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Abstract

We introduce a new method for proving the estimate

where u solves the equation Au — Au = f. The method can be applied to the Laplacian

0%u

- —— < a
Ox;0x; < ¢lfllee

C«

on R*. It also allows us to obtain similar estimates when we replace the Laplacian by
an infinite dimensional Ornstein-Uhlenbeck operator or other elliptic operators. These
operators arise naturally in martingale problems arising from measure-valued branching

diffusions and from stochastic partial differential equations.
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1. Introduction.
Let A be the Laplacian on R? and for @ € (0,1) define the usual Holder norms by

Ifllee = sup | f(z) |+ sup LEFM = @)
@ @, h#0 |h|®

= || flloo + |flce- (1.1)

A classical estimate is that if A > 0 and w is the solution in R? to

Au— u = f, (1.2)
then we have the inequality
0%u
— < a, 1.3
55| < lirle (13

where 1 < 4,7 < d and c¢; is a constant not depending on f. Two of the more important
applications of this result are that it allows one to prove the existence of solutions to certain
elliptic partial differential equations with variable coefficients and to prove uniqueness in law of
solutions to certain stochastic differential equations.
In this paper we investigate the analogue of (1.3) when the Laplacian is replaced by other
elliptic operators. In particular we:
(1) introduce a new method, which we call the semigroup method, for proving (1.3);
(2) use our method to obtain an analogue of (1.3) for the case of infinite dimensional Ornstein-
Uhlenbeck operators; and
(3) lastly show how the semigroup method allows one to determine the appropriate substitute

for the norms given in (1.1).

In work in preparation ([ABP]) we use some of the above results to prove uniqueness for
an infinite dimensional system of Ornstein-Uhlenbeck type stochastic differential equations with
Holder continuous coefficients. The semigroup method is particularly simple in the case of the

Laplacian, even if we replace R? by R®. We need one elementary calculation, namely, that

3]915(337 Z/) C2
A < £

where py(x,y) = (27t) "2 exp(—(y — x)2/2t) for x,y € R. We use this and the fact that P;,

the semigroup corresponding to the Laplacian, factors to see that

C2
< —= |l flloo-

o VI
Some manipulations of semigroups then lead to (1.3). A key step is to define the semigroup norm

1P:f — fllso
te/2 :

OP f
837,'

[fllse = [Iflloc + sup (1.4)
t>0
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This norm was also used in the argument of [CD].

In the case of the Laplacian in finite dimensions, there are a number of proofs of (1.3). See,
for example, [GT], Chapter 4, or [Ba], Section II.3. Another proof can be found in [Ba], Section
IV.3 or [S], Section V.4. This latter proof is at the basis of the semigroup method.

The proof of (1.3) for the Laplacian in infinitely many dimensions is relatively recent and
is due to Cannarsa and Da Prato [CD]. Their method involves interpolation spaces. It is well
suited to the Laplacian, but perhaps less so for other operators. Our results in Section 3 give a
new proof for the infinite dimensional Laplacian.

We use the semigroup method to obtain an analogue to (1.3) when the Laplacian is replaced
by the operator £ defined by

Lf(z)=Y" aijﬁg;j(a:) -3 wjggja—i(gg), (1.5)

ij=1 ij=1

where a is positive definite and V' is nonnegative definite (See Theorem 5.6). This operator is a
generalization of the infinite dimensional Ornstein-Uhlenbeck operator. It is well known that the
infinite dimensional Ornstein-Uhlenbeck operator arises when using Fourier transforms to study
parabolic stochastic partial differential equations (see [W]) and this was in fact the motivation for
considering this problem. One principal difference from the Laplacian case is that the operators
3/ Ox; and P; no longer commute. Related results for the Ornstein-Uhlenbeck case have been
obtained by [D], [L], [Z]. In Remark 5.8 we discuss them briefly and compare them to our results
Theorem 5.6 and Corollary 5.7.

When one considers operators other than the Laplacian, it turns out that the C'* norms
defined by (1.1) may not be the most appropriate. In fact, the semigroup norm given in (1.4) is in
some cases the natural one. In the case of certain degenerate elliptic operators, we discovered this
after the fact. In [BP] two of the authors investigated Holder norm inequalities for an operator
that arises in the study of branching measure-valued diffusions. There the estimates were proved
by hand, and we were forced to replace the use of the C'* norms by weighted Holder norms. In
this paper we prove that these weighted Holder norms are precisely the S norms used by the
semigroup method. This suggests the potential for a more unified approach to such norms in the
study of degenerate stochastic differential equations in both finite and infinite dimensions and
avoids having to guess the appropriate norm through ad hoc methods.

Layout of the paper: Here is the plan for the rest of the paper. In Section 2 we
define the semigroup norm and establish some preliminary facts. In Section 3 we present the
semigroup method in the case of the infinite dimensional Laplacian (Proposition 3.3). Although
the estimates in the Laplacian case are known, we present this case separately for clarity. In
Section 4 we give some connections between the semigroup norm and the usual Holder norms
(Proposition 4.1 and 4.2). Next, in Section 5, we consider the Ornstein-Uhlenbeck operator, and

establish the analogue of (1.3) in Theorem 5.6 and Corollary 5.7. Section 6 considers geometrical
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aspects of the semigroup norm, analogous to section 4. Many of these results will be used in the
in the uniqueness proof for infinite dimensional stochastic equations in [ABP]. In Section 7 we
establish the equivalence of the semigroup norm with weighted Ho6lder norms in the context of

the operator considered in [BP].

Acknowledgment.
We would like to thank L. Zambotti for patiently answering our many questions concerning

norms related to the Ornstein-Uhlenbeck operator.

2. The semigroup norm.

We use the following notation. If £ = Rd,Ri ,IR®, or a separable Hilbert space H, and
f:+E — R, D,f(x) is the directional derivative of f at € F in the direction w; we do not
require w to be a unit vector. We write D; for D., and D;; for D;D;, where €; denotes the
1th unit vector in a convenient orthonormal system; for R? or R*>°, ¢; will be the it" coordinate
direction.

The inner product in F is denoted (-, -), and | - | denotes the norm generated by this inner
product. C, = Cy(FE) is the collection of R-valued bounded continuous functions on F and for

€ (0,1), C* is the set of functions in Cy, for which || f||ca = || f]|co + | f|c«, defined as in (1.1)
by replacing R? with E, is finite. Finally C? is the set of functions in C}, for which the first and
second order partials are also in (Y.

We use the letter ¢ with subscripts for finite positive constants whose value is unimportant
and which may vary from line to line.

Given an operator £ that is the infinitesimal generator of a semigroup P; on the space of
bounded measurable functions on FE, we let Ry = fooo e~ P, ds be the corresponding resolvent.

