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1. Introdu
tion.Let � be the Lapla
ian on Rd and for � 2 (0; 1) de�ne the usual H�older norms bykfkC� = supx j f(x) j + supx; h6=0 j f(x+ h)� f(x) jjhj� � kfk1 + jf jC� : (1:1)A 
lassi
al estimate is that if � > 0 and u is the solution in Rd to�u� �u = f; (1:2)then we have the inequality 



 �2u�xi�xj 



C� � 
1kfkC� ; (1:3)where 1 � i; j � d and 
1 is a 
onstant not depending on f . Two of the more importantappli
ations of this result are that it allows one to prove the existen
e of solutions to 
ertainellipti
 partial di�erential equations with variable 
oeÆ
ients and to prove uniqueness in law ofsolutions to 
ertain sto
hasti
 di�erential equations.In this paper we investigate the analogue of (1.3) when the Lapla
ian is repla
ed by otherellipti
 operators. In parti
ular we:(1) introdu
e a new method, whi
h we 
all the semigroup method, for proving (1.3);(2) use our method to obtain an analogue of (1.3) for the 
ase of in�nite dimensional Ornstein-Uhlenbe
k operators; and(3) lastly show how the semigroup method allows one to determine the appropriate substitutefor the norms given in (1.1).In work in preparation ([ABP℄) we use some of the above results to prove uniqueness foran in�nite dimensional system of Ornstein-Uhlenbe
k type sto
hasti
 di�erential equations withH�older 
ontinuous 
oeÆ
ients. The semigroup method is parti
ularly simple in the 
ase of theLapla
ian, even if we repla
e Rd by R1 . We need one elementary 
al
ulation, namely, thatZ �����pt(x; y)�x ���� dy � 
2pt ;where pt(x; y) = (2�t)�1=2 exp(�(y � x)2=2t) for x; y 2 R. We use this and the fa
t that Pt,the semigroup 
orresponding to the Lapla
ian, fa
tors to see that



�Ptf�xi 



1 � 
2ptkfk1:Some manipulations of semigroups then lead to (1.3). A key step is to de�ne the semigroup normkfkS� = kfk1 + supt>0 kPtf � fk1t�=2 : (1:4)2



This norm was also used in the argument of [CD℄.In the 
ase of the Lapla
ian in �nite dimensions, there are a number of proofs of (1.3). See,for example, [GT℄, Chapter 4, or [Ba℄, Se
tion II.3. Another proof 
an be found in [Ba℄, Se
tionIV.3 or [S℄, Se
tion V.4. This latter proof is at the basis of the semigroup method.The proof of (1.3) for the Lapla
ian in in�nitely many dimensions is relatively re
ent andis due to Cannarsa and Da Prato [CD℄. Their method involves interpolation spa
es. It is wellsuited to the Lapla
ian, but perhaps less so for other operators. Our results in Se
tion 3 give anew proof for the in�nite dimensional Lapla
ian.We use the semigroup method to obtain an analogue to (1.3) when the Lapla
ian is repla
edby the operator L de�ned byLf(x) = 1Xi;j=1 aij �2f�xi�xj (x)� 1Xi;j=1Vijxj �f�xi (x); (1:5)where a is positive de�nite and V is nonnegative de�nite (See Theorem 5.6). This operator is ageneralization of the in�nite dimensional Ornstein-Uhlenbe
k operator. It is well known that thein�nite dimensional Ornstein-Uhlenbe
k operator arises when using Fourier transforms to studyparaboli
 sto
hasti
 partial di�erential equations (see [W℄) and this was in fa
t the motivation for
onsidering this problem. One prin
ipal di�eren
e from the Lapla
ian 
ase is that the operators�=�xi and Pt no longer 
ommute. Related results for the Ornstein-Uhlenbe
k 
ase have beenobtained by [D℄, [L℄, [Z℄. In Remark 5.8 we dis
uss them brie
y and 
ompare them to our resultsTheorem 5.6 and Corollary 5.7.When one 
onsiders operators other than the Lapla
ian, it turns out that the C� normsde�ned by (1.1) may not be the most appropriate. In fa
t, the semigroup norm given in (1.4) is insome 
ases the natural one. In the 
ase of 
ertain degenerate ellipti
 operators, we dis
overed thisafter the fa
t. In [BP℄ two of the authors investigated H�older norm inequalities for an operatorthat arises in the study of bran
hing measure-valued di�usions. There the estimates were provedby hand, and we were for
ed to repla
e the use of the C� norms by weighted H�older norms. Inthis paper we prove that these weighted H�older norms are pre
isely the S� norms used by thesemigroup method. This suggests the potential for a more uni�ed approa
h to su
h norms in thestudy of degenerate sto
hasti
 di�erential equations in both �nite and in�nite dimensions andavoids having to guess the appropriate norm through ad ho
 methods.Layout of the paper: Here is the plan for the rest of the paper. In Se
tion 2 wede�ne the semigroup norm and establish some preliminary fa
ts. In Se
tion 3 we present thesemigroup method in the 
ase of the in�nite dimensional Lapla
ian (Proposition 3.3). Althoughthe estimates in the Lapla
ian 
ase are known, we present this 
ase separately for 
larity. InSe
tion 4 we give some 
onne
tions between the semigroup norm and the usual H�older norms(Proposition 4.1 and 4.2). Next, in Se
tion 5, we 
onsider the Ornstein-Uhlenbe
k operator, andestablish the analogue of (1.3) in Theorem 5.6 and Corollary 5.7. Se
tion 6 
onsiders geometri
al3



aspe
ts of the semigroup norm, analogous to se
tion 4. Many of these results will be used in thein the uniqueness proof for in�nite dimensional sto
hasti
 equations in [ABP℄. In Se
tion 7 weestablish the equivalen
e of the semigroup norm with weighted H�older norms in the 
ontext ofthe operator 
onsidered in [BP℄.A
knowledgment.We would like to thank L. Zambotti for patiently answering our many questions 
on
erningnorms related to the Ornstein-Uhlenbe
k operator.2. The semigroup norm.We use the following notation. If E = Rd ;Rd+ ;R1 , or a separable Hilbert spa
e H , andf : E ! R, Dwf(x) is the dire
tional derivative of f at x 2 E in the dire
tion w; we do notrequire w to be a unit ve
tor. We write Di for D�i and Dij for DiDj , where �i denotes theith unit ve
tor in a 
onvenient orthonormal system; for Rd or R1 , �i will be the ith 
oordinatedire
tion.The inner produ
t in E is denoted h�; �i, and j � j denotes the norm generated by this innerprodu
t. Cb = Cb(E) is the 
olle
tion of R-valued bounded 
ontinuous fun
tions on E and for� 2 (0; 1), C� is the set of fun
tions in Cb for whi
h kfkC� = kfk1+ jf jC� , de�ned as in (1.1)by repla
ing Rd with E, is �nite. Finally C2b is the set of fun
tions in Cb for whi
h the �rst andse
ond order partials are also in Cb.We use the letter 
 with subs
ripts for �nite positive 
onstants whose value is unimportantand whi
h may vary from line to line.Given an operator L that is the in�nitesimal generator of a semigroup Pt on the spa
e ofbounded measurable fun
tions on E, we let R� = R10 e��sPs ds be the 
orresponding resolvent.We de�ne the semigroup norm (the \S" stands for \semigroup") k � kS� for � 2 (0; 1) bykfkS� = kfk1 + supt>0 t��=2kPtf � fk1: (2:1)Let S� denote the spa
e of measurable fun
tions on E for whi
h this norm is �nite. We set jf jS�equal to the last term in (2.1), so kfkS� = kfk1 + jf jS� :In a number of pla
es we will use a similar 
onvention: jf jB will denote a seminorm in someBana
h spa
e B kfkB will then be kfk1 + jf jB.Remark 2.1. Sin
e kPtf � fk1 � 2kfk1, thenkfkS� � 3kfk1 + sup0<t�1 t��=2kPtf � fk1: (2:2)We will use the following result a number of times.4



