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Abstract

It is well-known that well-posedness of a martingale problem in the class of continuous

(or r.c.l.l.) solutions implies measurability of the transition probability functions and

hence Markovian property of the solution. We extend this result to the case when

the martingale problem is well-posed in the class of solutions which are continuous in

probability. This extension is used to improve on a criterion for a probability measure

to be invariant for the semigroup associated with the Markov process. We also give an

example of a martingale problem that is well posed in the class of solutions which are

continuous in probability but for which no r.c.l.l. solution exists.
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1 Introduction

The seminal paper on Multi-dimensional diffusions by Stroock and Varadhan (1969)

introduced Martinagle problems as a way of constructing and studying of Markov pro-

cesses. Since then, this approach has been used succesfully in several contexts such

as interacting particle systems, Markov processes associated with Boltzmann equation,

nonlinear filtering theory, controlled markov processes, branching processes etc. An ex-

cellent account of the “Theory of Martingale problems” is given in the book by Ethier

and Kurtz (1986). To construct a Markov process, the martingale problem approach al-

lows one to construct the process for each initial condition separately and a general result

gives the measurability of the associated transition probability function. To proceed, we

give the basic definitions here. Given an operator A with domain D(A) ⊆ Cb(E) and

range subset of Cb(E), (where E is a complete separable metric space), a process Xx
t is

said to be a solution to the (A, δx) martingale problem if for all f ∈ D(A)

(1.1) f(Xx
t )−

∫ t

0

Af(Xx
u)du is a martingale

and

(1.2) P(Xx
0 = x) = 1

The martingale problem for A is said to be well posed in the class of r.c.l.l. solutions

if for all x there exits a r.c.l.l. process (Xx
t ) satisfying (1.1) and (1.2) and further for

two such processes satisfying (1.1) and (1.2) (defined possibly on different probability

spaces), the finite dimensional distributions are the same. Well posedness in the class of

continuous solutions, solutions that are continuous in probability or measurable solutions

is similarly defined. A well known result, which has its origins in the work of Stroock-

Varadhan (1979) says that if the martingale problem for A is well posed in the class of

r.c.l.l. solutions (or well posed in the class of continuous solutions), then (assuming that

A, D(A) satisfy some mild conditions) it follows that pt(x, ·) defined by

(1.3) pt(x,A) = P(Xx
t ∈ A)

is a transition probability function and any solution is a Markov process with pt as its

transition probability function. (See e.g. Theorem IV.4.2. of Ethier and Kurtz (1986)).

This in turn gives us the associated semi-group (Tt) and its generator L. The generator

L happens to be an extension of the operator A and thus A contains all the “relevant

information” about L as well as about X. An important result on this theme is the

following criterion for a probability measure to be invariant for (Tt): If D(A) is an
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algebra that separates points and if the martingale problem for A is well posed in the

class of r.c.l.l. solutions, then for a probability measure µ on E

(1.4)

∫
(Af)dµ = 0 ∀f ∈ D(A) ⇒ µ is invariant for (Tt).

This was proved by Echeverria (1982) assuming that E is locally compact. In Bhatt and

Karandikar (1993) it was shown that the result continues to be true if the assumption

of local compactness on E is replaced by the assumption that E is a complete separable

metric space provided we assume that the martingale problem is, in addition to being well

posed in the class of r.c.l.l. solutions, also well posed in the class of progressively measur-

able solutions. Thus, we need existence in the class of r.c.l.l. solutions and uniqueness in

the class of progressively measurable solutions. This somewhat unusual assumption was

required because one needed well posedness in r.c.l.l. solutions in order to give the mea-

surability of the function pt(x, ·) defined by (1.3) and as a consequence, the associated

semigroup and the Markov property of any solution. This approach required considering

solutions to martingale problems without any reference to their path properties. The

main result of this article is that if the Martingale problem is well posed in the class of

solutions that are continuous in probability, then (under suitable conditions on A,D(A))

the function pt defined by (1.3) is measurable and that any solution satisfies the Markov

property. This would allow us to drop the unusual assumption referred to above in the

criterion for an invariant measure and replace it by the martingale problem is well posed

in the class of solutions that are continuous in probability. The proof of measurability of

pt(x, ·) defined by (1.3) when one assumes well posedness in the class of r.c.l.l. solutions

is on the following lines. (See e.g. Theorem IV.4.6 of Ethier and Kurtz (1986)). One

considers the set P of all probability measures on D([0,∞), E). It is a complete sepa-

rable metric space under the topology of weak convergence. The set M of probability

measures on D([0,∞), E) under which the coordinate process η is a solution to the mar-

tingale problem for some degenarate initial condition can be shown to be a Borel subset

of P . Well-posedness of the martingale problem in the class of r.c.l.l. solutions implies

that for each x ∈ E, there exists a unique Px ∈M such that

Px(η : η(0) = x) = 1.

Since the mapping P −→ P ◦ (η(0))−1 is Borel measurable on P , its restriction to the

Borel set M is also Borel measurable. But in view of the well-posedness assumption,

the map restricted to M is the function Px −→ δx. (Here, δx ∈ P(E) is the degenarate

probability measure with unit mass at x). Since δx −→ x is measurable (it is indeed

continuous), we get measurabilty of the mapping Px −→ x. Using the fact that a one-to-

one Borel measurable function between standard Borel spaces is bimeasurable, i.e. has
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a Borel measurable inverse we get that the mapping

x −→ Px is Borel measurable.

