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tThe 
ompeting risks data 
onsist of time to failure and 
ause of failure. Nonparametri
 te
h-niques for estimating and testing 
ause-spe
i�
 hazards or subsurvival fun
tions have beendeveloped. However, very little work has been done in spe
ifying parameteri
 models for the
ause-spe
i�
 hazards or for the subsurvival fun
tions. A diÆ
ulty in spe
ifying a parametri
subsurvival distribution is its very nature - it is not a proper survival fun
tion. This diÆ
ulty
an be over
ome by spe
ifying a parametri
 model for the 
ause-spe
i�
 hazards whi
h 
ouldassume any suitable form of the hazard of the standard survival distributions. This leads toparametri
 forms for the subsurvival fun
tions or subdensity fun
tions. The parameters 
anbe estimated using standard te
hniques. Three sets of published data are reanalysed here andparametri
 models are �tted.1 Introdu
tionThe 
ompeting risks data 
onsist of the failure time (T ) and the 
ause of failure (Æ). The 
om-peting risks data are generally modelled in two ways: (i) using latent lifetimes and (ii) using thejoint distribution of (T; Æ). In (i), the latent lifetimes are generally assumed to be independent,whi
h is an untestable assumption. However, statisti
al analysis for independent 
ompetingrisks data under various parametri
 models has been 
onsidered (David and Moes
hberger,1978). The te
hniques used for analysing right 
ensored data 
an be implemented if the ap-proa
h (i) is used and standard parametri
, semiparametri
 or nonparametri
 models 
an beused without any 
ompli
ations. Even when latent failures are not independent multivariateparametri
 forms 
an be assumed and statisti
al analysis 
an be done (Moes
hberger, 1974).In (ii) subsurvival fun
tions or 
ause spe
i�
 hazard rates are used to model the 
ompetingrisks data (Kalb
eis
h and Prenti
e, 1980 and Deshpande, 1990). Nonparametri
 te
hniquesfor estimating and testing 
ause-spe
i�
 hazards or subsurvival fun
tions have been developed.There has been some dis
ussion about the use of Cox's proportional hazards model, whi
h isa semiparametri
 model, for the 
ause-spe
i�
 hazards (Crowder, 2001). We refer to Crowder(2001) and Kalb
eis
h and Prenti
e (2002) for the detailed dis
ussion on various issues relatedto 
ompeting risks. However, there has been very little done in spe
ifying parametri
 mod-els for the 
ause-spe
i�
 hazards or for the subsurvival fun
tions. A diÆ
ulty in spe
ifying aparametri
 subsurvival distribution is be
ause it is an improper survival fun
tion. One way toover
ome this diÆ
ulty is to spe
ify a parametri
 model for the 
ause-spe
i�
 hazards whi
h
ould in pra
ti
e take any form of the hazard of the standard survival distributions. Unfor-1



tunately, this approa
h has not been widely used in the 
ompeting risks literature and hen
ethere are no well do
umented and standard parametri
 distributions for subsurvival fun
tions.Standard methods 
an be employed for �tting parametri
 subsurvival fun
tions. Analyti
almethods like maximum likelihood estimation 
an be used to estimate the unknown parame-ters. A plot of time versus 
ause-spe
i�
 hazard 
an be used to have initial guess of a parametri
