
isid/ms/2003/28
September 11, 2003

http://www.isid.ac.in/˜ statmath/eprints

Parametric Estimation for

Linear Stochastic Delay Differential Equations

Driven by Fractional Brownian Motion

B. L. S. Prakasa Rao

Indian Statistical Institute, Delhi Centre
7, SJSS Marg, New Delhi–110 016, India





Parametric Estimation for Linear Stochastic Delay Differential
Equations Driven by Fractional Brownian Motion

B.L.S. PRAKASA RAO
INDIAN STATISTICAL INSTITUTE, NEW DELHI

Abstract
Consider a linear stochastic differential equation

dX(t) = (aX(t) + bX(t− 1))dt + dWH
t , t ≥ 0

with time delay driven by a fractional Brownian motion {WH
t , t ≥ 0}. We investigate the

asymptotic properties of the maximum likelihood estimator of the parameter θ = (a, b).
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1 Introduction

Statistical inference for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes has been studied earlier and a comprehensive survey of various
methods is given in Prakasa Rao (1999a). There has been a recent interest to study similar
problems for stochastic processes driven by a fractional Brownian motion. Le Breton (1998)
studied parameter estimation and filtering in a simple linear model driven by a fractional
Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied parameter esti-
mation problems for fractional Ornstein-Uhlenbeck type process. This is a fractional analogue
of the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process
X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous linear stochastic
differential equation driven by a fractional Brownian motion (fBm) WH = {WH

t , t ≥ 0} with
Hurst parameter H ∈ [1/2, 1). Such a process is the unique Gaussian process satisfying the
linear integral equation

Xt = θ

∫ t

0
Xsds + σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the observation
{Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly consistent as
T →∞.
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We discussed more general classes of stochastic processes satisfying linear stochastic differ-
ential equations driven by a fractional Brownian motion (fBm) in Prakasa Rao (2003 a,b,c)
and studied the asymptotic properties of the maximum likelihood and the Bayes estimators
for parameters involved in such processes. Nonparametric inference problems were studied in
Prakasa Rao (2003d). A comprehensive discussion of these results is given in Prakasa Rao
(2003e).

In a recent paper, Gushchin and Kuchler (1999) investigated asymptotic inference for linear
stochastic differential equations with time delay of the type

dX(t) = (aX(t) + bX(t− 1))dt + dWt, t ≥ 0

driven by the standard Brownian motion {Wt, t ≥ 0} with the initial condition X(t) =
X0(t),−1 ≤ t ≤ 0 wher X0(t) is a continuous process independent of W (.). They investi-
gated the asymptotic properties of the maximum likelihood estimator (MLE) of the parameter
θ = (a, b). They have shown that the asymptotic behaviour of the maximum likelihood estima-
tor depends on the ranges of the values of a and b.

We now consider the linear stochastic differential equation

dX(t) = (aX(t) + bX(t− 1))dt + dWH
t , t ≥ 0

with time delay driven by the fractional Brownian motion {WH
t , t ≥ 0}. We investigate the

asymptotic properties of the maximum likelihood estimator of the parameter θ = (a, b).

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions.The natural fitration
of a stochastic process is understood as the P -completion of the filtration generated by this
process.

Let WH = {WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst pa-

rameter H ∈ (0, 1), that is, a Gaussian process with continuous sample paths such that
WH

0 = 0, E(WH
t ) = 0 and

E(WH
s WH

t ) =
1
2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral
equation

Yt =
∫ t

0
C(s)ds +

∫ t

0
B(s)dWH

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a nonvanishing nonrandom
function. For convenience we write the above integral equation in the form of a stochastic
differential equation

dYt = C(t)dt + B(t)dWH
t , t ≥ 0(2. 3)
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driven by the fractional Brownian motion WH . The integral∫ t

0
B(s)dWH

s(2. 4)

is not a stochastic integral in the Ito sense but one can define the integral of a deterministic
function with respect to the fbM in a natural sense (cf. Norros et al. (1999)). Even though the
process Y is not a semimartingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which
is called a fundamental semimartingale such that the natural filtration (Zt) of the process Z

coincides with the natural filtration (Yt) of the process Y (Kleptsyna et al. (2000)). Define,
for 0 < s < t,

kH = 2H Γ(
3
2
−H)Γ(H +

1
2
),(2. 5)

kH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 6)

