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Abstract Sticks at one of different orientation are placed in an i.i.d. fashion at points of a Poisson point process
of intensity A. Sticks of the same direction have the same length, while sticks in different directions may have
different lengths. We study the geometry of finite cluster as A = co. The asymptotic shape of the custer being
determined by the probabilities of the sticks in various direction and their lengths and orientations. We also

obtain the limiting geometric structure of this component.

1 Introduction

Consider one dimensional sticks placed at random locations and with random orientations in
the two dimensional plane. In the language of stochastic geometry we have a planar fibre
process whose grains are two dimensional linear segments and whose germs are the random
locations. The most commonly studied fibre process model which incorporates these features
is when the germs arise as realisations of a Poisson point process of intensity A on R? and each
germ is the centre of a stick of either fixed length or a random length and having a random
orientation, with the distribution of the length and orientation of a stick being independent of
the underlying Poisson process. This is the Poisson Boolean stick process, a particular instance
of the more general planar Boolean fibre process. Hall [1990] (Chapter 4), Stoyan Kendall and
Mecke [1995] (Chapter 9) discuss the geometric and statistical aspects of this process.

While the stochastic geometry study of these processes was motivated by its application
in geology, viz., the subterranean earthquake faults are modelled as a Poisson Boolean stick
process (see, e.g., Weber [1977]); the interest in the physics community of this model led to a
probabilistic study of its percolative properties. Suppose mirrors are placed randomly on the
plane and we are interested in the path of a ray of light in this set-up. Clearly the geometry of
the mirrors on the plane determine the trajectory of the ray of light. This model is a modern
equivalent of the Ehrenfest wind-tree model which was introduced by Ehrenfest [1957] to study
the Lorentz lattice gas model (see Grimmett [1998] for an exposition of the mathematical study

of this model). This model has also been studied for its percolative properties (in particular,
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the critical phenomenon it exhibits and the corresponding critical parameters) by Domany and
Kinzel [1984], Hall [1985], Menshikov [1986], Roy [1991] and Harris [1997].

Here we study the geometric features of finite clusters in the Poisson Boolean stick process
when the intensity of the underlying Poisson process is high. More particularly, consider a
Poisson point process of intensity A on R? conditioned to have a point at the origin. At each
point z; we centre a stick of length r; and orientation #; measured anticlockwise w.r.t. the
z-axis. We suppose that
(i) r1,79,... is an i.i.d. sequence of random variables,

(ii) 61,02, ... is an i.i.d. sequence of random variables, and

(iii) the sequences {r;} and {6;} and the underlying Poisson process are independent of each
other.

Consider the cluster of the origin (which is the connected component formed by sticks containing
the stick at the origin). For the above model Hall [1985] has shown that if the random variable
r1 is bounded, and the random variable 6, is non-degenerate then there is a critical intensity
Ac such that, for A > A., with positive probability the cluster defined above is unbounded.
Moreover this probability goes to 1 as A — oo. Given the rare event that this cluster contains
exactly m sticks, we investigate its structure as the intensity A — oo.

In the case of the Boolean model which consists of an underlying Poisson point process of
intensity A on R? and each point of the process is the centre of a d-dimensional ball of radius
r, Alexander [1991] showed that conditional on the cluster of the origin (i.e. the connected
component of balls containing a ball which covers the origin) being finite and consisting of m
balls, the event that these balls are centred in a small region of radius O(A ') has a probability
which tends to 1 as A — oo. This region where the balls are centred has volume O(A~%) whereas
the ambient density is A, thereby giving rise to the phenomenon of compression wherein many
more Poisson points are accomodated in this region than the ambient density allows. Sarkar
[1998] showed that in case the balls forming the Boolean model are allowed to be of varying
sizes, then given that the cluster of the origin contains m balls, not all of the same size, the
phenomenon of rarefaction occurs, wherein the biggest sized balls remain compressed in a very
small region, but the other balls are sparsely placed in the region covered by the biggest sized
balls.

In our model the phenomenon of compression also occurs, however that is of secondary
interest. Instead we look at the geometry and the distribution of the sticks of various orientation
in the finite cluster.

In this paper we restrict ourselves to the study of the model when the sticks have exactly
two or three possible orientations and sticks of the same orientation have the same length. In
the case of two possible orientations the asymptotic distribution was shown to be independent
of the angle and the length of the sticks — a result which is not surprising in view of the
affine invariance of the model. However, if three or more orientations are allowed then the
affine invariance breaks down and the asymptotic distribution do depend on the angles. In

this case we show that the asymptotic shape consists of sticks with only two orientations. The



orientations which “survive” are chosen according to the lengths and angles of the possible
orientations and the probabilities of the sticks in various directions.
The paper is organised as follows:— in the next section we present a formal defintion of the

process as well as the statements of our results and in Sections 3 and 4 we prove the results.

2 Preliminaries and statement of results

2.1 Notation
Let R = R? x [0,7) x (0,00), and

M= M(R) = {f = {fz,'l S N} (€= (.’Ei,ai,n) S R}
For (z,0,r) € R, S(z,0,r) = {x +uey,u € [—r, 7]} is the stick with centre z, angle # and length
2r, where ey = (cos 6, sinf). We define the collection of sticks for £ € M as S(&) = {S(z,0,7) :
(z,0,7) € £}

We say two sticks S and S” are connected and write S <£> S’ if there exists S1,52,...5; €
S(€) such that SN Sy #0, NSy #0 and S;NS;41 # 0 for every i = 1,2,... k — 1. If S(¢)
contains a stick Sp centred at the origin 0, we denote by Cq(¢) the cluster of sticks containing
S(), ie.