Once we have this, the proof of Markov property is easy. If one has well-posedness in the

class of solutions with continuous paths, the proof is exactly the same- with C([0,∞), E)

replacing D([0,∞), E). So in order to achieve our aim, we need to give a Borel structure

on the set of distributions of processes that are continuous in probability. Once we have

done this, we can deduce that well posedness in the class of solutions that are continuous

in probability also gives measurability of the associated transition probability function

and the Markov property. A crucial observation is that if the domain D(A) of A is a

convergence determining class and X is any solution to the martingale problem, then

the process X is continuous in probability. Thus, if D(A) is a convergence determining

class, the phrase “solutions that are continuous in probability” in the discussion above

can be replaced by “measurable solutions”. In section 4, we give criterion for a measure

to be invariant for the semigroup generated by a well-posed martingale problem. This is

an improvement on the results mentioned above on this theme. In the last section, we

give an example of a martingale problem that is well posed in the class of solutions that

are continuous in probability but for which no r.c.l.l. solution exists.

2 Preliminaries

We will denote by (E, d) a complete, separable metric space. A will denote an operator

with domain D(A) ⊂ Cb(E), the space of real valued bounded continuous functions

on E and with range contained in M(E), the class of all real valued Borel measurable

functions on E. Let B(E) denote the class of all bounded Borel measurable functions.

For C ⊂ B(E), we define the bp-closure of C to be the smallest subset of B(E) containing

C which is closed under bounded pointwise convergence of sequences of functions. B(E)

will denote the Borel σ-field on E, P(E) will denote the space of probability measures

on E. For a random varibale Z taking values in E, L(Z) will denote the law of Z- i.e.

the probability measure P ◦ Z−1, if Z is defined on (Ω,F ,P). For a measurable Process

(Xt) defined on (Ω,F ,P), let

∗FX
t = σ

{
Xu,

∫ u

0

h(Xs)ds : u ≤ t , h ∈ Cb(E)

}
Throughout this article, we will assume the following:

Assumption A1 There exists a [0,∞) valued measurable function Φ on E such that

(2.1) |Af(x)| ≤ CfΦ(x) ∀x ∈ E, f ∈ D(A).
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Definition 2.1 : An E valued process (Xt)0≤t≤T defined on some probability space

(Ω,F ,P) is said to be a solution to the martingale problem for (A, µ) if

(i) X is a measurable process with L(X0) = µ,

(ii) EP[
T∫
0

Φ(Xs)ds] <∞

and

(iiii) for every f ∈ D(A), M f
t = f(Xt)−

t∫
0

Af(Xs)ds is a (∗FX
t ) -martingale. X will be

called a solution to A martingale problem if it is a solution to (A, µ) martingale problem

for some µ. Let W be a class of E valued processes. For example, we could consider W
to be the class of E valued processes with r.c.l.l. paths or W can be the class of solutions

that are continuous in probability. Definition 2.2 : The martingale problem for A is

said to well posed in the class W if for all x ∈ E, there exists a solution Xx ∈ W to the

(A, δx) martingale problem and if Y ∈ W is any other solution to the (A, δx) martingale

problem, then the finite dimensional distributions of Xx and Y are the same. We begin

with some observations on solutions to the A -martingale problem.

Lemma 2.1 Let X be a solution to the A martingale problem (on (Ω,F ,P)). Suppose

that D(A) is a determining class and further that

(2.2) t −→ L(Xt) is continuous.

Then t −→ Xt is continuous in probability.

Proof : Fix f ∈ D(A) and let Zt = f(Xt). The assumption (2.2) implies that t −→
EP(Z

2
t ) is continuous (recall: D(A) ⊂ Cb(E)). Further,

EP[Zs(Zt − Zs)] = EP[Zs

∫ t

s

(Af)(Xu)du]

≤ Cf ||f ||EP[

∫ t

s

Φ(Xu)du].

Hence, if sk → v and tk → v with sk < tk, we have

EP[Zsk
Ztk ] → EP[Z

2
v ]

and so

EP[(Ztk − Zsk
)2] = EP(Ztk)

2 + EP(Zsk
)2 − 2EP[Zsk

Ztk ]

→ EP[Z
2
v ] + EP[Z

2
v ]− 2EP[Z

2
v ]

= 0.
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Hence for all f ∈ D(A) the mapping t −→ Zt = f(Xt) is continuous in probability. As

a consequence, for f, g ∈ D(A)

(2.3) (s, t) −→ EP[f(Xs)g(Xt)] is continuous.

Let sk → s. The assumption (2.2) implies that the family of distributions {L(Xsk
)} is

tight and so the family of distributions (on E × E)

(2.4) {L(Xsk
, Xs) : k ≥ 1} is tight.

Since the class of functions (x, y) −→ f(x)g(y), f, g ∈ D(A) constitutes a determining

class, (2.3) -(2.4) together imply that

(2.5) L(Xsk
, Xs) → L(Xs, Xs)

Now for any ε > 0, P(d(Xs, Xs) ≥ ε) = 0. Thus in view of (2.5)

lim sup
k→∞

P(d(Xsk
, Xs) ≥ ε) ≤ 0

i.e.