Lemma 2.2. There exists 
2(�) su
h that if for some w 2 E and 0 < 
1 <1,kDwPtfk1 � 
1jwjpt kfk1for all bounded measurable f , then for all f 2 S�,kDwPtfk1 � 
1
2jwjt(��1)=2jf jS� :Proof. Note DwP2uf �DwPuf = DwPu[Puf � f ℄:The sup norm of the expression inside the bra
kets is bounded by u�=2jf jS� . Therefore by ourhypothesis, kDwP2uf �DwPufk1 � 
1jwju(��1)=2jf jS� : (2:3)Using the hypothesis again,kDwPt2kfk1 � 
1jwj(t2k)�1=2kfk1 ! 0as k !1. Therefore DwPtf = 1Xk=0(DwPt2kf �DwPt2k+1f):Using (2.3) and the triangle inequality,kDwPtfk1 � 1Xk=0 
1jwj(t2k)(��1)=2jf jS� � 
1jwj
2(�)t(��1)=2jf jS� :
Lemma 2.3. Assume kDwPtfk1 � 
1jwjpt kfk1 (2:4)for all bounded measurable f on E and all w 2 E. Then S� � C� andkfkC� � (
1
2(�) + 2)kfkS� ;where 
2(�) is as in Lemma 2.2.Proof. By (2.4), Lemma 2.2 and the mean value theorem, if w 2 E thenjPtf(x+ w)� Ptf(x)j � 
1
2jwjt(��1)=2kfkS� :5



We also havejPtf(x+ w)� f(x+ w)j � t�=2kfkS� ; jPtf(x)� f(x)j � t�=2kfkS� ;by the de�nition of S�. By the triangle inequality,jf(x+ w)� f(x)j � t�=2(
1
2jwjt�1=2 + 2)kfkS� :If we take t = jwj2, we see that kfkC� � (
1
2 + 2)kfkS� .Lemma 2.4. Let fXt; t � 0g be an E-valued Markov pro
ess with semigroup Pt and lawsfPx; x 2 Eg. Assume (2.4) and alsoE x(jXt � E x(Xt)j2) � 
0t1=2 for all t � 1: (2:5)If f; g 2 S�, then fg 2 S� and for some 
1 = 
1(
0; �),jfgjS� � 
1[kfk1jgjS� + jf jS�kgk1 + jf jC� jgjC� + kfk1kgk1℄; (2:6)and kfgkS� � 
1kfkS�kgkS� : (2:7)Proof. Let Rtx = E x(Xt) 2 E (by hypothesis). Note thatPtfg(x)� fg(x) =E x((f(Xt)� f(Rtx))(g(Xt)� g(Rtx)) + g(Rtx)(Ptf(x)� f(x))+ f(Rtx)(Ptg(x)� g(x))� (f(Rtx)� f(x))(g(Rtx)� g(x)): (2:8)Note also that for t � 1,jf(Rtx)� f(x)j � jPtf(x)� f(x)j+ jE x(f(Xt)� f(Rtx))j� jf jS�t�=2 + jf jC�E x(jXt �Rtxj�)� jf jS�t�=2 + jf jC�
�=20 t�=4; (2:9)the latter by (2.5) and Jensen's inequality. We put this into (2.8) and use H�older's inequality to
on
lude that for all t � 1,jPtfg(x)� fg(x)j �jf jC� jgjC�E x(jXt � Rtxj2)�+ (kgk1jf jS� + kfk1jgjS�)t�=2+ jf(Rtx)� f(x)j��jgjS�t�=2 + 
�=20 jgjC�t�=4� ^ 2kgk1��[
jf jC� jgjC� + kgk1jf jS� + 3kfk1jgjS� ℄t�=2+ jf(Rtx)� f(x)j
3[(jgjC�t�=4) ^ kgk1℄:6



We use (2.9) again to bound the last term by
4[jf jS�kgk1 + jf jC� jgjC� ℄t�=2:Substituting this into the above, we see that for t � 1,jPtfg(x)� fg(x)j � 
1[kfk1jgjS� + jf jS�kgk1 + jf jC� jgjC� ℄:If t > 1, the left-hand side is at most 2kfk1kgk1 and (2.6) follows. This and Lemma 2.3 nowimply (2.7).3. H�older estimates { the Lapla
ian 
ase.Let `2 be the spa
e of real square summable sequen
es fxi : i 2 Ng equipped with thenorm jxj = (Pi x2i )1=2 and take �i to be the unit ve
tor in the ith 
oordinate dire
tion. Westudy perturbations of L = 12 Xi a2iDii:Here we assume ea
h ai > 0 and jaj2 = Pi a2i < 1. The reader interested only in the �nitedimensional 
ase may restri
t all indi
es to the range 1 to d and take ea
h ai = 1 but we will beimpli
itly working in `2 below.Lemma 3.1. There exists 
1 su
h that for any bounded measurable f ,kDiPtfk1 � 
1aiptkfk1:Proof. Let pjt (xj ; dyj) = 1ajp2�te�(yj�xj)2=2a2jtdyjbe the transition density of one dimensional Brownian motion with parameter a2j . Letqjt (xj ; dyj) = Djpjt (xj; dyj) = 1ajp2�t yj � xja2j t e�(yj�xj)2=2a2j tdyj:Note that Z jqjt (xj ; dyj)j = Z 1�1 1ajp2�t jyj � xj ja2j t e�(yj�xj)2=2a2j tdyj = 
2ajpt :Now �x i and let F (yi;x; t; i) = Z Yj 6=i pjt (xj ; dyj)f(y1; y2; : : :):7



Then DiPtf(x) = Z Di�Yj pjt (xj; dyj)�f(y) = Z Z qit(xi; dyi)Yj 6=i pjt (xj ; dyj)f(y)= Z qit(xi; dyi)F (yi;x; t; i):Sin
e pjt (xj; dyj) integrates to one for ea
h j, we see that kFk1 � kfk1. ThereforejDiPtf(x)j � kFk1 Z jqit(xi; dyi)j � 
2aiptkfk1:Remark 3.2. The 
on
lusion of Lemma 3.1 is not the same as (2.4) be
ause of the presen
e ofthe ai.Proposition 3.3. There exists 
1 not depending on � and 
2 = 
2(�) su
h that for allf 2 S�,(a) kDiDjR�fk1 � 
1aiaj ���=2kfkS� ;(b) kDiDjR�fkS� � 
2(�)aiaj kfkS� ;(
) kDiR�fk1 � 
1ai ��1=2kfkS� ;and(d) kDiR�fkS� � 
2(�)ai kfkS� :Proof. (a) By the translation invarian
e of Brownian motion, Di and Pt 
ommute. By thesemigroup property we haveDiDjR�f(x) = Z 10 e��sDiDjPsf(x) ds = Z 10 e��sDiPs=2DjPs=2f(x) ds:(The inter
hange of the integration and di�erentiation follows easily by dominated 
onvergen
e.)By Lemmas 3.1 and 2.2, kDjPs=2fk1 � 
3a�1j s(��1)=2kfkS� . Using Lemma 3.1 againkDiDjR�fk1 � 
4ai Z 10 e��s 1ajpss(��1)=2ds kfkS� � 
5aiaj ���=2kfkS� : (3:1)8