λH =
2H Γ(3− 2H)Γ(H + 1

2)
Γ(3

2 −H)
,(2. 7)

wH
t = λ−1

H t2−2H ,(2. 8)

and
MH

t =
∫ t

0
kH(t, s)dWH

s , t ≥ 0.(2. 9)

The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variation < MH

t >= wH
t . Further more the natural filtration of

the martingale MH coincides with the natural fitration of the fbM WH . In fact the stochastic
integral ∫ t

0
B(s)dWH

s(2. 10)

can be represented in terms of the stochastic integral with respect to the martingale MH . For
a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH− 1

2 (r − s)H− 1
2 dr, 0 ≤ s ≤ t(2. 11)

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure (see Samko et al. (1993) for sufficient conditions). The following result is due to
Kleptsyna et al. (2000).

Therorem 2.1: Let MH be the fundamental martingale associated with the fbM WH defined
by (2.9). Then ∫ t

0
f(s)dWH

s =
∫ t

0
Kf

H(t, s)dMH
s , t ∈ [0, T ](2. 12)

a.s [P ] whenever both sides are well defined.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see Samko et al.

(1993)) so that the process

QH(t) =
d

dwH
t

∫ t

0
kH(t, s)

C(s)
B(s)

ds, t ∈ [0, T ](2. 13)
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is well-defined where wH and kH are as defined in (2.8) and (2.6) respectively and the derivative
is understood in the sense of absolute continuity. The following theorem due to Kleptsyna et
al. (2000) associates a fundamental semimartingale Z associated with the process Y such that
the natural filtration (Zt) coincides with the natural filtration (Yt) of Y.

Theorem 2.2: Suppose the sample paths of the process QH defined by (2.13) belong P -a.s to
L2([0, T ], dwH) where wH is as defined by (2.8). Let the process Z = (Zt, t ∈ [0, T ]) be defined
by

Zt =
∫ t

0
kH(t, s)B−1(s)dYs(2. 14)

where the function kH(t, s) is as defined in (2.6). Then the following results hold:
(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =
∫ t

0
QH(s)dwH

s + MH
t(2. 15)

where MH is the fundamental martingale defined by (2.9),
(ii) the process Y admits the representation

Yt =
∫ t

0
KB

H(t, s)dZs(2. 16)

where the function KB
H is as defined in (2.11), and

(iii) the natural fitrations of (Zt) and (Yt) coincide.

Kleptsyna et al. (2000) derived the following Girsanov type formula as a consequence of
the Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t − 1
2

∫ t

0
Q2

H(t)dwH
t }.(2. 17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure and
the probability measure of the process Y under P ∗ is the same as that of the process V defined
by

Vt =
∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T.(2. 18)

.

3 Maximum Likelihood Estimation

Let us consider the stochastic differential equation

dX(t) = (aX(t) + bX(t− 1))dt + dWH
t , t ≥ 0(3. 1)

4



where θ = (a, b) ∈ Θ ⊂ R2,W = {WH
t , t ≥ 0} is a fractional Brownian motion with a

known Hurst parameter H with the initial condition X(t) = X0(t), t ∈ [−1, 0] where X0(.) is a
continuous Gaussian stochastic process independent of WH . In other words X = {Xt, t ≥ 0}
is a stochastic process satisfying the stochastic integral equation

X(t) = X(0) +
∫ t

0
[aX(s) + bX(s− 1)]ds + WH

t , t ≥ 0,(3. 2)

X(t) = X0(t),−1 ≤ t ≤ 0.

Let
C(θ, t) = aX(t) + bX(t− 1), t ≥ 0(3. 3)

and assume that the sample paths of the process {C(θ, t)}, t ≥ 0 are smooth enough so that
the process

QH,θ(t) =
d

dwH
t

∫ t

0
kH(t, s)C(θ, s)ds, t ≥ 0(3. 4)

is well-defined where wH
t and kH(t, s) are as defined in (2.8) and (2.6) respectively. Suppose

the sample paths of the process {QH,θ, 0 ≤ t ≤ T} belong almost surely to L2([0, T ], dwH
t ).