Col€) = {y € 5:5 € 5(¢),5 & So}.
(We put Co(€) =0, if S(§) does not contain any stick with centre 0).
Let p be the Radon measure on R defined by

d
p(dxdfdr) = dz» " pjda, (d6)dr, (dr), (2.1)

7j=1
where oy =0 < aps < a3 < <ay <m,pj> O,Egzlpj =1, R; >0,5=12,...,d and 0,
denotes the usual Dirac delta measure. We denote by 1, the Poisson point process on M(R)

with intensity measure p. Let
Lo :={({eM:(0,a;,R;) € for some j =1,2,...,d}. (2.2)
For w; = (z;,0;,7i), i = 1,2,...,m, let
Wi = (Wi, wo, ..., wp), {wn} = {w,wy,...,wy}, Co(Wn) := Co({wn}). (2.3)
For k = (k1,k2,...,ks) € (NU{0})?, we denote by A(k) the set of clusters containing
exactly |k| = Z;j k; sticks with k; sticks at an orientation «;, j =1,2,...,d.
For a, 8 > 0, Ry, Rg > 0, eq = (cos o, sin ), and x,,, = (21,22, -+ ,Zm) € (R*)™, we define
the following regions:-
By p, = {a%a + 25 : (a,27) € [~ Ra, Ra] % [~ Ry, Ry},

BRf,Rﬂ() BR’ﬂRﬂer z € R,

a,f «,
By g, (xm) : UBQ,RB%



2.2 Sticks of two types

In this subsection we assume that
(i) there are sticks with only two orientations, and
(i) sticks of the same orientation are of the same length but sticks along different directions
could be of different lengths.
Without loss of generality we assume that sticks are either horizontal or at an angle « € (0, 7].
Sticks which are horizontal are of length Ry and sticks at an angle « are of length R,,.

In this case A(k,£) is the set of clusters containing k horizontal sticks and ¢ sticks at an

angle o with respect to the z-axis. We show that

Theorem 2.1 Let m=k+¥¢, k,{>1, a € (0,7) and 0 < Ry, Ry. As A\ — o0, we have
(1) pap(Co € A(k, £) | T'o)

m—3
1 “A\B%YY | —2(m—1),... 3kp.1, 3
~ | — e Ro.Ral(pq mp " klg> !,
(MBO,Q |> (pq)

R07Ra
where a(\) ~ b(A) means that % =1 as A — oo;
(ii) p)\ym(k,f) = ,U,)\p(#Co = (k,f) | #Co == (kl,gl), k, +£l == m)

p3kk!q3£m
T ke PRI

An interesting observation from (ii) above is that asymptotically, as A — 0o, the conditional

probability px m,(k,£) of the sticks comprising the finite cluster Cy, is independent of both the
angle a as well as Ry and R, the lengths of the sticks. This is not surprising because the
model is invariant under affine transformations. Now let py,(k,¢) := limy_,o0 prm (K, ). We

also observe from Theorem 2.1 (ii) that, as m — oo,
pm(m —1,1) = 1 for p > ¢,
pm(lym—1) =1 for p < g,
1
pm(l,m—l):pm(m—l,l)—>§ for p =q.

Moreover, let k and m both approach infinity in such a way that (k/m) — s, for some s € [0, 1],

then we have .
lim — Ingm(k,e) = H(S),

(o)) v
where
3(1—s)log(g/p), ifp>gq,
H(s) = slogs+ (1 —s)log(l —s) + 4 3slog(p/q), if p < gq,

0, ifp=gq,
from which we may deduce that as m — oo, for 0 <a < b <1,
P(the proportion (k/m) of horizontal sticks in the cluster lies between a and b)

~ exp{sup,c(q,p) H(5)}



Figure 1: The finite cluster for large A\. The region X which contains the centres of the sticks

at an angle o w.r.t. the xz-axis is uniformly distributed in the parallelogram ABCD.

From the proof of the above theorem we also observe that the centres of the horizontal
sticks comprising the cluster Cp lie in a neighbourhood whose area is of the order o(A~1+(0/2)),
Similarly the centres of the sticks of orientation « comprising the cluster Cjy lie in another
neighbourhood whose area is of the order o(A~'*+(9/2)). (See Figure 1.)

2.3 Sticks of three types

In this subsection we assume that

(i) there are sticks with only three orientations — 0, and [3,

(ii) sticks of the same orientation are of the same length.

Here the results are significantly different from those obtained in the previous section. In
particular the absence of any affine invariance leads to the dependence of the results on both

the length and orientation of the sticks through the following quantities

R, Rg Ry
=2 Hjz = Hy=——"——. 2.4
" sinp’ P~ sina’ 07 sin(B — a) (24)
By a suitable scaling we take
Hy =1 and let H, = a, Hg = b after the scaling. (2.5)

As the following theorem exhibits, the asymptotic (as A — oo) composition of the finite cluster
contains sticks of only two distinct orientation, while the third does not figure at all. Here
we use the shorthand “A(z,y) occurs” to mean that as A — oo the asymptotic shape of Cj

consists of sticks only in the directions x and y.

Theorem 2.2 Given that Cy consists of m sticks,



(1) fora,b>2;

(i) if (ab—a+1/4)pg +a < (ab— b+ 1/4)p, + b, then A(0, ) occurs,
(ii) if (ab—a+1/4)pg +a > (ab—b+1/4)ps + b, then A(0, ) occurs, and
(iii) if (ab—a+1/4)pg +a = (ab— b+ 1/4)ps + b, then both A(0,«) and A(0, ) have
positive probabilities of occurrence;
(2) for1/2 < min{a,b} <2 and a #b, a,b# 1 and for z,y,z € {0,a, B} let
f(xu y7 Z) = p:EH:IJ ma‘X{Hya Hz} +p:D min{Hy7 HZ}2/4 + (1 - p:L‘)Hszu