We define the semigroup norm (the “S” stands for “semigroup”) || - ||s« for a € (0, 1) by
[fllse = [[flleo + ig}gt_a/ZHPtf = [lloo- (2.1)

Let S denote the space of measurable functions on E for which this norm is finite. We set | f|go

equal to the last term in (2.1), so

[fllse = lloo + [ flse-

In a number of places we will use a similar convention: |f|p will denote a seminorm in some
Banach space B ||f||p will then be || f||oo + |f|B-

Remark 2.1. Since [|Pif — f|loo < 2/|f]|0o, then
1£llse <3l flloo + sup =2|Pif = flloo- (2.2)
0<t<1

We will use the following result a number of times.
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Lemma 2.2. There exists ca(«) such that if for some w € F and 0 < ¢; < 00,

c1|w

NG

for all bounded measurable f, then for all f € S,

1Dl < L0111

|1 Dw P flloo < C1C2|w|t(a_1)/2|f|Sw-

Proof. Note
DwPZuf - DwPuf - pru[Puf - f]

The sup norm of the expression inside the brackets is bounded by u®/ 2| f|s«. Therefore by our
hypothesis,
||DwP2u,f - DwPu,f“oo S Cl|w|u(a_1)/2|f|50‘- (23)

Using the hypothesis again,
1Dw Pras flloo < erfw](25) 12| flloo — 0

as k — 00. Therefore

DyPif = (DwPig f — Dy P f).
k=0

Using (2.3) and the triangle inequality,

IDwPflloo <Y ea|w] (t25) 7172 flsa < erfwlea (@)t D% f[sa.
k=0

Lemma 2.3. Assume

1Dw Pl < "%" T (2.4)

for all bounded measurable f on F and all w € E. Then S* C C'* and
[fllee < (crca(@) + 2)[[fl]se,
where co() is as in Lemma 2.2.
Proof. By (2.4), Lemma 2.2 and the mean value theorem, if w € E then
[Pof (x + w) = Pof ()] < creaw]t D2 f||sa.
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We also have
|Pof (x4 w) = f(o+w)] <t fllse, 1P (@) = f(@)] < 2| f||se,
by the definition of S. By the triangle inequality,
[ (@ + w) = f(2)] <t (crcolwl|t™2 4 2)]| || e
If we take t = |w|?, we see that || f||ca < (crc2 + 2)]|f|| s O

Lemma 2.4. Let {X;,t > 0} be an E-valued Markov process with semigroup P, and laws
{P*,z € E}. Assume (2.4) and also

E*(|X; — E®(X,)|?) < cot*/? for all t < 1. (2.5)

If f,g € S, then fg € S* and for some ¢, = ¢1(co, @),

1fglse < cilllflloolglse + [flsallglloo + [floalgloa + [1flloollglloo], (2.6)
and

1£gllse < call flls=llgllse (2.7)

Proof. Let Ryx = E*(X;) € E (by hypothesis). Note that
Pifg(x) — fg(x) =E*((f(Xe) — f(Rex))(9(Xe) — g(Ryw)) + g(Ryw) (P f (x) — f())
+ [ (Rex)(Peg(x) = g(2)) — (f(Bew) — f(2))(g(Rez) = g(2)).  (2.8)
Note also that for ¢ < 1,
|[f(Bex) = f(2)| < |Pef(2) — @) + [E*(f(Xe) — f(Re))]

<|flsat®? + | f|loaE (| X¢ — Ryw|®)
< |flsat®? + | floacy 2 t2/4, (2.9)

the latter by (2.5) and Jensen’s inequality. We put this into (2.8) and use Holder’s inequality to
conclude that for all ¢ < 1,

Pfg(@) = Fo(@)] <|]lcelgloeE (X, — Ryaf*)®
+ (lgllool 5o + 1 lloolgse)e/2
+ 1 (Rew) = £ @) ([lglst72 + €5 glcat*/*] A 2llglloo)
<[elflowlglow + 1gllocl Flse + 31 loclglse /2
1 (Rew) — £ (@)leal(lgloat*/4) A lglloc)
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We use (2.9) again to bound the last term by

call f1sallglloo + |floalgloa]t™’?.

Substituting this into the above, we see that for £ < 1,

|Pefg(x) — Fg(a)] < calllfllsclglse + [fsellglloo + [ flo=lgloa]-

If t > 1, the left-hand side is at most 2||f||0||g||cc and (2.6) follows. This and Lemma 2.3 now
imply (2.7). O

3. Holder estimates — the Laplacian case.

Let £2 be the space of real square summable sequences {z; : i € N} equipped with the

norm |z| = (D, x%)l/Z and take €; to be the unit vector in the 7th coordinate direction. We

Here we assume each a; > 0 and |a,|2 = Zz aiz < 00. The reader interested only in the finite

study perturbations of

dimensional case may restrict all indices to the range 1 to d and take each a; = 1 but we will be

implicitly working in £? below.
Lemma 3.1. There exists ¢y such that for any bounded measurable f,

C1

|1DiPeflloo < [1f{]oo-

a,-t

Proof. Let .

—(yj—z;)* /205t g, .
e J
a;Vv 27t Yi

pl(x;, dy;) =

be the transition density of one dimensional Brownian motion with parameter a?. Let

i 1 1 Yi = Tj _(y:—2.)2/2a2
qi (v, dy;) = D;pi(z;,dy;) = o Ja?t Lem(Wimm)™/2a5t gy
Note that
: 0l y -l e co
J x",d . :/ J J e—(yJ—:l:J) /Zajtd - .
J = [ b=

Now fix 7 and let

Flsit,) = [ T]wiCos i) e, ..).

J#i



Then

DPt /D Hpt x]adyj //Qt -Tzadyz Hpt -Tj;dyj )

J#i

Since pz (z,dy;) integrates to one for each j, we see that ||F'||o < ||f]|oo. Therefore

DL ()] < [|Floo / i (2, dy)| <~ f e

C2
aiVt

Remark 3.2. The conclusion of Lemma 3.1 is not the same as (2.4) because of the presence of
the a;.

Proposition 3.3. There exists ¢; not depending on X and ca = c3(A) such that for all

fese,
(a) IDiDjRafllos < ——A"2||f ||,
iQj
ca(A)
(b) 1DiDj B fllse < ——=|f[|se
i
C
(c) |1DiRxflloo < a—l_A_l/2||f||sav
and
ca(A)
(d) IDiBAfllse < =—=IIfllse-

Proof. (a) By the translation invariance of Brownian motion, D; and P; commute. By the

semigroup property we have

D;D;Ryf(x) = / e_)‘sDiDszf(x) ds = / e_)‘sDiPs/szPs/zf(x) ds
0 0

(The interchange of the integration and differentiation follows easily by dominated convergence.)
By Lemmas 3.1 and 2.2, ||D; Py /2 f|loo < C3a; gl 1)/2||f||5a. Using Lemma 3.1 again

|D:D;Bafoe < 4 / f SOV24g | fllse < Z A fllse. (3.0)
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(b) In view of Remark 2.1, we need only consider { < 1. We write
Py(D;DjRxf) — (D;D;jRxf) = e”/ e D;D;P,f ds — / e MD;D;P,fds  (3.2)
t 0

[oe] t
= (eM — 1)/0 e_ASD,-Dszf ds — eAt/O e_)‘SD,-DjPSf ds.

