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Abstract

The competing risks data consist of time to failure and cause of failure. Nonparametric tech-
niques for estimating and testing cause-specific hazards or subsurvival functions have been
developed. However, very little work has been done in specifying parameteric models for the
cause-specific hazards or for the subsurvival functions. A difficulty in specifying a parametric
subsurvival distribution is its very nature - it is not a proper survival function. This difficulty
can be overcome by specifying a parametric model for the cause-specific hazards which could
assume any suitable form of the hazard of the standard survival distributions. This leads to
parametric forms for the subsurvival functions or subdensity functions. The parameters can
be estimated using standard techniques. Three sets of published data are reanalysed here and

parametric models are fitted.

1 Introduction

The competing risks data consist of the failure time (7") and the cause of failure (0). The com-
peting risks data are generally modelled in two ways: (i) using latent lifetimes and (ii) using the
joint distribution of (7, d). In (i), the latent lifetimes are generally assumed to be independent,
which is an untestable assumption. However, statistical analysis for independent competing
risks data under various parametric models has been considered (David and Moeschberger,
1978). The techniques used for analysing right censored data can be implemented if the ap-
proach (i) is used and standard parametric, semiparametric or nonparametric models can be
used without any complications. Even when latent failures are not independent multivariate
parametric forms can be assumed and statistical analysis can be done (Moeschberger, 1974).
In (ii) subsurvival functions or cause specific hazard rates are used to model the competing
risks data (Kalbfleisch and Prentice, 1980 and Deshpande, 1990). Nonparametric techniques
for estimating and testing cause-specific hazards or subsurvival functions have been developed.
There has been some discussion about the use of Cox’s proportional hazards model, which is
a semiparametric model, for the cause-specific hazards (Crowder, 2001). We refer to Crowder
(2001) and Kalbfleisch and Prentice (2002) for the detailed discussion on various issues related
to competing risks. However, there has been very little done in specifying parametric mod-
els for the cause-specific hazards or for the subsurvival functions. A difficulty in specifying a
parametric subsurvival distribution is because it is an improper survival function. One way to
overcome this difficulty is to specify a parametric model for the cause-specific hazards which

could in practice take any form of the hazard of the standard survival distributions. Unfor-



tunately, this approach has not been widely used in the competing risks literature and hence
there are no well documented and standard parametric distributions for subsurvival functions.
Standard methods can be employed for fitting parametric subsurvival functions. Analytical
methods like maximum likelihood estimation can be used to estimate the unknown parame-
ters. A plot of time versus cause-specific hazard can be used to have initial guess of a parametric
model for the cause-specific hazards. More sophisticated goodness of fit tests can be used to
test whether the model fit the data well. In section 2, we suggest some parametric models for
subsurvival/subdensity functions. In section 3, we find maximum likelihood estimators of the
parameters of the distributions. In section 4, we reanalyse the data given in Hoel (1972) and
Nair (1993) and fit parameteric subdistributions. We conclude with a discussion on the use of

parametric models.

2 Parametric subsurvival functions

In this section, we propose some relationships between the cause-specific hazards and time and
derive corresponding parametric models for subsurvival/subdensity functions. We assume that
k competing risks are acting simultaneously and T' denotes the failure time and 4, which can
take one of the values in {1,2,...,k}, denotes the cause of failure. The joint distribution of

(T, ) are defined here by the subsurvival functions
Si(t) =pr(T >t,0=1), i=1,2,...,k
and equivalently by the incidence functions or subdistribution functions
Fi(t)=pr(T <t,6d=1)=p; — Si(t) i=1,2,...,k,

where p; = pr(0 = 4). The survival function of 7" is given by

k
S(t) = pr(T > 1) = Y0 Si(t)
i=1
and the distribution function is given by
k
F(t)=pr(T <t) =) Flt).
i=1

Let fi(t),7 = 1,2, ...,k denote the subdensity functions and f(t) = Zle fi(t) denote the density

function of T' whenever they exist. The cause-specific hazard rate for cause ¢ is defined as

hi(t) = fi(t)/S(t=), i=1,...,k, (1)

and the cumulative cause specific hazard function is
t
Hi(t) = / () du
0
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The crude hazard rate for cause ¢ is defined as
ri(t) = fi(t)/Si(t—) i=1,...,k,.
The hazard rate of T' is .
h(t) = f(t)/5(t=) = ;hi(t)-
i—

It is easy to see that the survival function of T' can be expressed as

t k t
S(t) = exp(= [ h(wdw) = J[exp(= | hi(u)du), 2)
=1

and
fi(t) =hi(t)S(t), i=1,... k. (3)

The subsurvival function can then be obtained as

Si(t) = /t  Fi(w)du.

