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1. Introdution.Let � be the Laplaian on Rd and for � 2 (0; 1) de�ne the usual H�older norms bykfkC� = supx j f(x) j + supx; h6=0 j f(x+ h)� f(x) jjhj� � kfk1 + jf jC� : (1:1)A lassial estimate is that if � > 0 and u is the solution in Rd to�u� �u = f; (1:2)then we have the inequality  �2u�xi�xj C� � 1kfkC� ; (1:3)where 1 � i; j � d and 1 is a onstant not depending on f . Two of the more importantappliations of this result are that it allows one to prove the existene of solutions to ertainellipti partial di�erential equations with variable oeÆients and to prove uniqueness in law ofsolutions to ertain stohasti di�erential equations.In this paper we investigate the analogue of (1.3) when the Laplaian is replaed by otherellipti operators. In partiular we:(1) introdue a new method, whih we all the semigroup method, for proving (1.3);(2) use our method to obtain an analogue of (1.3) for the ase of in�nite dimensional Ornstein-Uhlenbek operators; and(3) lastly show how the semigroup method allows one to determine the appropriate substitutefor the norms given in (1.1).In work in preparation ([ABP℄) we use some of the above results to prove uniqueness foran in�nite dimensional system of Ornstein-Uhlenbek type stohasti di�erential equations withH�older ontinuous oeÆients. The semigroup method is partiularly simple in the ase of theLaplaian, even if we replae Rd by R1 . We need one elementary alulation, namely, thatZ �����pt(x; y)�x ���� dy � 2pt ;where pt(x; y) = (2�t)�1=2 exp(�(y � x)2=2t) for x; y 2 R. We use this and the fat that Pt,the semigroup orresponding to the Laplaian, fators to see that�Ptf�xi 1 � 2ptkfk1:Some manipulations of semigroups then lead to (1.3). A key step is to de�ne the semigroup normkfkS� = kfk1 + supt>0 kPtf � fk1t�=2 : (1:4)2



This norm was also used in the argument of [CD℄.In the ase of the Laplaian in �nite dimensions, there are a number of proofs of (1.3). See,for example, [GT℄, Chapter 4, or [Ba℄, Setion II.3. Another proof an be found in [Ba℄, SetionIV.3 or [S℄, Setion V.4. This latter proof is at the basis of the semigroup method.The proof of (1.3) for the Laplaian in in�nitely many dimensions is relatively reent andis due to Cannarsa and Da Prato [CD℄. Their method involves interpolation spaes. It is wellsuited to the Laplaian, but perhaps less so for other operators. Our results in Setion 3 give anew proof for the in�nite dimensional Laplaian.We use the semigroup method to obtain an analogue to (1.3) when the Laplaian is replaedby the operator L de�ned byLf(x) = 1Xi;j=1 aij �2f�xi�xj (x)� 1Xi;j=1Vijxj �f�xi (x); (1:5)where a is positive de�nite and V is nonnegative de�nite (See Theorem 5.6). This operator is ageneralization of the in�nite dimensional Ornstein-Uhlenbek operator. It is well known that thein�nite dimensional Ornstein-Uhlenbek operator arises when using Fourier transforms to studyparaboli stohasti partial di�erential equations (see [W℄) and this was in fat the motivation foronsidering this problem. One prinipal di�erene from the Laplaian ase is that the operators�=�xi and Pt no longer ommute. Related results for the Ornstein-Uhlenbek ase have beenobtained by [D℄, [L℄, [Z℄. In Remark 5.8 we disuss them briey and ompare them to our resultsTheorem 5.6 and Corollary 5.7.When one onsiders operators other than the Laplaian, it turns out that the C� normsde�ned by (1.1) may not be the most appropriate. In fat, the semigroup norm given in (1.4) is insome ases the natural one. In the ase of ertain degenerate ellipti operators, we disovered thisafter the fat. In [BP℄ two of the authors investigated H�older norm inequalities for an operatorthat arises in the study of branhing measure-valued di�usions. There the estimates were provedby hand, and we were fored to replae the use of the C� norms by weighted H�older norms. Inthis paper we prove that these weighted H�older norms are preisely the S� norms used by thesemigroup method. This suggests the potential for a more uni�ed approah to suh norms in thestudy of degenerate stohasti di�erential equations in both �nite and in�nite dimensions andavoids having to guess the appropriate norm through ad ho methods.Layout of the paper: Here is the plan for the rest of the paper. In Setion 2 wede�ne the semigroup norm and establish some preliminary fats. In Setion 3 we present thesemigroup method in the ase of the in�nite dimensional Laplaian (Proposition 3.3). Althoughthe estimates in the Laplaian ase are known, we present this ase separately for larity. InSetion 4 we give some onnetions between the semigroup norm and the usual H�older norms(Proposition 4.1 and 4.2). Next, in Setion 5, we onsider the Ornstein-Uhlenbek operator, andestablish the analogue of (1.3) in Theorem 5.6 and Corollary 5.7. Setion 6 onsiders geometrial3



aspets of the semigroup norm, analogous to setion 4. Many of these results will be used in thein the uniqueness proof for in�nite dimensional stohasti equations in [ABP℄. In Setion 7 weestablish the equivalene of the semigroup norm with weighted H�older norms in the ontext ofthe operator onsidered in [BP℄.Aknowledgment.We would like to thank L. Zambotti for patiently answering our many questions onerningnorms related to the Ornstein-Uhlenbek operator.2. The semigroup norm.We use the following notation. If E = Rd ;Rd+ ;R1 , or a separable Hilbert spae H , andf : E ! R, Dwf(x) is the diretional derivative of f at x 2 E in the diretion w; we do notrequire w to be a unit vetor. We write Di for D�i and Dij for DiDj , where �i denotes theith unit vetor in a onvenient orthonormal system; for Rd or R1 , �i will be the ith oordinatediretion.The inner produt in E is denoted h�; �i, and j � j denotes the norm generated by this innerprodut. Cb = Cb(E) is the olletion of R-valued bounded ontinuous funtions on E and for� 2 (0; 1), C� is the set of funtions in Cb for whih kfkC� = kfk1+ jf jC� , de�ned as in (1.1)by replaing Rd with E, is �nite. Finally C2b is the set of funtions in Cb for whih the �rst andseond order partials are also in Cb.We use the letter  with subsripts for �nite positive onstants whose value is unimportantand whih may vary from line to line.Given an operator L that is the in�nitesimal generator of a semigroup Pt on the spae ofbounded measurable funtions on E, we let R� = R10 e��sPs ds be the orresponding resolvent.We de�ne the semigroup norm (the \S" stands for \semigroup") k � kS� for � 2 (0; 1) bykfkS� = kfk1 + supt>0 t��=2kPtf � fk1: (2:1)Let S� denote the spae of measurable funtions on E for whih this norm is �nite. We set jf jS�equal to the last term in (2.1), so kfkS� = kfk1 + jf jS� :In a number of plaes we will use a similar onvention: jf jB will denote a seminorm in someBanah spae B kfkB will then be kfk1 + jf jB.Remark 2.1. Sine kPtf � fk1 � 2kfk1, thenkfkS� � 3kfk1 + sup0<t�1 t��=2kPtf � fk1: (2:2)We will use the following result a number of times.4



