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1 Introduction

Long range dependence phenomenon is said to occur in a stationary time series {Xn, n ≥ 0} if
the Cov(X0, Xn) of the time series tend to zero as n →∞ and yet it satisfies the condition

∞∑
n=0

|Cov(X0, Xn)| = ∞.

In other words Cov(X0, Xn) tends to zero but so slowly that their sums diverge. This phe-
nomenon was first observed by the hydrologist Hurst (1951) on projects involving the design of
reservoirs along the Nile river (cf. Montanari (2003)) and by others in hydrological time series.
It was recently observed that a similar phenomenon occurs in problems concerned with traffic
patterns of packet flows in high-speed data net works such as the Internet (cf. Willinger et al.
(2003), Norros (2003)). The long range dependence pattern is also observed in macroeconon-
mics and finance (cf. Henry and Zafforoni (2003)). Long range dependence is also related to
the concept of self-similarity for a stochastic process. A stochastic process {X(t), t ∈ R} is said
to be H-self-similar with index H > 0 if for evey a > 0, the processes {X(at), t ∈ R} and the
process {aHX(t), t ∈ R} have the same finite dimensional distributions. Supose a self-similar
process has stationary increments. Then the increments form a stationary time series which
exhibits long range dependence. A gaussian H-self-similar process with stationary increments
with 0 < H < 1 is called a fractional Brownian motion. A recent monograph by Doukhan et
al.(2003) discusses theory and applications of long range dependence and properties of frac-
tional brownian motion (Taqqu (2003)). If H = 1

2 , then the fractional Brownian motion reduces
to the standard Brownian motion also called the Wiener process.
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Diffusion processes and diffusion type processes satisfying stochastic differential equations
driven by Wiener processes are used for stochastic modeling in wide variety of sciences such
as population genetics, economic processes, signal processing as well as for modeling sunspot
activity and more recently in mathematical finance. Statistical inference for diffusion type
processes satisfying stochastic differential equations driven by Wiener processes have been
studied earlier and a comprehensive survey of various methods is given in Prakasa Rao (1999).
There has been a recent interest to study similar problems for stochastic processes driven by
a fractional Brownian motion to model processes involving long range dependence. Le Breton
(1998) studied parameter estimation and filtering in a simple linear model driven by a fractional
Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied parameter
estimation problems for fractional Ornstein-Uhlenbeck process. This is a fractional analogue
of the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process
X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous linear stochastic
differential equation driven by a fractional Brownian motion (fBm) WH = {WH

t , t ≥ 0} with
Hurst parameter H ∈ (1/2, 1). Such a process is the unique Gaussian process satisfying the
linear integral equation

Xt = X0 + θ

∫ t

0
Xsds + σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the observation
{Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly consistent as
T →∞.

Parametric estimation for more general classes of stochastic processes satisfying the linear
stochastic differential equations driven fractional Brownian motion, observed over a fixed period
of time T, is studied in Prakasa Rao (2003a,b). It is well known that the sequential estimation
methods might lead to equally efficient estimators from the process observed possibly over a
shorter expected period of observation time. We have investigated the conditions for such a
phenomenon for estimating the drift parameter of a fractional Ornstein-Uhlenbeck type process
in Prakasa Rao (2003c). Novikov (1972) investigated the asymptotic properties of a sequential
maximum likelihood estimator for the drift parameter in the Ornstein-Uhlenbeck process.

In spite of the fact that maximum likelihood estimators (MLE) are consistent and asymptot-
ically normal and also asymptotically efficient in general, they have some short comings at the
same time. Their calculation is often cumbersome as the expression for MLE involve stochastic
integrals which need good approximations for computational purposes. Further more MLE
are not robust in the sense that a slight perturbation in the noise component will change the
properties of MLE substantially. In order to circumvent such problems, the minimum distance
approach is proposed. Properties of the minimum distance estimators (MDE) were discussed
in Millar (1984) in a general frame work.

Our aim in this paper is to obtain the minimum L1-norm estimates of the drift parameter
of a fractional Ornstein-Uhlenbeck type process and investigate the asymptotic properties of
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such estimators following the work of Kutoyants and Pilibossian (1994).

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the processes dis-
cussed in the following are (Ft)-adapted. Further the natural fitration of a process is understood
as the P -completion of the filtration generated by this process.

