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Parametri models for subsurvival funtionsIsha Dewan, Indian Statistial Institute, IndiaANDS.B.Kulathinal, National Publi Health Institute, FinlandDate : June 04, 2003AbstratThe ompeting risks data onsist of time to failure and ause of failure. Nonparametri teh-niques for estimating and testing ause-spei� hazards or subsurvival funtions have beendeveloped. However, very little work has been done in speifying parameteri models for theause-spei� hazards or for the subsurvival funtions. A diÆulty in speifying a parametrisubsurvival distribution is its very nature - it is not a proper survival funtion. This diÆultyan be overome by speifying a parametri model for the ause-spei� hazards whih ouldassume any suitable form of the hazard of the standard survival distributions. This leads toparametri forms for the subsurvival funtions or subdensity funtions. The parameters anbe estimated using standard tehniques. Three sets of published data are reanalysed here andparametri models are �tted.1 IntrodutionThe ompeting risks data onsist of the failure time (T ) and the ause of failure (Æ). The om-peting risks data are generally modelled in two ways: (i) using latent lifetimes and (ii) using thejoint distribution of (T; Æ). In (i), the latent lifetimes are generally assumed to be independent,whih is an untestable assumption. However, statistial analysis for independent ompetingrisks data under various parametri models has been onsidered (David and Moeshberger,1978). The tehniques used for analysing right ensored data an be implemented if the ap-proah (i) is used and standard parametri, semiparametri or nonparametri models an beused without any ompliations. Even when latent failures are not independent multivariateparametri forms an be assumed and statistial analysis an be done (Moeshberger, 1974).In (ii) subsurvival funtions or ause spei� hazard rates are used to model the ompetingrisks data (Kalbeish and Prentie, 1980 and Deshpande, 1990). Nonparametri tehniquesfor estimating and testing ause-spei� hazards or subsurvival funtions have been developed.There has been some disussion about the use of Cox's proportional hazards model, whih isa semiparametri model, for the ause-spei� hazards (Crowder, 2001). We refer to Crowder(2001) and Kalbeish and Prentie (2002) for the detailed disussion on various issues relatedto ompeting risks. However, there has been very little done in speifying parametri mod-els for the ause-spei� hazards or for the subsurvival funtions. A diÆulty in speifying aparametri subsurvival distribution is beause it is an improper survival funtion. One way tooverome this diÆulty is to speify a parametri model for the ause-spei� hazards whihould in pratie take any form of the hazard of the standard survival distributions. Unfor-1



tunately, this approah has not been widely used in the ompeting risks literature and henethere are no well doumented and standard parametri distributions for subsurvival funtions.Standard methods an be employed for �tting parametri subsurvival funtions. Analytialmethods like maximum likelihood estimation an be used to estimate the unknown parame-ters. A plot of time versus ause-spei� hazard an be used to have initial guess of a parametrimodel for the ause-spei� hazards. More sophistiated goodness of �t tests an be used totest whether the model �t the data well. In setion 2, we suggest some parametri models forsubsurvival/subdensity funtions. In setion 3, we �nd maximum likelihood estimators of theparameters of the distributions. In setion 4, we reanalyse the data given in Hoel (1972) andNair (1993) and �t parameteri subdistributions. We onlude with a disussion on the use ofparametri models.2 Parametri subsurvival funtionsIn this setion, we propose some relationships between the ause-spei� hazards and time andderive orresponding parametri models for subsurvival/subdensity funtions. We assume thatk ompeting risks are ating simultaneously and T denotes the failure time and Æ; whih antake one of the values in f1; 2; :::; kg; denotes the ause of failure. The joint distribution of(T; Æ) are de�ned here by the subsurvival funtionsSi(t) = pr(T > t; Æ = i); i = 1; 2; : : : ; kand equivalently by the inidene funtions or subdistribution funtionsFi(t) = pr(T � t; Æ = i) = pi � Si(t) i = 1; 2; : : : ; k;where pi = pr(Æ = i): The survival funtion of T is given byS(t) = pr(T > t) = kXi=1 Si(t)and the distribution funtion is given byF (t) = pr(T � t) = kXi=1 Fi(t):Let fi(t); i = 1; 2; :::; k denote the subdensity funtions and f(t) =Pki=1 fi(t) denote the densityfuntion of T whenever they exist. The ause-spei� hazard rate for ause i is de�ned ashi(t) = fi(t)=S(t�); i = 1; : : : ; k; (1)and the umulative ause spei� hazard funtion isHi(t) = Z t0 hi(u)du2