P(d(Xsk
, Xs) ≥ ε) → 0.

This completes the proof.

Remark 2.2 The proof given above contains the proof of the following: if for a process

Y , the mapping (s, t) −→ L(Ys, Yt) is continuous, then Y is continuous in probability.

Theorem 2.3 Let X be a solution to the A martingale problem (on (Ω,F ,P)). Suppose

that the domain D(A) of A is a convergence determining class on E. Then the process

X is continuous in probability.

Proof : Since f(Xt) −
∫ t

0
Af(Xs)ds is a martingale for f ∈ D(A), it follows that the

mapping t −→ EP[f(Xt)] is continuous. Since D(A) is a convergence determining class,

this implies continuity of the mapping

t −→ L(Xt).

Thus, by Lemma 2.1, t −→ Xt is continuous in probability.
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3 Main Result

We have seen in the previous section that under suitable conditions, all solutions to

a Martingale problem are continous in probability. Thus we now construct a Borel

structure on the class of distributions of such processes. For m ≥ 1, Em with the

product topology is again a complete separable metric space. Let P(Em) be equipped

with the toplology of weak convergence. Let Cm = C([0,∞)m,P(Em)) be equipped

with the topology of uniform convergence on compact subsets. Then Cm is a complete

separable metric space. Let Sm be the set of µm = µm(t1, t2, . . . tm) ∈ Cm satisfying

(3.1) µ2(t, t)(D) = 1 ∀t ∈ [0,∞)

where D is the diagonal in E × E and for f ∈ Cb(E
m)∫

(πf)(x1, x2, . . . , xm)µm(tπ1, tπ2, . . . tπm)(dx1, dx2, . . . dxm)(3.2)

=

∫
f(x1, x2, . . . , xm)µm(t1, t2, . . . tm)(dx1, dx2, . . . dxm)

for all permutations π of {1, 2, . . . ,m} where πf is defined by

πf(x1, x2, . . . , xm) = f(xπ1, xπ2, . . . , xπm)

It is easy to see that Sm is a closed subset of Cm and hence Sm is a complete separable

metric space. Let S∞ = Π∞
m=1Sm. Under the product toplology, S∞ is also a complete

separable metric space. Elements of S∞ will be denoted by µ = (µ1, µ2, . . .) (µk ∈ Sk).

Let

S∗ = {µ ∈ S∞ : µm(t1, . . . , tm) ◦ (hm)−1 = µm−1(t1, . . . , tm−1), ∀m > 1}

where hm : Em −→ Em−1 is the projection map defined by

hm(x1, x2, . . . , xm) = (x1, x2, . . . , xm−1).

Then clearly S∗ is also a complete separable metric space since it is a closed subspace

of S∞. Every element of S∗ is a consistent family of finite dimensional distributions

and hence by the Kolmogorov consistency therorem, given µ = (µ1, µ2, . . .) ∈ S∞, there

exists a probability space (Ω∗,F∗, P ∗) and a stochastic process (Xt) on it such that for

all m ≥ 1,

(3.3) L(Xt1 , Xt2 , . . . , Xtm) = µm(t1, t2, . . . , tm)

In view of Remark (2.2), the processX is continuous in probability. Conversely, given a E

valued process X that is continuous in probability, µm defined by (3.3) belongs to Sm and
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clearly {µ1, µ2, . . .} is a consistent family and hence µ = (µ1, µ2, . . .) ∈ S∗. Thus, S∗ can

be identified with the class of distributions of E valued processes that are continuous

in probability. Having given a topological structure to the class of (distributions) of

processes that are continuous in probability, we now identify the class of (distributions

of) solutions to the martingale problem for A and show that it is a Borel set. As in the

corresponding result on solutions with r.c.l.l. paths (see Ethier and Kurtz (1986)), we

assume that A,D(A) satisfy the following:

Assumption A2 There exists a countable set {fn : n ≥ 1} ⊂ D(A) such that

bp− closure{(fn,Φ
−1Afn) : n ≥ 1} ⊃ {(f,Φ−1Af) : f ∈ D(A)}.

Let X be a process that is continuous in probability (on some (Ω,F ,P)). Since every

such process admits a measurable modification (see Dellacherie and Meyer (1978)), we

assume that X is measurable. Let G be a countable dense subset of Cb(E) (in sup norm).

