isid/ms/2003/27
September 11, 2003
http://www.isid.ac.in/~statmath/eprints

On a Berry-Esseen type bound for the maximum

likelihood estimator of a parameter for some
stochastic partial differential equations

M. N. MISHRA
B. L. S. Prakasa Rao

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi-110016, India






On a Berry-Esseen type bound for the maximum
likelihood estimator of a parameter for some
stochastic partial differential equations

M. N. Mishra and B. L. S. Prakasa Rao
Institute of Mathematics Indian Statistical Institute
and Applications New Delhi
Bhubaneswar

Abstract: This paper is concerned with the study of the rate of convergence of the distribu-
tion of the maximum likelihood estimator (MLE) of parameter appearing linearly in the drift

coefficient of two types of stochastic partial differential equations (SPDE’s).

Key words and phrases : Stochastic partial differential equations, Berry-Esseen type bound,

Maximum likelihood estimator, Inference for Stochastic processes.

AMS 2000 Subject Classification : Primary 62M40, Secondary 60H15.



1 Introduction

Maximum likelihood estimation of a parameter appearing linearly in some stochastic partial
differential equations (SPDE) has been considered by Hubner et al. (1993). Detail discussion
of these SPDE’s and some interesting phenomena arising out of the parameter estimation have
been considered by them in two examples. In this paper, we study the rate of convergence of
the distribution of the MLE éN’e of the parameter 6 occuring linearly in such SPDE’s. Bounds
on the difference ‘é N, — 90‘ , where 0y is the true value of the parameter, can be obtained using
these results as in Mishra and Prakasa Rao (1985).

In Section 2, we describe a SPDE with parameter 6 such that the corresponding stochastic
process u. generate the measures {FPj,6 € ©} which are mutually absolutely continuous, and
the main results pertaining to this section have been described in the Section 3. In Section 4, we
describe a SPDE with parameter 6 such that the corresponding stochastic process u. generate
the measures which form a family of probability measures { P, € ©} which are singular with
respect to each other and this section also contains the main results connected to this problem.
A corresponding survey on statistical inference for such classes of SPDE’s is given in Prakasa
Rao (1999, 2002).

Throughout the paper, we shall denote by C' positive constant different at different places

of occurence possibly dependent on the initial conditions of the SPDE’s.

2 Stochastic PDE with linear drift (Absolutely continuous case)

: Estimation

Let (2, F, P) be a probability space and consider the process u(t,z), 0 <z <1, 0<t<T

governed by the stochastic partial differential equation
duc(t,z) = (Auc(t,x) + Ouc(t, z)) dt + edWp(t, ) (2. 1)

where A = g—;. Let ¢ —» 0 and 8 € © C IR. Suppose that the initial and boundary conditions

are given by

u6(07x) = f(x)v f€L2[07 1]7
u(t,0) = u(t,1)=0, 0<t<T (2. 2)

and () is the nuclear covariance operator for the Wiener process Wq(t,z) taking values in
L»[0,1], so that Wg(t,z) = Q%W(t, x) and W (t, z) is a cylindrical Brownian motion in L[0, 1].



Then it is known that (cf. Rozovskii (1990))
Wolt,z) = z:qi2 ei(z)Wi(t) a.s. (2. 3)

where {W;(t), 0 <t <T},i>1 are independent one dimensional standard Wiener processes
and {e;} is a complete orthonormal system in Ly[0, 1] consisting of eigen vectors of @ and {g;}

eigen values of Q).