The rude hazard rate for ause i is de�ned asri(t) = fi(t)=Si(t�) i = 1; : : : ; k; :The hazard rate of T is h(t) = f(t)=S(t�) = kXi=1 hi(t):It is easy to see that the survival funtion of T an be expressed asS(t) = exp(� Z t0 h(u)du) = kYi=1 exp(� Z t0 hi(u)du); (2)and fi(t) = hi(t)S(t); i = 1; : : : ; k: (3)The subsurvival funtion an then be obtained asSi(t) = Z 1t fi(u)du:In most ases it is not possible to write the subsurvival funtion in a losed form, but we dohave nie expressions for subdensity funtions. The onditional probability funtion�i(t) = pr(Æ = i j T � t); = 1; 2; : : : ; khas been studied by Dewan , Deshpande and Kulathinal (2004) in ase of two ompeting risks.The shape of this funtion helps in studying the dependene between T and Æ. Deshpande(1990) proposed two semi-parametri models for subsurvival funtions when k = 2. The �rstmodel orresponds to the independene of T and Æ and under this modelF1(t) = pF (t) and F2(t) = (1� p)F (t):In this ase, the onditional probability funtion �1(t) = p . The seond model is de�ned asF1(t) = (F (t))�2 and F2(t) = F (t)� (F (t))�2 ; 1 � � � 2: (4)For this model F1(1) = F2(1) = 1=2. Both subdistribution funtions are inreasing to 1=2 ast!1 and F1(t) > F2(t) for 0 < t <1 when 1 < � � 2. When � = 1; T and Æ are independentand F1(t) = F2(t): A more general model was proposed reently by Dewan et al. (2004) whereF1(t) = pF �(t); F2(t) = F (t)� pF �(t); where 1 � � � 2; and 0 � p � 0:5: Here, p = pr(Æ = 1)and �1(t) = p(1� F �(t))1� F (t)whih is an inreasing funtion of t: We will refer to this model as Weibull subdistributionfamily when F (t) orresponds to the Weibull distribution. In this setion, we model the ause-spei� hazards using the standard and ommonly used parametri distributions in the survivalanalysis and derive orresponding subdensity funtions or subsurvival funtions wherever pos-sible. Commonly used parametri distributions are onstant hazard, linear hazard and powerhazard. We introdue a general model and all the three models mentioned an be derived asspeial ases of it. 3



2.1 General power modelWhen the ause-spei� hazard rate due to ause i is of the formhi(t) = �i + i�it�i�1 (5)where �i; i; �i � 0; it is said to belong to the family of general power model. When all the kause-spei� hazard rates belong to the same family thenh(t) = kXi=1(�i + i�it�i�1)S(t) = exp(� kXi=1 �it� kXi=1 it�i)fi(t) = (�i + i�it�i�1) exp(� kXi=1 �it� kXi=1 it�i):The subsurvival funtion an be obtained by integrating the subdensity funtion given abovebut it is not in a nie losed form. We onsider speial ases of the general power model below.2.1.1 Constant hazard rate: i = 0When i = 0 in (5), hi(t) = �i: (6)Under this model, h(t) =Pki=1 �i = � and S(t) = exp(��t): AlsoSi(t) = �i=� exp(��t)fi(t) = �i exp(��t):Note that pi = �i=�: When k = 2; �1(t) = �1=(�1 + �2): This is the simplest speial asereferred to as a onstant hazard rate. In this ase, the time to failure T and the ause of failureÆ are independent and the study of ompeting risks problem is simpli�ed to a great extent. Forexample, when i = 2 and T and Æ are independent, testing for equality of subsurvival funtionsS1(t) = S2(t) redues to testing pr(Æ = 1) = pr(Æ = 2): In reliability studies, onstant hazardrate haraterises the exponential distribution. It reets the lak of memory property orthe no-ageing aspet of the distribution. Further, if a random variable T has any arbitraryontinuous distribution then the umulative hazard funtion H(t) has exponential distributionwith parameter 1. A more general model is a pieewise onstant hazard model and it an bespei�ed as hi(t) = �il; t0l�1 < t � t0l; (7)where l = 0; 1; :::;m and t00 = 0: The hange points (t01 < ::: < t0m) and m an be assume to beknown or unknown. 4