model for the 
ause-spe
i�
 hazards. More sophisti
ated goodness of �t tests 
an be used totest whether the model �t the data well. In se
tion 2, we suggest some parametri
 models forsubsurvival/subdensity fun
tions. In se
tion 3, we �nd maximum likelihood estimators of theparameters of the distributions. In se
tion 4, we reanalyse the data given in Hoel (1972) andNair (1993) and �t parameteri
 subdistributions. We 
on
lude with a dis
ussion on the use ofparametri
 models.2 Parametri
 subsurvival fun
tionsIn this se
tion, we propose some relationships between the 
ause-spe
i�
 hazards and time andderive 
orresponding parametri
 models for subsurvival/subdensity fun
tions. We assume thatk 
ompeting risks are a
ting simultaneously and T denotes the failure time and Æ; whi
h 
antake one of the values in f1; 2; :::; kg; denotes the 
ause of failure. The joint distribution of(T; Æ) are de�ned here by the subsurvival fun
tionsSi(t) = pr(T > t; Æ = i); i = 1; 2; : : : ; kand equivalently by the in
iden
e fun
tions or subdistribution fun
tionsFi(t) = pr(T � t; Æ = i) = pi � Si(t) i = 1; 2; : : : ; k;where pi = pr(Æ = i): The survival fun
tion of T is given byS(t) = pr(T > t) = kXi=1 Si(t)and the distribution fun
tion is given byF (t) = pr(T � t) = kXi=1 Fi(t):Let fi(t); i = 1; 2; :::; k denote the subdensity fun
tions and f(t) =Pki=1 fi(t) denote the densityfun
tion of T whenever they exist. The 
ause-spe
i�
 hazard rate for 
ause i is de�ned ashi(t) = fi(t)=S(t�); i = 1; : : : ; k; (1)and the 
umulative 
ause spe
i�
 hazard fun
tion isHi(t) = Z t0 hi(u)du2



The 
rude hazard rate for 
ause i is de�ned asri(t) = fi(t)=Si(t�) i = 1; : : : ; k; :The hazard rate of T is h(t) = f(t)=S(t�) = kXi=1 hi(t):It is easy to see that the survival fun
tion of T 
an be expressed asS(t) = exp(� Z t0 h(u)du) = kYi=1 exp(� Z t0 hi(u)du); (2)and fi(t) = hi(t)S(t); i = 1; : : : ; k: (3)The subsurvival fun
tion 
an then be obtained asSi(t) = Z 1t fi(u)du:In most 
ases it is not possible to write the subsurvival fun
tion in a 
losed form, but we dohave ni
e expressions for subdensity fun
tions. The 
onditional probability fun
tion�i(t) = pr(Æ = i j T � t); = 1; 2; : : : ; khas been studied by Dewan , Deshpande and Kulathinal (2004) in 
ase of two 
ompeting risks.The shape of this fun
tion helps in studying the dependen
e between T and Æ. Deshpande(1990) proposed two semi-parametri
 models for subsurvival fun
tions when k = 2. The �rstmodel 
orresponds to the independen
e of T and Æ and under this modelF1(t) = pF (t) and F2(t) = (1� p)F (t):In this 
ase, the 
onditional probability fun
tion �1(t) = p . The se
ond model is de�ned asF1(t) = (F (t))�2 and F2(t) = F (t)� (F (t))�2 ; 1 � � � 2: (4)For this model F1(1) = F2(1) = 1=2. Both subdistribution fun
tions are in
reasing to 1=2 ast!1 and F1(t) > F2(t) for 0 < t <1 when 1 < � � 2. When � = 1; T and Æ are independentand F1(t) = F2(t): A more general model was proposed re
ently by Dewan et al. (2004) whereF1(t) = pF �(t); F2(t) = F (t)� pF �(t); where 1 � � � 2; and 0 � p � 0:5: Here, p = pr(Æ = 1)and �1(t) = p(1� F �(t))1� F (t)whi
h is an in
reasing fun
tion of t: We will refer to this model as Weibull subdistributionfamily when F (t) 