In most cases it is not possible to write the subsurvival function in a closed form, but we do

have nice expressions for subdensity functions. The conditional probability function
Q,(t)=pr(0=4|T>t), =1,2,...,k

has been studied by Dewan , Deshpande and Kulathinal (2004) in case of two competing risks.
The shape of this function helps in studying the dependence between T and §. Deshpande
(1990) proposed two semi-parametric models for subsurvival functions when & = 2. The first

model corresponds to the independence of 1" and ¢ and under this model
Fi(t) = pF(t) and Fy(t) = (1— p)F(2).

In this case, the conditional probability function ®;(¢) = p . The second model is defined as

F (1)’

Fl(t):w and Fy(t) = F(t) — . 1<0<2. (4)

For this model Fj(00) = Fp(oco) = 1/2. Both subdistribution functions are increasing to 1/2 as
t — oo and Fi(t) > Fy(t) for 0 <t < oo when 1 < 0 < 2. When # =1, T" and § are independent
and Fi(t) = F»(t). A more general model was proposed recently by Dewan et al. (2004) where
Fi(t) = pF?(t), Fy(t) = F(t) — pFY(t), where 1 <0 <2, and 0 < p < 0.5. Here, p = pr(§ = 1)
and ,

p(1 - F"(t))

1-F(t)
which is an increasing function of ¢. We will refer to this model as Weibull subdistribution

Dy (t) =

family when F'(¢) corresponds to the Weibull distribution. In this section, we model the cause-
specific hazards using the standard and commonly used parametric distributions in the survival
analysis and derive corresponding subdensity functions or subsurvival functions wherever pos-
sible. Commonly used parametric distributions are constant hazard, linear hazard and power
hazard. We introduce a general model and all the three models mentioned can be derived as

special cases of it.



2.1 General power model

When the cause-specific hazard rate due to cause ¢ is of the form
h; (t) =X\ + ’Yiaitaifl (5)

where A\;, 7v;, «; > 0, it is said to belong to the family of general power model. When all the &

cause-specific hazard rates belong to the same family then

k

h(t) = D (N +yiait® )
i=1

k k
S(t) = exp(=)_ At — Y vit™)
im1 i=1

k k
filt) = (i +vioat™ Hexp(— > At — D it™).
1=1 1=1

The subsurvival function can be obtained by integrating the subdensity function given above

but it is not in a nice closed form. We consider special cases of the general power model below.

2.1.1 Constant hazard rate: v, =0

When ~; =0 in (5),
hi(t) = Ai. (6)

Under this model, h(t) = Y%, X\; = X and S(t) = exp(—\t). Also

Si(t) = Xi/Aexp(=At)
filt) = Ajexp(—At).

Note that p; = A;/A. When k& = 2, ®1(¢) = A;/(A1 + A2). This is the simplest special case
referred to as a constant hazard rate. In this case, the time to failure 1" and the cause of failure
0 are independent and the study of competing risks problem is simplified to a great extent. For
example, when ¢ = 2 and T and ¢ are independent, testing for equality of subsurvival functions
S1(t) = Sa(t) reduces to testing pr(d = 1) = pr(é = 2). In reliability studies, constant hazard
rate characterises the exponential distribution. It reflects the lack of memory property or
the no-ageing aspect of the distribution. Further, if a random variable 7" has any arbitrary
continuous distribution then the cumulative hazard function H(¢) has exponential distribution
with parameter 1. A more general model is a piecewise constant hazard model and it can be
specified as

hi(t) = iy, tj_y <t <t (7)

where [ = 0,1,...,m and ¢{ = 0. The change points (] < ... < #/,) and m can be assume to be

known or unknown.