(b) In view of Remark 2.1, we need only 
onsider t � 1. We writePt(DiDjR�f)� (DiDjR�f) = e�t Z 1t e��sDiDjPsf ds� Z 10 e��sDiDjPsf ds (3:2)= (e�t � 1) Z 10 e��sDiDjPsf ds� e�t Z t0 e��sDiDjPsf ds:Sin
e t � 1, then je�t � 1j � 
6(�)t � 
6t�=2, and so the L1 norm of the �rst term onthe last line is bounded by 
6t�=2kDiDjR�fk1. Applying (3.1), we bound the �rst term by
7(�)(aiaj)�1t�=2kfkS� .Sin
e t � 1, then e�t is bounded. By Lemmas 3.1 and 2.2,kDiDjPsfk1 = kDiPs=2DjPs=2fk1 � 
8ai s�1=2kDjPs=2fk1 � 
9aiaj s�1=2s(��1)=2kfkS� :Integrating from 0 to t, the se
ond term on the last line of (3.2) is bounded by
10aiaj kfkS� Z t0 s�2�1ds = 
11aiaj t�=2kfkS� :(
) The �rst derivative estimates are similar but easier. Using Lemma 3.1,kDiR�fk1 � Z 10 e��skDiPsfk1 ds (3:3)� 
12ai Z 10 e��ss�1=2dskfk1 � 
13ai ��1=2kfk1:(d) For t � 1, we writePt(DiR�f)� (DiR�f) = (e�t � 1)DiR�f + e�t Z t0 e��sDiPsf dsas in (3.2). The �rst term on the right is bounded by 
14(�)a�1i tkfk1, whi
h is �ne sin
e t < 1.Use Lemmas 2.2 and 3.1 to bound the se
ond term on the right by
15ai kfkS� Z t0 s(��1)=2ds � 
16ai t(�+1)=2kfkS� � 
17ai t�=2kfkS� :
4. Relationship between norms { the Lapla
ian 
ase.9



Proposition 4.1. If f 2 C� and g 2 S�, thenkfgkS� � (jaj� + 1)kfkC�kgkS�:In fa
t, jfgjS� � [kfk1jgjS� + jaj�jf jC�kgk1℄:Proof. The L1 norm of fg is 
learly bounded by the produ
t of the L1 norms of f and g.Fix x. We need to obtain a bound onjPt(fg)(x)� (fg)(x)j:Let ef(y) = f(y)� f(x); 
learly ef(x) = 0. ThenPt(fg)(x)� fg(x) = Pt( efg)(x) + f(x)Ptg(x)� f(x)g(x);so jPt(fg)(x)� fg(x)j � jPt( efg)(x)j+ jf(x)j jPtg � gj � jPt( efg)(x)j+ t�=2kfk1jgjS�:The �rst term on the right hand side isjE ( efg)(x+Xt)j � kgk1E jf(x+Xt)� f(x)j� kgk1jf jC�E (jXtj�)� kgk1jf jC�(E (jXtj2))�=2= kgk1jf jC� jaj�t�=2;where Xt is the Brownian motion asso
iated with the semigroup Pt. The required bound follows.Clearly the fun
tion that is identi
ally one is in S�, and hen
e the above propositionimplies that C� � S�. Here is a partial 
onverse, whi
h also shows that these spa
es 
oin
ideand have equivalent norms in the �nite-dimensional 
ase. In
identally, this and Proposition 3.3provide a new proof for (1.3) as well.Note that be
ause of the presen
e of the ai in the 
on
lusion of Lemma 3.1, we 
annot
on
lude that S� and C� are equivalent in the in�nite dimensional 
ase. Let us setjf j�;i = supx;h jf(x+ h�i)� f(x)jjhj� : (4:1)10



Proposition 4.2. There exists 
1(�) su
h that for ea
h i, jf j�;i � 
1a��i kfkS� .Proof. By Lemmas 2.2 and 3.1jPtf(x+ h�i)� Ptf(x)j � jhj kDiPtfk1 � 
2jhja�1i t(��1)=2kfkS� :We also have jPtf(x)� f(x)j � t�=2kfkS� ;and the same with x repla
ed by x+ h�i. Using the triangle inequality,jf(x+ h�i)� f(x)j � (2t�=2 + 
2jhja�1i t(��1)=2)kfkS� :Taking t = a�2i jhj2 yields our result.Remark 4.3. Consider the d-dimensional 
ase with all the ai's equal to 1. For ea
h positiveinteger J � d�=2 it is not hard to 
onstru
t an example where kfkC� = 1, jf j�;i = 1 for ea
h i,yet kfkS� = J: So there does not appear to be a simple 
hara
terization of S� in terms of thejf j�;i. On the other hand, if we writekfkS� = supt t��=2 supx ���ZRd P (t; 0; y � x)[f(y)� f(x)℄dy���where P (t; x; y) is the transition density for Pt in Rd , we see that S� does have a geometri

hara
terization in terms of a weighted average of f(y)� f(x).5. H�older estimates { the generalized Ornstein-Uhlenbe
k 
ase.In this se
tion we obtain H�older norm estimates for perturbations of an appropriateOrnstein-Uhlenbe
k operator. Let H be a separable Hilbert spa
e with inner produ
t h�; �i andlet V : D(V ) ! H be a (densely de�ned) self-adjoint non-negative de�nite operator on H su
hthat V �1 is a tra
e 
lass operator on H; (5:1)Then there is a 
omplete orthonormal system f�n : n 2 Ng of eigenve
tors of V �1 with 
orre-sponding eigenvalues ��1n , �n > 0, satisfying1Xn=1��1n <1; �n " 1; V �n = �n�n(see, e.g. Se
tion 120 in [RN℄). Let Qt = e�tV be the semigroup of 
ontra
tion operators on Hwith generator �V . If w 2 H , let wn = hw; �ni and, as dis
ussed in Se
tion 2, we will write11



Dif and Dijf for D�if and D�iD�jf , respe
tively. (In the example from the theory of SPDEsthat motivated us, V is given by V �i = 
1i2�i, and 
learly V �1 is of tra
e 
lass.)Assume a : H ! H is a bounded self-adjoint positive de�nite operator on H and setaij = ha�i; �ji. Therefore for some 
 > 0,
�1jzj2 �Xi;j aijzizj � 
jzj2; z 2 H: (5:2)We 
onsider the H-valued pro
ess whi
h, with respe
t to the 
oordinates hx; �ii, is asso
iatedwith the generator Lf(x) = 12 1Xi;j=1 aijDijf(x)� 1Xi=1 �ixiDif(x): (5:3)The de�nition is as follows.Let (Wt; t � 0) be the 
ylindri
al Brownian motion on H with 
ovarian
e a. Re
all(see se
tion 3.2 of [KX℄) this means if � is the positive de�nite square root of a, then Wt is anR1 -valued pro
ess su
h that for some sequen
e of independent 1-dimensional Brownian motionsfBjg, W i(t) �Wt(�i) =Xj �ijBj(t);and so more generally, Wt(h) =Xi hh; �iiWt(�i); h 2 H; t � 0is a mean zero Gaussian pro
ess with 
ovarian
eE (Ws(h)Wt(h0)) = hh; ah0i(s ^ t):As usual we may extend the de�nition of (Wt(h); t � T ) to measurable paths h : [0; T ℄ ! Hsu
h that R T0 khsk2ds <1. Then (Wt(h); t � T; h 2 H) is again a mean zero Gaussian pro
esswith 
ovarian
e E (Wt(h)Ws(g)) = Z s^t0 hhr; agridr:We often will write R t0 hsdWs for Wt(h). Ft denotes the right-
ontinuous �ltration generated byW . Consider the sto
hasti
 di�erential equationdXt = �V Xtdt+ dWt:A 
ontinuous H-valued Ft-adapted pro
ess is a solution of this sto
hasti
 di�erential equationsif and only if for all h 2 D(V ) we havehXt; hi = hX0; hi � Z t0 hXs; V hids+Wt(h) t � 0; a.s. (5:4)12