2.1.2 Linear hazard rate: �i = 2A more general model than the onstant hazard rate is given by linear hazard rate obtainedby setting �i = 2 in (5) and is given byhi(t) = �i + 0it; (8)where 0i = 2i: Then h(t) = Pki=1(�i + 0it) = � + t and S(t) = exp(��t � t2=2); where� =Pki=1 �i and  =Pki=1 i: This givesfi(t) = (�i + 0it) exp(��t� t2=2); i = 1; 2; :::; k:Then Si(t) = p2� exp �22 Z 1t+a= [�i � i� + iz℄��(z)dzwhere ��(z) is the density funtion of a normal variable with mean zero and variane �. Inpartiular for k = 2 f1(t)f2(t) = 1+�12+�2 : Then it is easy to see that f1(t)f2(t) is inreasing in t i��1=�2 < 1=2; that is, the ratio of slopes is greater than the ratio of the interepts. Thisimplies that S1(t)=S2(t) is inreasing in t:2.1.3 Weibull hazard rate: �i = 0When �i = 0 in (5), the ause-spei� hazards have the formhi(t) = i�it�i�1: (9)Note that this is the Weibull hazard rate with sale paramter i and shape parameter �i: Underthis model, h(t) = kXi=1[i�it�i�1℄;S(t) = exp(� kXi=1 it�i);fi(t) = (i�it�i�1) exp(� kXi=1 it�i):It is not possible to write the subsurvival funtion in a losed form. When k = 2; we havef1(t)f2(t) = �11�22 t�1��2 : This is onstant in t i� �1 = �2 and inreasing in t i� �1 > �2: Thisimplies T and Æ are independent for �1 = �2 and the onditional probability funtion �1(t) isan inreasing funtion of t for �1 > �2: Hene the value of the shape parameter determines thenature of dependene between T and Æ: The Weibull hazard rate is inreasing for �i > 1 andonstant for �i = 1. The Weibull distribution arises theoretially as the limiting distribution ofthe minimum of a large number of independent nonnegative random variables. It is very oftenused in reliability beause of the simpliity of the density, survivor and hazard funtions.5



2.2 Pareto distributionSuppose ause-spei� hazard is of the formhi(t) = �i�i + t ; i = 1; : : : ; k; (10)h(t) = kXi=1 �i�i + t ;S(t) = exp� kXi=1[�i log �i + t�i ℄;fi(t) = �i�i + t exp[� kXi=1 �i log �i + t�i ℄; i = 1; : : : ; k:Again , for k = 2,we have f1(t)f2(t) = �1(�2+t)�2(�1+t) : This is onstant in t i� �1 = �2 and inreasing in ti� �1 > �2. This implies T and Æ are independent for �1 = �2 and the onditional probabilityfuntion �1(t) is an inreasing funtion of t for �1 > �2. Note that the hazard funtion in thisase is dereasing in t and tends to zero as t ! 1. But the objet will eventually fail as thesurvival at 1 has probability zero.3 Fitting parametri subsurvival funtionsLet (Tj ; Æj) j = 1; 2; :::; n be the ompeting risks data obtained from n independent and identialunits. A naive estimator of the subsurvival funtion is the empirial estimator given bySin(t) = 1n nXj=1 I(Tj > t; Æj = i); i = 1; : : : ; k; (11)and Nelson-Aalen estimator (Crowder, 2001) of umulative ause-spei� hazard is given byĤi(t) = XfjjT(j)�tg dij=n�j ; i = 1; : : : ; k (12)where T(j) is the jth ordered failure time, n�j is the number of individuals at risk prior to T(j)and dij is the number of failures from ith ause at T(j). To �t a parametri model, we need toestimate the unknown parameters of the model and evaluate the model by substituting theseparameters. We use maximum likelihood method to estimate the parameters for the modelsintrodued in the earlier setion. Using (1), (2) and (3), the likelihood funtion is given byL = nYj=1 kYi=1[fi(tj)℄I(Æj=i)= kYi=1 nYj=1[hi(tj)℄I(Æj=i) nYj=1S(tj)= kYi=1 nYj=1[hi(tj)℄I(Æj=i)exp(� Z tj0 hi(u)du): (13)6