Lemma 2.2. There exists 2(�) suh that if for some w 2 E and 0 < 1 <1,kDwPtfk1 � 1jwjpt kfk1for all bounded measurable f , then for all f 2 S�,kDwPtfk1 � 12jwjt(��1)=2jf jS� :Proof. Note DwP2uf �DwPuf = DwPu[Puf � f ℄:The sup norm of the expression inside the brakets is bounded by u�=2jf jS� . Therefore by ourhypothesis, kDwP2uf �DwPufk1 � 1jwju(��1)=2jf jS� : (2:3)Using the hypothesis again,kDwPt2kfk1 � 1jwj(t2k)�1=2kfk1 ! 0as k !1. Therefore DwPtf = 1Xk=0(DwPt2kf �DwPt2k+1f):Using (2.3) and the triangle inequality,kDwPtfk1 � 1Xk=0 1jwj(t2k)(��1)=2jf jS� � 1jwj2(�)t(��1)=2jf jS� :
Lemma 2.3. Assume kDwPtfk1 � 1jwjpt kfk1 (2:4)for all bounded measurable f on E and all w 2 E. Then S� � C� andkfkC� � (12(�) + 2)kfkS� ;where 2(�) is as in Lemma 2.2.Proof. By (2.4), Lemma 2.2 and the mean value theorem, if w 2 E thenjPtf(x+ w)� Ptf(x)j � 12jwjt(��1)=2kfkS� :5



We also havejPtf(x+ w)� f(x+ w)j � t�=2kfkS� ; jPtf(x)� f(x)j � t�=2kfkS� ;by the de�nition of S�. By the triangle inequality,jf(x+ w)� f(x)j � t�=2(12jwjt�1=2 + 2)kfkS� :If we take t = jwj2, we see that kfkC� � (12 + 2)kfkS� .Lemma 2.4. Let fXt; t � 0g be an E-valued Markov proess with semigroup Pt and lawsfPx; x 2 Eg. Assume (2.4) and alsoE x(jXt � E x(Xt)j2) � 0t1=2 for all t � 1: (2:5)If f; g 2 S�, then fg 2 S� and for some 1 = 1(0; �),jfgjS� � 1[kfk1jgjS� + jf jS�kgk1 + jf jC� jgjC� + kfk1kgk1℄; (2:6)and kfgkS� � 1kfkS�kgkS� : (2:7)Proof. Let Rtx = E x(Xt) 2 E (by hypothesis). Note thatPtfg(x)� fg(x) =E x((f(Xt)� f(Rtx))(g(Xt)� g(Rtx)) + g(Rtx)(Ptf(x)� f(x))+ f(Rtx)(Ptg(x)� g(x))� (f(Rtx)� f(x))(g(Rtx)� g(x)): (2:8)Note also that for t � 1,jf(Rtx)� f(x)j � jPtf(x)� f(x)j+ jE x(f(Xt)� f(Rtx))j� jf jS�t�=2 + jf jC�E x(jXt �Rtxj�)� jf jS�t�=2 + jf jC��=20 t�=4; (2:9)the latter by (2.5) and Jensen's inequality. We put this into (2.8) and use H�older's inequality toonlude that for all t � 1,jPtfg(x)� fg(x)j �jf jC� jgjC�E x(jXt � Rtxj2)�+ (kgk1jf jS� + kfk1jgjS�)t�=2+ jf(Rtx)� f(x)j��jgjS�t�=2 + �=20 jgjC�t�=4� ^ 2kgk1��[jf jC� jgjC� + kgk1jf jS� + 3kfk1jgjS� ℄t�=2+ jf(Rtx)� f(x)j3[(jgjC�t�=4) ^ kgk1℄:6



We use (2.9) again to bound the last term by4[jf jS�kgk1 + jf jC� jgjC� ℄t�=2:Substituting this into the above, we see that for t � 1,jPtfg(x)� fg(x)j � 1[kfk1jgjS� + jf jS�kgk1 + jf jC� jgjC� ℄:If t > 1, the left-hand side is at most 2kfk1kgk1 and (2.6) follows. This and Lemma 2.3 nowimply (2.7).3. H�older estimates { the Laplaian ase.Let `2 be the spae of real square summable sequenes fxi : i 2 Ng equipped with thenorm jxj = (Pi x2i )1=2 and take �i to be the unit vetor in the ith oordinate diretion. Westudy perturbations of L = 12 Xi a2iDii:Here we assume eah ai > 0 and jaj2 = Pi a2i < 1. The reader interested only in the �nitedimensional ase may restrit all indies to the range 1 to d and take eah ai = 1 but we will beimpliitly working in `2 below.Lemma 3.1. There exists 1 suh that for any bounded measurable f ,kDiPtfk1 � 1aiptkfk1:Proof. Let pjt (xj ; dyj) = 1ajp2�te�(yj�xj)2=2a2jtdyjbe the transition density of one dimensional Brownian motion with parameter a2j . Letqjt (xj ; dyj) = Djpjt (xj; dyj) = 1ajp2�t yj � xja2j t e�(yj�xj)2=2a2j tdyj:Note that Z jqjt (xj ; dyj)j = Z 1�1 1ajp2�t jyj � xj ja2j t e�(yj�xj)2=2a2j tdyj = 2ajpt :Now �x i and let F (yi;x; t; i) = Z Yj 6=i pjt (xj ; dyj)f(y1; y2; : : :):7



Then DiPtf(x) = Z Di�Yj pjt (xj; dyj)�f(y) = Z Z qit(xi; dyi)Yj 6=i pjt (xj ; dyj)f(y)= Z qit(xi; dyi)F (yi;x; t; i):Sine pjt (xj; dyj) integrates to one for eah j, we see that kFk1 � kfk1. ThereforejDiPtf(x)j � kFk1 Z jqit(xi; dyi)j � 2aiptkfk1:Remark 3.2. The onlusion of Lemma 3.1 is not the same as (2.4) beause of the presene ofthe ai.Proposition 3.3. There exists 1 not depending on � and 2 = 2(�) suh that for allf 2 S�,(a) kDiDjR�fk1 � 1aiaj ���=2kfkS� ;(b) kDiDjR�fkS� � 2(�)aiaj kfkS� ;() kDiR�fk1 � 1ai ��1=2kfkS� ;and(d) kDiR�fkS� � 2(�)ai kfkS� :Proof. (a) By the translation invariane of Brownian motion, Di and Pt ommute. By thesemigroup property we haveDiDjR�f(x) = Z 10 e��sDiDjPsf(x) ds = Z 10 e��sDiPs=2DjPs=2f(x) ds:(The interhange of the integration and di�erentiation follows easily by dominated onvergene.)By Lemmas 3.1 and 2.2, kDjPs=2fk1 � 3a�1j s(��1)=2kfkS� . Using Lemma 3.1 againkDiDjR�fk1 � 4ai Z 10 e��s 1ajpss(��1)=2ds kfkS� � 5aiaj ���=2kfkS� : (3:1)8