One easily 
he
ks that su
h a solution is a 
ontinuous H-valued Ft-adapted pro
ess whi
h solvesthe mild form of (5.4) with initial 
ondition X0 2 H , that ishXt; hi = hX0; Qthi+ Z t0 Qt�shdWs a.s. for all t � 0 and h 2 H . (5:5)There is a pathwise unique solution of (5.5) (whi
h also solves (5.4)) whose laws fPx; x 2Hg de�ne a unique homogeneous strong Markov pro
ess on the spa
e of 
ontinuous H-valuedpaths (see, e.g. Se
tion 5.2 of [KX℄). We let Ptf(x) = E x(f(Xt)) denote the asso
iated semi-group. Clearly fXt; t � 0g is an H-valued Gaussian pro
ess satisfyingE (hXt; hi) = hX0; Qthi for all h 2 H; (5:6)and Cov (hXt; gihXt; hi) = Z t0 hQt�sh; aQt�sgids � Ct(g; h): (5:7)Our reason for introdu
ing (5.4) is that it shows that X will solve a martingale problemasso
iated with L. More pre
isely if f : H ! R is a bounded C2 fun
tion of (x1; : : : ; xn) withbounded �rst and se
ond partials, then f(Xt) � f(X0) � R t0 Lf(Xs)ds is an Ft-martingale.Our obje
tive in this se
tion is to obtain bounds on DiDjR� in the S� norm asso
iated withPt, where R� is the �-resolvent 
orresponding with Pt. We start by noting that Pt no longer
ommutes with the di�erential operators Dw.Proposition 5.1. Assume t � 0, w 2 H, and f : H ! R is a bounded measurablefun
tion su
h that DQtwf is bounded and 
ontinuous (on H). ThenDwPtf(x) = Pt(DQtwf)(x); x 2 H:Proof. Let Zt 2 H denote a mean zero Gaussian random ve
tor with 
ovarian
e Ct. ThenPx(Xt 2 �) = P(Qtx+ Zt 2 �). Therefore if r 2 R,Ptf(x+ rw)� Ptf(x)r = E �f(Zt +Qt(x+ rw))� f(Zt +Qtx)r �: (5:8)Use the mean value theorem to see that for some r0 between 0 and r the integrand on the right sideof (5.8) equals DQtwf(Zt+Qtx+r0Qtw), whi
h approa
hes DQtwf(Zt+Qtx) as r approa
hes0 by the assumed 
ontinuity of DQtwf . The result now follows by dominated 
onvergen
e.The next step is the analogue of Lemma 3.1, whi
h will require 
onsiderably more work inthe present Ornstein-Uhlenbe
k setting. Re
all that Cb(H) is the spa
e of bounded 
ontinuousreal-valued fun
tions on H . 13



We introdu
e the following notation. Leth(t) = � 2t=(e2t � 1) if t > 01 if t = 0.For t � 0 and w 2 H set jwjt = (Pi w2i h(�it))1=2. Clearly h(t) and jwjt are de
reasingfun
tions of t and jwj0 = jwj.The next result is 
losely related to (6.2.10) and (6.4.14) of [DZ℄.Proposition 5.2. If f : H ! R is bounded and measurable and w 2 H, then for all t > 0,Ptf is Lips
hitz 
ontinuous on H, DwPtf 2 Cb(H) andkDwPtfk1 � jwjt kfk1p
t :Proof. First 
onsider f 2 Cb(H). Let �n be the proje
tion operator of H onto Rn given by�ny = (hy; �ii)i�n. Then under Px, �nXt is an n-dimensional Gaussian variable with mean�nQtx and 
ovarian
e matrixCnt (i; j) = Z t0 hQt�s�i; aQt�s�jids = Z t0 e�(�i+�j)sds aij; i; j � n:Here of 
ourse aij = h�i; a�ji. If x 2 Rn , then for some "n;t > 0,hx;Cnt xi = Z t0 nXi=1 nXj=1 aijxixje��ise��jsds � Z t0 
 nXi=1 x2i e�2�isds � "n;tjxj2:This shows Cnt is non-degenerate and so �nXt has a Gaussian densitypnt (z) = (2�)�n=2(detCnt )�1=2 exp(�hz � �nQtx; (2Cnt )�1(z � �nQtx)i):Let fn(y) = f(Pn1 hy; �ii�i) � ~fn(�ny). ThenPtfn(x+ rw)� Ptfn(x)r = Z ~fn(y)hpnt (y � r�nQtw)� pnt (y)r idy: (5:9)By the mean value theorem, there is an r0 = r0(y) between 0 and r su
h that the expression insquare bra
kets is�D�nQtwpnt (y � r0�nQtw) (5:10)= pnt (y � r0�nQtw)h(Cnt )�1�nQtw; y � �nQtx� r0�nQtw)i;by an easy 
al
ulation. As r! 0 the above 
onverges topnt (y)h(Cnt )�1�nQtw; y � �nQtx)i:14



It is easy to see that the integral of the right side of (5.10) over jyj > K is small uniformlyin jrj < 1 for K large due to the Gaussian tail of pnt . It is therefore easy to use dominated
onvergen
e to take the limit as r! 0 through the integral in (5.9) and 
on
lude thatDwPtfn(x) = Z ~fn(y)pnt (y)h(Cnt )�1�nQtw; y � �nQtx)idy= E x(fn(Xt)h(Cnt )�1�nQtw; �n(Xt �Qtx)i):Introdu
e Un = (Cnt )�1=2�nQtw, Zn = (Cnt )�1=2�n(Xt � Qtx) and Rn = hUn; Zni. Theabove may now be rewritten as DwPtfn(x) = E x(fn(Xt)Rn): (5:11)We need the following lemma whose proof is provided at the end of the 
urrent argument.Lemma 5.3. jUnj � jwjtp
t : (5:12)The 
oordinates of Zn are i.i.d. standard normal random variables and so Lemma 5.3implies that E x(R2n) = jUnj2 � jwj2t
t : (5:13)If Yt = Xt � Qtx, then the joint laws of (Yt; Zn); n 2 N , are independent of x (re
all Zn =(Cnt )�1=2�nYt) and the same is therefore true of the joint laws of (Yt; Rn) on H � R. Thissequen
e of laws is tight by (5.13) and so we may 
hoose a subsequen
e fnkg (independent of xand f ) su
h that (Yt; Rnk) ) (Y1t ; R) with respe
t to weak 
onvergen
e in H � R. As Y1t
learly is equal in law to Yt we will drop the supers
ript. Using (5.11), we haveDwPtfnk(x) = E x(f(Qtx+ Yt)Rnk) + E x((fnk(Xt)� f(Xt))Rnk) (5:14):The se
ond term is bounded in absolute value by E x((fnk(Xt)�f(Xt))2)1=2E x(R2nk)1=2 whi
happroa
hes 0 as k ! 1 by (5.13), the 
ontinuity of f and dominated 
onvergen
e. The aboveweak 
onvergen
e along with the 
ontinuity of f and (5.13) show that as k ! 1 the �rst termin (5.14) 
onverges to E (f(Qtx+ Yt)R), and Fatou's lemma and (5.13) show thatE (R2) � jwj2t
t : (5:15)We have proved that limk!1DwPtfnk(x) = E (f(Qtx+ Yt)R) � J(x):15