Let WH = {WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst parameter

H ∈ (1/2, 1), that is, a Gaussian process with continuous sample paths such that WH
0 =

0, E(WH
t ) = 0 and

E(WH
s WH

t ) =
1
2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process {Xt, t ≥ 0} defined by the stochastic integral equation

Xt = x0 + θ

∫ t

0
X(s)ds + εWH

t , 0 ≤ t ≤ T,(2. 2)

where θ is an unknown drift parameters respectively. For convenience, we write the above
integral equation in the form of a stochastic differential equation

dXt == θX(t)dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T,(2. 3)

driven by the fractional Brownian motion WH . Even though the process X is not a semi-
martingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which is called a fundamental
semimartingale such that the natural filtration (Zt) of the process Z coincides with the natural
filtration (Xt) of the process X (Kleptsyna et al. (2000)). Define, for 0 < s < t,

kH = 2HΓ (
3
2
−H)Γ(H +

1
2
),(2. 4)

kH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 5)

λH =
2H Γ(3− 2H)Γ(H + 1

2)
Γ(3

2 −H)
,(2. 6)

wH
t = λ−1

H t2−2H ,(2. 7)

and
MH

t =
∫ t

0
kH(t, s)dWH

s , t ≥ 0.(2. 8)

The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variance < MH

t >= wH
t . Further more the natural filtration of

the martingale MH coincides with the natural fitration of the fBM WH . Let

KH(t, s) = H(2H − 1)
d

ds

∫ t

s
rH− 1

2 (r − s)H− 3
2 dr, 0 ≤ s ≤ t.(2. 9)
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The sample paths of the process {Xt, t ≥ 0} are smooth enough so that the process Q defined
by

Q(t) =
d

dwH
t

∫ t

0
kH(t, s)Xsds, t ∈ [0, T ](2. 10)

is welldefined where wH and kH are as defined in (2.7) and (2.5) respectively and the derivative
is understood in the sense of absolute continuity with respect to the measure generated by wH .

More over the sample paths of the process Q belong to L2([0, T ], dwH) a.s. [P]. The following
theorem due to Kleptsyna et al. (2000) associates a fundamental semimartingale Z associated
with the process X such that the natural filtration (Zt) coincides with the natural filtration
(Xt) of X.

Theorem 2.1: Let the process Z = (Zt, t ∈ [0, T ]) be defined by

Zt =
∫ t

0
kH(t, s)dXs(2. 11)

where the function kH(t, s) is as defined in (2.5). Then the following results hold:
(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt = θ

∫ t

0
Q(s)dwH

s + σMH
t(2. 12)

where MH is the gaussian martingale defined by (2.8),
(ii) the process X admits the representation

Xt =
∫ t

0
KH(t, s)dZs(2. 13)

where the function KH is as defined in (2.9), and
(iii) the natural fitrations of (Zt) and (Xt) coincide.

Even though the fBm {WH
t , t ≥ 0} is not a semi-martingale, it is still possible to define

stochastic integration with respect to the fBm for deterministic integrands. For instance, for
f ∈ L2(R+) ∩ L1(R+), one can define a stochastic integral of the form∫ T

0
f(s)dWH

s

(cf. Grippenberg and Norris (1996), Norros et al. (1999)). Such a stochastic integral∫ T

0
f(s)dWH

s

can be represented in terms of another stochastic integral with respect to the fundamental
gaussian martingale MH . The following result is due to Kleptsyna et al. (2000).

For any measurable function f on [0, T ] and for t ∈ [0, T ], define

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH− 1

2 (r − s)H− 3
2 dr, 0 ≤ s ≤ t.(2. 14)
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where the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure (cf. Samko et al.(1993)).

Lemma 2.2: Let MH be the fundamental martingale associated to the fBm WH . Then the
following equality holds a.s [P ]:∫ T

0
f(s)dWH

s =
∫ T

0
Kf

H(t, s)dMH
s , t ∈ [0, T ].(2. 15)

provided both the integrals on both sides are well defined.

The following lemma due to Grippenberg and Norris (1996) gives the covariance between
the two stochastic integrals

∫ T
0 f(s)dWH

s and
∫ T
0 g(s)dWH

s .

Lemma 2.3: For f, g ∈ L2(R+) ∩ L1(R+),

E(
∫ ∞

0
f(s)dWH

s

∫ ∞

0
g(s)dWH

s ) = H(2H − 1)
∫ ∞

0

∫ ∞

0
f(s)g(t)|s− t|2H−2dtds.(2. 16)

3 Minimum L1-norm Estimation

We now consider the problem of estimation of the parameter θ based on the observation of
fractional Ornstein-Uhlenbeck type process X = {Xt, 0 ≤ t ≤ T} satisfying the stochastic
differential equation

dXt = θX(t)dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T(3. 1)

for a fixed time T where θ ∈ Θ ⊂ R and study its asymptotic properties as ε → 0.