Since t < 1, then |e)‘t — 1] < (M)t < Cﬁta/2, and so the L° norm of the first term on
the last line is bounded by Cﬁta/2||DiDjR}\f||oo. Applying (3.1), we bound the first term by
cr(N)(azag) =2 fllse.

Since t < 1, then e is bounded. By Lemmas 3.1 and 2.2,

cg _ Co _ o
IDiDiPif oo = 1DiPsy2DiPapaflloc < 572D Puyafllo < — 5725702 £ g0
4 1y

Integrating from 0 to ¢, the second term on the last line of (3.2) is bounded by

C10 t a_q C11 ,a/2
I£llse | s%71ds = St f]se.

a;a; i@
(c) The first derivative estimates are similar but easier. Using Lemma 3.1,
oo
IDifsfloe < [ DL ds 3.3
0

cia [ C13
< == [ s V2ds||flloo < =AY f oo

a; Jo a;

(d) For t < 1, we write
t
PAD;RAS) — (DiBAf) = (¥ — 1)DiRyf + / D, Py f ds
0

as in (3.2). The first term on the right is bounded by 614()\)a,i_1t||f||oo, which is fine since ¢ < 1.
Use Lemmas 2.2 and 3.1 to bound the second term on the right by

t
C _ C C
15||f||5'°‘/ sl@ 1)/2d8§ 1ét(a+1)/2||f||sa < 1.7ta/2||f||Sa.
a; 0 a a

(2 (2

4. Relationship between norms — the Laplacian case.
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Proposition 4.1. If f € C'* and g € S*, then

1fglls= < (la[* + D) fllo=llgllse-

In fact,
[fglse < [l flloclglse + lal[flowlglloo]-

Proof. The L° norm of fg is clearly bounded by the product of the L°° norms of f and g.

Fix . We need to obtain a bound on

1P:(f9) (@) = (fg)(2)].

Let f(y) = f(y) — f(x); clearly f(z) = 0. Then
Py(f9)(x) - fg(x) = Po(fg)(x) + f()Pog(w) — f(x)g(x),

SO

Pi(f9) (@) = fg(@)| < [P(fa) (@) + |} ()| [Pog — g| < [P(Fg)(@)] +*"2[| [|oolg] 5=
The first term on the right hand side is

[E (f9)(z + Xo)| < llgllocE |f (= + X¢) — f ()]
< [lgllool flo=E (| X¢]*)
< [lgllool flo= (B (| X¢[?)*/2
= ||glloo| flcalal*t*/2,

where X; is the Brownian motion associated with the semigroup F;. The required bound follows.
O

Clearly the function that is identically one is in S®, and hence the above proposition
implies that C'* C S®. Here is a partial converse, which also shows that these spaces coincide
and have equivalent norms in the finite-dimensional case. Incidentally, this and Proposition 3.3
provide a new proof for (1.3) as well.

Note that because of the presence of the a; in the conclusion of Lemma 3.1, we cannot

conclude that S and C'® are equivalent in the infinite dimensional case. Let us set

-+ hep) — F)]

iy ¢ BE

f

(4.1)
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Proposition 4.2. There exists c¢i(c) such that for each i, |f|qai < c1a; “[| f]|se.

Proof. By Lemmas 2.2 and 3.1

|Pef( + hei) = Pof ()] < ] [DiPeflloo < calhlag 't D7) f]|s0.

We also have

|Pef (x) = f ()] < 72| f| s,

and the same with x replaced by x + he;. Using the triangle inequality,
[f (@ + hei) = f(x)] < (2092 + colhla; tOTD2) | £l se.
Taking { = a,; 2|h|2 yields our result. O

Remark 4.3. Consider the d-dimensional case with all the a;’s equal to 1. For each positive
integer J < d®/? it is not hard to construct an example where || f||ca =1, |f|a,s = 1 for each 4,
yet || f]|s« = J. So there does not appear to be a simple characterization of S® in terms of the
|fla,i- On the other hand, if we write

1fllse = Sl;pt_“/2 sup

T

[P0,y =2)rw) - f@)ldy

where P(t,x,y) is the transition density for P; in R?, we see that S does have a geometric

characterization in terms of a weighted average of f(y) — f(x).

5. Holder estimates — the generalized Ornstein-Uhlenbeck case.

In this section we obtain Holder norm estimates for perturbations of an appropriate
Ornstein-Uhlenbeck operator. Let H be a separable Hilbert space with inner product (-, > and
let V: D(V) — H be a (densely defined) self-adjoint non-negative definite operator on H such
that

V1 is a trace class operator on H, (5.1)

Then there is a complete orthonormal system {e, : n € N} of eigenvectors of V~1 with corre-

sponding eigenvalues A, 1, A, > 0, satisfying
oo
Nt <o, Mtoo, Ve =en
n=1

(see, e.g. Section 120 in [RN]). Let Q¢ = etV be the semigroup of contraction operators on H

with generator —V. If w € H, let w, = (w,¢€y,) and, as discussed in Section 2, we will write
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D;f and Djf for D, f and D, D, f, respectively. (In the example from the theory of SPDEs
that motivated us, V is given by Ve; = c1i%¢;, and clearly V =1 is of trace class.)

Assume a : H — H is a bounded self-adjoint positive definite operator on H and set
a;; = (a€i, €j). Therefore for some v > 0,

v 22 > Zaijzizj > v|z|?, z € H. (5.2)
i,J
We consider the H-valued process which, with respect to the coordinates <x, 6i>, is associated
with the generator
oo oo
Lf(x) =3 Y ayDyf(e) =Y NaiDif (). (5-3)
ij=1 i=1
The definition is as follows.
Let (Wt,t > 0) be the cylindrical Brownian motion on H with covariance a. Recall
(see section 3.2 of [KX]) this means if o is the positive definite square root of a, then Wy is an

R°°-valued process such that for some sequence of independent 1-dimensional Brownian motions
{B;}, _
W (t) = Wilei) = Y 0i; By (t),
J

and so more generally,

Wt(h) = Z<h, 6,’>Wt(€,’), h € H,t >0

(3

is a mean zero Gaussian process with covariance
E (W, (h)W, (1)) = (h,ah/)(s A t).

As usual we may extend the definition of (Wi(h),t < T') to measurable paths h : [0,T] — H
such that fOT |hs||?ds < oo. Then (Wy(h),t < T,h € H) is again a mean zero Gaussian process

with covariance

E (Wi (h)Ws(g)) = /08 (hy, ag,)dr.