In pratial situations, all the ause spei� hazard rates need not belong to the same family ofthe distributions. An appropriate distribution an be assumed for eah ause-spei� hazardand an easily be �tted sine the likelihood fatorises as a produt of ause-spei� hazard foreah risk. For the purpose of illustration, we assume that all the ause-spei� hazards belongto the same family of distributions.3.1 General Power ModelWhen all the ause-spei� hazards are assumed to belong to the family of general power model,the likelihood funtion is given byL = kYi=1 nYj=1[�i + i�it�i�1j ℄I(Æj=i) exp(��itj � it�ij )and the logarithm of the likelihood funtion isLogL = kXi=1 nXj=1[I(Æj = i) log(�i + i�it�i�1j )� �itj � it�ij ℄:The likelihood equations are given by nXj=1[ I(Æj = i)�i + i�it�i�1j � tj℄ = 0nXj=1[I(Æj = i)�it�i�1j�i + i�it�i�1j � t�ij ℄ = 0nXj=1[I(Æj = i)i(t�i�1j + �it�i�1j log tj)�i + i�it�i�1j � it�ij log tj℄ = 0:The seond derivatives are given by�2 logL��2i = � nXj=1 I(Æj = i)(�i + i�it�i�1j )2�2 logL��i�i = � nXj=1 I(Æj = i)�it�i�1j(�i + i�it�i�1j )2�2 logL��i��i = � nXj=1 I(Æj = i)i[t�i�1j + �it�i�1j log tj℄(�i + i�it�i�1j )2�2 logL�2i = � nXj=1 I(Æj = i)(�it�i�1j )2(�i + i�it�i�1j )2�2 logL��2i = � nXj=1 I(Æj = i)[2i (t�i�1j + �it�i�1j log tj)2(�i + i�it�i�1j )2 � i(2t�i�1j log tj + �it�i�1j (log tj)2)(�i + i�it�i�1j ) ℄� nXj=1it�ij (log tj)2 7



�2 logL��i�i = � nXj=1[I(Æj = i)[�(t�i�1j + �it�i�1j log tj)(�i + i�it�i�1j ) + i(t�i�1j + �it�i�1j log(tj))�it�i�1j(�i + i�it�i�1j )2 ℄� nXj=1 t�ij log(tj):3.2 Constant hazard rateThe likelihood is given by L = kYi=1 nYj=1�I(Æj=i)i exp(��itj)= kYi=1 �nii exp(��T );where ni =Pnj=1 I(Æj = i); � =Pki=1 �i and T = Pnj=1 tj : Hene, �̂i = ni=T: The informationmatrix is n=� diag(1=�1; 1=�2; :::; 1=�k). When (t01; :::; t0m) are known in ase of the pieewiseonstant hazard, the maximum likelihood estimates are�̂il = Pnj=1 I(Æj = i)I(tj 2 (t0l�1; t0l℄)Pnj=1(tj � t0l�1)I(tj 2 (t0l�1; t0l℄) + (t0l � t0l�1)Pnj=1 I(tj > t0l) (14)3.3 Linear hazard rateThe likelihood is given byL = kYi=1 nYj=1[�i + 0itj℄I(Æj=i) exp(��itj � 0it2j=2) (15)The likelihood equations are given bynXj=1[I(Æj = i)�i + 0itj � tj℄ = 0nXj=1[ tjI(Æj = i)�i + 0itj � t2j2 ℄ = 0We also have �2LogL��2i = � nXj=1 I(Æj = i)(�i + 0itj)2�2LogL��2i = � nXj=1 t2jI(Æj = i)(�i + 0itj)2�2LogL��i��i = � nXj=1 tjI(Æj = i)(�i + 0itj)28



3.4 Weibull hazard rateThe likelihood is given by L = kYi=1 nYj=1[i�it�i�1j ℄I(Æj=i) exp(�it�ij ) (16)The likelihood equations are given bynXj=1[I(Æj = i)[ 1�i + log tj℄� it�ij log tj ℄ = 0nXj=1[I(Æj = i)i � t�ij ℄ = 0We also have �2LogL�2i = � nXj=1 I(Æj = i)2i�2LogL��2i = nXj=1[�I(Æj = i)�2i � it�ij (logtj)2℄�2LogL��i�i = � nXj=1 t�ij logtj3.5 Pareto distributionThe likelihood is given byL = kYi=1 nYj=1( �i�i + tj )I(Æj=i) exp��i[log �i + tj�i ℄ (17)The likelihood equations are nXj=1[�I(Æj = i)�i + tj + �itj�i(�i + tj) ℄ = 0nXj=1[I(Æj = i) 1�i � log �i + tj�i ℄ = 0:We also have �2LogL��2i = nXj=1[I(Æj = i) 1(�i + tj)2 + �i[ 1(�i + tj 2 � 1�2i ℄℄�2LogL��2i = � nXj=1 I(Æj = i)�2i�2LogL��i��i = nXj=1 tj�i(�i + tj)9