2.1.2 Linear hazard rate: o; =2

A more general model than the constant hazard rate is given by linear hazard rate obtained

by setting o; = 2 in (5) and is given by
hi(t) = Ai + it (8)

where 7/ = 2v;. Then h(t) = Y8 (A, +7/t) = A + 4t and S(t) = exp(—\t — yt2/2), where
A= E?:l Ai and v = Zle v;. This gives

fl(t) = (>‘Z + ’vat) exp(—)\t - 7t2/2)32 = 17 23 ) k.

Then

Si(t) = 2my exp o L 1i2]¢" (2)dz
-l—a/’y vy

where ¢*(z) is the density function of a normal variable with mean zero and variance A. In

particular for £ = 2 28; = :g%i‘\; Then it is easy to see that 28 is increasing in ¢ iff

A1/A2 < 741/72, that is, the ratio of slopes is greater than the ratio of the intercepts. This

implies that Sy (¢)/S2(¢) is increasing in ¢.

2.1.3 Weibull hazard rate: \; =0

When A; = 0 in (5), the cause-specific hazards have the form

hl(t) = ’)/Z'Ozitaifl. (9)

Note that this is the Weibull hazard rate with scale paramter ~; and shape parameter «;. Under
this model,
k

ht) = > [nait™ ],

=1

k
St) = exp(—Z%ta"),

fit) = (yait™ 1) exp(— Zyta’).

It is not possible to write the subsurvival function in a closed form. When & = 2, we have

ﬁgg = 3;—3;150‘1_0‘2. This is constant in ¢ iff @y = @y and increasing in ¢ iff a; > a9. This
implies 7" and § are independent for @y = @y and the conditional probability function ®4(¢) is
an increasing function of ¢ for a; > aw. Hence the value of the shape parameter determines the
nature of dependence between 7" and 6. The Weibull hazard rate is increasing for «; > 1 and
constant for a; = 1. The Weibull distribution arises theoretically as the limiting distribution of
the minimum of a large number of independent nonnegative random variables. It is very often

used in reliability because of the simplicity of the density, survivor and hazard functions.



2.2 Pareto distribution

Suppose cause-specific hazard is of the form

0;
hi(t) = —— = Lk 10
() = =k, (10)
k 0.
h(t) = -
®) ;:(1i+-f
t
S(t) = exp-— ZﬂlogaZ+]
=1
filt) = 0+texp Zelogaﬁ_t] i=1,... k
’L

i=1 4

Again , for k = 2,we have 28 = z;ggfig

iff @1 > ao. This implies T" and § are independent for a; = as and the conditional probability

This is constant in ¢ iff a3 = a9 and increasing in ¢

function ®,(¢) is an increasing function of ¢ for «; > ap. Note that the hazard function in this
case is decreasing in t and tends to zero as ¢t — co. But the object will eventually fail as the

survival at oo has probability zero.

3 Fitting parametric subsurvival functions

Let (Tj,05) j = 1,2,...,n be the competing risks data obtained from n independent and identical
units. A naive estimator of the subsurvival function is the empirical estimator given by

1 n
Sin(t):EZI(Tj>t,5j:i), i=1,...,k, (11)
j=1

and Nelson-Aalen estimator (Crowder, 2001) of cumulative cause-specific hazard is given by

Hi(t)= Y dy/n}, i=1,....k (12)
{11, <t}

where 7(;) is the jth ordered failure time, n} is the number of individuals at risk prior to 77

J
and d;; is the number of failures from ith cause at 7). To fit a parametric model, we need to
estimate the unknown parameters of the model and evaluate the model by substituting these
parameters. We use maximum likelihood method to estimate the parameters for the models

introduced in the earlier section. Using (1), (2) and (3), the likelihood function is given by
n k
L = [Tl =

j=1li=1
k n n

= LTl =0 [T 5)
i=1j5=1 j=1
k n

= H H e / hi(u)du). (13)
i=1j5=1



In practical situations, all the cause specific hazard rates need not belong to the same family of
the distributions. An appropriate distribution can be assumed for each cause-specific hazard
and can easily be fitted since the likelihood factorises as a product of cause-specific hazard for
each risk. For the purpose of illustration, we assume that all the cause-specific hazards belong

to the same family of distributions.