Let us consider a special covariance operator Q with ex = sinkwx, k > 1 and Ay = (7k)?, k >
1. Then {e,} is a CONS with the eigen values ¢; = (1 + \;)~!, i > 1 for the operator ) where
Q = (I — A)~L. Furthermore, dW¢ = Q%dW we define a solution wu.(t,z) of (2.1) as a formal

= uic(t)ei(x), (2. 4)
i=1

(cf. Rozovskii (1990)). It is known that the Fourier coefficients w;(t) satisfies the stochastic

differential equation

duse(t) = (0 — \i)uge(t)dt + dWi(t), 0<t<T (2. 5)

¢
A+ 1

with the initial conditions

1
uie(0) = v;, v :/0 f(z)ei(x)dx. (2. 6)

It is further known that uc(¢,x) as defined above belongs to Lo ([0, 7] x €; L0, 1]) together
with its derivative in ¢. Furthermore, uc(t, z) is the only solution of (2.1) under the boundary
condition (2.2). Let Pj be the measure generated by u. on C[0,T| when @ is the true parameter.
It has been shown by Hubner et al. (1993) that the family of measures {Pg(e),ﬁ € @} are

mutually absolutely continuous and

T T
[9 00) /0 se () duge (£) — % [0 - %)% — (9 — 2)?) /0 ufe(t)dt} .

The log likelihood ratio of the projection of the solution u.(t,z) onto the subspace 7N spanned
by {e1,e,...,en} (see [Liptser, Shiryayev (1978)]) is given by ulY (t,2) = SN | wie(t)ei(z) is

as follows :

: dpy™N
O
© apyN
N T T
A+ 1 1
— = [(9 — 90)/ Wie () duie (t) — 5 {(60—X)* = (6o — )\i)Q}/ uie(t)dt} )
i=1 0 0

(2. 7)



Here P, M is the probability measure generated by the process ulN (¢, ) on C[0,T] when 0

is the true parameter.

The Maximum likelihood estimator (MLE) of § has the form

Zl 1 +1) f() wie(t (duze( )+ Aiwie(t)dt)
Zi:l()‘i + ) ’LE( )dt

On,. = (2. 8)

(cf. Hubner et. al. (1993), p.154).

3 Stochastic PDE with linear drift (Absolutely continuous case)
: Berry-Esseen type bound

In this section we prove the following theorem for which we need few lemmas. It can be checked

that Ejy, fo t)dt < co. We assume that 6y < 72 where 6 is the true parameter.

’LE

Let ®(.) denote the standard normal distribution function and define

Theorem 3.1 : For any 0 < 6 < 1,

€ g A+ 1
P;(;N{ QY re (9N6f90) }(I)(y)‘ﬁQPG(’)N Z +/ t)dt — 1| > 5 $+3V/6.

sup
Y i=1 QNT

Lemma 3.1 : Let (2, F, P) be a probability space and f and g be F-measurable functions.
Then, for any d > 0,

Plo:f) <ol - o)

sup
xX

SSI;p\P{w Hflw) <yt = @)+ Plw:lglw) — 1] = 6} + 6.

Proof : See Michael and Pfanzagl (1971).

Lemma 3.2: Let {W (t), ¢t > 0} be a standard Wiener process and Z be a nonnegative random
variable. Then, for every € IR and ¢ > 0,

P{W(2) < 2} - 0()] < (260)% + P{|Z — 1] > 6}.



Proof: See Hall and Heyde (1980, p.85).

Theorem 3.2: There exists a constant C' depending on 6y, ||f|| and T such that, for any
0<d<1,

N 1
k) —_ > <
. {Z i =1 200 <O | oy

as € — 0 (NN fixed).

Proof of Theorem 3.1: We can write, using (2.8),

- - {le\/ﬁfouZ€ )}/
e ey £ 0 (i

where

N 2
o _ Ai +1 2(,200-\)T _ 1y _p_°
v =2 [2(9— ) (U’ (e ) =T 1))

Now, for any y € R,

i L@l (one - a0) <0} - 00

o | S VAT w0 @,

IN

— ®(y)