3.6 Weibull subdistribution familyConsider a situation where units are exposed to two risks that is k = 2: Let the overall distri-bution funtion be F (t) = 1 � exp(��t�), the Weibull distribution funtion in the expression(4). The likelihood equation for � isn1=� + nXj=1 I(Æj = 1) log(zj)� nXj=1 I(Æj = 2)z��1j (1 + � log(zj))=(2 � �z��1j ) = 0; (18)where zj = zj(�; �; tj) = 1� exp(��t�j ): The seond derivative w.r.t � is�2LogL��2 = �n1=�2 � nXj=1 I(Æj = 2)z��1j =(2� �z��1j )[log(zj)(1 + � log(zj)) + log(zj) + (1 + � log(zj))2z��1j =(2� �z��1j )℄:The M.L.E.'s of � and � , the parameters of Weibull distribution an be found in the usualway.4 Illustrations4.1 Mortality dataWe onsider the mortality data given in Hoel (1972). The data were obtained from a laboratoryexperiment on two groups of RFM strain male mie whih had reeived a radiation dose of 300r at an age of 5-6 weeks. The �rst group of mie lived in a onventional laboratory environment,while the seond group was in a germ-free environment. The auses of death were groupedinto three lasses - thymi lymphoma (risk=1), retiulum ell saroma (risk=2) and all otherauses (risk=3). Following table summarises the size of the group and number of deaths dueto various risksTable 1: Group sizes and number of deaths due to various risks for Hoel's data (1972)Environment Size Thymi lymphoma Retiulum ell saroma Other(risk=1) (risk=2) (risk=3)Conventional 99 22 38 39Germ-free 82 29 15 384.1.1 Conventional laboratory environmentTwo risksWe �rst look at the autopsy data for 99 RFM mie in the onventional environment. Weombine the deaths due to aner, that is deaths due to risks 1 and 2 into one group and referto it as risk 1 and treat the data as two risks problem. We will refer to risk 3 as risk 2 here.Figure 1a shows the Nelson-Aalen estimates of the umulative ause-spei� hazard rates for10



aner (H1(t)), other auses (H2(t)) and overall hazard (H(t)): It also shows p̂1H(t) and p̂2H(t)where p̂i is an empirial probability of dying due to risk i: It is lear that Hi(t) is quite lose top̂iH(t); i = 1; 2: Hene, T and Æ may be treated independent and a parametri distribution anbe �tted for the overall survival funtion. Note that similar onlusion was drawn in Dewan etal. (2004). A Weibull distribution was �tted to the overall survival funtion and it is shown inFigure 1b. The maximum likelihood estimate of the sale parameter is 1:32 � 10�7 and of theshape parameter is 2:54: A parametri distribution for the subsurvival funtions is thenSi(t) = pi exp(��t�);where � and � are spei�ed using the maximum likelihood estimates. Appliation ofKolmogorov-Smirnov test showed nonsigni�ant di�erene between the empirial and Weibulldistribution for the overall death. Also, Kolmogorv-Smirnov type tests were applied to test the�t of Fi(t) = piF (t); where F (t) was the Weibull distribution �tted for the overall death. Oneagain, the di�erene was not signi�ant supporting the earlier observations that the death timeand the ause of death are independent. Three risksThe same data were analysed using three risks as de�ned above. As it is lear from Figure 2a,an estimate of ause-spei� hazard for risk 1 is a pieewise onstant hazard and this modelwas �tted for risk 1. The �tted model for risk 1 ish1(t) = 5:83 � 10�5; t � 179= 0:0016; 179 < t � 282= 0:0002; 282 < t � 343= 0:0009; 343 < t � 441= 0; t > 441:The Weibull distribution �ts well for retiulum ell saroma (risk=2) as an be seen fromFigure 2b. It also �ts well for other auses (risk=3), see Figure 2. The umulative ause-spei� hazards for risk 2 and risk 3 are, respetivelyH2(t) = 1:41 � 10�23t8:07H3(t) = 2:70 � 10�6t1:92:The overall hazard is then the sum of a piee-wise onstant hazard and two Weibull hazards.Figures 2d show the Nelson-Aalen estimate and the �tted parametri distribution for the overallhazard. The urves seem to be quite lose to eah other in all the ases. Appliation of goodnessof �t tests showed no signi�ant di�erene between the estimates of the ause-spei� hazardsand �tted models.4.1.2 Germ-free environmentNext we look at the autopsy data for 82 RFM mie in the germ-free environment. Again weombine the deaths due to aner into one group and onsider it as a two risk (aner and other)11