We often will write fot hsdWy for Wi(h). F; denotes the right-continuous filtration generated by
wW.

Consider the stochastic differential equation
dXt == —VXtdt + th

A continuous H-valued Fi-adapted process is a solution of this stochastic differential equations
if and only if for all h € D(V') we have

(Xy, h) = (Xo, h) — /0 t(XS,Vh>ds+Wt(h,) £>0, as. (5.4)

12



One easily checks that such a solution is a continuous H-valued F;-adapted process which solves
the mild form of (5.4) with initial condition X¢ € H, that is

t
(X¢, hy = (X0, Qh) +/ Qi_shdW, a.s. forallt > 0and h € H. (5.5)
0

There is a pathwise unique solution of (5.5) (which also solves (5.4)) whose laws {P*, x €
H } define a unique homogeneous strong Markov process on the space of continuous H-valued
paths (see, e.g. Section 5.2 of [KX]). We let P;f(xz) = E*(f(X})) denote the associated semi-
group. Clearly {X;,t > 0} is an H-valued Gaussian process satisfying

E ((X¢, h)) = (Xo,Q¢h) for all h € H, (5.6)

and

Cov ((Xy, ) (X, 1)) :/0 (Qsh, aQs_sg)ds = Ci(g, h). (5.7)

Our reason for introducing (5.4) is that it shows that X will solve a martingale problem
associated with £. More precisely if f : H — R is a bounded C? function of (x1,...,z,) with
bounded first and second partials, then f(X;) — f(Xo) — f(f Lf(X)ds is an Fi-martingale.
Our objective in this section is to obtain bounds on D;D; Ry in the S norm associated with
P, where R) is the A-resolvent corresponding with P;. We start by noting that P; no longer

commutes with the differential operators D,,.

Proposition 5.1. Assume t > 0, w € H, and f : H — R is a bounded measurable
function such that Dgq,., f is bounded and continuous (on H). Then

DyP;f(¢) = Pi(Dg,uf)(x), € H.

Proof. Let Z; € H denote a mean zero Gaussian random vector with covariance C;. Then

P* (X, € -) = P(Qix + Z; € -). Therefore if r € R,

Bif(z+rw) - Bf(z) 5 (f(Zt + Qu(ztrw) — f(Z+ th))- (5.8)

r r

Use the mean value theorem to see that for some 7’ between 0 and 7 the integrand on the right side
of (5.8) equals Dq, . f(Z: + Qix +1'Qiw), which approaches D, f(Z: + Qi) as r approaches

0 by the assumed continuity of D¢, f. The result now follows by dominated convergence. O

The next step is the analogue of Lemma 3.1, which will require considerably more work in
the present Ornstein-Uhlenbeck setting. Recall that Cb(H ) is the space of bounded continuous

real-valued functions on H.
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We introduce the following notation. Let

h(t) = {2t/(62t —1) ift>0

1 ift =0.

For t > 0 and w € H set |wly = (3, w?h(A\it))Y/2. Clearly h(t) and |w|; are decreasing
functions of ¢ and |w|g = |w|.
The next result is closely related to (6.2.10) and (6.4.14) of [DZ].

Proposition 5.2. If f : H — R is bounded and measurable and w € H, then for allt > 0,
P, f is Lipschitz continuous on H, D, P, f € Cy,(H) and

wle 1l

DyPifllee <
|| tf” — \/%

Proof. First consider f € Cy(H). Let m, be the projection operator of H onto R given by
Ty = ((y, 6,-)),5”. Then under P?, 7w, X; is an n-dimensional Gaussian variable with mean

T, Q+x and covariance matrix

t t
Crii) = [ @senaQuads = [ e dsay,  igsn
0 0

Here of course a;; = (€5, a6j>. If v € R", then for some &, ; > 0,

n t n
n —Xis_—A;s 2 —2\;s 2
(x,Clx / g E Qi T;xje e "%ds 2/ v E xie ds > e t|z|”.
i=1 j=1 0 =1
This shows C]' is non-degenerate and so m,X; has a Gaussian density

pi(2) = (2m) "2 (det CF) 2 exp(— (2 — maQuz, (2C7) 71z — muQuw)))-

Let fu(y) = F(X7(, €)€) = fn(mny). Then

Pifo(z+r1rw) — P — 7, Qrw A
tfn( T) tfn /fn pt th ) Dby (y) dy (59)
By the mean value theorem, there is an r’ = r/(y) between 0 and 7 such that the expression in
square brackets is
_Danth?(y - Tlﬂ'thw) (510)

= p? (y - T‘/ﬂ-thw)((Ctn)_lﬂ'thwa Yy — T Qex — T/Wthw)>7

by an easy calculation. As r — 0 the above converges to

p?(y)«ctn)—lﬂ,thw, y—= Wth$)>-
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It is easy to see that the integral of the right side of (5.10) over |y| > K is small uniformly
in |r] < 1 for K large due to the Gaussian tail of p}. It is therefore easy to use dominated

convergence to take the limit as 7 — 0 through the integral in (5.9) and conclude that

D Ptfn /fn pt Cn) Wthw, Yy — Wth$)>dy
P(fr(Xe)(CF) ' Quw, m (X — Qu))).

Introduce U, = (C?)~Y?1,Quw, Z, = (C")~?71,(X; — Qsx) and R,, = (Uy,, Z,). The

above may now be rewritten as

DyPifu(z) = E*(fo(X0)Ry). (5.11)

We need the following lemma whose proof is provided at the end of the current argument.
Lemma 5.3.
|wle

U,|l <
N

(5.12)

The coordinates of Z,, are i.i.d. standard normal random variables and so Lemma 5.3

implies that
jw|?

E*(R?) = |U,|?> < .
(F7) = Ual” < 5

(5.13)

If Y; = X; — Qix, then the joint laws of (Y, Z,),n € N, are independent of x (recall Z, =
(CM)~'/27,Y;) and the same is therefore true of the joint laws of (Y;, R,) on H x R. This
sequence of laws is tight by (5.13) and so we may choose a subsequence {n} (independent of z
and f) such that (Y, R,,,) = (¥;°°, R) with respect to weak convergence in H x R. As Y,*®

clearly is equal in law to Y; we will drop the superscript. Using (5.11), we have

Dy Py f, (2) = B (f(Qur + Yi) Ry ) + B ((fr, (Xo) — f(Xe)) Rary) (5.14).

The second term is bounded in absolute value by E*((f,, (X¢) — f(Xt))z)l/zE v (Rik)l/2 which
approaches 0 as k& — oco by (5.13), the continuity of f and dominated convergence. The above
weak convergence along with the continuity of f and (5.13) show that as kK — oo the first term

in (5.14) converges to E (f(Q¢x + Y;)R), and Fatou’s lemma and (5.13) show that
|wl?