0 €
’ S+ 1) [T w2 0/ QVy
Ai ie t
< s {zz u/Tf?)u <><$}®(x)
N,T
Ai + u? (t)dt
+P€€(;N Zz 1( (3) ze() 1 2(5 +5
N,T
(by Lemma 3.1)
= Sup P€N >\ +1 <zp—o(x)
i= 1 Q
+P ZAJrl/ )t —1|>6 3 +6
=1 QNT

where W( ) is an independent standard Wiener process by using the Theorem 2.3 in Feigin
(1976) (due to Kunita-Watanabe) and the fact that fo t)dW;(t), 1 < i < n are independent

ie



square integrable martingales. Hence

{@6 (91\/,5 - 90) < y} - @(y)‘

IA

\ﬁ+2PEN{Z/\+1/ t)dt — 1 >5}

i=1 QNT
+d(by Lemma 3.2)

2!P§5N{ AH dtl}]+3x/§
=1

IN

for0 <6 <1.

Proof of Theorem 3.2: From (2.5) we obtain,

€
due = (00— X)) uje d dWi(s), 0<t<T
we(s) = (0= A ue(s) ds + Wil
’LLZE(O) = ;.
By the Ito formula, we have
d (uie(S)éw*’\i)s) = )\:+ 16(97’\i)3dWi(S)
or .
(0=t _ ¢ (0=Xi)s g7 3.1
uie(0) o= [ ) C
Further more
d(u2 (t)) = 2(0 — \)u2 (£)dt + ————u; (£)dWi (1) ¢ dt
1€ />\Z+1 1€ )\Z 1

or equivalently
)\i + 1 1}2
200 —XN)
2

_ [ evAt+l [ . €
= [ovr s SO [ anio + 55T

T AT —

We know, from (3.1), that

2

1
ugﬁ(T) :vle 20=2)T +62(9/\i)T< oY / g(0=2i) SdW( )) +2v,~e2(9)‘i)T/O 7)\A+1é(9*>"')3dWi(s).



JFrom (3.1) and (3.2), we obtain that

N N+ 1 2 T

AT L 20-2)T ) B N
Zz(e—m {”Z (e 1) )\Z-+1T} ;( i + Duic(t)
_ AL

Use (t)sz (t) —

v A4 1 2 oy T
i 2(0—\i)T 023 gy > _ i 2(0—>\i)T/ O-X)s gy (s) | .
; 200 — \) [6 (x/)\ T W) =i 0 (#)

Since QE\E,)lT = Ef\il 2(};;}7) (vlz (eQ(G_Ai)T — 1) T +1> We have

e fo (ELoe+veo)d |
QVr
evA+1 j‘ U t)
e, N 2(0—X;) JO ie( 1)
= B {Z © =3
i=1 N,T

Y

(e)
N,T

{ S AU 0T T 0205 aw (s)

z}

>

[\

& T ([T 2(0-7)s
¥, 2(94062(9 M)T <fo e0=) dwi(5)>
Qv

e, N
+P,

Wl

= I + Iz + I3(say).



Now

N T 2
Ce Ap+1 2

N
Ce Ap+1 ( 1 w31 — 62(9—)\k)T)>
5l \5 0 2w\

IN

IN

2 1 _ 20T
2 —03 " 20 —0)

3
) } (following Hubner et al. (1993), p.154)
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(3. 3)

Next,

=

IN

N 2 T 2
L C(S) Z Uk ez(xke)T/o 62(Ak9)sds}
k=

1
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(3. 4)



In addition,
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Note that

(e)
N,T

it follows that
S\E,?T > C[éT + ||f||] forlarge N depending on 6 and T and for all e.

Using (3.3), (3.4) and (3.5) and QE\?T, we get that

016 CQET% 0362
© T 0 T e
0Qnr  0Qnr QN7

Ce 1
s T L)

L+ 1+ I3

for 0 < € < 1. Choosing § = €', for some 0 < r < 1, we get that the bound is of the order

Ce(1+T2)
€T+ £

Using Theorems 3.1 and 3.2, we have the following main Theorem for any fixed N > 1.