3.1 General Power Model

When all the cause-specific hazards are assumed to belong to the family of general power model,

the likelihood function is given by
k n )
H H i+ yiet =D exp(— Aty — yit)
and the logarithm of the likelihood function is
LogL = Z Z i) log(A; + ’Yzaz ) — Aitj — ’yit?i].
i=1j=1

The likelihood equations are given by

" (8 = )
Z[A—F J. 'tai_l _t]] =0
j=1 i T Vit
n I((5j :Z')Ozitc-tiil

> Lt = 0
j=1

A+ yicut§

n I8 =)yt 4 it logt
Z it a,z_]l 8;) —it;* logt;] = 0.
j=1 Ai + 'Yzaitjl
The second derivatives are given by
OlogL 2": I(0; =1)
8>‘12 ]—1 >\ +7¢az 3 1)2
dlogL 1 I(0; = i)aty” -1
OO (i + it H2
0?2 log L L Xn: I(‘Sj = 1)yt ?z + Oéit?i_l log tj]
ONida; = (i + it )2
02 log L B zn: 1(5] =1) (ait?i_l)Q
871'2 j=1 (>‘z + ’Y'aitqi_l)2
dlogL zn: 165 = )[’yz ( 1t 4 ozit?"*l log t;)? 'yi(Zt;?‘i*l logt; + ait";‘ﬁl(log tj)2)]
o = (i + yicut§ )2 (i + yicit§ )
n
= > t§ (logt))?
j=1



& log L n T Rty og )yt et log(ty)) et
= = (5 =9~ ]

(Ni + vicit§ ) (Ni + yicit§i™h)?2

O 0;
n
- > t5 log(t;)-
j=1

3.2 Constant hazard rate

The likelihood is given by

k n .

L = HHAf(dj:Z)exp(—)\itj)
i1 j—1
k

= [ A exp(=AT),
i=1

where n; = 377, I(6; = 1), A = Zle A and T'= 377 t;. Hence, N = n;/T. The information
matrix is n/\ diag(1/A1,1/Aa, ..., 1/Ag). When (¢, ...,t)) are known in case of the piecewise

constant hazard, the maximum likelihood estimates are

- Yi1 I(65 = i) I(t; € (t)_1, 1))

Ail = =7 D (14)
Zj:l(tj - t;ﬂ)l(tj € (tgﬂat;]) + (t; - t;q) Zj:l I(t; > t;)
3.3 Linear hazard rate
The likelihood is given by
k n )
L=1T I+ it 110 =D exp(— At — Vit3/2) (15)
i=1j=1

The likelihood equations are given by

zn:[i(ﬁi?z) —t] = 0
=1 "t [
zn:[tjf(f% =) t_?] _ 0
= i + it 2
We also have
O?LogL B Xn: I(6; =1)
o H Ntt)?
O*LogL B Z": t?[((S] =1)
N T T A )
9?LogL _2”: t;I(6; =1)
OX;ON; = (Ni +7]t)?



3.4 Weibull hazard rate

The likelihood is given by

k n

L =TT T [ricit = 1" =0 exp(—it§?)
i1 j—1

The likelihood equations are given by

ol ,
> 10 = i)[— +logt;] — yitj* logt;] = 0
j=1 i
" I(6; =1 ,
Z[ (9; Z)_t;’fz] I
j=1 Yi
We also have
O?LogL _Z”:I(aj =)
o} = %
0?LogL . I(65=1) i 9
92 ;[_T — it} (logt;)]
0?LogL L.
= — ) t%logt;
80@8%- ]Z:l J g J
3.5 Pareto distribution
The likelihood is given by
k n
0; i o+t
L= (— )I(‘SJ_’) exp —0;[log ——2]
il_[ljl o; +t; ’ oy
The likelihood equations are
z”:[—f(aj =) N 0;t; ] = 0
= o; +t; Oéi(Ozi + tj)
" 1 o +t;
I1(6; =i)— —log——2] = 0
JZ::I[ ( J )92 Q; ]
We also have
0?LogL " 1 1 2
= I(6; =1 + 0;
da? ]Zl[ 5 )(ai+tj)2 [(ai+tj
O?LogL B zn: I(6; =)
= A
0?LogL _ Zn: tj
0a;00; = ai(a; + tj)

(16)

(17)