Then X is a solution to A martingale problem if and only if∫ N

0

Φ(Xu)du <∞ ∀N ≥ 1

and

EP

[
g1(Xs1) . . . gk(Xsk

)(fm(Xt)− fm(Xs)−
∫ t

s

(Afm)(Xu)du)
]

= 0

for all s1, s2, . . . sk, s, t rationals with si ≤ s ≤ t, gi ∈ G, 1 ≤ i ≤ k, k ≥ 1,m ≥ 1,

where {fj : j ≥ 1} are as in Assumption A2. Thus, a measurable process X is a

solution to the A martingale problem if and only if its finite dimensional distributions

µ = (µ1, µ2, . . .) defined by (3.3) belong to M ⊂ S∗ defined as follows: M is the set of

µ = (µ1, µ2, . . .) ∈ S∗ satisfying

(3.4)

∫ N

0

〈µ1(s),Φ〉ds <∞, ;∀N ≥ 1

(here, 〈F,Γ〉 denotes
∫
FdΓ) and

〈µk+1(s1, s2, . . . , sk, t), G⊗ fm〉 − 〈µk+1(s1, s2, . . . , sk, s), G⊗ fm〉

=

∫ t

s

〈µk+1(s1, s2, . . . , sk, u), G⊗ Afm〉du
(3.5)

for all s1, s2, . . . sk, s, t rationals with si ≤ s ≤ t, gi ∈ G, 1 ≤ i ≤ k, k ≥ 1,m ≥ 1, where

{fj : j ≥ 1} are as in Assumption A2 and

G⊗ fm(x1, x2, . . . , xk, z) = g1(x1)g2(x2) . . . gk(xk)fm(z).

8



Since M is defined via countably many conditions with each condition in turn involving

measurable functions of µ = (µ1, µ2, . . .), it follows that M is a Borel subset of S∗.
Moreover, given µ = (µ1, µ2, . . .) ∈ M, as noted above there exists a process X such

that its finite dimensional distributions are those given by µ = (µ1, µ2, . . .). This process

is continuous in probability and can be assumed to be measurable. It follows that X is

a solution to the A martingale problem. We have thus proved

Theorem 3.1 Suppose that A,D(A) satisfy A1 and A2. Then µ = (µ1, µ2, . . .) ∈ M if

and only if there exsists a process X that is (i) continuous in probability, (ii) the finite

dimensional distributions of X are given by µ = (µ1, µ2, . . .) and (iii) X is a solution to

the martingale problem for A.

We are now ready to prove the measurability of pt when the martingale problem for A

is well posed. We introduce the following

Assumption A3 The martingale problem for (A, δx) is well posed in the class of solu-

tions that are continuous in probability for each x ∈ E.

Theorem 3.2 Suppose that A,D(A) satisfy A1, A2 and A3. Let Xx denote a solution

that is continuous in probability to the (A, δx) martingale problem. Let pt(x,B), t ∈
[0,∞), x ∈ E, B ∈ B(E) be defined by

(3.6) pt(x,B) = P (Xx
t ∈ B).

Then for all t ∈ [0,∞), B ∈ B(E), x −→ pt(x,B) is Borel measurable.

Proof : Note that F = {δx : x ∈ E} is a Borel measurable subset of P(E) (indeed it is

a closed subset) and the function θ(δx) = x is a Borel measurable function on it (again

this is a continuous function). Let ψt : M−→ P(E) for 0 ≤ t <∞ be defined by

ψt(µ) = µ1(t), µ = (µ1, µ2, . . .) ∈M.

The functions ψt are continuous and hence measurable. Let M0 = (ψ0)
−1(F ). It follows

that M0 is a Borel subset of S∗. Also, Ψ = θ(ψ) is a measurable function from M0

into E. In view of the Assumption A3, for a given x ∈ E, M has exactly one element

µ = (µ1, µ2, . . .) such that

µ1(0) = δx

and hence the function Ψ is one-to-one. Hence by Kuratowski’s theorem (See e.g. Corol-

lary I.3.3 of Parthasarathy (1967)) the function is bimeasurable, or it has a measurable

inverse. Let us note that Ψ−1(x) denotes the finite dimensional distributions of Xx- the
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(unique in law) solution to (A, δx) martingale problem which is continuous in probability.

The required conclusion follows by noting that

pt(x,B) = ψt(Ψ
−1(x))(B).

Remark 3.3 Let us note that

Assumption A4 D(A) is convergence determining

and

Assumption A5 The (A, δx) martingale problem is well posed in the class of measurable

processes for all x ∈ E.

imply Assumtion A3. This is because assumption A4 implies that every solution to the

A martingale problem is continuous in probability. Thus the conclusion of the above

theorem remains valid with the same proof if instead we assume that A,D(A) satisfy

A1, A2 , A4 and A5.

Remark 3.4 Assume that A1, A2 and A3 are true. Denote by

µx = (µ1
x, µ

2
x, . . .)

the finite dimensional distributions of the (unique in law) solution to the (A, δx) martin-

gale problem that is continuous in probability. We have seen in the proof above that

x −→ µx(= Ψ−1(x))

is Borel measurable and hence for all t1, t2, . . . , tm, m ≥ 1

(3.7) x −→ µm
x (t1, t2, . . . , tm) is Borel measurable

The next step is to prove that {Tt : t ≥ 0} defined by

(3.8) Ttf(x) =

∫
f(y)pt(x, dy) =

∫
f(y)µ1

x(t)(dy)

is a semigroup on the class of bounded Borel measurable functions f on E. For this

we need to consider the martingale problem with non-degenarate initial distributions.

When the martingale problem is well posed in the class of solutions with r.c.l.l. paths

for all degenarate initials and Af is bounded for every f ∈ D(A), uniqueness follows

for all initial distributions. However, since we are dealing with the case where Af can
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be unbounded, we can no longer assert well-posedness for all initial distributions. To

proceed further, let us introduce the following notation:

(3.9) Φ∗
N(x) =

∫ N

0

〈µ1
x(s),Φ〉ds

Then in view of Remark 3.4, it follows that Φ∗
N is measurable [0,∞) valued function.

