions of these events.

Applying Wilson’s algorithm in Zd with root at infinity, it is clear that P (C) = µ(B(F̄ , x̄)). Therefore,
specializing to Λ = Λn and using (25), (17) will be proved once we show

lim
n→∞

P
(
Cn, Zn(xσ(i)) < Zn(xσ(i+1)), i = 1, . . . , r − 1

)
= P (C)

1
r!
. (27)

Arguing as in the proof of (16), we have

lim
n→∞

Zn(xσ(i))
Zn(xσ(i+1))

T
σ(i+1)
n

T
σ(i)
n

= 1, a.s. on G, i = 1, . . . , r − 1. (28)

Since C ⊂ G, the above convergence also holds a.s. on C.

Next we show I[CΛ] → I[C] a.s. We may assume the occurrence of G, since as before we already know
I[GΛ] → I[G]. When C occurs as well, the random walks started at y1, y2, . . . remain inside a finite
(random) box upto their respective hitting times. This implies that CΛ occurs for large enough n. If G
occurs but C does not, then two things can happen. One is that for some j the random walk started at
yj has infinite hiting time. In this case CΛ cannot occur. The other is that all hitting times are finite,
but at least one of the events T ∩HFi,xi

= Fi is not realized. When this happens, it also happens for
all large Λ, and thus CΛ does not occur.
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By the previous paragarph, we can replace Cn by C in (27) without affecting the limit. Also, by (28)
and (25) we can replace each Zn by the corresponding hitting time without affecting the limit. Therefore
we are left to show

lim
n→∞

P
(
C, T σ(i)

n < T σ(i+1)
n , i = 1, . . . , r − 1

)
= P (C)

1
r!
, (29)

We complete the proof by approximating C by Cm for 0 < m < n, keeping m fixed but large. The
probability on the left hand side of (29) can be written as

P
(
Cm, T

σ(i)
n < Tσ(i+1)

n , i = 1, . . . , r − 1
)

+ η(m,n), (30)

where limm→∞ lim supn→∞ η(m,n) = 0 by I[Cm] → I[C]. Also, we can replace T σ(j)
n by T σ(j)

n −T σ(j)
m in

(30). For fixed m, Cm and (T (i)
n −T (i)

m )r
i=1 are conditionally independent given (S(i)(T (i)

m ))r
i=1. Similarly

to (24) we have
T

(i)
n − T

(i)
m

T
(j)
n − T

(j)
m

⇒ τ (i)

τ (j)
, 1 ≤ i < j ≤ r,

uniformly in (S(i)(T (i)
m ))r

i=1 for fixed m as n→∞. This gives

lim
n→∞

P
(
Cm, T

σ(i)
n < Tσ(i+1)

n , i = 1, . . . , r − 1
)

= P (Cm)P
(
τσ(i) < τσ(i+1), i = 1, . . . , r − 1

)
= P (Cm)

1
r!
.

(31)

Since P (Cm) → P (C), (30) and (31) proves (29) by letting m → ∞. This completes the proof of the
lemma.

We are now ready to present the proof of the Theorem.

Proof of Theorem 1. We write down an expression for the limit ν(E). In the lemma we have shown that
conditioned on BΛ(F̄ , x̄), σ∗Λ is asymptotically uniform on Σr. Therefore we define

ν(E) def=
∑

(F̄ ,x̄,σ)∈F̄E

1
r!
µ(B(F̄ , x̄)), (32)

where the value of r in the summand is the number of components of F̄ .

For k ≥ 1 we let

F̄(k) =
{
(Fi, xi)r

i=1 ∈ F̄ : ∪r
i=1HFi,xi

⊂ Λk

}
F̄E(k) =

{
(F̄ , x̄, σ) ∈ F̄E : (F̄ , x̄) ∈ F̄(k)

}
.

By the discussions preceding (14), we have∣∣∣νn(E)−
∑

(F̄ ,x̄,σ)∈F̄E(k)

µn

(
Bn(F̄ , x̄), σ∗n = σ, Yn > K(F̄ )

)∣∣∣
≤ µn

(
H∗ 6⊂ Λk

)
+

∑
(F̄ ,x̄,σ)∈F̄E(k)

µn

(
Bn(F̄ , x̄), Yn ≤ K(F̄ )

)
.

(33)

Let ε > 0, and choose k large, so that the lim sup of the first term on the right hand side is at most ε, as
n→∞. Fixing this k, and noting that F̄E(k) is finite, the second term on the right hand side of (33) is
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less than ε, if n is large enough, by (16). Also, for each (F̄ , x̄) ∈ F̄E(k), the summand on the left hand
side of (33) approaches µ(B(F̄ , x̄))/r! by (17). Now letting ε→ 0 proves that limn→∞ νn(E) = ν(E).

For the second limit in Theorem 1, we can apply the same argument, using a minor modification of
Lemma 3. Note that the convergence is in fact uniform in v, as long as the distance of v from the
boundary is at least αn, for any fixed α > 0. To see this, first note that under this condition, no
problem arises where we have shown convergence as Λ ↗ Zd. Therefore we only need to verify that
there is uniformity in the application of Donsker’s theorem as well.

To make the last observation more precise, let z = (z1, . . . , zd) ∈ [−(1−α), 1−α]d, and let Tn(z) be the
exit time from [−n, n]d for simple random walk started at v = nz. Then Tn(z)/(2dn2) ⇒ τ(z) where
τ(z) is the exit time from (−1, 1)d for Brownian motion started at z. What we need to verify is that for
any t > 0

P (Tn(z)/(2dn2) < t) → P (τ(z) < t) uniformly in z. (34)

Let (Sn)n≥0 = (Sn,1, . . . , Sn,d)n≥0 be simple random walk started at 0.The event on the left hand side
of (34) can be recast as

d⋃
i=1

[{
max

0≤m≤2dn2t

Sm,i

n
≥ 1− zi

}
∪

{
min

0≤m≤2dn2t

Sm,i

n
≤ −1− zi

}]
.

Thus the claim follows from the weak convergence of the joint law of the maxima and minima in this
event.

With this observation we can prove the third equality of the theorem arguing similarly to the case
2 ≤ d ≤ 4, and letting α→ 0.
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