E(R? <
()<,

(5.15)
We have proved that
lim Dy Pify, (¢) = E(f(Qux + Yo)R) = J (x).
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Clearly J is continuous on H by the continuity of f, (5.15) and dominated convergence. Dom-
inated convergence also shows that P;f,, () — P.f(z) as k — 0o0. An elementary argument

using the fundamental theorem of calculus now shows that
D, P, f(x) exists and equals J(z).

In particular, D, P;f is continuous. The required bound on the sup norm of D, P;f is now
immediate from (5.15) and Cauchy-Schwarz.

Consider now the case when f is only bounded and measurable. We have shown above
that for a fixed w € H and all g € Cy(H),

Pog(w+ w) — Pog(a) = /0 E(g(Qu(x + sw) + V) R)ds, wcH.  (5.16)

Let S be the set of all bounded measurable (real-valued) maps on H for which (5.16) is valid.
S is clearly a vector space containing Cp(H) and is closed under bounded pointwise limits. A
standard result (e.g., p. 11 of [M]) now shows that S contains all bounded measurable functions.
This, together with (5.15), proves that for f as above,

[/ lloo|wle
|Pef(z +w) = Pf(z)] < =—=—
Vvt
and in particular P;f is Lipschitz continuous on H.
Finally if 0 < € < t, we may apply the bound obtained in the continuous case to the
continuous map P: f and conclude that Dy, P;f(x) = Dy Pi—.(P-f)(z) exists, is continuous and

is bounded in absolute value by

| Peflloo]w]t—e < | f || oo]w]t—e

Wt—e) — r(t—e)
Let € | 0 to obtain the required bound. O
Proof of Lemma 5.3. Note that m,Qiw = (e~ **w;);<,, where (w1, ..., w,) = T,w and

so by replacing w with Z? w;€;, we may assume (w, €;) = 0 for ¢ > n. We may consider Q)¢ as

)\it)

an operator on R” via )y = diag(e™ i<n and the required result then becomes

ny—1/2 > _ wlf n
(C}) Qiw|” < vt we R".

Define D; : R® — R” by Dyw = (eixitwi ) . Then we claim the above follows from
1<

Vh(Xit) ) i<n
|(Cm)—1/2D 2 M n
t rul® < o ,u€ R™. (5.17)
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To see this set u; = w;\/h(A;t) so that Dyu = Qiw and (5.17) would then imply the required
inequality. If B = D, 1C?Dt_ ! (all operators now are on R™) then

t
By (i, 7) :/0 h(Nit)er ™D ag;y [h(At)er =) ds.

If v is as in (5.2) then one easily sees that

t
(2, Bi'z) > / VZZZh (Ait)e2Xi (=9 ds = ~t|2|2.
0

=1

Therefore Bj' is symmetric positive definite matrix with all eigenvalues no smaller that «¢. If the

eigenvectors of Bf" are 7; with corresponding eigenvalues p;, then

(z,By'z) = ZM‘(Z,H)Z

Therefore if 2 = (C?) ™1 Dyu, then

(CP) 2Dyl = (2,C1'2)

= (2, DyBy' Dy 2z)

= (Dyz, B{' Dy z)

< (yt) 7Y BPDyz|? (by the above with D;z in place of z)
= (

1y,,12
V)~ ul”
Thus (5.17) holds and the proof is complete. O
Now that we have Proposition 5.2, we obtain the Holder norm estimates by making suitable

modifications to what we did in Section 3. The main difference is the lack of commutativity
between P; and D,,.

Proposition 5.4. Let f : H — R be in S“ and let u,w € H. Then D,,P,f and D, D,,P;f

are in Cy(H) and for some constant ci(«, "), satisfy

1DwPiflloo < crlwlst™= || flse (5.18)

and
| DuDw Py f||oo < 01|U|t/2|Qt/2w|t/2ta/2_1||f||Sa- (5.19)

17



Moreover
feC®and ||f|lce < el fllse- (5.20)

Proof. Using Proposition 5.2 we have by Lemma 2.2 (with ¢; = |w|¢/|w]| in that result) that

1DwPiflloo < ealwlet D72 fsa. (5.21)

The continuity of D, P;f is given by Proposition 5.2.
Use (5.21) with Propositions 5.1 and 5.2 to conclude that for £ > 0 and uw,w € H,

D,D,Pf = DuPt/ZDQt/2th/2f exists, is continuous, (5.22)
and satisfies s
DD Py flls < (78/2) 7 |uls2] D@, s Pry2 f oo
< C3t_1/2|u|t/2|Qt/2w|t/2(t/2)(a_l)/2||f||5a
which gives (5.19).

The last result follows from Proposition 5.2 and Lemma 2.3.

O
Lemma 5.5. Ifr > 0,3 < 1, there is a ¢1(8,r) such that for any A > 0,
o0 oo
/ e M wlg, =P dt < 1y A+ M)
0 i=1
Proof. If I; = fooo e_Ath(/\it/T)t_ﬁdt, Fubini’s theorem shows that
o0 o0
/ w2, Bt = 3wl (5.23)
0 i=1
Note that if A; > 0, then
oo 2Mt/r _ _
I < /0 ol (@it r) PN db(2s /)
o0 1-3
1 v —1
< cz(r))\f /0 . 1dv = 03(7‘))\f
Moreover for all A we have
oo
I; < / e M) TPAPTINdE < el NP
0

Therefore I; < ¢5(r)(A + /\i)ﬂ_l, and if this is used in (5.23), the desired result follows. O

Ifw e H,set ||w||g,1 = 0 lwil.
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Theorem 5.6. There exists a constant ci(«,y) and for € € (0,a/2) there exist constants
co(a, 7y, €) such that for X > 0, for any f: H — R in S®, and any u,w € H, the functions
Dy,Ryf and D,D,Ryf are bounded and continuous on H and satisfy:

e 1/2
|Dw R flloo < e2A™0F4 (3T w20+ 20)77 ) fllses (5.24)

=1

IDuDuBsf o < (320 27) (Zu a+207) s, (5.25)

=1
DuBaflse < et (D il +2) 772 [ llse. (5.26)
=1
DuDuBaflse < erlul o]+ [w] [ullz)l1fllse- (5.27)

Proof. A use of Proposition 5.4 allows us to differentiate through the time integral and see that
DyRyf(z) = [;° €7Dy P, f(z)ds and DyDyRaf(x) = [;° e 2Dy, Dy, P, f(x)ds are both
continuous on H. Moreover by (5.19),

||DquR>\f||oo

< callf| se / |U|s/2|Qs/2w|s/23a/2_1€_>‘sd8 (5.28)
0

—e—1_-—As 1/2 o 2 e—1 _—M\s 1/2
< cal| fllse ( |u|s/2$ e ds) ( Qs /2wl5 25" e ds) :
0 0

Use Lemma 5.5 and the trivial bound |Qs/2w|s/2 < |w|s/2 to conclude from the above that

1DuDuBa oo < esllfllse (S0 A7) (o 0a+ 2~7w?)