The next Lemma shows that existence holds for large class of initials. Let PΦ be the set

of all measures λ ∈ P(E) such that

(3.10) 〈Φ∗
N , λ〉 <∞ ∀N ≥ 1.

Lemma 3.5 Suppose that A,D(A) satisfy assumptions A1, A2 and A3. Let λ ∈ PΦ.

Then ν = (ν1, ν2, . . .) defined by

(3.11) 〈νm(t1, t2, . . . , tm), g〉 =

∫
〈µm

x (t1, t2, . . . , tm), g〉dλ(x)

belongs to M with ν1(0) = λ. Hence there exists a solution to the martingale problem

for (A, λ) ( whose finite dimensional distributions are {νm}).

Proof : It is easy to see that {νm} satisfy (3.5) since each {µm
x } satisfies the same.

Further, condition (3.10) on λ along with the definition of Φ∗
N implies that ν1 satisfies

(3.4) and hence {νm} belongs to M. Thus the corresponding process Y is a solution to

the the martingale problem for (A, λ). We need one more observation on Martingale

problems before we can state our result on Markov property of solutions.

Lemma 3.6 Let a process X defined on (Ω,F ,P) be a solution to the (A, λ) martingale

problem and let g be a [0,M ] valued measurable function on E (where M <∞) such that

〈λ, g〉 = 1. Let γ be defined by dγ
dλ

= g. Let Q be defined by

dQ
dP

= g(X0).

Then, considered as a process on (Ω,F , Q), X is a solution to the (A, γ) martingale

problem.

Proof : Since g is bounded it follows that

EQ

[∫ N

0

Φ(Xu)du
]
≤ MEP

[∫ N

0

Φ(Xu)du
]

< ∞
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Moreover, since d Q
dP is σ(X0) measurable, it follows that f(Xt)−

∫ t

0
Af(Xu)du is a mar-

tingale on (Ω,F , Q) (as it is a martingale on (Ω,F ,P)). The result follows upon noting

that Q ◦ (X0)
−1 = γ.

In addition to the assumption A3, we need to asuume the following in order to get

Markov property of any solution and the semigroup property of the {Tt}:

Assumption A6 There exists a sequence {hn : n ≥ 1} of [0,∞) valued Borel measur-

able functions on E such that for every λ ∈ P(E) satisfying

(3.12) 〈hn, λ〉 <∞ ∀n ≥ 1,

any two solutions to the (A, λ) martingale problem that are continuous in probability have

the same finite dimensional distributions.

Thus, in order to verify that A6 holds in a given example, we can show that the uniqueness

holds under a (or even countably many) integrability condition(s).

Theorem 3.7 Suppose that A,D(A) satisfy assumptions A1, A2, A3 and A6.

(i) Let λ ∈ PΦ. Then the Martingale problem for (A, λ) is well-posed. Further, the finite

dimensional law of any solution Y that is continuous in probability are gievn by

(3.11)

(ii) Let λ ∈ P(E) be such that the martingale problem for (A, λ) admits a solution that

is continuous in probability. Then λ ∈ PΦ.

(iii) Let λ ∈ PΦ. Let X be a solution to the (A, λ) martingale problem (defined on some

probability space (Ω,F ,P)). Further let X be continuous in probability. Then for

any s < t

(3.13) EP[g(Xs+t)|σ(Xu : u ≤ s)] = Ttg(Xs)

where {Tt : t ≥ 0} is defined by (3.8) and g ∈ Cb(E). As a consequence, X is a

Markov process and {Tt : t ≥ 0} is the semigroup associated with X.

Proof : (i) Let λ ∈ PΦ. We have seen in Lemma 3.5 that the (A, λ) martingale problem

admits a solution X whose finite dimensional distributions are given by (3.11). Let X

be defined on (Ω,F ,P). This process X is continuous in probability. Let Y be another

solution to the (A, λ) martingale problem defined on (Ω̃, F̃ , P̃) such that Y is continuous

in probability. Define g on E by

g(x) = C

∞∑
n=1

2−n 1

1 + hn(x)

12



where C is a constant that is chosen so that 〈λ, g〉 = 1. Define probability measures γ,

Q and Q̃ by

dγ

dλ
= g,

dQ
dP

= g(X0) and
d Q̃
dP̃

= g(Y0).

By Lemma 3.6, X on (Ω,F , Q) and Y on (Ω̃, F̃ , Q̃) are solutions to the (A, γ) martingale

problem. Further, these processes are continuous in probability. By construction, γ

satisfies (3.12) and hence by assumption A6, the finite dimensional distributions of X on

(Ω,F , Q) are the same as those of Y on (Ω̃, F̃ , Q̃). This in turn implies that the finite

dimensional distributions of X on (Ω,F ,P) are the same as those of Y on (Ω̃, F̃ , P̃).