(b) In view of Remark 2.1, we need only onsider t � 1. We writePt(DiDjR�f)� (DiDjR�f) = e�t Z 1t e��sDiDjPsf ds� Z 10 e��sDiDjPsf ds (3:2)= (e�t � 1) Z 10 e��sDiDjPsf ds� e�t Z t0 e��sDiDjPsf ds:Sine t � 1, then je�t � 1j � 6(�)t � 6t�=2, and so the L1 norm of the �rst term onthe last line is bounded by 6t�=2kDiDjR�fk1. Applying (3.1), we bound the �rst term by7(�)(aiaj)�1t�=2kfkS� .Sine t � 1, then e�t is bounded. By Lemmas 3.1 and 2.2,kDiDjPsfk1 = kDiPs=2DjPs=2fk1 � 8ai s�1=2kDjPs=2fk1 � 9aiaj s�1=2s(��1)=2kfkS� :Integrating from 0 to t, the seond term on the last line of (3.2) is bounded by10aiaj kfkS� Z t0 s�2�1ds = 11aiaj t�=2kfkS� :() The �rst derivative estimates are similar but easier. Using Lemma 3.1,kDiR�fk1 � Z 10 e��skDiPsfk1 ds (3:3)� 12ai Z 10 e��ss�1=2dskfk1 � 13ai ��1=2kfk1:(d) For t � 1, we writePt(DiR�f)� (DiR�f) = (e�t � 1)DiR�f + e�t Z t0 e��sDiPsf dsas in (3.2). The �rst term on the right is bounded by 14(�)a�1i tkfk1, whih is �ne sine t < 1.Use Lemmas 2.2 and 3.1 to bound the seond term on the right by15ai kfkS� Z t0 s(��1)=2ds � 16ai t(�+1)=2kfkS� � 17ai t�=2kfkS� :
4. Relationship between norms { the Laplaian ase.9



Proposition 4.1. If f 2 C� and g 2 S�, thenkfgkS� � (jaj� + 1)kfkC�kgkS�:In fat, jfgjS� � [kfk1jgjS� + jaj�jf jC�kgk1℄:Proof. The L1 norm of fg is learly bounded by the produt of the L1 norms of f and g.Fix x. We need to obtain a bound onjPt(fg)(x)� (fg)(x)j:Let ef(y) = f(y)� f(x); learly ef(x) = 0. ThenPt(fg)(x)� fg(x) = Pt( efg)(x) + f(x)Ptg(x)� f(x)g(x);so jPt(fg)(x)� fg(x)j � jPt( efg)(x)j+ jf(x)j jPtg � gj � jPt( efg)(x)j+ t�=2kfk1jgjS�:The �rst term on the right hand side isjE ( efg)(x+Xt)j � kgk1E jf(x+Xt)� f(x)j� kgk1jf jC�E (jXtj�)� kgk1jf jC�(E (jXtj2))�=2= kgk1jf jC� jaj�t�=2;where Xt is the Brownian motion assoiated with the semigroup Pt. The required bound follows.Clearly the funtion that is identially one is in S�, and hene the above propositionimplies that C� � S�. Here is a partial onverse, whih also shows that these spaes oinideand have equivalent norms in the �nite-dimensional ase. Inidentally, this and Proposition 3.3provide a new proof for (1.3) as well.Note that beause of the presene of the ai in the onlusion of Lemma 3.1, we annotonlude that S� and C� are equivalent in the in�nite dimensional ase. Let us setjf j�;i = supx;h jf(x+ h�i)� f(x)jjhj� : (4:1)10



Proposition 4.2. There exists 1(�) suh that for eah i, jf j�;i � 1a��i kfkS� .Proof. By Lemmas 2.2 and 3.1jPtf(x+ h�i)� Ptf(x)j � jhj kDiPtfk1 � 2jhja�1i t(��1)=2kfkS� :We also have jPtf(x)� f(x)j � t�=2kfkS� ;and the same with x replaed by x+ h�i. Using the triangle inequality,jf(x+ h�i)� f(x)j � (2t�=2 + 2jhja�1i t(��1)=2)kfkS� :Taking t = a�2i jhj2 yields our result.Remark 4.3. Consider the d-dimensional ase with all the ai's equal to 1. For eah positiveinteger J � d�=2 it is not hard to onstrut an example where kfkC� = 1, jf j�;i = 1 for eah i,yet kfkS� = J: So there does not appear to be a simple haraterization of S� in terms of thejf j�;i. On the other hand, if we writekfkS� = supt t��=2 supx ���ZRd P (t; 0; y � x)[f(y)� f(x)℄dy���where P (t; x; y) is the transition density for Pt in Rd , we see that S� does have a geometriharaterization in terms of a weighted average of f(y)� f(x).5. H�older estimates { the generalized Ornstein-Uhlenbek ase.In this setion we obtain H�older norm estimates for perturbations of an appropriateOrnstein-Uhlenbek operator. Let H be a separable Hilbert spae with inner produt h�; �i andlet V : D(V ) ! H be a (densely de�ned) self-adjoint non-negative de�nite operator on H suhthat V �1 is a trae lass operator on H; (5:1)Then there is a omplete orthonormal system f�n : n 2 Ng of eigenvetors of V �1 with orre-sponding eigenvalues ��1n , �n > 0, satisfying1Xn=1��1n <1; �n " 1; V �n = �n�n(see, e.g. Setion 120 in [RN℄). Let Qt = e�tV be the semigroup of ontration operators on Hwith generator �V . If w 2 H , let wn = hw; �ni and, as disussed in Setion 2, we will write11



Dif and Dijf for D�if and D�iD�jf , respetively. (In the example from the theory of SPDEsthat motivated us, V is given by V �i = 1i2�i, and learly V �1 is of trae lass.)Assume a : H ! H is a bounded self-adjoint positive de�nite operator on H and setaij = ha�i; �ji. Therefore for some  > 0,�1jzj2 �Xi;j aijzizj � jzj2; z 2 H: (5:2)We onsider the H-valued proess whih, with respet to the oordinates hx; �ii, is assoiatedwith the generator Lf(x) = 12 1Xi;j=1 aijDijf(x)� 1Xi=1 �ixiDif(x): (5:3)The de�nition is as follows.Let (Wt; t � 0) be the ylindrial Brownian motion on H with ovariane a. Reall(see setion 3.2 of [KX℄) this means if � is the positive de�nite square root of a, then Wt is anR1 -valued proess suh that for some sequene of independent 1-dimensional Brownian motionsfBjg, W i(t) �Wt(�i) =Xj �ijBj(t);and so more generally, Wt(h) =Xi hh; �iiWt(�i); h 2 H; t � 0is a mean zero Gaussian proess with ovarianeE (Ws(h)Wt(h0)) = hh; ah0i(s ^ t):As usual we may extend the de�nition of (Wt(h); t � T ) to measurable paths h : [0; T ℄ ! Hsuh that R T0 khsk2ds <1. Then (Wt(h); t � T; h 2 H) is again a mean zero Gaussian proesswith ovariane E (Wt(h)Ws(g)) = Z s^t0 hhr; agridr:We often will write R t0 hsdWs for Wt(h). Ft denotes the right-ontinuous �ltration generated byW . Consider the stohasti di�erential equationdXt = �V Xtdt+ dWt:A ontinuous H-valued Ft-adapted proess is a solution of this stohasti di�erential equationsif and only if for all h 2 D(V ) we havehXt; hi = hX0; hi � Z t0 hXs; V hids+Wt(h) t � 0; a.s. (5:4)12