Clearly J is 
ontinuous on H by the 
ontinuity of f , (5.15) and dominated 
onvergen
e. Dom-inated 
onvergen
e also shows that Ptfnk(x) ! Ptf(x) as k ! 1. An elementary argumentusing the fundamental theorem of 
al
ulus now shows thatDwPtf(x) exists and equals J(x):In parti
ular, DwPtf is 
ontinuous. The required bound on the sup norm of DwPtf is nowimmediate from (5.15) and Cau
hy-S
hwarz.Consider now the 
ase when f is only bounded and measurable. We have shown abovethat for a �xed w 2 H and all g 2 Cb(H),Ptg(x+ w)� Ptg(x) = Z 10 E (g(Qt(x+ sw) + Yt)R)ds; x 2 H: (5:16)Let S be the set of all bounded measurable (real-valued) maps on H for whi
h (5.16) is valid.S is 
learly a ve
tor spa
e 
ontaining Cb(H) and is 
losed under bounded pointwise limits. Astandard result (e.g., p. 11 of [M℄) now shows that S 
ontains all bounded measurable fun
tions.This, together with (5.15), proves that for f as above,jPtf(x+ w)� Ptf(x)j � kfk1jwjtp
tand in parti
ular Ptf is Lips
hitz 
ontinuous on H .Finally if 0 < " < t, we may apply the bound obtained in the 
ontinuous 
ase to the
ontinuous map P"f and 
on
lude that DwPtf(x) = DwPt�"(P"f)(x) exists, is 
ontinuous andis bounded in absolute value by kP"fk1jwjt�"p
(t� ") � kfk1jwjt�"p
(t� ") :Let " # 0 to obtain the required bound.Proof of Lemma 5.3. Note that �nQtw = (e��itwi)i�n where (w1; : : : ; wn) = �nw andso by repla
ing w with Pn1 wi�i, we may assume hw; �ii = 0 for i > n. We may 
onsider Qt asan operator on Rn via Qt = diag(e��it)i�n and the required result then be
omesj(Cnt )�1=2Qtwj2 � jwj2t
t ; w 2 Rn :De�ne Dt : Rn ! Rn by Dtw = � e��itwiph(�it)�i�n. Then we 
laim the above follows fromj(Cnt )�1=2Dtuj2 � juj2
t ; u 2 Rn : (5:17)16



To see this set ui = wiph(�it) so that Dtu = Qtw and (5.17) would then imply the requiredinequality. If Bnt = D�1t Cnt D�1t (all operators now are on Rn ) thenBnt (i; j) = Z t0 ph(�it)e�i(t�s)aijqh(�jt)e�j(t�s)ds:If 
 is as in (5.2) then one easily sees thathz; Bnt zi � Z t0 
 nXi=1 z2i h(�it)e2�i(t�s)ds = 
tjzj2:Therefore Bnt is symmetri
 positive de�nite matrix with all eigenvalues no smaller that 
t. If theeigenve
tors of Bnt are �i with 
orresponding eigenvalues �i, thenhz; Bnt zi =X�ihz; �ii2�X �2i
t hz; �ii2= (
t)�1hz; (Bnt )2zi = (
t)�1jBnt zj2:Therefore if z = (Cnt )�1Dtu, thenj(Cnt )�1=2Dtuj2 = hz; Cnt zi= hz;DtBnt Dtzi= hDtz; Bnt Dtzi� (
t)�1jBnt Dtzj2 (by the above with Dtz in pla
e of z)= (
t)�1juj2:Thus (5.17) holds and the proof is 
omplete.Now that we have Proposition 5.2, we obtain the H�older norm estimates by making suitablemodi�
ations to what we did in Se
tion 3. The main di�eren
e is the la
k of 
ommutativitybetween Pt and Dw.Proposition 5.4. Let f : H ! R be in S� and let u;w 2 H. Then DwPtf and DuDwPtfare in Cb(H) and for some 
onstant 
1(�; 
), satisfykDwPtfk1 � 
1jwjtt��12 kfkS� (5:18)and kDuDwPtfk1 � 
1jujt=2jQt=2wjt=2t�=2�1kfkS� : (5:19)17



Moreover f 2 C� and kfkC� � 
1kfkS� : (5:20)Proof. Using Proposition 5.2 we have by Lemma 2.2 (with 
1 = jwjt=jwj in that result) thatkDwPtfk1 � 
2jwjtt(��1)=2kfkS� : (5:21)The 
ontinuity of DwPtf is given by Proposition 5.2.Use (5.21) with Propositions 5.1 and 5.2 to 
on
lude that for t > 0 and u;w 2 H ,DuDwPtf = DuPt=2DQt=2wPt=2f exists, is 
ontinuous, (5:22)and satis�es kDuDwPtfk1 � (
t=2)�1=2jujt=2kDQt=2wPt=2fk1� 
3t�1=2jujt=2jQt=2wjt=2(t=2)(��1)=2kfkS�whi
h gives (5.19).The last result follows from Proposition 5.2 and Lemma 2.3.Lemma 5.5. If r > 0; � < 1, there is a 
1(�; r) su
h that for any � > 0,Z 10 e��tjwj2t=rt�� dt � 
1 1Xi=1(�+ �i)��1w2i :Proof. If Ii = R10 e��th(�it=r)t��dt, Fubini's theorem shows thatZ 10 e��tjwj2t=rt��dt = 1Xi=1 w2i Ii: (5:23)Note that if �i > 0, thenIi � Z 10 2�it=re2�it=r � 1(2�it=r)��2�i=r dt(2�i=r)��1� 
2(r)���1i Z 10 v1��ev � 1dv = 
3(r)���1i :Moreover for all � we have Ii � Z 10 e��t(�t)�����1�dt � 
4���1:Therefore Ii � 
5(r)(�+ �i)��1, and if this is used in (5.23), the desired result follows.If w 2 H , set kwkH;1 =P1i=1 jwij. 18



Theorem 5.6. There exists a 
onstant 
1(�; 
) and for " 2 (0; �=2) there exist 
onstants
2(�; 
; ") su
h that for � > 0, for any f : H ! R in S�, and any u;w 2 H, the fun
tionsDwR�f and DuDwR�f are bounded and 
ontinuous on H and satisfy:kDwR�fk1 � 
2��(1+�)=4� 1Xi=1 w2i (�+ �i)"���1�1=2kfkS� ; (5:24)kDuDwR�fk1 � 
2� 1Xi=1 w2i (�+ �i)�"�1=2� 1Xi=1 u2i (�+ �i)"���1=2kfkS� ; (5:25)jDwR�f jS� � 
1� 1Xi=1 jwij(�+ �i)�1=2�kfkS� ; (5:26)jDuDwR�f jS� � 
1(juj kwkH;1 + jwj kukH;1)kfkS� : (5:27)Proof. A use of Proposition 5.4 allows us to di�erentiate through the time integral and see thatDwR�f(x) = R10 e��sDwPsf(x)ds and DuDwR�f(x) = R10 e��sDuDwPsf(x)ds are both
ontinuous on H . Moreover by (5.19),kDuDwR�fk1� 
4kfkS� Z 10 jujs=2jQs=2wjs=2s�=2�1e��sds (5:28)� 
4kfkS��Z 10 juj2s=2s��"�1e��sds�1=2�Z 10 jQs=2wj2s=2s"�1e��sds�1=2:Use Lemma 5.5 and the trivial bound jQs=2wjs=2 � jwjs=2 to 
on
lude from the above thatkDuDwR�fk1 � 
5kfkS�� 1Xi=1(�+ �i)"��u2i�1=2� 1Xi=1(�+ �i)�"w2i �1=2:This gives (5.25) and the derivation of (5.24) is similar.Now 
onsider (5.26). As in Remark 2.1 we may assume that 0 < t � 1. Use (5.18) to seethat kDwPtR�f �DwR�fk1� (e�t � 1)