Theorem 3.3: There exists a constant C depending on 6y, || f||*> and T such that, for any



0<r<l,

1
€ [ ~(e) — A Cer(l+T>2
PQ(;N { QEV?TE 1 <0N,€ — 90) S y} — (I)(y)’ S 627—§—FWH2> + 3 el—r

sup
y
for 0 <e< 1.

Remarks: Observe that the bound in Theorem 3.3 is of the order O(e") + O(e%). Choosing
r = %, we note that the bound is of the order O(e%),

4 Stochastic PDE with linear drift (Singular case) : Estimation
and Berry-Esseen type bound

Let (2, F, P) be a probability space and consider the process w;(t,z), 0 <z <1,0<t<T

governed by the stochastic partial differential equation
du(t, ) = 0Au(t, z)dt + e(I — A)"2dW (¢, z) (4. 1)
where 6 > 0 satisfying the initial and boundary conditions
ue(0,z) = f(x),0 <z < 1, feLo[0,1],

ue(t,0) = uc(t,1) =0, 0<t<T (4. 2)

Here I is the identity operator, A = 66—;2 as defined in the Section 3 and the process W(t,x)
is the cylindrical Brownian motion in Ls[0, 1]. In analogy with (2.5) in Section 2, the Fourier

co-efficients w;(t) satisfy the stochastic differential equation

€
diet:—G)\i ietdt 7dWit, O0<t<T 4. 3
e (t) wie(t)dt + NOYES (t) (4. 3)

with .
u;ie(0) = v; where v; —/ f(z)e;(x)dx. (4. 4)

0

Let Pj be the measure generated by the process u. on C[0,T] when 6 is the true parameter.
It can be shown that the family of measures {P5, 6 € ©} do not form a family of equivalent
probability measures. In fact P§ is singular with respect to Pj,, when 6 # ¢’ in © (cf. Huebner
et. al (1993)).

Let ugN) (t,z) be the projection of u.(t,z) onto the subspace spanned by {e1,es,...,en} in
L5[0,1]. In other words,



N
uM(t2) = wic(t)eq(z). (4. 5)
=1

Let P, N be the probability measure generated by ugN) on the subspace spanned by {ey,...en}

in L9[0,1]. It can be shown that the measures {PQE ’N, 0 e @} form an equivalent family and

dpsy
log %(Ugm)
db,"
1 & T
— —6—2 Z /\z()‘z + 1) |:(9 — 00)/0 uie(t)(duig(t) + HoAiuie(t)dt)
=1
1 T
+5(0 - 00)\; / u?e(t)dt] (4. 6)
0

It can be checked that the MLE éMe of 6 based on ugN) satisfies the likelihood equation

Qey =€t (éN,e - 90) Be,N (4. 7)

when 6 is the true parameter,

N T
aen = AvAi+1 / wie (£)dW;(t)
i=1 0

and
N

T
Bew = (i +1) A / ug (t)dt.
i=1 0
JFrom (4.7) we obtain,
o ST AVEFT w0} /Ry
\/]?’T(GN’E ~t) = N 2 (T, 2 ()
{Zizl()‘H_D)‘i 0 uie(t)dt} /RN 1

where

(6) . A'L()\z + 1) 2 1— 20\, T T 62
RN,T_; o0 v;(1—e )+ Ntll

It can be checked that -
E@O/ ul (t)dt < oo.
0

Theorem 4.1 : For any 0 < § < 1,

10



Pyt {\/ RE\?T(QAN@ — o) < y} - @(y)‘

1N 2 (T, 2
VO 4+ DA [T 2 (2t
€ izl +(€))z IO Y
lBN,T

sup
y

< 2PN

We can prove the Theorem 4.1 using the Lemmas 3.1 and 3.2 and following the procedure of

proof of Theorem 3.1.