=1 =1

This gives (5.25) and the derivation of (5.24) is similar.
Now consider (5.26). As in Remark 2.1 we may assume that 0 < ¢ < 1. Use (5.18) to see
that

||DthR>\f - DwRAf“oo

00 t
< (eM — I)H/ e_}‘sDisfdsH + H/ e_}‘sDisfdsH
t o0 0 o0

t

< co(e,7)||fl|se [(e)‘t—l)/ e_)‘s|w|ss(a—1)/2ds+/ e |wl,s(*7/2ds
t 0

— s/ flsa [11 +12]. (5.29)
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First bound I by

1) / D il VON (T )T

< (e -1) |wz|e—”/ V2Zhis (e — 1)7H2 () 5) (@ D/2), gg A(TI/2
Ai>A
Z |wl|/ *(As) (@=1)/2) gg A(Z1=)/2 (5.30)
A <A

A substitution shows the integral in the first term in (5.30) is bounded uniformly in ¢ and so this

first term is at most

cr(@)(1—e ) 3 Jug A2, (5.31)
Ai>A
The integral in the second term in (5.30) is at most cg(a)e™* and so the second term in (5.30)
is at most
(=) ) Ju| AT/, (5.32)

<A

Use (5.31) and (5.32) in (5.30) to conclude that
I < co(L— e ) i (A + Ag) (172
=1

< cot™ ) |wgl (A + i) T2, (5.33)

=1

Next bound I by
< Z |U)z|/ V2A;s(e 2>‘S— 1/2()\ 3)(a D/2), ds )\( a—1)/2

Ai>A

+ ) |wz|/ S(As)(@D/2 ) g A(-1=)/2
A <A

it
<3l [ VR ) e
0

+ Y |wz|/ e (@D 2y \(Z1m)/2 (5.34)
A <A
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The integral in the first summation is at most
Ait
CIO/ ’U,a/Z_ldU S Clo()\it)a/Z
0

and the integral in the second summation in (5.34) is at most
At
/ e~ 22 gy < clo(At)O‘/Z.
0

Use these bounds in (5.34) to see that [ is also bounded by the right hand side of (5.33). Use
this and (5.33) in (5.29) to conclude that

oo

|DwPBAf = DuBaflloo < exs (D +X) 2wl )2/ £l o (5.35)

=1

Proposition 5.1 and (5.18) imply that

||PtDisf - DthPsfHoo = ||PtDw—Qth8f||00
< ciafw — Qw2 f|| s (5.36)

Note that

/ e w — Quwlys( @V 2ds
0
St [ ey
i—1 0

< Z |wi|(1 — 6_’\”)/ (2X;5) Y2 (ePNi® — 1)_1/2()\i3)(a—l)/2)\id8)\§—1—a)/2
0

Ai>A
+ Z |wz|(1 —e—Mt)/ e—As()\S)(a—l)/Z)\dS)\(—l—a)/2
Ai<A 0

S C13 Z |wz|(1 _ 6—)\it)()\ + )\i)(—l—a)/z

=1

<eas Y fwil (A + A) 2002,
=1

Integrate (5.36) with respect e~*%ds, use the above bound, and combine the resulting inequality
with (5.35) to derive (5.26).
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Finally consider (5.27). Use (5.19) to see that for 0 <t <1 and u,w € H,

||DUDthR>\f - DquRAf“oo

> t
< (M- 1)H/ MDDyl fds|| + H/ e~ DD, P fds|
t 00 0 0o
< cual|fllse [(GM - 1)/ e_>\S|U|s/2|Qs/2w|s/28(a/2)_1ds
t

t
+/ 6_)‘8|U|s/2|Qs/2w|s/2$(a/2)_1d8]
0

t

< cuafol ul | flls- [ ~ 1) / e U2 quA 2 4 / /2|
At

0
< erslwlJul | fllsa[(1 — e M)A 4 47/2]

< crglwl ful || f[|set*/?. (5.37)
Now
P,DyDyP,f — DyDyPiPyf = [PDyDyPyf — DyP,Dy P, f] (5.38)
+ [DP.DPsf — D, D, P,P;f].

By Proposition 5.1 and (5.22) (the latter to verify the hypothesis of Proposition 5.1), the first
term on the right is equal to Pz Dy_Q,4DwPsf and so by (5.19) has sup norm bounded by

c17s? " Hu — Qtuls/2]|Qs/2w|s 2 fllsa < c1882 " Hu — Qruls2|w|s/2l flso-

Propositions 5.1 and 5.2 show that the second term on the right-hand side of (5.38) is
DyPyDy—@,uwPsf, which by (5.22) and Proposition 5.1 equals PDq, D (1-Q,)wPsf- Use (5.19)

to bound the sup norm of this expression by

c105% M Quuls2|Qs/2(w — Quw)|s 2|l fllse < 1082 THulsj2lw — Qewly ol £l 5o
These bounds and (5.38) give

|PtDy Dy Psf — DyDy PyPs f|| 0o (5.39)
< 2082 M |ul s o|w — Qw2 + w5 2lu — Qeuls 2]l £l 5o
Note that
o0
| e o~ Quolyads| e
0

o a/2)— —\; /\iS 1/2
< Ju| ||f||5a/0 s/ w1 e i vl IR

o Ai$
< |u o gla/2)-1 Jw; |(1— e Mt) L2 (s
<Jul lflse [ Sl (1 - o) Y
(Ais) (a 1)/2/\ /2

< full s Sl [ P st - ).
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Note that 1 — e™* < (X;¢)®/2 and so the above gives
oo
[ e o = Quul sl s < canlul [l all ™/
0

Integrate (5.39) with respect to e_ASds, use the above bound, and combine the resulting bound
with (5.37) to conclude

1P:DuDy Rxf — DuDuwBaflloo < cazllul lw] + |ul |w] g1 + lull . w] ]| £l st/

and (5.27) follows. O

Corollary 5.7. There exists a constant ci(«,~y) such that for all A > 0, any bounded
measurable f : H — R, and for all1 < j € N,

IDiRAflloo < ex(A+ X)) f]| g, (5.40)
IDijRaflloo < cr(A+ Aj) ™3| f]| s, (5.41)
IDiRxf]lse < cr(A+ X)) 72| f]lse, (5.42)

|DijBafllse < cil| fllse- (5.43)

Proof. The first two inequalities follow easily from the bounds in the proof of Theorem 5.6 prior
to the use of Holder’s inequality. For example, to derive (5.41), use (5.28) with u = ¢; and w = €;