Let xt(θ) be the solution of the above differential equation with ε = 0. It is obvious that

xt(θ) = x0e
θt, 0 ≤ t ≤ T.(3. 2)

Let
ST (θ) =

∫ T

0
|Xt − xt(θ)|dt.(3. 3)

We define θ∗ε to be a minimum L1-norm estimator if there exists a measurable selection θ∗ε
such that

ST (θ∗ε) = inf
θ∈Θ

ST (θ).(3. 4)

Conditions for the existence of a measurable selection are given in Lemma 3.1.2 in Prakasa Rao
(1987). We assume that there exists a measurable selection θ∗ε satisfying the above equation.
An alternate way of defining the estimator θ∗ε is by the relation

θ∗ε = arg inf
θ∈Θ

∫ T

0
|Xt − xt(θ)|dt.(3. 5)
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Consistency:

Let WH∗
T = sup0≤t≤T |WH

t |. The self-similarity of the fractional Brownian motion WH
t

implies that the random variables WH
at and aHWt have the same probability distribution for any

a > 0. Further more it follows from the self-similarity that the supremum process WH∗ has the
property that the random variables WH∗

at and aHWH∗
t have the same probability distribution

for any a > 0. Hence we have the following observation due to Novikov and Valkeila (1999).

Lemma 3.1: Let T > 0 and {WH
t , 0 ≤ t ≤ T} be a fBm with Hurst index H. Let WH∗

T =
sup0≤t≤T WH

t . Then
E(WH∗

T )p = K(p, H)T pH(3. 6)

for every p > 0, where K(p, H) = E(WH∗
1 )p.

Let θ0 denote the true parameter, For any δ > 0, define

g(δ) = inf
|θ−θ0|>δ

∫ T

0
|Xt(θ)− xt(θ0)|dt.(3. 7)

Note that g(δ) > 0 for any δ > 0.

Theorem 3.2: For every p > 0, there exists a constant K(p, H) such that for every δ > 0,

P
(ε)
θ0
{|θ∗ε − θ0| > δ} ≤ 2pT pH+pK(p, H)e|θ0|Tp(g(δ))−pεp(3. 8)

= O((g(δ))−pεp).

Proof: Let ||.|| denote the L1-norm. Then

P
(ε)
θ0
{|θ∗ε − θ0| > δ} = P

(ε)
θ0
{ inf
|θ−θ0|≤δ

||X − x(θ)|| > inf
|θ−θ0|>δ

||X − x(θ)||}(3. 9)

≤ P
(ε)
θ0
{ inf
|θ−θ0|≤δ

(||X − x(θ0)||+ ||x(θ)− x(θ0)||)

> inf
|θ−θ0|>δ

(||x(θ)− x(θ0)|| − ||X − x(θ0)||)}

= P
(ε)
θ0
{2||X − x(θ0)|| > inf

|θ−θ0|>δ
||x(θ)− x(θ0)||}

= P
(ε)
θ0
{||X − x(θ0)|| >

1
2
g(δ)}.

Since the process Xt satisfies the stochastic differential equation (3,2), it follows that

Xt − xt(θ0) = x0 + θ0

∫ t

0
Xsds + εWH

t − xt(θ0)(3. 10)

= θ0

∫ t

0
(Xs − xs(θ0))ds + εWH

t

since xt(θ) = x0e
θt. Let Ut = Xt − xt(θ0). Then it follows from the above equation that

Ut = θ0

∫ t

0
Us ds + εWH

t .(3. 11)
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Let Vt = |Ut| = |Xt − xt(θ0)|. The above relation implies that

Vt = |Xt − xt(θ0)| ≤ |θ0|
∫ t

0
Vsds + ε|WH

t |.(3. 12)

Applying Gronwall-Bellman Lemma, we obtain that

sup
0≤t≤T

|Vt| ≤ εe|θ0T | sup
0≤t≤T

|WH
t |.(3. 13)

Hence

P
(ε)
θ0
{||X − x(θ0)|| >

1
2
g(δ)} ≤ P{ sup

0≤t≤T
|WH

t | >
e−|θ0T |g(δ)

2εT
}(3. 14)

= P{WH∗
T >

e−|θ0T |g(δ)
2εT

}.

Applying the Lemma 3.1 to the estimate obtained above, we get that

P
(ε)
θ0
{|θ∗ε − θ0| > δ} ≤ 2pT pH+pK(p, H)e|θ0T |p(g(δ))−pεp(3. 15)

= O((g(δ))−pεp).

Remarks: As a consequence of the above theorem, we obtain that θ∗ε converges in probability
to θ0 under P

(ε)
θ0

-measure as ε → 0. Further more the rate of convergence is of the order (O(εp))
for every p > 0.