Define
Zt =

∫ t

0
kH(t, s)dXs, t ≥ 0.(3. 5)

Then the process Z = {Zt, t ≥ 0} is an (Ft)-semimartingale with the decomposition

Zt =
∫ t

0
QH,θ(s)dwH

s + MH
t(3. 6)

where MH is the fundamental martingale defined by (2.9) and the process X admits the
representation

X(t) = X(0) +
∫ t

0
KH(t, s)dZs, t ≥ 0,(3. 7)

X(t) = X0(t),−1 ≤ t ≤ 0

where the function KH is as defined by (2.11) with f ≡ 1. Let P θ
T be the measure induced

by the process {Xt,−1 ≤ t ≤ T} on C[−1, T ] when θ is the true parameter conditional on
X(t) = X0(t),−1 ≤ t ≤ 0 . Following Theorem 2.3, we get that the Radon-Nikodym derivative
of P θ

T with respect to P
(0,0)
T is given by

dP θ
T

dP
(0,0)
T

= exp[
∫ T

0
QH,θ(s)dZs −

1
2

∫ T

0
Q2

H,θ(s)dwH
s ].(3. 8)

We now consider the problem of estimation of the parameter θ = (a, b) based on the
observation of the process X = {Xt, 0 ≤ t ≤ T} conditional on X(t) = X0(t),−1 ≤ t ≤ 0. and
study its asymptotic properties as T →∞.
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Let LT (θ) denote the Radon-Nikodym derivative dP θ
T

dP
(0,0)
T

. The maximum likelihood estimator

(MLE) is defined by the relation

LT (θ̂T ) = sup
θ∈Θ

LT (θ).(3. 9)

We assume that there exists a measurable maximum likelihood estimator. Sufficient conditions
can be given for the existence of such an estimator (cf. Lemma 3.1.2, Prakasa Rao (1987)).
Note that

QH,θ(t) =
d

dwH
t

∫ t

0
kH(t, s)C(θ, s)ds(3. 10)

=
d

dwH
t

∫ t

0
kH(t, s)aX(s)ds +

d

dwH
t

∫ t

0
kH(t, s)bX(s− 1)ds

= aJ1(t) + bJ2(t). (say)

Then
log LT (θ) =

∫ T

0
(aJ1(t) + bJ2(t))dZt −

1
2

∫ T

0
(aJ1(t) + bJ2(t))2dwH

t(3. 11)

and the likelihood equations are given by∫ T

0
J1(t)dZt = a

∫ T

0
J2

1 (t)dwH
t + b

∫ T

0
J1(t)J2(t)dwH

t ,(3. 12) ∫ T

0
J2(t)dZt = b

∫ T

0
J2

2 (t)dwH
t + a

∫ T

0
J1(t)J2(t)dwH

t .

(3. 13)

Solving the above equations, we obtain that the maximum likelihood estimator θ̂T of θ = (a, b)′

is given by
θ̂T = (I0

T )−1V 0
T(3. 14)

where
V 0

T = (
∫ T

0
J1(t)dZt,

∫ T

0
J2(t)dZt)(3. 15)

and
I0
T = ((Iij))(3. 16)

is the observed Fisher information matrix with

Iii =
∫ T

0
J2

i (t)dwH
t , i = 1, 2(3. 17)

and
I12 = I21 =

∫ T

0
J1(t)J2(t)dwH

t .(3. 18)

We can write the log-likelihood function in the form

log
dP θ

T

dP
(0,0)
T

= θ′V 0
T −

1
2
θ′I0

T θ, θ ∈ R2.(3. 19)
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Let θ0 = (a, b)′ ∈ R2 be arbitrary but fixed. Let θ0 + φT γ where γ = (α, β)′ ∈ R2 and
φT = φT (θ0) is a normalizing matrix with ||φT || → 0 as T →∞. It is easy to see that

log
dP θ

T

dP
(0,0)
T

= γ′VT −
1
2
γ′IT γ(3. 20)

where
V ′

T = (
∫ T

0
J1(t)dMH

t ,

∫ T

0
J2(t)dMH

t )φT(3. 21)

and

IT = φ′T I0
T φT .(3. 22)