problem. Figure 3a-3 shows the Nelson-Aalen estimates of umulative hazard funtions. We�tted Weibull distribution to eah ause-spei� hazard. The maximum likelihood estimatesof the sale and shape parameters of Weibull distribution are (6:03 � 10�6; 1:77) and (5:41 �10�15; 4:87) for risks 1 and 2, respetively. The �tted distributions are shown in Figure 3a-3balongwith their Nelson-Aalen estimates and the urves are lose to eah other for both therisks. The sum of these two Weibull distributions is a good �t for the overall hazard also (seeFigure 3). Goodness-of-�t tests showed no signi�ant di�erene.4.2 Failure data on swithesConsider the data on the times to failure, in millions of operations, and modes of failure of 37swithes, obtained from a reliability study onduted at AT&T, given in Nair (1993). Thereare two possible modes of failure, denoted by A (risk=1) and B (risk=2), for these swithes.The number of failures due to risk 1 is 17 and that due to risk 2 are 20. Dewan et al. (2004)onluded that T and Æ are not independent in this ase. Assuming that p1 = p2 = 1=2; Weibullsubdistribution funtion given in (4) was �tted. The maximum likelihood estimates of the saleand shape parameters of Weibull distribution for the overall hazard are (0:028; 4:47) and � is istaken as 1:265. Figure 4a show � log(H(t) against log(t) and the �tted Weibull model. Figure4b shows the empirial estimates and the �tted subdistributions for the two risks. As it an beseen from the �gures and also on�rmed by the goodness-of-�t tests, it may be onluded thatthe two subdistribution funtions belong to the family of weibull subdistribution funtions.5 DisussionWe have demonstrated the use of standard parametri survival models in ase of ompeting risksby modeling ause-spei� hazards or subsurvival funtions. Any standard parametri survivaldistributions like Gompertz-Makeham distribution, generalised Weibull distribution et. an beemployed easily for the ause-spei� hazards whih an then be used to speify the subdensityor subsurvival funtions. From various examples, we see that parametri distributions �t wellto subsurvival funtions as well as overall survival funtions. One a parameteri model isjusti�ed, optimal estimation and testing proedures an easily be worked out using standardtehniques (Casella and Berger, 1990)ReferenesCasella , G. and Berger, R.L. (1990). Statistial Inferene.Duxbury, California. Crowder, M. J. (2001). Classial Competing Risks. Chapmanand Hall/CRC, London.David, H.A. and Moeshberger, M.L. (1978). The Theory of Competing Risks.GriÆn, London.Deshpande, J. V. (1990). A test for bivariate symmetry of dependent ompetingrisks. Biometrial Journal 32, 736-746.12



Dewan I., Deshpande J.V. and Kulathinal S.B. (2004). On testing dependenebetween time to failure and ause of failure via onditional probabilities. San-dinavian J. Statistis (to appear).Hoel, D. G. (1972). A representation of mortality data by ompeting risks. Bio-metris 28, 475-488.Kalbeish, J.D. and Prentie, R.L. (1980). The statistial analysis of failure timedata. John Wiley, New York.Kalbeish, J.D. and Prentie, R.L. (2002). The statistial analysis of failure timedata. Seond Edition, John Wiley, New Jersey.Moeshberger, M.L. (1974). Life tests under dependent ompeting auses of failure.Tehnometris 16, 39-47.Nair, V. N. (1993). Bounds for reliability estimation under dependent ensoring.International Stat. Review 61, 169-182.

13



14



15



16



17



18



19