One easily heks that suh a solution is a ontinuous H-valued Ft-adapted proess whih solvesthe mild form of (5.4) with initial ondition X0 2 H , that ishXt; hi = hX0; Qthi+ Z t0 Qt�shdWs a.s. for all t � 0 and h 2 H . (5:5)There is a pathwise unique solution of (5.5) (whih also solves (5.4)) whose laws fPx; x 2Hg de�ne a unique homogeneous strong Markov proess on the spae of ontinuous H-valuedpaths (see, e.g. Setion 5.2 of [KX℄). We let Ptf(x) = E x(f(Xt)) denote the assoiated semi-group. Clearly fXt; t � 0g is an H-valued Gaussian proess satisfyingE (hXt; hi) = hX0; Qthi for all h 2 H; (5:6)and Cov (hXt; gihXt; hi) = Z t0 hQt�sh; aQt�sgids � Ct(g; h): (5:7)Our reason for introduing (5.4) is that it shows that X will solve a martingale problemassoiated with L. More preisely if f : H ! R is a bounded C2 funtion of (x1; : : : ; xn) withbounded �rst and seond partials, then f(Xt) � f(X0) � R t0 Lf(Xs)ds is an Ft-martingale.Our objetive in this setion is to obtain bounds on DiDjR� in the S� norm assoiated withPt, where R� is the �-resolvent orresponding with Pt. We start by noting that Pt no longerommutes with the di�erential operators Dw.Proposition 5.1. Assume t � 0, w 2 H, and f : H ! R is a bounded measurablefuntion suh that DQtwf is bounded and ontinuous (on H). ThenDwPtf(x) = Pt(DQtwf)(x); x 2 H:Proof. Let Zt 2 H denote a mean zero Gaussian random vetor with ovariane Ct. ThenPx(Xt 2 �) = P(Qtx+ Zt 2 �). Therefore if r 2 R,Ptf(x+ rw)� Ptf(x)r = E �f(Zt +Qt(x+ rw))� f(Zt +Qtx)r �: (5:8)Use the mean value theorem to see that for some r0 between 0 and r the integrand on the right sideof (5.8) equals DQtwf(Zt+Qtx+r0Qtw), whih approahes DQtwf(Zt+Qtx) as r approahes0 by the assumed ontinuity of DQtwf . The result now follows by dominated onvergene.The next step is the analogue of Lemma 3.1, whih will require onsiderably more work inthe present Ornstein-Uhlenbek setting. Reall that Cb(H) is the spae of bounded ontinuousreal-valued funtions on H . 13



We introdue the following notation. Leth(t) = � 2t=(e2t � 1) if t > 01 if t = 0.For t � 0 and w 2 H set jwjt = (Pi w2i h(�it))1=2. Clearly h(t) and jwjt are dereasingfuntions of t and jwj0 = jwj.The next result is losely related to (6.2.10) and (6.4.14) of [DZ℄.Proposition 5.2. If f : H ! R is bounded and measurable and w 2 H, then for all t > 0,Ptf is Lipshitz ontinuous on H, DwPtf 2 Cb(H) andkDwPtfk1 � jwjt kfk1pt :Proof. First onsider f 2 Cb(H). Let �n be the projetion operator of H onto Rn given by�ny = (hy; �ii)i�n. Then under Px, �nXt is an n-dimensional Gaussian variable with mean�nQtx and ovariane matrixCnt (i; j) = Z t0 hQt�s�i; aQt�s�jids = Z t0 e�(�i+�j)sds aij; i; j � n:Here of ourse aij = h�i; a�ji. If x 2 Rn , then for some "n;t > 0,hx;Cnt xi = Z t0 nXi=1 nXj=1 aijxixje��ise��jsds � Z t0  nXi=1 x2i e�2�isds � "n;tjxj2:This shows Cnt is non-degenerate and so �nXt has a Gaussian densitypnt (z) = (2�)�n=2(detCnt )�1=2 exp(�hz � �nQtx; (2Cnt )�1(z � �nQtx)i):Let fn(y) = f(Pn1 hy; �ii�i) � ~fn(�ny). ThenPtfn(x+ rw)� Ptfn(x)r = Z ~fn(y)hpnt (y � r�nQtw)� pnt (y)r idy: (5:9)By the mean value theorem, there is an r0 = r0(y) between 0 and r suh that the expression insquare brakets is�D�nQtwpnt (y � r0�nQtw) (5:10)= pnt (y � r0�nQtw)h(Cnt )�1�nQtw; y � �nQtx� r0�nQtw)i;by an easy alulation. As r! 0 the above onverges topnt (y)h(Cnt )�1�nQtw; y � �nQtx)i:14



It is easy to see that the integral of the right side of (5.10) over jyj > K is small uniformlyin jrj < 1 for K large due to the Gaussian tail of pnt . It is therefore easy to use dominatedonvergene to take the limit as r! 0 through the integral in (5.9) and onlude thatDwPtfn(x) = Z ~fn(y)pnt (y)h(Cnt )�1�nQtw; y � �nQtx)idy= E x(fn(Xt)h(Cnt )�1�nQtw; �n(Xt �Qtx)i):Introdue Un = (Cnt )�1=2�nQtw, Zn = (Cnt )�1=2�n(Xt � Qtx) and Rn = hUn; Zni. Theabove may now be rewritten as DwPtfn(x) = E x(fn(Xt)Rn): (5:11)We need the following lemma whose proof is provided at the end of the urrent argument.Lemma 5.3. jUnj � jwjtpt : (5:12)The oordinates of Zn are i.i.d. standard normal random variables and so Lemma 5.3implies that E x(R2n) = jUnj2 � jwj2tt : (5:13)If Yt = Xt � Qtx, then the joint laws of (Yt; Zn); n 2 N , are independent of x (reall Zn =(Cnt )�1=2�nYt) and the same is therefore true of the joint laws of (Yt; Rn) on H � R. Thissequene of laws is tight by (5.13) and so we may hoose a subsequene fnkg (independent of xand f ) suh that (Yt; Rnk) ) (Y1t ; R) with respet to weak onvergene in H � R. As Y1tlearly is equal in law to Yt we will drop the supersript. Using (5.11), we haveDwPtfnk(x) = E x(f(Qtx+ Yt)Rnk) + E x((fnk(Xt)� f(Xt))Rnk) (5:14):The seond term is bounded in absolute value by E x((fnk(Xt)�f(Xt))2)1=2E x(R2nk)1=2 whihapproahes 0 as k ! 1 by (5.13), the ontinuity of f and dominated onvergene. The aboveweak onvergene along with the ontinuity of f and (5.13) show that as k ! 1 the �rst termin (5.14) onverges to E (f(Qtx+ Yt)R), and Fatou's lemma and (5.13) show thatE (R2) � jwj2tt : (5:15)We have proved that limk!1DwPtfnk(x) = E (f(Qtx+ Yt)R) � J(x):15



Clearly J is ontinuous on H by the ontinuity of f , (5.15) and dominated onvergene. Dom-inated onvergene also shows that Ptfnk(x) ! Ptf(x) as k ! 1. An elementary argumentusing the fundamental theorem of alulus now shows thatDwPtf(x) exists and equals J(x):In partiular, DwPtf is ontinuous. The required bound on the sup norm of DwPtf is nowimmediate from (5.15) and Cauhy-Shwarz.Consider now the ase when f is only bounded and measurable. We have shown abovethat for a �xed w 2 H and all g 2 Cb(H),Ptg(x+ w)� Ptg(x) = Z 10 E (g(Qt(x+ sw) + Yt)R)ds; x 2 H: (5:16)Let S be the set of all bounded measurable (real-valued) maps on H for whih (5.16) is valid.S is learly a vetor spae ontaining Cb(H) and is losed under bounded pointwise limits. Astandard result (e.g., p. 11 of [M℄) now shows that S ontains all bounded measurable funtions.This, together with (5.15), proves that for f as above,jPtf(x+ w)� Ptf(x)j � kfk1jwjtptand in partiular Ptf is Lipshitz ontinuous on H .Finally if 0 < " < t, we may apply the bound obtained in the ontinuous ase to theontinuous map P"f and onlude that DwPtf(x) = DwPt�"(P"f)(x) exists, is ontinuous andis bounded in absolute value by kP"fk1jwjt�"p(t� ") � kfk1jwjt�"p(t� ") :Let " # 0 to obtain the required bound.Proof of Lemma 5.3. Note that �nQtw = (e��itwi)i�n where (w1; : : : ; wn) = �nw andso by replaing w with Pn1 wi�i, we may assume hw; �ii = 0 for i > n. We may onsider Qt asan operator on Rn via Qt = diag(e��it)i�n and the required result then beomesj(Cnt )�1=2Qtwj2 � jwj2tt ; w 2 Rn :De�ne Dt : Rn ! Rn by Dtw = � e��itwiph(�it)�i�n. Then we laim the above follows fromj(Cnt )�1=2Dtuj2 � juj2t ; u 2 Rn : (5:17)16