3.6 Weibull subdistribution family

Consider a situation where units are exposed to two risks that is k = 2. Let the overall distri-
bution function be F(t) = 1 — exp(—At%), the Weibull distribution function in the expression
(4). The likelihood equation for 6 is

n n

ni/0 + Z I(6; = 1) log(z;) — Z I(6; = 2)2?_1(1 +0log(z))/(2 — 92]‘?_1) =0, (18)
7j=1 7j=1

where z; = zj(A, o, tj) = 1 — exp(—At}). The second derivative w.r.t 6 is

0?LogL - _ _
502 = —n1/02—z:11(5j:2)z? 1/(2—9,2? H
J:

log(z4) (1 + B10g(z;) + log(z;) + (1 +Blog(z))*2) " /(2 — 620 )].

The M.L.E.’s of A and « , the parameters of Weibull distribution can be found in the usual

way.

4 Illustrations

4.1 Mortality data

We consider the mortality data given in Hoel (1972). The data were obtained from a laboratory
experiment on two groups of RFM strain male mice which had received a radiation dose of 300
r at an age of 5-6 weeks. The first group of mice lived in a conventional laboratory environment,
while the second group was in a germ-free environment. The causes of death were grouped
into three classes - thymic lymphoma (risk=1), reticulum cell sarcoma (risk=2) and all other
causes (risk=3). Following table summarises the size of the group and number of deaths due

to various risks

Table 1: Group sizes and number of deaths due to various risks for Hoel’s data (1972)

Environment | Size | Thymic lymphoma | Reticulum cell sarcoma | Other
(risk=1) (risk=2) (risk=3)

Conventional | 99 22 38 39

Germ-free 82 29 15 38

4.1.1 Conventional laboratory environment

Two risks

We first look at the autopsy data for 99 RFM mice in the conventional environment. We
combine the deaths due to cancer, that is deaths due to risks 1 and 2 into one group and refer
to it as risk 1 and treat the data as two risks problem. We will refer to risk 3 as risk 2 here.

Figure la shows the Nelson-Aalen estimates of the cumulative cause-specific hazard rates for
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cancer (Hq(t)), other causes (Hs(t)) and overall hazard (H (t)). It also shows p1 H (t) and po H (t)
where p; is an empirical probability of dying due to risk ¢. It is clear that H;(¢) is quite close to
piH(t), i =1,2. Hence, T' and 0 may be treated independent and a parametric distribution can
be fitted for the overall survival function. Note that similar conclusion was drawn in Dewan et
al. (2004). A Weibull distribution was fitted to the overall survival function and it is shown in
Figure 1b. The maximum likelihood estimate of the scale parameter is 1.32 x 10~7 and of the

shape parameter is 2.54. A parametric distribution for the subsurvival functions is then
Si(t) = p; exp(—\t?%),

where A and « are specified using the maximum likelihood estimates. Application of
Kolmogorov-Smirnov test showed nonsignificant difference between the empirical and Weibull
distribution for the overall death. Also, Kolmogorv-Smirnov type tests were applied to test the
fit of Fj(t) = p;F'(t), where F(t) was the Weibull distribution fitted for the overall death. Once
again, the difference was not significant supporting the earlier observations that the death time
and the cause of death are independent. Three risks

The same data were analysed using three risks as defined above. As it is clear from Figure 2a,
an estimate of cause-specific hazard for risk 1 is a piecewise constant hazard and this model
was fitted for risk 1. The fitted model for risk 1 is

hi(t) = 5.83x107° ¢<179
= 0.0016, 179 <t <282
= 0.0002, 282 <t < 343
= 0.0009, 343 <t <441
= 0, t>441.
The Weibull distribution fits well for reticulum cell sarcoma (risk=2) as can be seen from

Figure 2b. It also fits well for other causes (risk=3), see Figure 2c. The cumulative cause-

specific hazards for risk 2 and risk 3 are, respectively

Ho(t) = 1.41 x 10754807

H3(t) = 2.70 x 107592,
The overall hazard is then the sum of a piece-wise constant hazard and two Weibull hazards.
Figures 2d show the Nelson-Aalen estimate and the fitted parametric distribution for the overall
hazard. The curves seem to be quite close to each other in all the cases. Application of goodness

of fit tests showed no significant difference between the estimates of the cause-specific hazards
and fitted models.