(i) A(a, B) occurs when f(0,a, ) < min{f(5,0,a), f(a,3,0)}

(ii) A(0,«) and A(0,B) have positive probabilities of occurrence, when f(3,0,a) =
fle, 8,0) < f(0,e, B), and

(iii) A(a, B), A0, ) and A(0, B) all have positive probabilities of occurrence when f(53,0,a) =

f(O{?B?O) :f(()?a?B);

(3) for0 <a=0b<1, and,

(1) fOT Do < min{pompﬂ}7 A(Oé,ﬁ) occurs,

(ii) for po > min{pa,ps}, .
if a < 1i(po,pa,pp) i=1— 477’3?];211?1;{5&)’25%}, then A(a,B) and fization occurs, while,
if @ > 1i(po, paspB), A0, ) occurs for po > pg and both A(0,«) and A(0,) have

positive probability of occurrence for po, = pg;

(4) forl1 <a=10b<2, and,

(i) for po < min{pa,pg},

. 2 max{pa,pg}++/4 max{pa,ps}>+4paps+po min{pa,ps}
if a < lz(po,pa,PB) = ’ \/ 4max{pai)5}+p0 S : , then A(Oé,ﬁ)

and fization occurs, while,
if @ > 12(po, PaspB), A0, ) occurs for po > pg and both A(0,«) and A(0,) have

positive probability of occurrence for po = pg,

(ii) for min{py,ps} < po, A(0, ) occurs for po > pg and both A(0,«) and A(0,3) have

positive probability of occurrence for po, = pg;
(5) for a =0b=1, fization always occurs and

(i) A(z,y) occurs when p, < min{pg,py},
(ii) with equal probability A(z,y) and A(x,z) occur when py = p, < pg, and
(iii) with equal probability A(z,y), Ay, z) and A(z,x) occur when p, = py = p.;
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0 ps 1-2pg  1l-pg 1
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Figure 2: The diagram in the case that a = b and pg € (0,1/3). The curved line is the line
Liljo<t, <1y + l2lji<i <oy For po > 0 and a below this line A, ) occurs, while for a above
the line A(0, B) occurs when po < pg. At pg =0, only A(a,B) occurs.

Observe that for mina,b < 1/2:
(A) If b,1 > 2a, then by the scaling which transforms a to 1, b to b/a and 1 to 1/a, the
resulting asymptotic cluster may be read from (1) of Theorem 2.2. Similarly if ¢,1 > 2b, we
may scale suitably to obtain a situation as in (1) of Theorem 2.2.
(B) If either a/2 < min{1,b} < 2a,a # b, a,b # 1, or b/2 < min{l,a} < 2b,a # b, a,b # 1,
then scaling shows that (2) of Theorem 2.2 may be used to yield the asymptotic shape.
(C) Ifeither 0 <b=1<aor0<a=1<b, then scaling shows that (3) of Theorem 2.2 may
be used to yield the asymptotic shape.
(D) If eithera <b=1< 2aor b <a =1 < 2b, then scaling shows that (4) of Theorem 2.2
may be used to yield the asymptotic shape.
Thus the above four observations demonstrate that Theorem 2.2 yields the asymptotic shapes
for all possible values of a and b.

To prove the above theorem we need to know the conditional probability of the composition

of a cluster given that it is finite. This is obtained in the next two sections.



Figure 3: The various regions where Theorem the various parts of Theorem 2.2 hold.

3 Proof of Theorem 2.1

3.1 General set-up

For k € (NUO0)¢, d > 2, with |k| = m, let A(k) and Iy be as in Section 2.1. First we calculate
tap(Co € A(k)|Lg). Suppose that wy, = (0, aj,, Rj,) for some jo € {1,2,...,d}. We have

pap(Co € A(K) | wi €)

Z/Mxp(dﬁ) D 1ag0(Co(Wm))L{s(e\ fwn S ({wm })=0}
U (Wi _1}CE

where wy,, {wm} and Cy(w,,) are as defined in (2.3). Thus,

prp(Co € A(k) | wy, € &)

=) el e (dWm—1)1a00 (Co(Wm))L{s()ns(wm =0}
M Rm—1

)\m—l
= — / p®(m71)(dwm_l)lA(k)(CO(Wm))e*AP(WS(w)ﬁS({Wm})#@)‘
(m —1)!
Rm—1
Note that S(z,0,7) N S{wp}) # 0 if and only if z € U?;lefjf(xi) where w; = (x;,0;,7;),

1=1,2,...,m. Hence,

d m
plw s S(w) N S{wm}) #0) = > pil | Bri (1))
j=1  i=1



and so

)\mfl

r0(Co € AK) | w € €) = - [ oY )L (Colwn)

(m —1)!

Rm—1
X exp |:)\ ij| U Be“aj ]

Let

F)?éjo (k) = / dxl,kl / dx27k2 T / dij’kjo_l o / dxd’kd

(R2)*1 (R2)*2 (R?)’“io*l (R2)kd

X 1p(k) (Co(x)) exp —)\Zp] U BE’?{J (%) 5
= i=1,k; 0

where C()(X) = Co(xlykl,xzkm ce axd,kd) = OO(U;‘lzl{(xj,ia ay, R]) 1= 1, ce ,kj}). From the
translation invariance of Lebesgue measure it is obvious that if k;,k; > 1, then F; (k) =
F;\lj' (k). Thus writing F) (k) for F}” (k), since px,((0, j, R;) € £ | To) = p;, we have

mfl

d d k
m
pap(Co € A(k) | To) = Hk— (k) = ALK H,% (3.1)

3.2 Proof of Theorem 2.1

To prove Theorem 2.1, observe first that in the case when we have sticks with only two orien-

tations, the Radon measure p is given by
p(dz df dr) = dz{pdy(dO)dr,(dr) + qdn(db)dr, (dr)}. (3.2)

;From (3.1) we have

uo(Co € A(k,0) | To) = AFH 1(k+e>f;,§, (k. 1))