To see this set ui = wiph(�it) so that Dtu = Qtw and (5.17) would then imply the requiredinequality. If Bnt = D�1t Cnt D�1t (all operators now are on Rn ) thenBnt (i; j) = Z t0 ph(�it)e�i(t�s)aijqh(�jt)e�j(t�s)ds:If  is as in (5.2) then one easily sees thathz; Bnt zi � Z t0  nXi=1 z2i h(�it)e2�i(t�s)ds = tjzj2:Therefore Bnt is symmetri positive de�nite matrix with all eigenvalues no smaller that t. If theeigenvetors of Bnt are �i with orresponding eigenvalues �i, thenhz; Bnt zi =X�ihz; �ii2�X �2it hz; �ii2= (t)�1hz; (Bnt )2zi = (t)�1jBnt zj2:Therefore if z = (Cnt )�1Dtu, thenj(Cnt )�1=2Dtuj2 = hz; Cnt zi= hz;DtBnt Dtzi= hDtz; Bnt Dtzi� (t)�1jBnt Dtzj2 (by the above with Dtz in plae of z)= (t)�1juj2:Thus (5.17) holds and the proof is omplete.Now that we have Proposition 5.2, we obtain the H�older norm estimates by making suitablemodi�ations to what we did in Setion 3. The main di�erene is the lak of ommutativitybetween Pt and Dw.Proposition 5.4. Let f : H ! R be in S� and let u;w 2 H. Then DwPtf and DuDwPtfare in Cb(H) and for some onstant 1(�; ), satisfykDwPtfk1 � 1jwjtt��12 kfkS� (5:18)and kDuDwPtfk1 � 1jujt=2jQt=2wjt=2t�=2�1kfkS� : (5:19)17



Moreover f 2 C� and kfkC� � 1kfkS� : (5:20)Proof. Using Proposition 5.2 we have by Lemma 2.2 (with 1 = jwjt=jwj in that result) thatkDwPtfk1 � 2jwjtt(��1)=2kfkS� : (5:21)The ontinuity of DwPtf is given by Proposition 5.2.Use (5.21) with Propositions 5.1 and 5.2 to onlude that for t > 0 and u;w 2 H ,DuDwPtf = DuPt=2DQt=2wPt=2f exists, is ontinuous, (5:22)and satis�es kDuDwPtfk1 � (t=2)�1=2jujt=2kDQt=2wPt=2fk1� 3t�1=2jujt=2jQt=2wjt=2(t=2)(��1)=2kfkS�whih gives (5.19).The last result follows from Proposition 5.2 and Lemma 2.3.Lemma 5.5. If r > 0; � < 1, there is a 1(�; r) suh that for any � > 0,Z 10 e��tjwj2t=rt�� dt � 1 1Xi=1(�+ �i)��1w2i :Proof. If Ii = R10 e��th(�it=r)t��dt, Fubini's theorem shows thatZ 10 e��tjwj2t=rt��dt = 1Xi=1 w2i Ii: (5:23)Note that if �i > 0, thenIi � Z 10 2�it=re2�it=r � 1(2�it=r)��2�i=r dt(2�i=r)��1� 2(r)���1i Z 10 v1��ev � 1dv = 3(r)���1i :Moreover for all � we have Ii � Z 10 e��t(�t)�����1�dt � 4���1:Therefore Ii � 5(r)(�+ �i)��1, and if this is used in (5.23), the desired result follows.If w 2 H , set kwkH;1 =P1i=1 jwij. 18



Theorem 5.6. There exists a onstant 1(�; ) and for " 2 (0; �=2) there exist onstants2(�; ; ") suh that for � > 0, for any f : H ! R in S�, and any u;w 2 H, the funtionsDwR�f and DuDwR�f are bounded and ontinuous on H and satisfy:kDwR�fk1 � 2��(1+�)=4� 1Xi=1 w2i (�+ �i)"���1�1=2kfkS� ; (5:24)kDuDwR�fk1 � 2� 1Xi=1 w2i (�+ �i)�"�1=2� 1Xi=1 u2i (�+ �i)"���1=2kfkS� ; (5:25)jDwR�f jS� � 1� 1Xi=1 jwij(�+ �i)�1=2�kfkS� ; (5:26)jDuDwR�f jS� � 1(juj kwkH;1 + jwj kukH;1)kfkS� : (5:27)Proof. A use of Proposition 5.4 allows us to di�erentiate through the time integral and see thatDwR�f(x) = R10 e��sDwPsf(x)ds and DuDwR�f(x) = R10 e��sDuDwPsf(x)ds are bothontinuous on H . Moreover by (5.19),kDuDwR�fk1� 4kfkS� Z 10 jujs=2jQs=2wjs=2s�=2�1e��sds (5:28)� 4kfkS��Z 10 juj2s=2s��"�1e��sds�1=2�Z 10 jQs=2wj2s=2s"�1e��sds�1=2:Use Lemma 5.5 and the trivial bound jQs=2wjs=2 � jwjs=2 to onlude from the above thatkDuDwR�fk1 � 5kfkS�� 1Xi=1(�+ �i)"��u2i�1=2� 1Xi=1(�+ �i)�"w2i �1=2:This gives (5.25) and the derivation of (5.24) is similar.Now onsider (5.26). As in Remark 2.1 we may assume that 0 < t � 1. Use (5.18) to seethat kDwPtR�f �DwR�fk1� (e�t � 1)Z 1t e��sDwPsfds1 + Z t0 e��sDwPsfds1� 6(�; )kfkS�h(e�t � 1) Z 1t e��sjwjss(��1)=2ds+ Z t0 e��sjwjss(��1)=2dsi= 6kfkS�hI1 + I2i: (5:29)19