Z 1t e��sDwPsfds


1 + 


Z t0 e��sDwPsfds


1� 
6(�; 
)kfkS�h(e�t � 1) Z 1t e��sjwjss(��1)=2ds+ Z t0 e��sjwjss(��1)=2dsi= 
6kfkS�hI1 + I2i: (5:29)19



First bound I1 by(e�t � 1) Z 1t e��s 1Xi=1 jwijp2�is(e2�is � 1)�1=2s(��1)=2ds� (e�t � 1) X�i>� jwije��t Z 1t p2�is(e2�is � 1)�1=2(�is)(��1)=2�i ds �(�1��)=2i+ (e�t � 1) X�i�� jwij Z 1t e��s(�s)(��1)=2� ds �(�1��)=2: (5:30)A substitution shows the integral in the �rst term in (5.30) is bounded uniformly in i and so this�rst term is at most 
7(�)(1� e��t) X�i>� jwij�(�1��)=2i : (5:31)The integral in the se
ond term in (5.30) is at most 
8(�)e��t and so the se
ond term in (5.30)is at most 
8(1� e��t) X�i�� jwij�(�1��)=2: (5:32)Use (5.31) and (5.32) in (5.30) to 
on
lude thatI1 � 
9(1� e��t) 1Xi=1 jwij(�+ �i)(�1��)=2� 
9t�=2 1Xi=1 jwij(�+ �i)�1=2: (5:33)Next bound I2 byZ t0 e��s 1Xi=1 jwijp2�is(e2�is � 1)�1=2s(��1)=2ds� X�i>� jwij Z t0 p2�is(e2�is � 1)�1=2(�is)(��1)=2�i ds �(���1)=2i+ X�i�� jwij Z t0 e��s(�s)(��1)=2� ds �(�1��)=2� X�i>� jwij Z �it0 p2(e2u � 1)�1=2u�=2du �(�1��)=2i+ X�i�� jwij Z �t0 e�uu(��1)=2du �(�1��)=2 (5:34)20



The integral in the �rst summation is at most
10 Z �it0 u�=2�1du � 
10(�it)�=2and the integral in the se
ond summation in (5.34) is at mostZ �t0 e�u=2u�=2�1du � 
10(�t)�=2:Use these bounds in (5.34) to see that I2 is also bounded by the right hand side of (5.33). Usethis and (5.33) in (5.29) to 
on
lude thatkDwPtR�f �DwR�fk1 � 
11� 1Xi=1(�+ �i)�1=2jwij�t�=2kfkS� : (5:35)Proposition 5.1 and (5.18) imply thatkPtDwPsf �DwPtPsfk1 = kPtDw�QtwPsfk1� 
12jw �Qtwjss(��1)=2kfkS� : (5:36)Note thatZ 10 e��sjw �Qtwjss(��1)=2ds� 1Xi=1 jwij(1� e��it) Z 10 e��s(2�is)1=2(e2�is � 1)�1=2s(��1)=2ds� X�i>� jwij(1� e��it) Z 10 (2�is)1=2(e2�is � 1)�1=2(�is)(��1)=2�ids�(�1��)=2i+ X�i�� jwij(1� e��it) Z 10 e��s(�s)(��1)=2�ds�(�1��)=2� 
13 1Xi=1 jwij(1� e��it)(�+ �i)(�1��)=2� 
13 1Xi=1 jwij(�i + �)�1=2t�=2:Integrate (5.36) with respe
t e��sds, use the above bound, and 
ombine the resulting inequalitywith (5.35) to derive (5.26). 21



Finally 
onsider (5.27). Use (5.19) to see that for 0 < t � 1 and u;w 2 H ,kDuDwPtR�f �DuDwR�fk1� (e�t � 1)


Z 1t e��sDuDwPsfds


1 + 


Z t0 e��sDuDwPsfds


1� 
14kfkS�h(e�t � 1) Z 1t e��sjujs=2jQs=2wjs=2s(�=2)�1ds+ Z t0 e��sjujs=2jQs=2wjs=2s(�=2)�1dsi� 
14jwj juj kfkS�h(e�t � 1) Z 1�t e�uu�=2�1du���=2 + Z t0 s�=2�1dsi� 
15jwj juj kfkS�[(1� e��t)���=2 + t�=2℄� 
16jwj juj kfkS�t�=2: (5:37)Now PtDuDwPsf �DuDwPtPsf = [PtDuDwPsf �DuPtDwPsf ℄ (5:38)+ [DuPtDwPsf �DuDwPtPsf ℄:By Proposition 5.1 and (5.22) (the latter to verify the hypothesis of Proposition 5.1), the �rstterm on the right is equal to PtDu�QtuDwPsf and so by (5.19) has sup norm bounded by
17s�2�1ju�Qtujs=2jQs=2wjs=2kfkS� � 
18s�2�1ju�Qtujs=2jwjs=2kfkS� :Propositions 5.1 and 5.2 show that the se
ond term on the right-hand side of (5.38) isDuPtDw�QtwPsf , whi
h by (5.22) and Proposition 5.1 equals PtDQtuD(I�Qt)wPsf . Use (5.19)to bound the sup norm of this expression by
19s�2�1jQtujs=2jQs=2(w �Qtw)js=2kfkS� � 
19s�2�1jujs=2jw �Qtwjs=2kfkS� :These bounds and (5.38) givekPtDuDwPsf �DuDwPtPsfk1 (5:39)� 
20s�2�1[jujs=2jw �Qtwjs=2 + jwjs=2ju�Qtujs=2℄kfkS� :Note that Z 10 e��ss(�=2)�1jujs=2jw �Qtwjs=2dskfkS�� juj kfkS� Z 10 s(�=2)�1hPiw2i (1� e��it)2 �ise�is � 1i1=2ds� juj kfkS� Z 10 s(�=2)�1Pijwij(1� e��it) p�ispe�is � 1ds� juj kfkS�Pijwij Z 10 (�is)(��1)=2���=2ipe�is � 1 �ids(1� e��it):22



Note that 1� e��it � (�it)�=2 and so the above givesZ 10 e��ss(�=2)�1jujs=2jw �Qtwjs=2dskfkS� � 
21juj kwkH;1kfkS�t�=2:Integrate (5.39) with respe
t to e��sds, use the above bound, and 
ombine the resulting boundwith (5.37) to 
on
ludekPtDuDwR�f �DuDwR�fk1 � 
22[juj jwj+ juj kwkH;1 + kukH;1jwj ℄ kfkS�t�=2and (5.27) follows.Corollary 5.7. There exists a 
onstant 
1(�; 
) su
h that for all � > 0, any boundedmeasurable f : H ! R, and for all i � j 2 N ,kDiR�fk1 � 
1(�+ �i)�(�+1)=2kfkS� ; (5:40)kDijR�fk1 � 
1(�+ �j)��=2kfkS� ; (5:41)kDiR�fkS� � 
1(�+ �i)�1=2kfkS� ; (5:42)kDijR�fkS� � 
1kfkS� : (5:43)Proof. The �rst two inequalities follow easily from the bounds in the proof of Theorem 5.6 priorto the use of H�older's inequality. For example, to derive (5.41), use (5.28) with u = �i and w = �jto 
on
lude jDijR�f j � 
3kfkS� Z 10 qh(�js=2)s�=2�1e��sds� 
3kfkS� Z 10 ph(u=2)u�=2�1du���=2j� 
4kfkS����=2j :Use h � 1 to also bound the �rst line of the above display by 
5kfkS����=2 and (5.41) follows.A similar argument gives (5.40). The last two inequalities are now immediate from (5.26), (5.27)and the �rst two inequalities.Remark 5.8 In Corollary 5.7 we showed that the operator DijR� is a bounded operator onS� with a norm independent of i and j. It is also known that DijR� is a bounded operatorwith respe
t to the usual C� norm, again with a norm independent of i and j; see [D℄, [L℄, [Z℄,or espe
ially Se
tion 6.4.1 of [DZ℄. Neither of these results 
ontains the other. The C� normemphasizes the lo
al 
ontinuity, while the S� norm also gives weight to the behavior of f(x)when jxj is large. Both results are of interest. 23