Asymptotic distribution
We will now study the asymptotic distribution if any of the estimator θ∗ε after suitable

scaling. It can be checked that

Xt = eθ0t{x0 +
∫ t

0
e−θ0sεdWH

s }(3. 16)

or equivalently

Xt − xt(θ0) = εeθ0t
∫ t

0
e−θ0sdWH

s .(3. 17)

Let
Yt = eθ0t

∫ t

0
e−θ0sdWH

s .(3. 18)

Note that {Yt, 0 ≤ t ≤ T} is a gaussian process and can be interpreted as the ”derivative” of
the process {Xt, 0 ≤ t ≤ T} with respect to ε. Applying Lemma 2.2, we obtain that, P -a.s.,

Yte
−θ0t =

∫ t

0
e−θ0sdWH

s =
∫ t

0
Kf

H(t, s)dMH
s , t ∈ [0, T ](3. 19)

where f(s) = e−θ0s, s ∈ [0, T ] and MH is the fundamental gaussian martingale associoated
with the fBm WH . In particular it follows that the random variable Yte

−θ0t and hence Yt has
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normal distribution with mean zero and further more, for any h ≥ 0,

Cov(Yt, Yt+h) = e2θ0t+θ0hE[
∫ t

0
e−θ0udWH

u

∫ t+h

0
e−θ0vdWH

v ](3. 20)

= e2θ0t+θ0hH(2H − 1)
∫ t

0

∫ t

0
e−θ0(u+v)|u− v|2H−2dudv

= e2θ0t+θ0hγH(t) (say).

In particular
V ar(Yt) = e2θ0tγH(t).(3. 21)

Hence {Yt, 0 ≤ t ≤ T} is a zero mean gaussian process with Cov(Yt, Ys) = eθ0(t+s)γH(t) for
s ≥ t.

Let
ζ = arg inf

−∞<u<∞

∫ T

0
|Yt − utx0e

θ0t|dt.(3. 22)

Theorem 3.3: The random variable converges in probability to a random variable whose
probability distribution is the same as that of ζ under Pθ0 .

Proof: Let x′t(θ) = x0te
θt and let

Zε(u) = ||Y − ε−1(x(θ0 + εu)− x(θ0))||(3. 23)

and
Z0(u) = ||Y − ux′(θ0)||.(3. 24)

Further more, let

Aε = {ω : |θ∗ε − θ0| < δε}, δε = ετ , τ ∈ (
1
2
, 1), Lε = ετ−1.(3. 25)

Observe that the random variable u∗ε = ε−1(θ∗ε − θ0) satisfies the equation

Zε(u∗ε) = inf
|u|<Lε

Zε(u), ω ∈ Aε.(3. 26)

Define
ζε = arg inf

|u|<Lε

Z0(u).(3. 27)

Observe that, with probability one,

sup
|u|<Lε

|Zε(u)− Z0(u)| = |||Y − ux′(θ0)−
1
2
εu2x′′(θ̃)|| − ||Y − ux′(θ0)|||(3. 28)

≤ ε

2
L2

ε sup
|θ−θ0<δε

∫ T

0
|x′′(θ)|dt

≤ Cε2τ−1.
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Here θ̃ = θ0 + α(θ − θ0) for some α ∈ (0, 1). Note that the last term in the above inequality
tends to zero as ε → 0. Further more the process {Z0(u),−∞ < u < ∞} has a unique minimum
u∗ with probability one. This follows from the arguments given in Theorem 2 of Kutoyants
and Pilibossian (1994). In addition, we can choose the interval [−L,L] such that

P
(ε)
θ0
{u∗ε ∈ (−L,L)} ≥ 1− βg(L)−p(3. 29)

and
P{u∗ ∈ (−L,L)} ≥ 1− βg(L)−p(3. 30)

where β > 0. Note that g(L) increases as L increases. The processes Zε(u), u ∈ [−L,L] and
Z0(u), u ∈ [−L,L] satisfy the Lipschitz conditions and Zε(u) converges uniformly to Z0(u) over
u ∈ [−L,L]. Hence the minimizer of Zε(.) converges to the minimizer of Z0(u). This completes
the proof.

Remarks : We have seen earlier that the process {Yt, 0 ≤ t ≤ T} is a zero mean gaussian
process with the covariance function

Cov(Yt, Ys) = eθ0(t+s)γH(t)

for s ≥ t. Recall that

ζ = arg inf
−∞<u<∞

∫ T

0
|Yt − utx0e

θ0t|dt.(3. 31)

It is not clear what the distribution of ζ is. Observe that for every u, the integrand in the above
integral is the absolute value of a gaussian process {Jt, 0 ≤ t ≤ T} with the mean function
E(Jt) = −utx0e

θ0t and the covariance function

Cov(Jt, Js) = eθ0(t+s)γH(t)

for s ≥ t.
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