0,
= AR 1(k+£)’;,g| “NBES vl £, (1, 0),

where

a(k, 0) == / dxp—1 / dye 1a(e,0) (Co(Xe, yo)) X (Yo)Xgx (%),

01,0- 01,0 01,0
X0 (%) = exp | —c{|BI ", (0] = |BR", 1}] (3.3)

(note here that z; = 0). Now consider the event A(xy,y¢, k,¢) := {C) contains exactly m sticks
(0,0,1/2), (21,0,1/2),...,(xk=1,0,1/2), (y1, 5,1/2),..., (ye, 5,1/2)}. By the affine invariance



of the Lebesgue measure

Ik, 6) = |B?€0a,Ra|m_l / dxg—1 / dye La(xy,yik.0)
(RZ)k—l (RZ)Z
x exp[-Apl By p. [{1B1 (ve)| — 1By ]}]
x expl-Ag| BY {1 B1 ()] = |B1 [}, (3.4)

where B = [—R, R]Q, BR(.T) = Br +x and BR(Xk) = Uéc:lBR(.’I)i).

For the proof of Theorem 2.1 we will obtain lower and upper bounds of f\(k,l) which we
later show to agree as A — oo. To this end we need the following lemma whose proof is given
in the appendix. For each z € R? we take 2z z? € R such that z = 2%, + xﬂeg. Note
that (2%, z?) is just the representation of z € R? in the base given by the axes parallel to the
orientation of the sticks. Let hqy(x) = Smﬁ, hg(x) = 2” and

sin o

ho(xi) = (ho(x1), ho(z2), .. . holxy)), Xk = (@1, 2,...,1z5) € (R2)F.
We put
M(ug) = 12%§k|ul ujl, wp = (u,u2,...,uE) € (R)k
and Cy g = sin asin S sin(a — 3).
Lemma 3.1 Let xi = (21,22, -

,zk) € (R®)F with 2, = 0. Then

1By 5 G \B | < 2Ca s{HaM(hs(x0)) + Hs M (ha(x4))}
T CapM (kg (x0)) M (ha (). (3.5)

and, if BR R (xx) is connected, then we have
1By C\BgL | > Co{HaM(hg(xi)) + HsM (ha(xi))}, (3.6)
|BRa ,Rg (xk)\BRa R5| > QCa,ﬂ{HaM(hﬁ(Xk)) + HﬂM(ha(xk))}
= CapM(hs(x)) M (ha(xt)). (3.7)

Now we evaluate the bounds of fy(k,¢).
LOWER BOUND : By (3.5) of Lemma 3.1, taking z; = 0 we have

Ik, €) > |BR0Ra|m_1 / dXp—1 / dye La(xy.ye ki)

(R2)k-1 (R2)!
x exp[~Aq| By |(M(x}) + M(x3))]
x exp[—Ap| B [(M(y}) + M (v7))]
< exp[A|B2  HaMOIMO2) + MM (3.8)

10



Let L()\) be such that, as X — 0o, AL(\) — oo and A(L(A))? — 0. If {z;}i=} ¢ Br\ and
{yi}f;l C Broy(Ye), then, for o = 0, yp € Bg_r(y) and for A sufficiently large, we have
A(Xg, ¥y, k, ¢) occurs, and so the expression on the right of the inequality (3.8) is bounded from
below by

|B?€3Ra |m_1 / dxp_1 / dyy / dys_1

(Broy)kt Bia—rny  (Broy(ye) !
x exp[—Aq| BY o |(M (x}) + (x
x exp[=Ap| B (M (yj
x exp[—A| BY Ra|{qM(x}g

L A e dx 1 / dye
(BLony)k—t (Brny)tt
x exp[=Aq| B, [(M(x}) + M(x}))]
x eXp[ A;DIBR0 r(M(yi) + M(y7))]
= _4/\ |Bl/2 L(A )|(q>\)_2(k_1)(p>\) 21 |BR0,Ra| (m=3)

) +
)

v

dug_y exp[—M (u;) — M(u})]

k—1

X

—

(Bgra L(2))

dvi_y exp[~M(v}) = M(v})] (3.9)

1

X

—

(BpraL()t™

where uy, = (uy,...,ug) and vy = (vy,...,vp) with vy = ux =0, and A\, = |BRO r, |A- Then we

have

Pk, 0) > e PO By R phe (o (mes) g2k l) -2
2

[ araL(N) gAaL(N)
X / day - / dag_1 exp{—  max la; —aj|}
-2 L(X) —qAaL(})
PAaL(V) PAaL(V) 2
y / dby - / dhe-y exp{— max b= bil}| - (3.10)
[-PAaL(}) —pAaL(N)

Since e #MMN)” = 1 — O(A(L(A))?) as A — 0, by (3.10) and the above lemma we obtain
that, as A\ — 0,

falk,0) > (1>2(m2) i " e “2AEDEN2E)? | (1 - OA(L(N)?). (3.11)
A ) = )\ |BR0’RO¢| q P . . . .

Now we will obtain the upper bound of f(k,¢).
UPPER BOUND: For L(\) as earlier, consider the event

E = {wla s Tp—1 € BL()\)ayla s Y1 € BL()\)(yl)}

11



If 2 = 0, for £ N A(xk,y¢,k,¢) to occur, we must have yp, € B(1/2)4+(x)- Thus from (3.4) we

have

0 < 1830 [ e [ / dye1
RZ

(R
X (Ien{yeBu s + 1EC1A(xk,yg,k,l))
x exp[—Ap| B¢ r{IB1(yo)l = [By]}]
X exp[— >‘q|BR0,Ra|{|B%(xk)| — |Byl}]- (3.12)

On opening the parenthesis (lEn{yleB(1/2)+L(A)} +1gel g(xy,y,.k,¢)) in the expression on the right
of the inequality (3.12) above the term involving lEﬂ{yleB(l/ZHL(A)}, for large A, may be bounded
from above by

eMEO By 1y l(gA) 2D (pa) 2D BRe |0

X / duy_q eXp[—M(ullc) - M(ui)]

(BgraLny)F !