orresponds to the Weibull distribution. In this se
tion, we model the 
ause-spe
i�
 hazards using the standard and 
ommonly used parametri
 distributions in the survivalanalysis and derive 
orresponding subdensity fun
tions or subsurvival fun
tions wherever pos-sible. Commonly used parametri
 distributions are 
onstant hazard, linear hazard and powerhazard. We introdu
e a general model and all the three models mentioned 
an be derived asspe
ial 
ases of it. 3



2.1 General power modelWhen the 
ause-spe
i�
 hazard rate due to 
ause i is of the formhi(t) = �i + 
i�it�i�1 (5)where �i; 
i; �i � 0; it is said to belong to the family of general power model. When all the k
ause-spe
i�
 hazard rates belong to the same family thenh(t) = kXi=1(�i + 
i�it�i�1)S(t) = exp(� kXi=1 �it� kXi=1 
it�i)fi(t) = (�i + 
i�it�i�1) exp(� kXi=1 �it� kXi=1 
it�i):The subsurvival fun
tion 
an be obtained by integrating the subdensity fun
tion given abovebut it is not in a ni
e 
losed form. We 
onsider spe
ial 
ases of the general power model below.2.1.1 Constant hazard rate: 
i = 0When 
i = 0 in (5), hi(t) = �i: (6)Under this model, h(t) =Pki=1 �i = � and S(t) = exp(��t): AlsoSi(t) = �i=� exp(��t)fi(t) = �i exp(��t):Note that pi = �i=�: When k = 2; �1(t) = �1=(�1 + �2): This is the simplest spe
ial 
asereferred to as a 
onstant hazard rate. In this 
ase, the time to failure T and the 
ause of failureÆ are independent and the study of 
ompeting risks problem is simpli�ed to a great extent. Forexample, when i = 2 and T and Æ are independent, testing for equality of subsurvival fun
tionsS1(t) = S2(t) redu
es to testing pr(Æ = 1) = pr(Æ = 2): In reliability studies, 
onstant hazardrate 
hara
terises the exponential distribution. It re
e
ts the la
k of memory property orthe no-ageing aspe
t of the distribution. Further, if a random variable T has any arbitrary
ontinuous distribution then the 
umulative hazard fun
tion H(t) has exponential distributionwith parameter 1. A more general model is a pie
ewise 
onstant hazard model and it 
an bespe
i�ed as hi(t) = �il; t0l�1 < t � t0l; (7)where l = 0; 1; :::;m and t00 = 0: The 
hange points (t01 < ::: < t0m) and m 
an be assume to beknown or unknown. 4



2.1.2 Linear hazard rate: �i = 2A more general model than the 
onstant hazard rate is given by linear hazard rate obtainedby setting �i = 2 in (5) and is given byhi(t) = �i + 
0it; (8)where 
0i = 2
i: Then h(t) = Pki=1(�i + 
0it) = � + 
t and S(t) = exp(��t � 
t2=2); where� =Pki=1 �i and 
 =Pki=1 
i: This givesfi(t) = (�i + 
0it) exp(��t� 
t2=2); i = 1; 2; :::; k:Then Si(t) = p2�
 exp �22
 Z 1t+a=
 [�i � 
i�
 + 
iz℄��(z)dzwhere ��(z) is the density fun
tion of a normal variable with mean zero and varian
e �. Inparti
ular for k = 2 f1(t)f2(t) = 
1+�1
2+�2 : Then it is easy to see that f1(t)f2(t) is in
reasing in t i��1=�2 < 
1=
2; that is, the ratio of slopes is greater than the ratio of the inter
epts. Thisimplies that S1(t)=S2(t) is in
reasing in t:2.1.3 Weibull hazard rate: �i = 0When �i = 0 in (5), the 
ause-spe
i�
 hazards have the formhi(t) = 
i�it�i�1: (9)Note that this is the Weibull hazard rate with s
ale paramter 