Theorem 4.2 : There exists a constant C' depending on 6y, ||f||?> and T such that, for any
0 >0,

LN O+ 1D)A2 [ ul (t)dt

CN3(1+T3)
s

N 1 >6% < - .
0 §(e2TN3 + > k*v?)

Proof: By the Ito formula, we get that

dt

d(u?.(t)) = =20 u2 (t)dt +

1€

€
———=ic(t)dW;(t
Ao e AWilt) + 7=

or equivalently

(1 . =2
d <)\Z<)\229+)u?e(t)> = = A7 (N + Du (t)dt + d\/;eT

€N

20

Uje (t)dWl (t) =+

or

/\z()\z + 1) u2
29 1€

(1) - 2

T A+ [T i
= - [ R0 nadode SO0 [ mdwie + ST
0 0

Again, by the Ito formula, it follows that
d (uie(t)ee’\"t> = & PNt
N+ 1

or

T
w( DT — v = [ e
0 A+ 1

or

T
wie(T) — v;e?NT = ée/\iT/ 7)\64_ leekitdWi(t)
0 i

11



or

T 2
0 A +1

% T

2.200T 207\, T Ot

+vie + v; e / e AW (t)
A+ 1 ‘ 0 ’

or

T 2
Ai(hi +1) 5 eXi 201 / Ot
< — 7 7 Z t
20 uz(T) 20 e ; et dW;(t)

T
LA+ 1) (A29+ 1) W2E2ONT | A Vi £ 160Ny, / PN AW(t).
0

JFrom (4.8) and (4.9), we get that

(A 1) 20 -~ [T
;20 {vf(l—e”T) A+1} Z;/O N\ + D)ud(t)dt

N
= % Z)\ 20N T ( / Ot qw;(t ) + 262/\ Vi + Lue@nT / PN AW (t)
0
B Z i W/
So
— T
oo | IEE T RO+ e |
0 . >
° Ri)r
¢ Ny 220nT (T onit 2
e,N 39 Dim1 Ai€ (fo € dm(ﬂ) - 5
= R =3
N, T
L pN %Zij\il AV F Lu;e20NT fOT e”itdWi(t) - é
fo R =3
N, T
T
L peN 2 i AV L fy wie®)dWi(t)| 4
fo R =3
N, T
= Ji+ Jo+ J3 (say)
where

N
S (), )

=1
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So

_20\T 200t
J1 < E) Z)\ / dt

NT =1
EONT { (eQGAiT _ 1) /29/\1}

NTz 1
CeN

ORYy

IN

Ja

IN

S VAV T

5R(€ .
CN3
5R§§?T

IN

and

ZA2A+ /Eu t)dt
5RNT

=1

IN

1
N N 2
ov29 {Z A+ Do (1 =Ty 4 7Y )\1}
i=1 i=1
(following Hubner et. al. (1993) )

C N N
{Z Ai(Ai +1) + TZN}
i=1 i=1

7{N3+T%N%}.

IN

IN

So

J1+ Jo+ J3

IN

IN
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Now

vV
Q
[~]=
>
W
—N—
So
_|_
——

for some ki depending on 6y and 7.

Therefore,
CN3(1+T2)

i+ o+ J5 < ,
P SN + N ke?)

Choosing § = N7, for some v > 0, we get that the bound is of the order
CN3(1+T73)
N— <€2TN3 +30, k4v,%>

Using the Theorems 4.1 and 4.2, we have the following result for any fixed 0 < e < 1.

Theorem 4.3: There exists a constant C' depending on 6y, ||f||* and T such that, for any
v >0,

3 1
e,N (e) oo < B < CN 1+T2 —
sup ‘Peo {\/ Ry r (91\7,6 90) < y} @(y)’ SN\ e Ty e +3VN—.

Y

Remarks: Observe that the bound in Theorem 4.3 is of the order O(N7~2)+O(N~2) provided
Zévzl kv > g(N) = O(N®). In such a case, the bound can be obtained to be of the order
O(N_%) by choosing v = %.
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