First bound I1 by(e�t � 1) Z 1t e��s 1Xi=1 jwijp2�is(e2�is � 1)�1=2s(��1)=2ds� (e�t � 1) X�i>� jwije��t Z 1t p2�is(e2�is � 1)�1=2(�is)(��1)=2�i ds �(�1��)=2i+ (e�t � 1) X�i�� jwij Z 1t e��s(�s)(��1)=2� ds �(�1��)=2: (5:30)A substitution shows the integral in the �rst term in (5.30) is bounded uniformly in i and so this�rst term is at most 7(�)(1� e��t) X�i>� jwij�(�1��)=2i : (5:31)The integral in the seond term in (5.30) is at most 8(�)e��t and so the seond term in (5.30)is at most 8(1� e��t) X�i�� jwij�(�1��)=2: (5:32)Use (5.31) and (5.32) in (5.30) to onlude thatI1 � 9(1� e��t) 1Xi=1 jwij(�+ �i)(�1��)=2� 9t�=2 1Xi=1 jwij(�+ �i)�1=2: (5:33)Next bound I2 byZ t0 e��s 1Xi=1 jwijp2�is(e2�is � 1)�1=2s(��1)=2ds� X�i>� jwij Z t0 p2�is(e2�is � 1)�1=2(�is)(��1)=2�i ds �(���1)=2i+ X�i�� jwij Z t0 e��s(�s)(��1)=2� ds �(�1��)=2� X�i>� jwij Z �it0 p2(e2u � 1)�1=2u�=2du �(�1��)=2i+ X�i�� jwij Z �t0 e�uu(��1)=2du �(�1��)=2 (5:34)20



The integral in the �rst summation is at most10 Z �it0 u�=2�1du � 10(�it)�=2and the integral in the seond summation in (5.34) is at mostZ �t0 e�u=2u�=2�1du � 10(�t)�=2:Use these bounds in (5.34) to see that I2 is also bounded by the right hand side of (5.33). Usethis and (5.33) in (5.29) to onlude thatkDwPtR�f �DwR�fk1 � 11� 1Xi=1(�+ �i)�1=2jwij�t�=2kfkS� : (5:35)Proposition 5.1 and (5.18) imply thatkPtDwPsf �DwPtPsfk1 = kPtDw�QtwPsfk1� 12jw �Qtwjss(��1)=2kfkS� : (5:36)Note thatZ 10 e��sjw �Qtwjss(��1)=2ds� 1Xi=1 jwij(1� e��it) Z 10 e��s(2�is)1=2(e2�is � 1)�1=2s(��1)=2ds� X�i>� jwij(1� e��it) Z 10 (2�is)1=2(e2�is � 1)�1=2(�is)(��1)=2�ids�(�1��)=2i+ X�i�� jwij(1� e��it) Z 10 e��s(�s)(��1)=2�ds�(�1��)=2� 13 1Xi=1 jwij(1� e��it)(�+ �i)(�1��)=2� 13 1Xi=1 jwij(�i + �)�1=2t�=2:Integrate (5.36) with respet e��sds, use the above bound, and ombine the resulting inequalitywith (5.35) to derive (5.26). 21



Finally onsider (5.27). Use (5.19) to see that for 0 < t � 1 and u;w 2 H ,kDuDwPtR�f �DuDwR�fk1� (e�t � 1)Z 1t e��sDuDwPsfds1 + Z t0 e��sDuDwPsfds1� 14kfkS�h(e�t � 1) Z 1t e��sjujs=2jQs=2wjs=2s(�=2)�1ds+ Z t0 e��sjujs=2jQs=2wjs=2s(�=2)�1dsi� 14jwj juj kfkS�h(e�t � 1) Z 1�t e�uu�=2�1du���=2 + Z t0 s�=2�1dsi� 15jwj juj kfkS�[(1� e��t)���=2 + t�=2℄� 16jwj juj kfkS�t�=2: (5:37)Now PtDuDwPsf �DuDwPtPsf = [PtDuDwPsf �DuPtDwPsf ℄ (5:38)+ [DuPtDwPsf �DuDwPtPsf ℄:By Proposition 5.1 and (5.22) (the latter to verify the hypothesis of Proposition 5.1), the �rstterm on the right is equal to PtDu�QtuDwPsf and so by (5.19) has sup norm bounded by17s�2�1ju�Qtujs=2jQs=2wjs=2kfkS� � 18s�2�1ju�Qtujs=2jwjs=2kfkS� :Propositions 5.1 and 5.2 show that the seond term on the right-hand side of (5.38) isDuPtDw�QtwPsf , whih by (5.22) and Proposition 5.1 equals PtDQtuD(I�Qt)wPsf . Use (5.19)to bound the sup norm of this expression by19s�2�1jQtujs=2jQs=2(w �Qtw)js=2kfkS� � 19s�2�1jujs=2jw �Qtwjs=2kfkS� :These bounds and (5.38) givekPtDuDwPsf �DuDwPtPsfk1 (5:39)� 20s�2�1[jujs=2jw �Qtwjs=2 + jwjs=2ju�Qtujs=2℄kfkS� :Note that Z 10 e��ss(�=2)�1jujs=2jw �Qtwjs=2dskfkS�� juj kfkS� Z 10 s(�=2)�1hPiw2i (1� e��it)2 �ise�is � 1i1=2ds� juj kfkS� Z 10 s(�=2)�1Pijwij(1� e��it) p�ispe�is � 1ds� juj kfkS�Pijwij Z 10 (�is)(��1)=2���=2ipe�is � 1 �ids(1� e��it):22



Note that 1� e��it � (�it)�=2 and so the above givesZ 10 e��ss(�=2)�1jujs=2jw �Qtwjs=2dskfkS� � 21juj kwkH;1kfkS�t�=2:Integrate (5.39) with respet to e��sds, use the above bound, and ombine the resulting boundwith (5.37) to onludekPtDuDwR�f �DuDwR�fk1 � 22[juj jwj+ juj kwkH;1 + kukH;1jwj ℄ kfkS�t�=2and (5.27) follows.Corollary 5.7. There exists a onstant 1(�; ) suh that for all � > 0, any boundedmeasurable f : H ! R, and for all i � j 2 N ,kDiR�fk1 � 1(�+ �i)�(�+1)=2kfkS� ; (5:40)kDijR�fk1 � 1(�+ �j)��=2kfkS� ; (5:41)kDiR�fkS� � 1(�+ �i)�1=2kfkS� ; (5:42)kDijR�fkS� � 1kfkS� : (5:43)Proof. The �rst two inequalities follow easily from the bounds in the proof of Theorem 5.6 priorto the use of H�older's inequality. For example, to derive (5.41), use (5.28) with u = �i and w = �jto onlude jDijR�f j � 3kfkS� Z 10 qh(�js=2)s�=2�1e��sds� 3kfkS� Z 10 ph(u=2)u�=2�1du���=2j� 4kfkS����=2j :Use h � 1 to also bound the �rst line of the above display by 5kfkS����=2 and (5.41) follows.A similar argument gives (5.40). The last two inequalities are now immediate from (5.26), (5.27)and the �rst two inequalities.Remark 5.8 In Corollary 5.7 we showed that the operator DijR� is a bounded operator onS� with a norm independent of i and j. It is also known that DijR� is a bounded operatorwith respet to the usual C� norm, again with a norm independent of i and j; see [D℄, [L℄, [Z℄,or espeially Setion 6.4.1 of [DZ℄. Neither of these results ontains the other. The C� normemphasizes the loal ontinuity, while the S� norm also gives weight to the behavior of f(x)when jxj is large. Both results are of interest. 23