i and shape parameter �i: Underthis model, h(t) = kXi=1[
i�it�i�1℄;S(t) = exp(� kXi=1 
it�i);fi(t) = (
i�it�i�1) exp(� kXi=1 
it�i):It is not possible to write the subsurvival fun
tion in a 
losed form. When k = 2; we havef1(t)f2(t) = �1
1�2
2 t�1��2 : This is 
onstant in t i� �1 = �2 and in
reasing in t i� �1 > �2: Thisimplies T and Æ are independent for �1 = �2 and the 
onditional probability fun
tion �1(t) isan in
reasing fun
tion of t for �1 > �2: Hen
e the value of the shape parameter determines thenature of dependen
e between T and Æ: The Weibull hazard rate is in
reasing for �i > 1 and
onstant for �i = 1. The Weibull distribution arises theoreti
ally as the limiting distribution ofthe minimum of a large number of independent nonnegative random variables. It is very oftenused in reliability be
ause of the simpli
ity of the density, survivor and hazard fun
tions.5



2.2 Pareto distributionSuppose 
ause-spe
i�
 hazard is of the formhi(t) = �i�i + t ; i = 1; : : : ; k; (10)h(t) = kXi=1 �i�i + t ;S(t) = exp� kXi=1[�i log �i + t�i ℄;fi(t) = �i�i + t exp[� kXi=1 �i log �i + t�i ℄; i = 1; : : : ; k:Again , for k = 2,we have f1(t)f2(t) = �1(�2+t)�2(�1+t) : This is 
onstant in t i� �1 = �2 and in
reasing in ti� �1 > �2. This implies T and Æ are independent for �1 = �2 and the 
onditional probabilityfun
tion �1(t) is an in
reasing fun
tion of t for �1 > �2. Note that the hazard fun
tion in this
ase is de
reasing in t and tends to zero as t ! 1. But the obje
t will eventually fail as thesurvival at 1 has probability zero.3 Fitting parametri
 subsurvival fun
tionsLet (Tj ; Æj) j = 1; 2; :::; n be the 
ompeting risks data obtained from n independent and identi
alunits. A naive estimator of the subsurvival fun
tion is the empiri
al estimator given bySin(t) = 1n nXj=1 I(Tj > t; Æj = i); i = 1; : : : ; k; (11)and Nelson-Aalen estimator (Crowder, 2001) of 
umulative 
ause-spe
i�
 hazard is given byĤi(t) = XfjjT(j)�tg dij=n�j ; i = 1; : : : ; k (12)where T(j) is the jth ordered failure time, n�j is the number of individuals at risk prior to T(j)and dij is the number of failures from ith 
ause at T(j). To �t a parametri
 model, we need toestimate the unknown parameters of the model and evaluate the model by substituting theseparameters. We use maximum likelihood method to estimate the parameters for the modelsintrodu
ed in the earlier se
tion. Using (1), (2) and (3), the likelihood fun
tion is given byL = nYj=1 kYi=1[fi(tj)℄I(Æj=i)= kYi=1 nYj=1[hi(tj)℄I(Æj=i) nYj=1S(tj)= kYi=1 nYj=1[hi(tj)℄I(Æj=i)exp(� Z tj0 hi(u)du): (13)6



In pra
ti
al situations, all the 
ause spe
i�
 hazard rates need not belong to the same family ofthe distributions. An appropriate distribution 
an be assumed for ea
h 
ause-spe
i�
 hazardand 
an easily be �tted sin
e the likelihood fa
torises as a produ
t of 
ause-spe
i�
 hazard forea
h risk. For the purpose of illustration, we assume that all the 
ause-spe
i�
 hazards belongto the same family of distributions.3.1 General Power ModelWhen all the 
ause-spe
i�
 hazards are assumed to belong to the family of general power model,the likelihood fun
tion is given byL = kYi=1 nYj=1[�i + 
i�it�i�1j ℄I(Æj=i) exp(��itj � 
it�ij )and the logarithm of the likelihood fun