X / dvy_i exp[—M(v}) — M(vi)]. (3.13)

(Bpra L)t

(Here we have used the inequality (3.7) of Lemma 3.1 and calculations similar to those leading
0 (3.9).)

Using the inequality (3.6) of Lemma 3.1 we bound the expression involving 1gel4(x,,y, k¢
in the right of the inequality (3.12) by |B DRl UL + L}, where

I = / dxp_1 / dye / dys—1
(R2)k=1\(Br(x))*1 Bm (RZ)E-1
x exp{—(q/2)M(M (x;) + M (x3))} exp{—(p/2)A(M (y;) + M (y7))}

I, = / kal/dyz / dys1

Ry B (RN (B!
x exp{—(q/2) MM (x;) + M (x))} exp{~(p/2)A(M (y7) + M (y7))}-

and

Let ay = 0. Then, it is easy to see that

/ day - - daj_1 exp{— linz;,)ék la; — aj|} = Kkl
RkE-1
Using this equation and calculations as in (3.10) and (3.11), for A — oo, the expression in

(3.13) may be bounded above by

1\ 20m—2) 1 m=3
( x) (ﬁ) g 2 Dp 2D N2 (02| (14 O(ML(A))).
Ro,Rq

12



Thus to show that, asymptotically in A the lower bound (3.11) of f(k,¥) agrees with its upper
bound it suffices to show that

I+ 1, = O(A\™?™73) as A\ — oo. (3.14)
To estimate the integrals I} and Iz, we use the symmetry of the integrand in I; to obtain

4k —-1) / dxy, Q/dack 1 / dz? | | Bl / dye1

(R2)k~2 (R2)¢-1
x exp{—(q/2)A(M (Xk)+M(Xk))}eXp{_(p/2) (M (yg) + M(y7)}

A(k — 1) | B (qk>_2(k_1) (%)ﬁu) k(02

L

IN

o0
X day---day_ dap_1exp{— max |a; —a;|}.
/ 1 k—2 / k-1 P{ ISi,jSk|Z ]|}
RE—2 q)\L()\)

. _ . . 1
Since aj, = 0, we have the inequality maxi<; j<x|a; — a;| > 5 ma,Xllj;iik la; — aj| + 5lag—1],
which we use to obtain

o0
dayi---day_ dap_1exp{— max |a; —a;
/ 1 k—2 k—1 P{ 1802k i y|}
RkE—2 g \L(X)

J<k
Rk—-1 zq)‘L(

= bl — D)le 2O,

< ok-t / daidas - - - dag_ Qexp{— max a; — ajl} / daj_1e” %1

Hence
“2(0-1) “2(k-1) .
< ok+l —2(m-2) (P q N2(gN2e— 3L
L< 26 |B,| A () (2) (k1) (¢1) 23
= o(e_%q)‘l’()‘)) as A — 00.
Similarly we obtain
I, = o(efip)‘Lo‘)) as A — 00.

Now fix 0 < § < 1/2 and take L(\) = A~'T(/2) The bounds obtained above for I; and I
show that (3.14) holds.

This proves Theorem 2.1(i). The second part of Theorem 2.1 is derived easily from the first
part.

4 Proof of Theorem 2.2

We now prove Theorem 2.2. Towards this end we need some estimates on the areas of the
unions of various parallelograms. These are presented in the next subsection. The proof of

these results are given in the appendix.
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4.1 Area estimates

Throughout this section we assume 0 < o < f§ < 7.
Lemma 4.1 (i) If H,, Hg > 2Hy, then

|B%((Jl,Ra U B?%’OB,RA = 4Ca,ﬂH0(Ha + Hﬂ — H()).

(ii) If min{H,, Hg} < 2Hy, then
|BRS . UBYY ry| = Cap{4Ho max{H,, Hg} + min{ H;, H}}.

Next we will estimate

1 0, 0, 0, 0,
A(z) = Ca6{|BR0a,Ra U BROﬂ,RB (@)] — |BRoa,Ra U BROﬂ,RBHa z e R (4.1)
Taking
[ Rcos® R'cost’
R,R "~ . Lo
Rsinf R'sinf
and

0.0' R'sin® —R'cost’
AR R = . )
’ —Rsinf®  Rcosf

for 0,0 € [0,7), R,R' > 0, we have By Ry = Dy’ 1o~ 1, 1%, and

af 1 1 P

= A :
Ra,Ryg sin(8 — a)Ra R~ TeoFs

In this notation we have

ha(z) _ pab 7135: 1 sina(m,eﬂ,§> (4.2)
hs () sin B.sin o Cap \ sinfB(z, ea+%> '

where h, and hg are as defined prior to Lemma 3.1. Note that

_ _ 3 M Oéaﬂ
(ha(z),hg(z)) € [-Hq, Hy] x [—Hp, Hg), if and only if z € BRa,Rg’

and
— B (z,ex)

ho(z) := = ho(z) + hg(z), z € R2,

sinasinf

See Figure 4.

Lemma 4.2 Assume that x € R? with ho(z) € [—Hy, Hy), hs(z) € [—Hpg, Hg).
(i) Suppose that 2Hy < Ho,Hg. Then

1
Aw) = 5 max{~ha(z) + 2Hy — Ha, hs(x) + 2Hy — H, 0}?

1
+ 5 max{ha(z) +2Hy = Ha, —hs(w) + 2Hy — Hp, 0}2.