This proves part (i). For (ii), let X be a solution that is continuous in probability to the

(A, λ) martingale problem. This time define

g(x) = C
∞∑

n=1

2−n 1

1 + Φ∗
n(x)

where C is a constant that is chosen so that 〈λ, g〉 = 1. Define probability measures γ

and Q by
dγ

dλ
= g, and

dQ
dP

= g(X0)

By Lemma 3.6, X is a solution to the the (A, γ) martingale problem under Q and X is

continuous in Q probability. By part (i), we have that the regular conditional probability

distribution of (Xt1 , Xt2 , . . . , Xtm) given σ(X0) is µm
X0

(t1, t2, . . . , tm). As a consequence

(3.14) EQ

[∫ N

0

Φ(Xs)ds|σ(X0)
]

= Φ∗
N(X0)

Since d Q
dP is σ(X0) measurable, (3.14) implies that

EP

[∫ N

0

Φ(Xs)ds|σ(X0)
]

= Φ∗
N(X0)

and hence that

EP

[∫ N

0

Φ(Xs)ds
]

= EP

[
Φ∗

N(X0)
]

= 〈Φ∗
N , λ〉.

Since X is a solution to the (A, λ) martingale problem, the LHS above is finite for all

N and hence λ ∈ PΦ. For (iii), let X be a solution to (A, λ) martingale problem that

is continuous in probability (defined on some probability space (Ω,F ,P)). Fix m ≥ 1

and 0 ≤ u1 < u2 < . . . um ≤ s and h1, h2 . . . hm bounded positive continuous functions,

define a probabiltiy measure Q on (Ω,F ,P) by

dQ
dP

= Ch1(Xu1)h2(Xu2) . . . hm(Xum)

13



where the constant C is chosen such that Q is a probability measure. Define Y by

Yt = Xs+t, t ≥ 0.

Then using that d Q
dP is bounded (say by M) we get

EQ

[ T∫
0

Φ(Yu)du
]

= EQ

[ T+s∫
s

Φ(Xu)du
]

≤ MEP

[ T+s∫
s

Φ(Xu)du
]

< ∞(3.15)

Further, noting that for g1, . . . gk ∈ Cb(E) and 0 ≤ s1 . . . < sk < v < t,

EQ

[
g1(Ys1) . . . gk(Ysk

)(f(Yt)− f(Yv)−
∫ t

v

(Af)(Yu)du)
]

=EQ

[
g1(Xs+s1) . . . gk(Xs+sk

)(f(Xs+t)− f(Xs+v)−
∫ t

v

(Af)(Xs+u)du)
]

=EP

[
Ch1(Xu1)h2(Xu2) . . . hm(Xumg1(Xs+s1) . . . gk(Xs+sk

)×

(f(Xs+t)− f(Xs+v)−
∫ t

v

(Af)(Xs+u)du)
]

=0

we conclude that Y is a solution to the (A, γ) martingale problem where γ = Q◦[Y (0)]−1.

Of course, Y is continuous in probability. Hence, by parts (ii) above γ ∈ PΦ and then

by part (i), the finite dimensional distributions are given by (3.11) (with λ replaced by

γ). Thus, for g1, . . . gk ∈ Cb(E) and 0 ≤ s1 . . . < sk,

EQ

[
g1(Ys1) . . . gk(Ysk

)
]

=

∫
〈µk

x(s1, . . . , sk), g1 ⊗ . . .⊗ gk〉dγ(x)

= EQ

[
〈µk

Y0
(s1, . . . , sk), g1 ⊗ . . .⊗ gk〉

]
and so (using with k = 1, s1 = t and g1 = g) we can conclude that

EP

[
Ch1(Xu1)h2(Xu2) . . . hm(Xum)g(Xs+t)

]
= EQ

[
g(Yt)

]
= EQ

[
〈µ1

Y0
(t), g〉

]
= EP

[
Ch1(Xu1)h2(Xu2) . . . hm(Xum)〈µ1

Xs
(t), g〉

]

14



for all 0 ≤ u1 < u2 < . . . um ≤ s and h1, h2 . . . hm bounded positive continuous functions,

m ≥ 1. As a consequence,

EP

[
g(Xs+t)

∣∣σ(Xu : 0 ≤ u ≤ s)
]

= 〈µ1
Xs

(t), g〉 = (Ttg)(Xs).

This completes the proof.

4 Criterion for an invariant measure

In the light of the result proved above, we can improve the criterion for a measure

to be invariant for the semigroup (Tt) arising from a well-posed martingale problem

obtained in Bhatt and Karandikar (1993, 1995, 1999), Bhatt and Borkar (1996), Kurtz

and Stockbridge (1998). In these papers, it was assumed that the martingale problem

for (A, δx) is well-posed in the class of r.c.l.l. solutions and further that any measurable

solution admits a r.c.l.l. modification. In other words, existence in the class of r.c.l.l.

solutions and uniqueness in the class of measurable solutions. The existence of r.c.l.l.

solutions was required to conclude that (i) The operator A satisfies the positive maximum

principle and (ii) to deduce the measurability of the transition probability so as to give

rise to a semigroup. We have already seen how to get around (ii). The following lemma

takes care of (i) as well. We introduce another condition on A and Φ (appearing in

assumption A1).