tion isLogL = kXi=1 nXj=1[I(Æj = i) log(�i + 
i�it�i�1j )� �itj � 
it�ij ℄:The likelihood equations are given by nXj=1[ I(Æj = i)�i + 
i�it�i�1j � tj℄ = 0nXj=1[I(Æj = i)�it�i�1j�i + 
i�it�i�1j � t�ij ℄ = 0nXj=1[I(Æj = i)
i(t�i�1j + �it�i�1j log tj)�i + 
i�it�i�1j � 
it�ij log tj℄ = 0:The se
ond derivatives are given by�2 logL��2i = � nXj=1 I(Æj = i)(�i + 
i�it�i�1j )2�2 logL��i�
i = � nXj=1 I(Æj = i)�it�i�1j(�i + 
i�it�i�1j )2�2 logL��i��i = � nXj=1 I(Æj = i)
i[t�i�1j + �it�i�1j log tj℄(�i + 
i�it�i�1j )2�2 logL�
2i = � nXj=1 I(Æj = i)(�it�i�1j )2(�i + 
i�it�i�1j )2�2 logL��2i = � nXj=1 I(Æj = i)[
2i (t�i�1j + �it�i�1j log tj)2(�i + 
i�it�i�1j )2 � 
i(2t�i�1j log tj + �it�i�1j (log tj)2)(�i + 
i�it�i�1j ) ℄� nXj=1
it�ij (log tj)2 7



�2 logL��i�
i = � nXj=1[I(Æj = i)[�(t�i�1j + �it�i�1j log tj)(�i + 
i�it�i�1j ) + 
i(t�i�1j + �it�i�1j log(tj))�it�i�1j(�i + 
i�it�i�1j )2 ℄� nXj=1 t�ij log(tj):3.2 Constant hazard rateThe likelihood is given by L = kYi=1 nYj=1�I(Æj=i)i exp(��itj)= kYi=1 �nii exp(��T );where ni =Pnj=1 I(Æj = i); � =Pki=1 �i and T = Pnj=1 tj : Hen
e, �̂i = ni=T: The informationmatrix is n=� diag(1=�1; 1=�2; :::; 1=�k). When (t01; :::; t0m) are known in 
ase of the pie
ewise
onstant hazard, the maximum likelihood estimates are�̂il = Pnj=1 I(Æj = i)I(tj 2 (t0l�1; t0l℄)Pnj=1(tj � t0l�1)I(tj 2 (t0l�1; t0l℄) + (t0l � t0l�1)Pnj=1 I(tj > t0l) (14)3.3 Linear hazard rateThe likelihood is given byL = kYi=1 nYj=1[�i + 
0itj℄I(Æj=i) exp(��itj � 
0it2j=2) (15)The likelihood equations are given bynXj=1[I(Æj = i)�i + 
0itj � tj℄ = 0nXj=1[ tjI(Æj = i)�i + 
0itj � t2j2 ℄ = 0We also have �2LogL��2i = � nXj=1 I(Æj = i)(�i + 
0itj)2�2LogL��2i = � nXj=1 t2jI(Æj = i)(�i + 
0itj)2�2LogL��i��i = � nXj=1 tjI(Æj = i)(�i + 
0itj)28



3.4 Weibull hazard rateThe likelihood is given by L = kYi=1 nYj=1[
i�it�i�1j ℄I(Æj=i) exp(�
it�ij ) (16)The likelihood equations are given bynXj=1[I(Æj = i)[ 1�i + log tj℄� 
it�ij log tj ℄ = 0nXj=1[I(Æj = i)
i � t�ij ℄ = 0We also have �2LogL�
2i = � nXj=1 I(Æj = i)
2i�2LogL��2i = nXj=1[�I(Æj = i)�2i � 
it�ij (logtj)2℄�2LogL��i�
i = � nXj=1 t�ij logtj3.5 Pareto distributionThe likelihood is given byL = kYi=1 nYj=1( �i�i + tj )I(Æj=i) exp��i[log �i + tj�i ℄ (17)The likelihood equations are nXj=1[�I(Æj = i)�i + tj + �itj�i(�i + tj) ℄ = 0nXj=1[I(Æj = i) 1�i � log �i + tj�i ℄ = 0:We also have �2LogL��2i = nXj=1[I(Æj = i) 1(�i + tj)2 + �i[ 1(�i + tj 2 � 1�2i ℄℄�2LogL��2i = � nXj=1 I(Æj = i)�2i�2LogL��i��i = nXj=1 tj�i(�i + tj)9



3.6 Weibull subdistribution familyConsider a situation where units are exposed to two risks that is k = 2: Let the overall distri-bution fun
tion be F (t) = 1 � exp(��t�), the Weibull distribution fun
tion in the expression(4). The likelihood equation for � isn1=� + nXj=1 I(Æj = 1) log(zj)� nXj=1 I(Æj = 2)z��1j (1 + � log(zj))=(2 � �z��1j ) = 0; (18)where zj = zj(�; �; tj) = 1� exp(��t�j ): The se
ond derivative w.r.t � is�2LogL��2 = �n1=�2 � nXj=1 I(Æj = 2)z��1j =(2� �z��1j )[log(zj)(1 + � log(zj)) + log(zj) + (1 + � log(zj))2z��1j =(2� �z��1j )℄:The M.L.E.'s of � and � , the parameters of Weibull distribution 
an be found in the usualway.4 Illustrations4.1 Mortality dataWe 