4.1.2 Germ-free environment

Next we look at the autopsy data for 82 RFM mice in the germ-free environment. Again we

combine the deaths due to cancer into one group and consider it as a two risk (cancer and other)
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problem. Figure 3a-3c shows the Nelson-Aalen estimates of cumulative hazard functions. We
fitted Weibull distribution to each cause-specific hazard. The maximum likelihood estimates
of the scale and shape parameters of Weibull distribution are (6.03 x 107%,1.77) and (5.41 x
10715,4.87) for risks 1 and 2, respectively. The fitted distributions are shown in Figure 3a-3b
alongwith their Nelson-Aalen estimates and the curves are close to each other for both the
risks. The sum of these two Weibull distributions is a good fit for the overall hazard also (see

Figure 3c). Goodness-of-fit tests showed no significant difference.

4.2 Failure data on switches

Counsider the data on the times to failure, in millions of operations, and modes of failure of 37
switches, obtained from a reliability study conducted at AT&T, given in Nair (1993). There
are two possible modes of failure, denoted by A (risk=1) and B (risk=2), for these switches.
The number of failures due to risk 1 is 17 and that due to risk 2 are 20. Dewan et al. (2004)
concluded that T and 6 are not independent in this case. Assuming that p; = po = 1/2, Weibull
subdistribution function given in (4) was fitted. The maximum likelihood estimates of the scale
and shape parameters of Weibull distribution for the overall hazard are (0.028,4.47) and 6 is is
taken as 1.265. Figure 4a show — log(H (t) against log(¢) and the fitted Weibull model. Figure
4b shows the empirical estimates and the fitted subdistributions for the two risks. As it can be
seen from the figures and also confirmed by the goodness-of-fit tests, it may be concluded that

the two subdistribution functions belong to the family of weibull subdistribution functions.

5 Discussion

We have demonstrated the use of standard parametric survival models in case of competing risks
by modeling cause-specific hazards or subsurvival functions. Any standard parametric survival
distributions like Gompertz-Makeham distribution, generalised Weibull distribution etc. can be
employed easily for the cause-specific hazards which can then be used to specify the subdensity
or subsurvival functions. From various examples, we see that parametric distributions fit well
to subsurvival functions as well as overall survival functions. Once a parameteric model is
justified, optimal estimation and testing procedures can easily be worked out using standard

techniques (Casella and Berger, 1990)

References

Casella , G. and Berger, R.L. (1990). Statistical Inference.

Duxbury, California. Crowder, M. J. (2001). Classical Competing Risks. Chapman
and Hall/CRC, London.

David, H.A. and Moeschberger, M.L. (1978). The Theory of Competing Risks.
Griffin, London.

Deshpande, J. V. (1990). A test for bivariate symmetry of dependent competing
risks. Biometrical Journal 32, 736-746.

12



Dewan I., Deshpande J.V. and Kulathinal S.B. (2004). On testing dependence
between time to failure and cause of failure via conditional probabilities. Scan-
dinavian J. Statistics (to appear).

Hoel, D. G. (1972). A representation of mortality data by competing risks. Bio-
metrics 28, 475-488.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The statistical analysis of failure time
data. John Wiley, New York.

Kalbfleisch, J.D. and Prentice, R.L. (2002). The statistical analysis of failure time
data. Second Edition, John Wiley, New Jersey.

Moeschberger, M.L. (1974). Life tests under dependent competing causes of failure.
Technometrics 16, 39-47.

Nair, V. N. (1993). Bounds for reliability estimation under dependent censoring.
International Stat. Review 61, 169-182.

13



cumulative hazards

Figure 1a: Nelson-Aalen estimates of cumulative cause-
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Figure 2d: Nelson-Aalen estimate and fitted model for the
overall cumulative hazard
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Figure 3b: Logarithm of Helson-Aalen estimate and Weibull
cumulative cause-specific hazard of risk 2
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Figure 3c: Nelson-Aalen estimate of cumulative overall
hazard and sum of fitted Weibulls for two cause-specific
hazards
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Figure 4a: Logarithm of Nelson-Aalen estimate and Weibull
cumulative overall hazard
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Figure 4b: Empirical subsurvival functions and Weihull
subsurvival functions
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