14



ho(z) sin asin 3

Figure 4: The quantities hq, hg and ho-

(ii) Suppose that 2Hy > min{H,, Hg} and H, > Hp.
(a) When |ho(z)| < Ho — Hg,

A@{%@% if |hg(x)| < 2Ho — Hp,
hs(@)? = 5{lhs(@)| = (2Ho — Hp)}?, if |hs(x)| > 2Ho — Hp.

b) When |ho(z)| > H, — Hg and |hg(z)| < 2Hy — Hg,
B B B

A(w) = hy(a)? + 3 {To(e)| — (Ho — Hp)Y
+H{2Hy — Hy = sgu(To(e))ha (o) H o (@)] — (Ha — Hy)).

(c) When |ho(z)| > Ho — Hg, |hs(z)| > 2Hy — Hg and ho(z)hg(z) > 0,
A(w) = hae)? — S {1ha(w)| ~ (2o — Hj))?
+ S[2H — Ho+ sgul () ha(@)]2

where [a]; = max{a, 0}, [a]- = max{—a,0}.
(d) When |ho(z)| > Ho — Hg, |hp(z)| > 2Hy — Hg and ho(z)hg(z) <0,
Alw) = ha(e) = 5llhs(e)| — (2Ho ~ Hy)P?
+ {lho(2)| = (Ha — Hp)}
x [2Hy ~ Hy + ha(e)| + 5 ([o(a)| — (Ha — Hy)}]

Remark 4.1. The area {z € R? : A(z) = 0} depends on angles «, 3 and stick lengths

Ry, Ry, Rg. From the above lemma we see that

{z e R : A(z) =0} = B*F

o s myone When 2Ho < Ha, Hy, (4.3)
o 0 0
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and
{z €R: Alz) =0} = B[Ol‘éi RS lR— R when 2Hy > min{H,, Hg}, (4.4)

where for § = 0, o, 8, R) = Hysin(8— ), R = Hysinf3, Rg = Hpsina. In particular R) = Ry.
Since

Rg(z,ep_=)
)ﬂ _ 6 ? 6 5
e (1
we have

M(ARfRBxk( ) = RﬂM(Xk(IB -

T T
M (AR 5 % 7)) = BaM(xk(a+ ) = CapHaM (hs(x)).
For x;, € RQk, yYe € R2® and u € R? we write

Xk Yo = ($17$23 s TEy Y1, Y2y - - 7yﬁ) € (RQ)]H—ea

and X +u = (v +u, 2 +u,..., o +u) € (R?)*. We put

0, 0,
A(Xg, yelu) = {|BR0 Ra (xx) U BROB,RB(W +u)| - |BR0 Ry Y BROBRB( )}

a

and write A(xg, y¢) for A(xg,y¢|0). The following two lemmas are important to show the main

theorem. Their proofs are given in the appendix.

Lemma 4.3 Let x; € (R2)* with z1, = 0 and y, € (R?)* with y, = 0.
(i) Suppose that 2Hy < H,, Hg. If

M(ho(x)) + M (ha(ye)) < Hy —2Hy  and
M (hs(xk)) + M(hs(ye)) < Hg — 2Ho (4.5)

hold, then we have

07ﬂ
A(xk,ye) < {|BR0 Ra—R§ (xk) \ BRO Ra Ra| + | R Rg—Rg (ye) \ BRO,RB—R€|}’
Dliye) = 1B e () \ B el + 1BY ) \BY ]y
? —_ Ca,ﬂ RO,R Ra RO R Ra R Rﬂ RB ROyRB_Rg

M (ha(ye)) M (hg(xk))-

(ii) Suppose that 2Hy > min{H,, Hg} and H, > Hg. If M(ho(xi)) + M (ha(ye)) < Ho — Hp
and M (hg(xy)) + M(hg (ye¢)) < Hg hold, then we have

A(Xka}’l) < {| Ro,Ra 1Rg(xk)\BR Ro— lRa|+|B1R0 1R (YE)\BlRo 1RB|}

+ %M(hm» + 5 M (halyn)), (1.6
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1 0 0

= M(hg(zi))M(hs(ye)) — M(hﬁ(xk))M(ha(ye))

— (M(hg(x1)))? = (M (ha(ye)))?.
(iii) Suppose that 2Hy > Ho = Hg. If M(ho(xk)) + M(ho(ye)) < Ho and M(hg(xy)) +
M (hg(ye)) < Hg hold, then we have

A(le}’l) <

0,8 0,8
C f lRo lR (Xk)\BlRo IR |+|B1R0 lR (YE)\B%Rg’%RB”’

+ (2Ho — Hg) M (ho(xx - y¢)) + EM(hﬂ(xk))Z + §M(ha(yz))2,
and

0,
A(xm}’K) > {|BlRo lR (xk)\BlRo lRa|+|B1R0 lR (YZ)\B%}%,%RBH

b oy~ B Mo 30) S M (To(xe - y2))’
— min{M (ho(xx)), M (ho(ye)) HM (hs(xx)) + M (ha(ye)}- (4.7)
Lemma 4.4 Let x; € (R?)* with z, = 0, y, € (R?) with y, = 0 and u € R?,
(i) Suppose that 2Hy < Hy,Hg. If M(ho(xk)) + M(ha(ye)) + |ha(u)| < Ho — 2Ho and
M (hg(xk)) + M(hg(ye)) + |hg(u)| < Hg — 2Hy hold, then we have
A(xp, yelu) = Axp, ye)-
(ii) Suppose that 2Hy > min{H,, Hg} and H, > Hg. If M(ho(x1)) + M (ha(ye)) + |ha(uw)] <
H, — Hg and M (hg(xy)) + M (hg(ye)) + |hg(u)| < Hg hold, then we have
| A (g, yelu) = A, yo)| < hg(w)?.
(iii) Suppose that 2Hy > H, = Hg. If M(ho(xx)) + M(ho(ye)) + |ha(u)] < Hy and
M (hg(xk)) + M(hg(ye)) + |hg(u)| < Hg hold, then we have
| A(xp, yelu) — A(xk, ye)
—(2Ho — Hp){M (ho(xy, - (ye +u))) — [ho(u)| = M (ho(xx - ye))} |
< ha(u)® + hg(u)® + | M (ho(xy, - (ye + ) = [ho(w)| — M (ho(xk - ye)|
X{M (ha(xk)) + M(ha(ye)) + [ha(u)| + M(hg(xk)) + M(hs(ye)) + |hs(u)]},

if M(ha(xk)) + M(ha(ye)) + |ha(u)| < Ha, M(hg(xk)) + M(hs(ye)) + |hs(u)| < Hg.