D] < call Fllse [ \fihgs/2)s2/2 e s
0
<clfllse [ VAT

—a/2
< call fllsa XS 2

to conclude

Use h <1 to also bound the first line of the above display by C5||f||5a)\_°‘/2 and (5.41) follows.
A similar argument gives (5.40). The last two inequalities are now immediate from (5.26), (5.27)

and the first two inequalities. O

Remark 5.8 In Corollary 5.7 we showed that the operator D;; Ry is a bounded operator on
S with a norm independent of ¢ and j. It is also known that D;;Ry is a bounded operator
with respect to the usual C“ norm, again with a norm independent of ¢ and j; see [D], [L], [Z],
or especially Section 6.4.1 of [DZ]. Neither of these results contains the other. The C'* norm
emphasizes the local continuity, while the S® norm also gives weight to the behavior of f(x)

when |z| is large. Both results are of interest.
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6. Relationship between norms — the generalized Ornstein-Uhlenbeck case.
We now prove the analogue of Proposition 4.1. Let |f|4,; be defined as in (4.1) and set

) e/
Floiw = sup @ HRe) = f@)l il

6.1
,h£0 |h|/2 (6.1)

Let

1715 = Wflloo + 32 1 e + 3 A72 Ml = 17 oe + 11, (62)

and let E'“ be the space of continuous functions with || f||g« < 00. In Proposition 6.3 below we
introduce a norm || - || Fa which is equivalent to || - ||se in finite dimensions. This norm could be
used in place of || - || e in the statement of Proposition 6.1; we use || - || ge in the next proposition

because of its simpler form.

Proposition 6.1. There exists c¢1(«,) such that if f € E* and g € S*, then

1fgllse < erllfllz=llgllse-

In fact,
1fgllse < ealllflloclglse + [f|Ellglloo]-

In particular E¢ C S¢ C C*.

Proof. As in the proof of Proposition 4.1, it suffices to fix x € H and show that if f(z) = 0,

then for some co = Cz(a, ’Y)

|Pi(f9) ()] < col flmellglloot ™. (6.3)

For y € H let z;(y), 25 (y) € H satisfy

(zi(y), €5) = (W, €)1 j<iy + (2, €5) 1 (j>4)
and
(77 (), €5) = (Y, €)1 (j<iy + ( Qe €)1 (j=iy + (2, €)1 (i)

Let

fily) = f(zi(y)) — f(zi-1(v))-

Note that f;(y) is equal to f(z;—1(y) + (v;: — xi)€;) — f(2i—1(y)). Therefore we see || fi|lco <

|fla,ilyi — zi]® Our assumption f(xz) = 0, together with dominated convergence and the
continuity of f, implies Py(fg)(z) =Y 1o, Pi(fig)(x). Then
P(f9)(@)] < Pl figl@) < llgllooPel fil (). (6.4)
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Let Z; denote a mean zero Gaussian random vector in H with covariance Cy. Then

B[ fil) (@) = E(|f (z:(Qew + Z1)) — f(2i-1(Quz + Z1))])
SE(f(z(Qur + Z1)) = f(2 Qe + Z1)]) + B (| (27 (Quw + Z1)) — f(2i1(Quw + Z1))])
<l ((Zes ) |%) + 1 lasiwl(Quar — 2, €| 2 |i] =215, 20)- (6.5)

Note that
E ((Zs, €)%) = ai; (1 — e 2N (20) 7 < 47t (6.6)

Therefore the first term in (6.5) is at most

| f il ((Z1,€0)%)* < | flaiy /2172, (6.7)

The second term in (6.5) is bounded by

Put (6.7) and (6.8) into (6.5) and sum over ¢ to conclude

S0 PN @) < [17 D2 U i+ D Wl w17

< eale, )]t

Put this bound into (6.4) to derive (6.3) and hence complete the proof of the required inequalities.
Set g = 1 and use (5.20) to prove the final inclusions. 0

Proposition 6.2. Assume \; > c1i? for all i and some ¢; > 0. Then S is an algebra
and (2.6) and (2.7) are valid.

Proof. We verify the hypothesis of Lemma 2.4. If Z; is as in the previous proof, by (6.6)

E“(IX: —E"(X)") = ZE ((Ze,€)?)

1— e—ZAit

oo
=3 i gy
=1
oo
<) (iTEAL).
=1

An elementary calculation shows the above is at most c3v/t and so the result follows now from
Lemma 2.4. |

25



Finally, we present a norm that is equivalent to S® in the finite dimensional case. Define

f(Qux) — f
|f|Fa:ti%1§’$| : 1tg:c)y/z @l

(6.9)

The letter F' stands for “flow”, as what we have here is a weighted Holder seminorm along the

flow Q;x. Note (Q; is deterministic:
Qir = Qt(zl'iei) = Ze_AitxiEz‘-
2 [

Define
[fllFe = Ifllce + |fpa. (6.10)

Let m4 denote the projection of H onto the subspace spanned by {61, cey ed}. In the next result
we effectively reduce to the finite-dimensional case by considering functions which only depend

on the first d coordinates.

Proposition 6.3. There exist positive ¢; and co depending on (v, d) such that for any
measurable f : H — R satisfying f = f o my,

cillfllse < [Ifllpe < call flise-

Proof. Let Z; be the Gaussian vector introduced in the previous proof. Then, using (6.6), we

have

Pf (@) = F(@)] < B (F(Qu + Z2) = F(Quar))] + |F(Qur) = f(2)
< flonE (ImaZel®) +1f|pat®/?
< ief? [|f|0°‘ (dy™1)% + | f|po (6.11)

and the left hand inequality is established.
Turning to the right hand inequality we have,

F(@u) — 1(0)] = (P (@) — F@) — B Qe+ 2)) - (i)
< |t + flooE (fmaZi )
< 172l + call llsn (dr)*"2),

where in the last line we have used (5.20) and (6.6) again. This together with a further application
of (5.20) give the right hand inequality. O

The following gives a relationship between S and C'*.
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Proposition 6.4. We have

[flse < er D | Flak + |f|pe.
K

Proof. Asin (6.11),

[P f(z) — f(z)| < |Ef(Quz + Z;) — f(Quz)| + | f(Qex) — f(2)].

The second term on the right is bounded by |f|pat®/2, so we need to bound |E f(y+ Z;) — f(y)],
where we write y for ;2. Replacing f () by f(-)— f(y), without loss of generality we may assume
f(y) = 0. Define random variables Y; by

(Yi(w), €5) = (v + Ze(w), €)1 (j<iy + (Y, €5) 1 (5>0)-
Then -
Efy+ Z¢)| < ZE |f(Y:) = f(Yic1)]

=1

< Z | flail [(Ze, €|

=1

Using the calculation in (6.7), this is turn is bounded by
> laity™')2,
7

which gives the proposition. O

7. Relationship between norms: super-Markov chains.

In [BP] Holder norm estimates were proved for the operator

d
Lf() = [viwDif(x) + b;D; f ()]
=1
operating on functions on R%. Here v = (71,...,74) € (0,00)% and b = (by,...,bg) € R%.