6. Relationship between norms { the generalized Ornstein-Uhlenbek ase.We now prove the analogue of Proposition 4.1. Let jf j�;i be de�ned as in (4.1) and setjf j�;i;w = supx;h6=0 jf(x+ h�i)� f(x)j jxij�=2jhj�=2 : (6:1)Let kfkE� = kfk1 +Xi jf j�;i +Xi ��=2i jf j�;i;w � kfk1 + jf jE� ; (6:2)and let E� be the spae of ontinuous funtions with kfkE� <1. In Proposition 6.3 below weintrodue a norm k � kF� whih is equivalent to k � kS� in �nite dimensions. This norm ould beused in plae of k � kE� in the statement of Proposition 6.1; we use k � kE� in the next propositionbeause of its simpler form.Proposition 6.1. There exists 1(�; ) suh that if f 2 E� and g 2 S�, thenkfgkS� � 1kfkE�kgkS� :In fat, kfgkS� � 1[kfk1jgjS� + jf jE�kgk1℄:In partiular E� � S� � C�.Proof. As in the proof of Proposition 4.1, it suÆes to �x x 2 H and show that if f(x) = 0,then for some 2 = 2(�; ) jPt(fg)(x)j � 2jf jE�kgk1t�=2: (6:3)For y 2 H let zi(y); z�i (y) 2 H satisfyhzi(y); �ji = hy; �ji1(j�i) + hx; �ji1(j>i)and hz�i (y); �ji = hy; �ji1(j<i) + hQtx; �ii1(j=i) + hx; �ji1(j>i):Let fi(y) = f(zi(y))� f(zi�1(y)):Note that fi(y) is equal to f(zi�1(y) + (yi � xi)�i) � f(zi�1(y)). Therefore we see kfik1 �jf j�;ijyi � xij�. Our assumption f(x) = 0, together with dominated onvergene and theontinuity of f , implies Pt(fg)(x) =P1i=1 Pt(fig)(x). ThenjPt(fg)(x)j �Xi Ptjfigj(x) �Xi kgk1Ptjfij(x): (6:4)24



Let Zt denote a mean zero Gaussian random vetor in H with ovariane Ct. ThenPt(jfij)(x) = E (jf(zi(Qtx+ Zt))� f(zi�1(Qtx+ Zt))j)� E (jf(zi(Qtx+ Zt))� f(z�i (Qtx+ Zt))j) + E (jf(z�i (Qtx+ Zt))� f(zi�1(Qtx+ Zt))j)� jf j�;iE (jhZt; �iij�) + jf j�;i;wjhQtx� x; �iij�=2jxij��=21(xi 6=0): (6:5)Note that E (hZt; �ii2) = aii(1� e�2�it)(2�i)�1 � �1t: (6:6)Therefore the �rst term in (6.5) is at mostjf j�;iE (hZt; eii2)�=2 � jf j�;i��=2t�=2: (6:7)The seond term in (6.5) is bounded byjf j�;i;w(1� e��it)�=2 � jf j�;i;w��=2i t�=2: (6:8)Put (6.7) and (6.8) into (6.5) and sum over i to onludeXi Pt(jfij)(x) � h��=2Xi jf j�;i +Xi jf j�;i;w��=2i it�=2� 2(�; )jf jE�t�=2:Put this bound into (6.4) to derive (6.3) and hene omplete the proof of the required inequalities.Set g = 1 and use (5.20) to prove the �nal inlusions.Proposition 6.2. Assume �i � 1i2 for all i and some 1 > 0. Then S� is an algebraand (2.6) and (2.7) are valid.Proof. We verify the hypothesis of Lemma 2.4. If Zt is as in the previous proof, by (6.6)E x(jXt � E x(Xt)j2) = 1Xi=1 E (hZt; �ii2)= 1Xi=1 aii 1� e�2�it2�i� 2 1Xi=1(i�2 ^ t):An elementary alulation shows the above is at most 3pt and so the result follows now fromLemma 2.4. 25



Finally, we present a norm that is equivalent to S� in the �nite dimensional ase. De�nejf jF� = supt6=0;x jf(Qtx)� f(x)jt�=2 : (6:9)The letter F stands for \ow", as what we have here is a weighted H�older seminorm along theow Qtx. Note Qt is deterministi:Qtx = Qt�Xi xi�i� =Xi e��itxi�i:De�ne kfkF� = kfkC� + jf jF�: (6:10)Let �d denote the projetion of H onto the subspae spanned by f�1; : : : ; �dg. In the next resultwe e�etively redue to the �nite-dimensional ase by onsidering funtions whih only dependon the �rst d oordinates.Proposition 6.3. There exist positive 1 and 2 depending on (; d) suh that for anymeasurable f : H ! R satisfying f = f Æ �d,1kfkS� � kfkF� � 2kfkS� :Proof. Let Zt be the Gaussian vetor introdued in the previous proof. Then, using (6.6), wehave jPtf(x)� f(x)j � jE (f(Qtx+ Zt)� f(Qtx))j+ jf(Qtx)� f(x)j� jf jC�E (j�dZtj�) + jf jF�t�=2� t�=2hjf jC�(d�1)�=2 + jf jF�i (6:11)and the left hand inequality is established.Turning to the right hand inequality we have,jf(Qtx)� f(x)j = ���(Ptf(x)� f(x))� (E (f(Qtx+ Zt))� f(Qtx))���� jf jS�t�=2 + jf jC�E (j�dZtj�)� t�=2hjf jS� + 3kfkS�(d�1)�=2i;where in the last line we have used (5.20) and (6.6) again. This together with a further appliationof (5.20) give the right hand inequality.The following gives a relationship between S� and C�.26



Proposition 6.4. We have jf jS� � 1Xk jf j�;k + jf jF� :Proof. As in (6.11),jPtf(x)� f(x)j � jE f(Qtx+ Zt)� f(Qtx)j+ jf(Qtx)� f(x)j:The seond term on the right is bounded by jf jF�t�=2, so we need to bound jE f(y+Zt)�f(y)j,where we write y forQtx. Replaing f(�) by f(�)�f(y), without loss of generality we may assumef(y) = 0. De�ne random variables Yi byhYi(!); �ji = hy + Zt(!); �ji1(j�i) + hy; �ji1(j>i):Then jE f(y + Zt)j � 1Xi=1 E jf(Yi)� f(Yi�1)j� 1Xi=1 jf j�;iE jhZt; �iij�:Using the alulation in (6.7), this is turn is bounded byXi jf j�;i(�1t)�=2;whih gives the proposition.7. Relationship between norms: super-Markov hains.In [BP℄ H�older norm estimates were proved for the operatorLf(x) = dXi=1[ixiDiif(x) + biDif(x)℄operating on funtions on Rd+ . Here  = (1; : : : ; d) 2 (0;1)d and b = (b1; : : : ; bd) 2 Rd+ .The estimates were with respet to the norm de�ned bykfkC�w = kfk1 + dXi=1 jf jw;�;i;where jf jw;�;i = suph>0;x2[0;1)d jf(x+ h�i)� f(x)jh� x�=2i :27