Assumption A7 Φ and Af , for every f ∈ D(A), are continuous

Lemma 4.1 Suppose that A,D(A) satisfy assumptions A1, A2, A3 and A7. Then A

satisfies the positive maximum principle, i.e. if f ∈ D(A) and z ∈ E are such that

f(z) ≥ 0 and f(z) ≥ f(x) for all x ∈ E, then

Af(z) ≤ 0.

Proof : Let X be a solution to (A, δz) martingale problem defined on (Ω,F ,P) that is

continuous in probability. Let Ft = ∗FX
t and

Mt = f(Xt)−
∫ t

0

Af(Xu)du.

Then (Mt,Ft) is a martingale. Let σt, 0 ≤ t < ∞ be the increasing family of (Ft)

stopping times defined by

σt = inf
{
s ≥ 0 :

∫ s

0

(1 + Φ(Xu))du ≥ t
}
.

15



Since EP[
∫ s

0
Φ(Xu)du] < ∞, it follows that σt < ∞ for all t. Let Nt = Mσt , Yt = Xσt

and Gt = Fσt . Then, it follows that (Nt,Gt) is a local martingale. Moreover, t −→ σt is

continuous and hence Y is also continuous in probability. Using change of variable, it is

easy to see that

Nt = f(Yt)−
∫ t

0

Af(Yr)

1 + Φ(Yr)
dr.

Since Af(x) ≤ CfΦ(x), it follows that N is bounded and hence is a martingale. Since f

has a maximum at z and

EP[f(Yt)− f(z)−
∫ t

0

Af(Yr)

1 + Φ(Yr)
dr] = 0

it follows that (using Fubini’s theorem)

(4.1)

∫ t

0

EP
[ Af(Yr)

1 + Φ(Yr)

]
dr ≤ 0 ∀t > 0.

Since Y is continuous in probability and Af(x) ≤ CfΦ(x), it follows that

r −→ EP
[ Af(Yr)

1 + Φ(Yr)

]
is continuous. Now dividing the LHS in (4.1) by t and taking limit as t→ 0 we get

Af(z)

1 + Φ(z)
≤ 0.

Since Φ(z) ≥ 0 this completes the proof. Here is yet another assumption on A,D(A).

Assumption A8 D(A) is an algebra that contains constants and separates points in E.

Theorem 4.2 Suppose that A,D(A) satisfy assumptions A1, A2, A3, A6, A7 and A8.

Let (Tt) be the semigroup associated with (A,D(A)) by Theorem 3.7. If λ ∈ P(E) is

such that
∫

Φdλ <∞ and ∫
(Af)(x)dλ(x) = 0 ∀f ∈ D(A)

then λ is an invariant measure for the semigroup (Tt) and the solution to the (A, λ)

martingale problem that is continuous in probability is a stationary process.

Proof : In view of Lemma 4.1 and the assumptions made in the statement of this

theorem, the proof of Theorem 3.1 in Bhatt and Karandikar (1995) gives the existence

of a stationary solution to the (A, λ) martingale problem. Since the solution (say X)

is stationary, the mapping t −→ L(Xt) is continuous (it is a constant) and hence by

Lemma 2.1, X is continuous in probability. Now, Theorem 3.7 implies that λ is an

invariant measure for (Tt).

The criterion for invariant measure given above is true even if assumption A7 (continuity

of Φ and of Af) does not hold. We instead need the following assumptions.
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Assumption A9 A satisfies the positive maximum principle

Assumption A10 There exists a complete separable metric space U , an operator Â :

D(A) → C(E×U) and a transition function η from (E,B(E)) into (U,B(U)) such that

(4.2) (Af)(x) =

∫
U

Âf(x, u)η(x, du).

Assumption A11 There exists Φ̂ ∈ C(E × U) such that for all f ∈ D(A), there exists

Cf <∞ satisfying

(4.3) |Âf(x, u)| ≤ Cf Φ̂(x, u) ∀x, u ∈ E × U

(4.4) Φ(x) =

∫
U

Φ̂(x, u)η(x, du) <∞.

Remark 4.3 Note that assumptions A10 and A11 together imply assumption A1. Thus

the conclusions of Theorem 3.7 remain valid under assumptions A2, A3, A6, A10 and

A11. In particular, an operator A with domain D(A) satisfying A2, A3, A6, A10 and

A11 determines a semigroup {Tt : t ≥ 0} defined by (3.8).

We now have the following theorem.

Theorem 4.4 Suppose that A,D(A) satisfy assumptions A2, A3, A6, A8, A9, A10 and

A11. Let (Tt) be the semigroup associated with (A,D(A)) as in Remark 4.3. If λ ∈ P(E)

is such that
∫

Φdλ <∞ and∫
(Af)(x)dλ(x) = 0 ∀f ∈ D(A)

then λ is an invariant measure for the semigroup (Tt) and the solution to the (A, λ)

martingale problem that is continuous in probability is a stationary process.

Proof : Under conditions A2, A8, A9, A10 and A11, existence of a stationary solution

to the (A, λ) martingale problem was proven in Bhatt and Karandikar (1999). Rest of

the argument is as in the proof of Theorem 4.2.
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5 Example

Let E = [0, 1). Let C2(E) be the class of functions f that are restriction of some

g ∈ C2
b (R) and

D(A) = C2(E) ∩ {f : lim
x→1

f(x) = f(0)}.