onsider the mortality data given in Hoel (1972). The data were obtained from a laboratoryexperiment on two groups of RFM strain male mi
e whi
h had re
eived a radiation dose of 300r at an age of 5-6 weeks. The �rst group of mi
e lived in a 
onventional laboratory environment,while the se
ond group was in a germ-free environment. The 
auses of death were groupedinto three 
lasses - thymi
 lymphoma (risk=1), reti
ulum 
ell sar
oma (risk=2) and all other
auses (risk=3). Following table summarises the size of the group and number of deaths dueto various risksTable 1: Group sizes and number of deaths due to various risks for Hoel's data (1972)Environment Size Thymi
 lymphoma Reti
ulum 
ell sar
oma Other(risk=1) (risk=2) (risk=3)Conventional 99 22 38 39Germ-free 82 29 15 384.1.1 Conventional laboratory environmentTwo risksWe �rst look at the autopsy data for 99 RFM mi
e in the 
onventional environment. We
ombine the deaths due to 
an
er, that is deaths due to risks 1 and 2 into one group and referto it as risk 1 and treat the data as two risks problem. We will refer to risk 3 as risk 2 here.Figure 1a shows the Nelson-Aalen estimates of the 
umulative 
ause-spe
i�
 hazard rates for10




an
er (H1(t)), other 
auses (H2(t)) and overall hazard (H(t)): It also shows p̂1H(t) and p̂2H(t)where p̂i is an empiri
al probability of dying due to risk i: It is 
lear that Hi(t) is quite 
lose top̂iH(t); i = 1; 2: Hen
e, T and Æ may be treated independent and a parametri
 distribution 
anbe �tted for the overall survival fun
tion. Note that similar 
on
lusion was drawn in Dewan etal. (2004). A Weibull distribution was �tted to the overall survival fun
tion and it is shown inFigure 1b. The maximum likelihood estimate of the s
ale parameter is 1:32 � 10�7 and of theshape parameter is 2:54: A parametri
 distribution for the subsurvival fun
tions is thenSi(t) = pi exp(��t�);where � and � are spe
i�ed using the maximum likelihood estimates. Appli
ation ofKolmogorov-Smirnov test showed nonsigni�
ant di�eren
e between the empiri
al and Weibulldistribution for the overall death. Also, Kolmogorv-Smirnov type tests were applied to test the�t of Fi(t) = piF (t); where F (t) was the Weibull distribution �tted for the overall death. On
eagain, the di�eren
e was not signi�
ant supporting the earlier observations that the death timeand the 
ause of death are independent. Three risksThe same data were analysed using three risks as de�ned above. As it is 
lear from Figure 2a,an estimate of 
ause-spe
i�
 hazard for risk 1 is a pie
ewise 
onstant hazard and this modelwas �tted for risk 1. The �tted model for risk 1 ish1(t) = 5:83 � 10�5; t � 179= 0:0016; 179 < t � 282= 0:0002; 282 < t � 343= 0:0009; 343 < t � 441= 0; t > 441:The Weibull distribution �ts well for reti
ulum 
ell sar
oma (risk=2) as 
an be seen fromFigure 2b. It also �ts well for other 
auses (risk=3), see Figure 2
. The 
umulative 
ause-spe
i�
 hazards for risk 2 and risk 3 are, respe
tivelyH2(t) = 1:41 � 10�23t8:07H3(t) = 2:70 � 10�6t1:92:The overall hazard is then the sum of a pie
e-wise 
onstant hazard and two Weibull hazards.Figures 2d show the Nelson-Aalen estimate and the �tted parametri
 distribution for the overallhazard. The 