6. Relationship between norms { the generalized Ornstein-Uhlenbe
k 
ase.We now prove the analogue of Proposition 4.1. Let jf j�;i be de�ned as in (4.1) and setjf j�;i;w = supx;h6=0 jf(x+ h�i)� f(x)j jxij�=2jhj�=2 : (6:1)Let kfkE� = kfk1 +Xi jf j�;i +Xi ��=2i jf j�;i;w � kfk1 + jf jE� ; (6:2)and let E� be the spa
e of 
ontinuous fun
tions with kfkE� <1. In Proposition 6.3 below weintrodu
e a norm k � kF� whi
h is equivalent to k � kS� in �nite dimensions. This norm 
ould beused in pla
e of k � kE� in the statement of Proposition 6.1; we use k � kE� in the next propositionbe
ause of its simpler form.Proposition 6.1. There exists 
1(�; 
) su
h that if f 2 E� and g 2 S�, thenkfgkS� � 
1kfkE�kgkS� :In fa
t, kfgkS� � 
1[kfk1jgjS� + jf jE�kgk1℄:In parti
ular E� � S� � C�.Proof. As in the proof of Proposition 4.1, it suÆ
es to �x x 2 H and show that if f(x) = 0,then for some 
2 = 
2(�; 
) jPt(fg)(x)j � 
2jf jE�kgk1t�=2: (6:3)For y 2 H let zi(y); z�i (y) 2 H satisfyhzi(y); �ji = hy; �ji1(j�i) + hx; �ji1(j>i)and hz�i (y); �ji = hy; �ji1(j<i) + hQtx; �ii1(j=i) + hx; �ji1(j>i):Let fi(y) = f(zi(y))� f(zi�1(y)):Note that fi(y) is equal to f(zi�1(y) + (yi � xi)�i) � f(zi�1(y)). Therefore we see kfik1 �jf j�;ijyi � xij�. Our assumption f(x) = 0, together with dominated 
onvergen
e and the
ontinuity of f , implies Pt(fg)(x) =P1i=1 Pt(fig)(x). ThenjPt(fg)(x)j �Xi Ptjfigj(x) �Xi kgk1Ptjfij(x): (6:4)24



Let Zt denote a mean zero Gaussian random ve
tor in H with 
ovarian
e Ct. ThenPt(jfij)(x) = E (jf(zi(Qtx+ Zt))� f(zi�1(Qtx+ Zt))j)� E (jf(zi(Qtx+ Zt))� f(z�i (Qtx+ Zt))j) + E (jf(z�i (Qtx+ Zt))� f(zi�1(Qtx+ Zt))j)� jf j�;iE (jhZt; �iij�) + jf j�;i;wjhQtx� x; �iij�=2jxij��=21(xi 6=0): (6:5)Note that E (hZt; �ii2) = aii(1� e�2�it)(2�i)�1 � 
�1t: (6:6)Therefore the �rst term in (6.5) is at mostjf j�;iE (hZt; eii2)�=2 � jf j�;i
��=2t�=2: (6:7)The se
ond term in (6.5) is bounded byjf j�;i;w(1� e��it)�=2 � jf j�;i;w��=2i t�=2: (6:8)Put (6.7) and (6.8) into (6.5) and sum over i to 
on
ludeXi Pt(jfij)(x) � h
��=2Xi jf j�;i +Xi jf j�;i;w��=2i it�=2� 
2(�; 
)jf jE�t�=2:Put this bound into (6.4) to derive (6.3) and hen
e 
omplete the proof of the required inequalities.Set g = 1 and use (5.20) to prove the �nal in
lusions.Proposition 6.2. Assume �i � 
1i2 for all i and some 
1 > 0. Then S� is an algebraand (2.6) and (2.7) are valid.Proof. We verify the hypothesis of Lemma 2.4. If Zt is as in the previous proof, by (6.6)E x(jXt � E x(Xt)j2) = 1Xi=1 E (hZt; �ii2)= 1Xi=1 aii 1� e�2�it2�i� 
2 1Xi=1(i�2 ^ t):An elementary 
al
ulation shows the above is at most 
3pt and so the result follows now fromLemma 2.4. 25



Finally, we present a norm that is equivalent to S� in the �nite dimensional 
ase. De�nejf jF� = supt6=0;x jf(Qtx)� f(x)jt�=2 : (6:9)The letter F stands for \
ow", as what we have here is a weighted H�older seminorm along the
ow Qtx. Note Qt is deterministi
:Qtx = Qt�Xi xi�i� =Xi e��itxi�i:De�ne kfkF� = kfkC� + jf jF�: (6:10)Let �d denote the proje
tion of H onto the subspa
e spanned by f�1; : : : ; �dg. In the next resultwe e�e
tively redu
e to the �nite-dimensional 
ase by 
onsidering fun
tions whi
h only dependon the �rst d 
oordinates.Proposition 6.3. There exist positive 
1 and 
2 depending on (
; d) su
h that for anymeasurable f : H ! R satisfying f = f Æ �d,
1kfkS� � kfkF� � 
2kfkS� :Proof. Let Zt be the Gaussian ve
tor introdu
ed in the previous proof. Then, using (6.6), wehave jPtf(x)� f(x)j � jE (f(Qtx+ Zt)� f(Qtx))j+ jf(Qtx)� f(x)j� jf jC�E (j�dZtj�) + jf jF�t�=2� t�=2hjf jC�(d
�1)�=2 + jf jF�i (6:11)and the left hand inequality is established.Turning to the right hand inequality we have,jf(Qtx)� f(x)j = ���(Ptf(x)� f(x))� (E (f(Qtx+ Zt))� f(Qtx))���� jf jS�t�=2 + jf jC�E (j�dZtj�)� t�=2hjf jS� + 
3kfkS�(d
�1)�=2i;where in the last line we have used (5.20) and (6.6) again. This together with a further appli
ationof (5.20) give the right hand inequality.The following gives a relationship between S� and C�.26



Proposition 6.4. We have jf jS� � 
1Xk jf j�;k + jf jF� :Proof. As in (6.11),jPtf(x)� f(x)j � jE f(Qtx+ Zt)� f(Qtx)j+ jf(Qtx)� f(x)j:The se
ond term on the right is bounded by jf jF�t�=2, so we need to bound jE f(y+Zt)�f(y)j,where we write y forQtx. Repla
ing f(�) by f(�)�f(y), without loss of generality we may assumef(y) = 0. De�ne random variables Yi byhYi(!); �ji = hy + Zt(!); �ji1(j�i) + hy; �ji1(j>i):Then jE f(y + Zt)j � 1Xi=1 E jf(Yi)� f(Yi�1)j� 1Xi=1 jf j�;iE jhZt; �iij�:Using the 
al
ulation in (6.7), this is turn is bounded byXi jf j�;i(
�1t)�=2;whi
h gives the proposition.7. Relationship between norms: super-Markov 
hains.In [BP℄ H�older norm estimates were proved for the operatorLf(x) = dXi=1[
ixiDiif(x) + biDif(x)℄operating on fun
tions on Rd+ . Here 
 = (
1; : : : ; 
d) 2 (0;1)d and b = (b1; : : : ; bd) 2 Rd+ .The estimates were with respe
t to the norm de�ned bykfkC�w = kfk1 + dXi=1 jf jw;�;i;where jf jw;�;i = suph>0;x2[0;1)d jf(x+ h�i)� f(x)jh� x�=2i :27