The estimates were with respect to the norm defined by

d
1Flles = [1lloo + X 1Flw,ais
1=1

where

h v) «
|f|w,a,i - sup |f(x T he ) f(x)|xz /2'
h>0,z€[0,00)4 he
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Set C¢ = {f € Cp(RL) : ||fllca < oo}. (Continuity of f at points in ORL does not follow
from || f[|ca < 00 and hence must be assumed.) In [BP] this norm was essentially forced on us
in order to get the estimates we needed. The Holder norm estimates for this case are derived in
[BP] and make up a considerable portion of that paper. So in this section we content ourselves
with showing that the C' norm is equivalent to the S norm for this operator.

Let P; denote the semigroup associated with £ and E” denote expectation with respect
to the associated Markov process (X¢,t > 0) in ]Rd , starting at © € R‘j_. More precisely under
P*, X is the unique (in law) process such that Xy = x and

MﬂﬂzﬂXQ—ﬂ@—ALVMQ%

is a 0(X,, s < t)-martingale for all f € CZ(R%). If d = 1, let P*(X; € dy) = p’ (2, dy) and
: ' ibi

write p}(z;, dy;) for p]"" (x4, dy;).

Remark 7.1. Functions in C& are not necessarily continuous on the boundary of R? , and so

we restrict statements below to functions in S*NCy. However functions f for which || f||ca < oo

have an extension to a continuous function on R‘_il_ ([BP], Proposition 2.2). In view of Theorem

7.6 below, functions for which || f||se < 00 also have such an extension.

Lemma 7.2. Let f be a bounded Borel function on R%L. If ¢ > 0 then D;P,f(z) is a

continuous function in x; satisfying
|DiPif ()] < exl(vita) ™% A (73t) 711 oo
for some constant c;.

,Tq) € R‘j__l for x € R‘i and define

) /Hpt zj, dy;) f (y)-

J#i

Proof. Let z; = (.Tl, S I O/ VT PN

Set s = ;t for a fixed ¢ > 0. Then use Lemmas 4.1(a) and 4.5(a) of [BP] (the continuity of f

assumed there is not used) to see

IMHWZM/WMMWMW

> . k+(bi/vi) k+(bi/vi)—1 ¢4
Z ~oafo (il ) Z/S / F* (zs)e™? z _Z ]_’z (7.1)
P 0 D(k+ (bi/v)+1) T(k+ (bi/v:))! s
Zbi/%' dz

n e—mi/s/o Fﬁi(zs)e_zr‘(( bi/vi) +1) s 5

o0 R (bi/vi)—1 dz
— 1, e_‘“/s/ F(zs)e™ 207 42
(:>0) 0 ( ) ( z/'Yz) s
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If ap, = ax(Z;) is the integral in the above summation over k, then

Z; > —z Zk+(bi/7i)_1 |Z_(k+(bl/71))|dz
e A Fo v = vy
<eallflloo (s + (bs/7)) /2 4+ 1) (k + (bi/3:)) "5~

<201 loo ( + (bi/7)) /257",

where Lemma 3.2(a) of [BP] is used in the second inequality. It is now easy to see that the series in
(7.1) converges uniformly for z; in a compact set and so D; P, f (a:) is continuous in x;. Moreover
this bound and (7.1) also show that

—x; /s \Li/ S — — —x;/s —
DB (o |<Z oLl 4+ () 25 4+ 2075 ™
conll A (i) 1/2>||f||oos—1 2 5 f s

by an elementary bound (see Lemma 3.3(a) of [BP]). Since e ~%¢/% < 1A (xi/s)_1/2, the required

result follows. O

Lemma 7.3. If f is a bounded Borel function on Rﬂ{, then

D;P;f(z)| < fe o
IDiPif ()] < er(e) —— N 1fllss

where ¢ depends only on «a.

Proof. This follows from the previous result, exactly as in the proof of Lemma 2.2. O
Proposition 7.4. Let f be a bounded Borel function on Ri. Then

Flwai < v, 21 f llse

Proof. If h > 0, then Lemma 7.2, the fundamental theorem of calculus and Lemma 7.3 show

h
Pf(x + hes) — Pof ()| :‘/0 DiPuf(x + We;)dl!

Sczt(a—l)/Z,Yi—l/Z/ y_l/Zdy“f“Sa

Tq

<eat @V 2 (yua) TV 20| £ s

We also have

|Pef () = f(@)] < || fllsat™/.
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The above two inequalities imply
[f (@ + hei) = f(a)] < (262 + et D2 (i) T2R) | f || s
We optimize by setting t = (c3/4)h%(z;v;) ™!, and so

1f(x + her) — f(2)] < ez(@)y, 2 hea; ) f || s

Recall the definition of |f|ge from (2.1).

Proposition 7.5. If f € C’b(R‘i), then |f|se < c1() Zle((bi/%) + 1)7?/2|f|w,a,,~.

Proof. We may assume without loss of generality that f € C¢. Let € > 0. Results in [BP]
(notably Proposition 7.2 and Lemma 7.6 there) imply P.f € C? (R‘_{) N D(L) and so the fact

that we are working with a solution to the martingale problem for X implies

P - rrwl=| [ P @

t—e

LPsycf(x)ds

),
< [(1ers@yas

Use the upper bounds in Proposition 5.1 of [BP] to see that

d t
P (@) = Pof @)] € 0 Db 97 ) s [ /2
1=1 €

d

<es) (1+ bi/ )7 2| f

=1

a2
w,a,it / .

Now let € | 0 to complete the proof. O

Theorem 7.6. Assume 0 <e <-~; < K andb; < K fori=1,...,d, for somee <1< K.
There are constants ¢y and co(c) such that for all f € Cyp(R%),

d

W, S |f|SO‘ S 02(K/€)Z |f

=1

c16%/? max ;
1 i<d |f w,Q,t

and therefore there are constants cz and ¢4 such that

csd ™| flleg < IIfllse < callflleg
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for all f € Cy(R%).
Proof. This is immediate from Propositions 7.4 and 7.5. O
Remark 7.7. Let D denote differentiation with respect to t, define
1£llge = [1flloo + sup | DP flloot =72,
t>0
and introduce
G* = {f € C4(RL) : DP, f() exists and is continuous in ¢ > 0 for all z, || f||ge < 00}.

The proof of Proposition 7.5 can be easily modified to show C C G* and

d
Ifllae < e Y (0 +bi/3)7 " Flwsei + 1 flloo

=1

for all f € C. A trivial integration shows G* C {f € Cp(R%) : || f||s» < oo} and
| fllse < 2]|f||ga. Combine these observations with Theorem 7.6 to conclude C& = G* =
S*N (Y and for €, K as in Theorem 7.6 there are co and c3 such that

2

c2d™ | flleg < Ifllse < Sfllee < esllflieg-
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