urves seem to be quite 
lose to ea
h other in all the 
ases. Appli
ation of goodnessof �t tests showed no signi�
ant di�eren
e between the estimates of the 
ause-spe
i�
 hazardsand �tted models.4.1.2 Germ-free environmentNext we look at the autopsy data for 82 RFM mi
e in the germ-free environment. Again we
ombine the deaths due to 
an
er into one group and 
onsider it as a two risk (
an
er and other)11



problem. Figure 3a-3
 shows the Nelson-Aalen estimates of 
umulative hazard fun
tions. We�tted Weibull distribution to ea
h 
ause-spe
i�
 hazard. The maximum likelihood estimatesof the s
ale and shape parameters of Weibull distribution are (6:03 � 10�6; 1:77) and (5:41 �10�15; 4:87) for risks 1 and 2, respe
tively. The �tted distributions are shown in Figure 3a-3balongwith their Nelson-Aalen estimates and the 
urves are 
lose to ea
h other for both therisks. The sum of these two Weibull distributions is a good �t for the overall hazard also (seeFigure 3
). Goodness-of-�t tests showed no signi�
ant di�eren
e.4.2 Failure data on swit
hesConsider the data on the times to failure, in millions of operations, and modes of failure of 37swit
hes, obtained from a reliability study 
ondu
ted at AT&T, given in Nair (1993). Thereare two possible modes of failure, denoted by A (risk=1) and B (risk=2), for these swit
hes.The number of failures due to risk 1 is 17 and that due to risk 2 are 20. Dewan et al. (2004)
on
luded that T and Æ are not independent in this 
ase. Assuming that p1 = p2 = 1=2; Weibullsubdistribution fun
tion given in (4) was �tted. The maximum likelihood estimates of the s
aleand shape parameters of Weibull distribution for the overall hazard are (0:028; 4:47) and � is istaken as 1:265. Figure 4a show � log(H(t) against log(t) and the �tted Weibull model. Figure4b shows the empiri
al estimates and the �tted subdistributions for the two risks. As it 
an beseen from the �gures and also 
on�rmed by the goodness-of-�t tests, it may be 
on
luded thatthe two subdistribution fun
tions belong to the family of weibull subdistribution fun
tions.5 Dis
ussionWe have demonstrated the use of standard parametri
 survival models in 
ase of 
ompeting risksby modeling 
ause-spe
i�
 hazards or subsurvival fun
tions. Any standard parametri
 survivaldistributions like Gompertz-Makeham distribution, generalised Weibull distribution et
. 
an beemployed easily for the 
ause-spe
i�
 hazards whi
h 
an then be used to spe
ify the subdensityor subsurvival fun
tions. From various examples, we see that parametri
 distributions �t wellto subsurvival fun
tions as well as overall survival fun
tions. On
e a parameteri
 model isjusti�ed, optimal estimation and testing pro
edures 
an easily be worked out using standardte
hniques (Casella and Berger, 1990)Referen
esCasella , G. and Berger, R.L. (1990). Statisti
al Inferen
e.Duxbury, California. Crowder, M. J. (2001). Classi
al Competing Risks. Chapmanand Hall/CRC, London.David, H.A. and Moes
hberger, M.L. (1978). The Theory of Competing Risks.GriÆn, London.Deshpande, J. V. (1990). A test for bivariate symmetry of dependent 
ompetingrisks. Biometri
al Journal 32, 736-746.12
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