Set C�w = ff 2 Cb(Rd+) : kfkC�w < 1g. (Continuity of f at points in �Rd+ does not followfrom kfkC�w < 1 and hen
e must be assumed.) In [BP℄ this norm was essentially for
ed on usin order to get the estimates we needed. The H�older norm estimates for this 
ase are derived in[BP℄ and make up a 
onsiderable portion of that paper. So in this se
tion we 
ontent ourselveswith showing that the C�w norm is equivalent to the S� norm for this operator.Let Pt denote the semigroup asso
iated with L and E x denote expe
tation with respe
tto the asso
iated Markov pro
ess (Xt; t > 0) in Rd+ , starting at x 2 Rd+ . More pre
isely underPx, X is the unique (in law) pro
ess su
h that X0 = x andMf (t) = f(Xt)� f(x)� Z t0 Lf(Xs)dsis a �(Xs; s � t)-martingale for all f 2 C2b (Rd+). If d = 1, let Px(Xt 2 dy) = p
;bt (x; dy) andwrite pit(xi; dyi) for p
i;bit (xi; dyi).Remark 7.1. Fun
tions in C�w are not ne
essarily 
ontinuous on the boundary of Rd+ , and sowe restri
t statements below to fun
tions in S�\Cb. However fun
tions f for whi
h kfkC�w <1have an extension to a 
ontinuous fun
tion on Rd+ ([BP℄, Proposition 2.2). In view of Theorem7.6 below, fun
tions for whi
h kfkS� <1 also have su
h an extension.Lemma 7.2. Let f be a bounded Borel fun
tion on Rd+ . If t > 0 then DiPtf(x) is a
ontinuous fun
tion in xi satisfyingjDiPtf(x)j � 
1[(
itxi)�1=2 ^ (
it)�1℄kfk1for some 
onstant 
1.Proof. Let x̂i = (x1; : : : ; xi�1; xi+1; : : : ; xd) 2 Rd�1+ for x 2 Rd+ and de�neF x̂i(yi) = Z Yj 6=i pjt (xj ; dyj)f(y):Set s = 
it for a �xed t > 0. Then use Lemmas 4.1(a) and 4.5(a) of [BP℄ (the 
ontinuity of fassumed there is not used) to seeDiPtf(x) = Di Z F x̂i(yi)pit(xi; dyi)= 1Xk=1 e�xi=s (xi=s)kk! Z 10 F x̂i(zs)e�zh zk+(bi=
i)�(k + (bi=
i) + 1) � zk+(bi=
i)�1�(k + (bi=
i))idzs (7:1)+ e�xi=s Z 10 F x̂i(zs)e�z zbi=
i�((bi=
i) + 1) dzs� 1(bi>0)e�xi=s Z 10 F x̂i(zs)e�z z(bi=
i)�1�(bi=
i) dzs � 1(bi=0)e�xi=sF x̂i(0) Z 10 e�z dzs :28



If ak = ak(x̂i) is the integral in the above summation over k, thenjakj �kF x̂ik1 Z 10 e�z zk+(bi=
i)�1�(k + (bi=
i)) jz � (k + (bi=
i))jk + (bi=
i) dzs�
2kfk1�(k + (bi=
i))1=2 + 1�(k + (bi=
i))�1s�1�2
2kfk1(k + (bi=
i))�1=2s�1;where Lemma 3.2(a) of [BP℄ is used in the se
ond inequality. It is now easy to see that the series in(7.1) 
onverges uniformly for xi in a 
ompa
t set and so DiPtf(x) is 
ontinuous in xi. Moreoverthis bound and (7.1) also show thatjDiPtf(x)j � 1Xk=1 e�xi=s (xi=s)kk! 
3kfk1(k + (bi=
i))�1=2s�1 + 2e�xi=skfk1s�1�
4(1 ^ (xi=s)�1=2)kfk1s�1 + 2e�xi=skfk1s�1by an elementary bound (see Lemma 3.3(a) of [BP℄). Sin
e e�xi=s � 1^ (xi=s)�1=2, the requiredresult follows.Lemma 7.3. If f is a bounded Borel fun
tion on Rd+ , thenjDiPtf(x)j � 
1(�) t(��1)=2p
ixi kfkS� ;where 
1 depends only on �.Proof. This follows from the previous result, exa
tly as in the proof of Lemma 2.2.Proposition 7.4. Let f be a bounded Borel fun
tion on Rd+ . Thenjf jw;�;i � 
1
��=2i kfkS� :Proof. If h > 0, then Lemma 7.2, the fundamental theorem of 
al
ulus and Lemma 7.3 showjPtf(x+ h�i)� Ptf(x)j =���Z h0 DiPtf(x+ h0�i)dh0����
2t(��1)=2
�1=2i Z xi+hxi y�1=2dykfkS��
2t(��1)=2(
ixi)�1=2hkfkS� :We also have jPtf(x)� f(x)j � kfkS�t�=2:29



The above two inequalities implyjf(x+ h�i)� f(x)j � (2t�=2 + 
2t(��1)=2(
ixi)�1=2h)kfkS� :We optimize by setting t = (
22=4)h2(xi
i)�1, and sojf(x+ h�i)� f(x)j � 
3(�)
��=2i h�x��=2i kfkS� :Re
all the de�nition of jf jS� from (2.1).Proposition 7.5. If f 2 Cb(Rd+), then jf jS� � 
1(�)Pdi=1((bi=
i) + 1)
�=2i jf jw;�;i.Proof. We may assume without loss of generality that f 2 C�w. Let " > 0. Results in [BP℄(notably Proposition 7.2 and Lemma 7.6 there) imply P"f 2 C2b (Rd+) \ D(L) and so the fa
tthat we are working with a solution to the martingale problem for X impliesjPtf(x)� P"f(x)j = ���Z t�"0 PsL(P"f)(x)ds���= ���Z t�"0 LPs+"f(x)ds���� Z t" jLPsf(x)jds:Use the upper bounds in Proposition 5.1 of [BP℄ to see thatjPtf(x)� P"f(x)j � 
2 dXi=1(bi
(�=2)�1i + 
�=2i )jf jw;�;i Z t" s�=2�1ds� 
3 dXi=1(1 + bi=
i)
�=2i jf jw;�;it�=2:Now let " # 0 to 
omplete the proof.Theorem 7.6. Assume 0 < " � 
i � K and bi � K for i = 1; : : : ; d, for some " � 1 � K.There are 
onstants 
1 and 
2(�) su
h that for all f 2 Cb(Rd+ ),
1"�=2maxi�d jf jw;�;i � jf jS� � 
2(K=") dXi=1 jf jw;�;iand therefore there are 
onstants 
3 and 
4 su
h that
3d�1kfkC�w � kfkS� � 
4kfkC�w30



for all f 2 Cb(Rd+):Proof. This is immediate from Propositions 7.4 and 7.5.Remark 7.7. Let D denote di�erentiation with respe
t to t, de�nekfkG� = kfk1 + supt>0 kDPtfk1t1�(�=2);and introdu
eG� = ff 2 Cb(Rd+ ) : DPtf(x) exists and is 
ontinuous in t > 0 for all x; kfkG� <1g:The proof of Proposition 7.5 
an be easily modi�ed to show C�w � G� andkfkG� � 
1 dXi=1(1 + bi=
i)
�=2i jf jw;�;i + kfk1for all f 2 C�w: A trivial integration shows G� � ff 2 Cb(Rd+) : kfkS� <1g andkfkS� � 2�kfkG� . Combine these observations with Theorem 7.6 to 
on
lude C�w = G� =S� \ Cb and for ";K as in Theorem 7.6 there are 
2 and 
3 su
h that
2d�1kfkC�w � kfkS� � 2�kfkG� � 
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