4.2 The asymptotic shape

First, we examine the behaviour of the function py,(Co € A(k)|'y) as A — oo when k =
(0,kq,kg). When k = (ko, kq,0) or k = (ko,0,kg), we can estimate similarly. From (3.1) we
have

ey’

piag(Co € A0, Kaks) | To) = N1k e

F)(0,kq, kg), (4.8)
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where

F)(0,kq,kg) = / dYko—1 / d2Zis L7 (0 ko es) (CO (Y s Zhig )
(R2)ka—1 (R2)*8

,0 ,0 ) ,
o MPOIBEY g ke VB g (2 )42 B e, (2 )l 4p81 B ey (Vi )1}
We put

2(p) = P0|BR Ro U szBORJ +Pa|BR5 Ro +Pﬂ|BRa RB| (4.9)
N0, Eay kg) = FA(0, ki, kg ) P).

To examine the function f)(k), we introduce the following function

01,0 0,0 61,0 0,0
*C{‘BRIG ZRB (X)UBRIG 3R (y+2)|— |B L ZRG UBRIGISRG ()}

X51’92’03(x,y|2) o 17702 17703 e ) (4.10)

for 01,0,,05 € [0,7), ¢ >0, x € (R2)* y € (R*)*  k, k' € N and z € R2. We write Xg1’02’03(x,y)

for )(01’02"93 (x,y]0). By using these functions we obtain
a0, ko, kg) = / dyk, 1 / A2y LA (0 ke k) (CO (Yo s Zhg )
(R2)ka—1 (R2)*8

><X>\’p0’ﬂ (Yko» Zkg )Xi“;,i (2, )XA,;i (Yo )-

Putting ug, = yr, — Yk, Vig = Zky — Zhkg and zg = z, we have

POk bp) = [ dzga(0,has ks, 2007 0.2)

R2
where
92 (0, ko, kg, 2) = / dug, 1 / AV iy —117(0 ke ki) (CO(Uky s Vieg + 2))
(R2)ka—1 (R2)F6~1
0’ 2, 2,
X XA;f,ﬂ(uka»Vk5|Z)X§pi(Vk5)XApi(uka) (4.11)

Writing gy (k) for gx(k,0), we have

:u’/\p(CO € A(Oa kavkﬁ) | FO)

_ p p
e A2P) \[KI-1 g “,kﬂ, /dng(O, ko kg, 2)x 3 (0, 2). (4.12)
R2
Remark 4.2. The function Xg,a,ﬁ determines the structure of finite clusters. From Remark

4.1 we see that X}\po’ﬂ(o z) = exp[—ApoCq,psA(2)] = 1 if and only if

o,
€ BRQ*QRS‘,RLngRg’ when Hq, Hgz > 2Hy,
» € B8 when min{H,, Hg} < 2H,.

[Ra—R3]4,[Ra—RE]4
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We divide into four cases and obtain estimates.
Case (1) 2Hy < H,, Hg. In this case we will show that

HAp(CO c A(O, ka,kg)|l“0)
~ eXp[—4Ca75>\{p0H0(Ha + Hg — H[)) + (1 —pg)HaHB}]

e
k|H Hz(H, — 2Hy)(Hpg — 2H,
“(qgon)  IRHHH, — 280) 15 ~210)

xple ko \GFe (poHo + pgHp, ps Ha, po(Ha — Hy))
k
xpg k! G™ (poHg, poHo + paHa, po(Hp — H)),

where for ¢q,c2,¢c3 > 0

1
G*(c1,e,03) = (5)2 / dug_17"(c1, c2,c3) (up),
) (R2)k—1
Ve, eo,e3)(wp) = exp[—{c1M(up) + 2 M (u}) + csM (uj, + uj)}].

From Remark 4.2 we see that the asymptotic shape of the cluster is given by
{z € R?: |ho(z)| < Hy — 2Hy, |hg(x)| < Hs — 2Hy}.
By Lemma 4.2 (i) and Lemma 4.4 (i) we have
a’ﬂ
f)\(oakaakﬂ) |BRa—2R8‘,Rg—2R€|g/\(0’ka’kﬂ)’ as A — oo.

By Lemma 4.3 (i) we have

gx (07 Ko, kﬁ)

~ dukaile—/\{polB%g,Ra_Rg (up, )\B?ég,Ra_Rg \+pg|B‘;;f7Rﬂ (ug, )\B‘;‘{f,RB [}
(R2)ka—1

y / dv}gﬂ16)\{p0|B;’ﬂ,RB_Rg(Vkﬂ)\B;’f,RB_Rg+PaB%f,RB(VkB)\B%f’RB|}
(R2)*o~

Using Lemma 3.1 and putting & = Ag/’\ﬁsin 52xsin oW by a simple calculation we have

0, 0, B B
duk 167A{p0‘BR(?,Ra*R8‘ (uka)\BRg,Ra—RS‘ |+pB‘B%a,Rﬂ(uka)\B?{a,RB ‘}
o —