Set C�w = ff 2 Cb(Rd+) : kfkC�w < 1g. (Continuity of f at points in �Rd+ does not followfrom kfkC�w < 1 and hene must be assumed.) In [BP℄ this norm was essentially fored on usin order to get the estimates we needed. The H�older norm estimates for this ase are derived in[BP℄ and make up a onsiderable portion of that paper. So in this setion we ontent ourselveswith showing that the C�w norm is equivalent to the S� norm for this operator.Let Pt denote the semigroup assoiated with L and E x denote expetation with respetto the assoiated Markov proess (Xt; t > 0) in Rd+ , starting at x 2 Rd+ . More preisely underPx, X is the unique (in law) proess suh that X0 = x andMf (t) = f(Xt)� f(x)� Z t0 Lf(Xs)dsis a �(Xs; s � t)-martingale for all f 2 C2b (Rd+). If d = 1, let Px(Xt 2 dy) = p;bt (x; dy) andwrite pit(xi; dyi) for pi;bit (xi; dyi).Remark 7.1. Funtions in C�w are not neessarily ontinuous on the boundary of Rd+ , and sowe restrit statements below to funtions in S�\Cb. However funtions f for whih kfkC�w <1have an extension to a ontinuous funtion on Rd+ ([BP℄, Proposition 2.2). In view of Theorem7.6 below, funtions for whih kfkS� <1 also have suh an extension.Lemma 7.2. Let f be a bounded Borel funtion on Rd+ . If t > 0 then DiPtf(x) is aontinuous funtion in xi satisfyingjDiPtf(x)j � 1[(itxi)�1=2 ^ (it)�1℄kfk1for some onstant 1.Proof. Let x̂i = (x1; : : : ; xi�1; xi+1; : : : ; xd) 2 Rd�1+ for x 2 Rd+ and de�neF x̂i(yi) = Z Yj 6=i pjt (xj ; dyj)f(y):Set s = it for a �xed t > 0. Then use Lemmas 4.1(a) and 4.5(a) of [BP℄ (the ontinuity of fassumed there is not used) to seeDiPtf(x) = Di Z F x̂i(yi)pit(xi; dyi)= 1Xk=1 e�xi=s (xi=s)kk! Z 10 F x̂i(zs)e�zh zk+(bi=i)�(k + (bi=i) + 1) � zk+(bi=i)�1�(k + (bi=i))idzs (7:1)+ e�xi=s Z 10 F x̂i(zs)e�z zbi=i�((bi=i) + 1) dzs� 1(bi>0)e�xi=s Z 10 F x̂i(zs)e�z z(bi=i)�1�(bi=i) dzs � 1(bi=0)e�xi=sF x̂i(0) Z 10 e�z dzs :28



If ak = ak(x̂i) is the integral in the above summation over k, thenjakj �kF x̂ik1 Z 10 e�z zk+(bi=i)�1�(k + (bi=i)) jz � (k + (bi=i))jk + (bi=i) dzs�2kfk1�(k + (bi=i))1=2 + 1�(k + (bi=i))�1s�1�22kfk1(k + (bi=i))�1=2s�1;where Lemma 3.2(a) of [BP℄ is used in the seond inequality. It is now easy to see that the series in(7.1) onverges uniformly for xi in a ompat set and so DiPtf(x) is ontinuous in xi. Moreoverthis bound and (7.1) also show thatjDiPtf(x)j � 1Xk=1 e�xi=s (xi=s)kk! 3kfk1(k + (bi=i))�1=2s�1 + 2e�xi=skfk1s�1�4(1 ^ (xi=s)�1=2)kfk1s�1 + 2e�xi=skfk1s�1by an elementary bound (see Lemma 3.3(a) of [BP℄). Sine e�xi=s � 1^ (xi=s)�1=2, the requiredresult follows.Lemma 7.3. If f is a bounded Borel funtion on Rd+ , thenjDiPtf(x)j � 1(�) t(��1)=2pixi kfkS� ;where 1 depends only on �.Proof. This follows from the previous result, exatly as in the proof of Lemma 2.2.Proposition 7.4. Let f be a bounded Borel funtion on Rd+ . Thenjf jw;�;i � 1��=2i kfkS� :Proof. If h > 0, then Lemma 7.2, the fundamental theorem of alulus and Lemma 7.3 showjPtf(x+ h�i)� Ptf(x)j =���Z h0 DiPtf(x+ h0�i)dh0����2t(��1)=2�1=2i Z xi+hxi y�1=2dykfkS��2t(��1)=2(ixi)�1=2hkfkS� :We also have jPtf(x)� f(x)j � kfkS�t�=2:29



The above two inequalities implyjf(x+ h�i)� f(x)j � (2t�=2 + 2t(��1)=2(ixi)�1=2h)kfkS� :We optimize by setting t = (22=4)h2(xii)�1, and sojf(x+ h�i)� f(x)j � 3(�)��=2i h�x��=2i kfkS� :Reall the de�nition of jf jS� from (2.1).Proposition 7.5. If f 2 Cb(Rd+), then jf jS� � 1(�)Pdi=1((bi=i) + 1)�=2i jf jw;�;i.Proof. We may assume without loss of generality that f 2 C�w. Let " > 0. Results in [BP℄(notably Proposition 7.2 and Lemma 7.6 there) imply P"f 2 C2b (Rd+) \ D(L) and so the fatthat we are working with a solution to the martingale problem for X impliesjPtf(x)� P"f(x)j = ���Z t�"0 PsL(P"f)(x)ds���= ���Z t�"0 LPs+"f(x)ds���� Z t" jLPsf(x)jds:Use the upper bounds in Proposition 5.1 of [BP℄ to see thatjPtf(x)� P"f(x)j � 2 dXi=1(bi(�=2)�1i + �=2i )jf jw;�;i Z t" s�=2�1ds� 3 dXi=1(1 + bi=i)�=2i jf jw;�;it�=2:Now let " # 0 to omplete the proof.Theorem 7.6. Assume 0 < " � i � K and bi � K for i = 1; : : : ; d, for some " � 1 � K.There are onstants 1 and 2(�) suh that for all f 2 Cb(Rd+ ),1"�=2maxi�d jf jw;�;i � jf jS� � 2(K=") dXi=1 jf jw;�;iand therefore there are onstants 3 and 4 suh that3d�1kfkC�w � kfkS� � 4kfkC�w30



for all f 2 Cb(Rd+):Proof. This is immediate from Propositions 7.4 and 7.5.Remark 7.7. Let D denote di�erentiation with respet to t, de�nekfkG� = kfk1 + supt>0 kDPtfk1t1�(�=2);and introdueG� = ff 2 Cb(Rd+ ) : DPtf(x) exists and is ontinuous in t > 0 for all x; kfkG� <1g:The proof of Proposition 7.5 an be easily modi�ed to show C�w � G� andkfkG� � 1 dXi=1(1 + bi=i)�=2i jf jw;�;i + kfk1for all f 2 C�w: A trivial integration shows G� � ff 2 Cb(Rd+) : kfkS� <1g andkfkS� � 2�kfkG� . Combine these observations with Theorem 7.6 to onlude C�w = G� =S� \ Cb and for ";K as in Theorem 7.6 there are 2 and 3 suh that2d�1kfkC�w � kfkS� � 2�kfkG� � 3kfkC�w :Referenes.[ABP℄ S. Athreya, R.F. Bass and E.A. Perkins, On uniqueness of in�nite dimensional stohastidi�erential equations of Ornstein-Uhlenbek type, in preparation.[Ba℄ R.F. Bass, Probabilisti tehniques in analysis. Springer-Verlag, New York, 1995.[BP℄ R.F. Bass and E.A. Perkins, Degenerate stohasti di�erential equations with H�olderontinuous oeÆients and super-Markov hains. Trans. Amer. Math. So. 355,(2003) 373{405.[CD℄ P. Cannarsa and G. Da Prato, In�nite-dimensional ellipti equations with H�older-onti-nuous oeÆients. Adv. Di�erential Equations 1 (1996) 425{452.[D℄ G. Da Prato, Some results on ellipti and paraboli equations in Hilbert spaes. Rend.Mat. A. Linei 7 (1996) 181{199.[DZ℄ G. Da Prato and J. Zabzyk, Seond order partial di�erential equations in Hilbertspaes. Cambridge University Press, Cambridge, 2002.31
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