For linear stochastic differential equations with time delay driven by a standard Wiener
process, Gushchin and Kuchler (1999) discussed different conditions under which the family
of measures {P θ

T } is locally asymptotically normal (LAN) or locally asymptotically mixed
normal (LAMN) or in general locally asymptotically quadratic (LAQ). For a discussion of
these concepts, see Prakasa Rao (1999b), Chapter 6.

In view of the representation (3.20) for the log-likelihood ratio process, the family of mea-
sures {P θ

T } is LAQ at θ0 if we can choose the normalizing matrix φT (θ0) in such a way that
(i) the vectors VT and IT are bounded in probability as T →∞, (ii) if (VTn , ITn) converges in
distribution to a limit (V∞, I∞) for a subsequence Tn →∞, then

E(exp(γ′V∞ − 1
2
I∞γ)) = 1

for every γ ∈ R2, and (iii) if ITn converges in distribution to a limit I∞ for a subsequence
Tn → ∞, then I∞ is almost surely positive definite. The family of measures is LAMN at
θ0 if (VT , IT ) converges in distribution to (I1/2

∞ Z, I∞) as T → ∞ where the matrix I∞ is
almost surely positive definite and Z is a standard gaussian vector independent of I∞. If, in
addition, I∞ is nonrandom, then the family of measures is LMN at θ0. For the case b = 0, the
process X(t) reduces to the fractional Ornstein-Uhlenbeck type process. Strong consistency of
the maximum likelihood estimator was proved for such a process in Kleptsyna and Lebreton
(2002). Properties such as the strong consistency and the existence of the limiting distribution
of the MLE for this process as well as for more general processes governed by linear stochastic
differential equations driven by a fBm were studied in Prakasa Rao (2003a,b).

Suppose we can are able to obtain a normalizing matrix φT such that ||φT || → 0 as T →∞
and

(VT , IT ) L→ (V∞, I∞)

as T →∞. Then we have
φ−1

T (θ̂T − θ0)
L→ I−1

∞ V∞
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which shows the asymptotic behaviour of the MLE θ̂T as T → ∞. If the family of measures
{P θ

T } is LAMN, then the local asymptotic minimax bound holds for any arbitrary estimator
θ̃T of θ and it is given by

lim
r→∞

lim inf
T→∞

sup
||φ−1

T (θ−θ0)||<r

Eθ[w(φ−1
T (θ̃T − θ))] ≥ E[w(I−1

∞ V∞)](3. 23)

= E[w(I−1/2
∞ Z)]

where Z is a bivariate vector with independent standard normal distributions and w : R2 →
[0,∞) is bowl-shaped loss function. The maximum likelihood estimator is asymptotically effi-
cient in the sense that the Hajek-Le Cam lower bound obtained above is achieved by the MLE
θ̂T . These results are consequences of the LAMN property for the family of measures {P θ

T }.
We will discuss sufficient conditions for LAMN later in this paper.

4 A Representation for the Solution of (3.1)

Let us consider again the stochastic differential equation

dX(t) = (aX(t) + bX(t− 1))dt + dWH
t , t ≥ 0(4. 1)

where θ = (a, b) ∈ Θ ⊂ R2,W = {WH
t , t ≥ 0} is a fractional Brownian motion with the Hurst

parameter H with the initial condition X(t) = X0(t), t ∈ [−1, 0] where X0(.) is a continuous
Gaussian stochastic process independent of WH . Observe that the process {WH

t , t ≥ 0} is a
process with stationary increments. Applying the results in Mohammed and Scheutzow (1990),
we obtain that there exists a unique solution X = {X(t), t ≥ −1} of the equation (4.1) and it
can be represented in the form

X(t) = x0(t)X0(0) + b

∫ 0

−1
x0(t− s− 1)X0(s)ds +

∫ t

0
x0(t− s)dWH

s , t ≥ 0.(4. 2)