For f ∈ D(A) define Af by Af = 1
2
f ′′. Fix x ∈ E. To construct a solution of the

martingale problem for (A, δx) we proceed as follows. Let (βx
t )t≥0 be a Standard Brownian

motion (on R) starting at x. Let

Xx
t = βx

t − [βx
t ] t ≥ 0,

where [z] denotes the integer part of a real number z. Clearly P (Xx
0 = x) = 1. We will

show that Xx is a solution of the martingale problem for A. First note that Xx is neither

a r.c.l.l. nor a l.c.r.l. process. However

lim
s↑t

Xx
s and lim

s↓t
Xx

s exist a.s. ∀t.

Let (∆X)t = lims↑tX
x
s − lims↓tX

x
s . Let τ0 ≡ 0. For i ≥ 1 let τi be defined by

τi = inf{t > τi−1 : (∆X)t 6= 0}.

Then for all i, τi are (FX
t+) stopping times. Note that for every i ≥ 1, (∆X)τi

= ±1 and

(∆X)t = 0 for t 6= τi. Moreover,

(5.1) βx
τi
≡ 0 (mod 1) ∀i ≥ 1,

which in turn implies Xτi
= 0 for all i ≥ 1. As a consequence of (5.1), we also get

P (τi <∞) = 1 ∀i ≥ 1 and P ( lim
i→∞

τi = ∞) = 1.

Also, it is easy to see that for every i ≥ 1, (∆X)τi
= 1 if and only if there exists ε > 0

such that βx
s > βx

τi
for all s ∈ (τi − ε, τi) and βx

s < βx
τi

for all s ∈ (τi, τi + ε). Similarly,

{(∆X)τi
= −1} is the set {∃ε > 0 : βx

s < βx
τi
∀s ∈ (τi−ε, τi) and βx

s > βx
τi
∀s ∈ (τi, τi+ε)}.

Hence we can reconstruct βx from Xx as follows by noting that

(5.2) βx
s = Xx

s for 0 ≤ s < τ1,

and for i ≥ 1

(5.3) βx
s =

βx
τi−1

+Xx
s if τi−1 ≤ s < τi, (∆X)τi−1

= −1,

βx
τi−1

+Xx
s − 1 if τi−1 ≤ s < τi, (∆X)τi−1

= 1.
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This, in particular, implies for every t, (FX
t+) = (Fβ

t+) = (Fβ
t ) = (FX

t ). Thus τi is a

(FX
t )-stop-time for every i. Also, rewriting (5.2) and (5.3)) we get for τi−1 ≤ t < τi

Xx
t =

βx
t − βx

τi−1
if (∆X)τi−1

= −1,

βx
t − βx

τi−1
+ 1 if (∆X)τi−1

= 1.

The Strong Markov Property of Brownian motion now implies that

f(Xx
t∧τi

)− f(Xx
t∧τi−1

)−
t∧τi∫

t∧τi−1

Af(Xx
s )ds

is a martingale for all i ≥ 1, f ∈ D(A). Now fix f ∈ D(A). Let Mt = f(Xx
t ) −∫ t

0
Af(Xx

s )ds. Let σ be a bounded (FX
t ) stop-time. Then using the observation made in

the previous paragraph we get

E[Mσ] = E

∞∑
i=1

(Mσ∧τi
−Mσ∧τi−1

)(5.4)

=
∞∑
i=1

E(Mσ∧τi
−Mσ∧τi−1

)

=
∞∑
i=1

E

f(Xx
σ∧τi

)− f(Xx
σ∧τi−1

)−
σ∧τi∫

σ∧τi−1

Af(Xx
s )ds


= 0.

This implies that Xx is a solution of the martingale problem for (A, δx). Uniqueness of

solution is proved similarly. We give a brief sketch of the proof to avoid repetition. Let

(Yt) be any other solution of the martingale problem for (A, δx). Then for any s > 0

with Ys ∈ (0, 1), t −→ Ys+t is a Brownian motion till the next jump. See e.g. Section

IV.6 of Ethier and Kurtz (1986). In particular the left hand and right limits of Ys exist

at all time points t a.s. and all the jumps are of size ±1. Let σ0 ≡ 0 and for i ≥ 1, σi

denote the successive jump times of Y . Thus following (5.2) and (5.3) we define a R
valued process B by

Bs = Ys for 0 ≤ s < σ1,

and then having defined (recursively) Bs for all s < σi−1 we define

Bs =

Bσi−1
+ Ys if σi−1 ≤ s < σi, (∆X)σi−1

= −1,

Bσi−1
+ Ys − 1 if σi−1 ≤ s < σi, (∆X)σi−1

= 1.
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It is now easy to check, arguing as in (5.4), and using the fact that Y is a solution of the

martingale problem for A, that for every g ∈ C2
b (R),

g(Bt)−
∫ t

0

1

2
g′′(Bs)ds

is a martingale. Thus B has to be a Brownian motion. This in turn gives the required

uniqueness of solution of the martingale problem for A. As seen above, the unique

solution Xx is neither a r.c.l.l. nor a l.c.r.l. process. However, (5.1) implies that the set

of jumps of Xx is contained in the set

{t : βx
t is an integer.}

Hence, Xx is continuous in probability.
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