This process has continuous sample paths for t ≥ 0 almost surely and conditionally on X0, the
process X is a Gaussian process. Further more the function x0(.), defined for t ≥ −1, is the
fundamental solution of the differential equation

dx(t)
dt

= ax(t) + bx(t− 1), t > 0(4. 3)

subject to the conditions x(0) = 1, x(t) = 0, t ∈ [−1, 0).
Consider the characteristic equation

λ− a− be−λ = 0(4. 4)

of the above differential equation. A complex number λ is a solution of (4.4) if and only if the
function eλt is a solution of the differential equation

dx(t)
dt

= ax(t) + bx(t− 1), t ≥ 0.
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Let Λ be the set of solutions of the equation (4.4). Define

v0 = max{Reλ|λ ∈ Λ}

and
v1 = max{Reλ|λ ∈ Λ, Reλ < v0}.

A complete discussion of the existence and representation of the fundamental solution x0(t) of
(4.3) is given in the Lemma 1.1 and the following discussion in Gushchin and Kuchler (1999).
For the class of linear stochastic differential equations driven by the standard Wiener process,
Gushchin and Kuchler (1999) have proved that the corresponding family of measures {P θ

T }
form (i) a LAN family if v0 < 0, (ii) a LAQ family if v0 = 0, and (iii) a LAMN family if v0 > 0,
and v1 < 0 or v1 > 0 and v1 ∈ Λ.

5 Local Asymptotic Mixed Normality

Observe that the processes

Ri(T ) =
∫ T

0
Ji(t)dMH

t , i = 1, 2(5. 1)

are zero mean local martingales with the quadratic covariation processes

< Rm, Rn >T =
∫ T

0
Jm(t)Jn(t)dwH

t , 1 ≤ m,n ≤ 2.(5. 2)

Let
R′

T = (R1(T ), R2(T )).(5. 3)

Let {< R,R >t, t ≥ 0} be the matrix of covariate processes defined above. Suppose that we
can choose a norming function Qt → 0 as t →∞ such that

Q2
t < R,R >t

L→ η2

as t →∞ where η is a symmetric positive definite random matrix with probability one. Apply-
ing the multidimensional version of the central limit theorem for continuous local martingales
(cf. Theorem 1.49,; Remark 1.47, Prakasa Rao (1999b)), it follows that

(QT RT , Q2
T < R,R >T ) L→ (ηZ, η2)

as T → ∞ where Z′ = (Z1, Z2) is a bivariate random vector with independent N(0,1) com-
ponents independent of the random matrix η. Hence we have the following result leading to
sufficient conditions for LAMN property of the family of mesures {P θ

T }.

Theorem 5.1: Suppose the parameters a and b are such that there exists a norming function
Qt → 0 as t →∞ with the property

Q2
t < R,R >t

L→ η2
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as t →∞ where η is a symmetric positive definite random matrix with probability one. Then
the family of measures {P θ

T } form a LAMN family.

Remarks: If the matrix η is nonrandom, then the family of measures {P θ
T } form a LAN

family. We conjecture that the family is (i) LAN if v0 < 0 with the norming diagonal matrix
with the diagonal elements (T−1/2, T−1/2), (ii) LAMN if v0 > 0 and v1 < 0 with the norming
diagonal matrix with the diagonal elements (e−v0T , T−1/2) and (iii) LAMN if v0 > 0, v1 > 0
and v1 ∈ Λ with the norming diagonal matrix with the diagonal elements (e−v0T , e−v1T ). This
conjecture is supported by the results obtained by Gushchin and Kuchler (1999) for linear
stochastic differential equations with time delay driven by a Wiener process and by the results
in Kleptsyna and Leadbetter (2002) for the fractional Ornstein-Uhlenbeck type process (the
case b = 0) which implies that v0 = a. In order to check this conjecture, one method is obtain
the moment generating function of the matrix RT explicitly using the methods developed
in Kleptsyna and Le Breton (2002) and then study the asymptotic behaviour of the matrix
< R,R >T under different conditions on the parameters a and b.
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