(RZ)ka—l
~ duka_le

(R2)ka*1

1 ka—1
(4Co¢,ﬂ)\2> (po o +psHp,ps a,Po(Hq 0))
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Similarly, we have

0-Rg

_ 0,8 0,8 a,B o,
/ Meolt —Rg(vkﬁ)\BRo,Rﬂ—Rg|+pa|BR“*RB(V'“B)\BRa*RB‘}
vkﬂ_le
(R2)k571

1 kﬂfl
<W> G*5 (po Hg, poHo + paHea, po(Hs — Hy))
a’

Since by Lemma 4.1 (i)
®(p) = 4C, g{poHo(Hy + Hg — Hy) + (1 — po) Ho Hp},

we have (4.13) from (4.12) and the above estimates.
Case (2) 2Hy > Hg, H, > Hg. In this case we will show that

MAp(CO € A(O, ko, k5)|I‘0)
~ exp[—4C\y sA{po HoHy + %HE + (1= po)HoHg)]

1 k=5 T
X k||Hy, — Hg|(—
(o) el = )

1
xple koo \GFe (poHo + pgHp, ps Ho, po(He — 5 H5))

D=

<t K\G (paH, 50 Hs + poHlay 5p0H).
From Remark 4.2 we see that the asymptotic shape of the cluster is given by
{5 € B : [ha(@)| < He — Hy, |hs(w)| = O},
By Lemma 4.4 (ii) and a simple calculation we have
92 (0,ka, kg, z) ~ gr(0,kq,kg) as A — oo,
when |ho(2)| < Hy — Hg |hg(z)| = o(1). ;From Lemma 4.2 (ii) we have

0,0 —poCy gAhg(2)?
Xapy (0,2) = e P2Cas2alc)

?

if |ho(2)| < Ho — Hg, |hg(2)| < 2Hy — Hg. Then we have

OFaks) ~ 20 kaks) [ dxd’0.2)
RZ

Cypm
~ 2lHa = Hyl(S255) 2020 by k) as X oo,

By Lemma 3.1 and Lemma 4.3 (ii) and similar calculations as above, we have

1 ka—1 1
0,ky, kg) ~ | ——o GFe (po H, Hg,psH H,— -H
g)\(a a» ﬂ) <4Ca,6>‘2> (pO 0+pﬂ B8sPp aaPO( o 2 [3))

1\t 1 1
— G*¢ (poHg, ~poH Hq, —poHpg).
<4Ca,ﬂ>\2> (Pa 8 3P0t + patla, 5po 5)
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Since by Lemma 3.1 (ii)
@(p) = 4Ca,s{poHoHo + 22 H3 + (1 - po) HoHg}, (4.20)

we have (4.18) from (4.12) and the above estimates
Case (3) 2Hy = H, = Hp. In this case we will show that

ixp(Co € A(0, ko, kg)[To)
~ exp[—4C, s \(4 — po) H

o 1 k| -2 |k|37r+4
4Ca,,g)\ 2p0

xple ko \G*e ((po + 2ps) Ho, 2pg Ho, po Ho)
k
Xpﬁﬂkﬂleﬂ(ZpaHo, (po + 2pa)Ho, poHy). (4.21)

From Remark 4.2 we see that the asymptotic shape of the cluster is given by
{z € R : ha(2)| 0, |hs(z)| < 0} = {0}.
By Lemma 4.4 (iii) and a simple calculation we have
97 (0, ko, kg, 2) ~ gr(0,kq,kg) as A — oo,
when |ho(2)| = o(1), |hg(2)| = o(1). ;From Lemma 4.2 (ii) we have

exp[—5Ca,spoA(ha(2)® + hs(2)?)],  ho(2)hs(z) >0,

(0, 2) = : 2 ! (4.22)
exp[—5Ca,5P0ANa(2)7], ho(2)hs(2) > 0,
if |ha(2)] < Ha, |hg(2)| < Hg. Then we have
f)\(oakaakﬂ) ~ gA(Oakaakﬂ)/dzxg’;:a’ﬁ(O,z)
R2
4
N (3;;;; J9a(0, ko k5) a8 A — oo, (4.23)

By Lemma 3.1 and Lemma 4.3 (iii) and similar calculations as above, we have

1 ka—1 1 1
gx(0, ko, kg)  ~ (W) Gka(iPOHa+p6Hﬂap6Haa§p0Ha)

y 1 kﬂ_IGkB(HlH—i- HIH)
4Ca7ﬂ>\2 Pa ﬂ72p0 B Pa Oca2p0 B)-

Since by Lemma 3.1 (ii), ®(p) = 4C,,5(4 — po)H{), we have (4.21) from (4.12) and the above

estimates
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Case (4) 2Hy > H, = Hpg. In this case we will show that

piap(Co € A0, ko, kg)|Lo)
3
~ exp[—4Cq sMpoHoHp + (1 — Spo)HZY

4
1 \K=2  op
k|(ZZ kak 1 Bk
X <4Ca,5/\> | I(p )2 Ipg’ ks!
ko kg bo Po Po
XG%(?HO—HQ)((? +pﬂ)HaapﬂHo¢a EHaapozHou (7 +pa)Haa

where

1 1
G (c1,c2,03,01,05,06) = (5)2(5)2 / duy, -1 / AV, -1
(R2)kﬂ—l

(RZ)ka—l

Dbo
2

Do),

x Jz(uka » Vg )’Y(Cla C2, 63)(uko¢ )7(04, Cs, 06)(vkg )a

From Remark 4.2 we see that the asymptotic shape of the cluster is given by

{z € R+ |ha(2)| <0, |hs(2)| < 0} = {0}.

By Lemma 4.3 (iii), Lemma 4.4 (iii) and a simple calculation we have
A(xg, yelz) ~ —{|B1Ro 1R, (xk) \BlRO 1R, |+ |B1R0 LR, (ye)\ B
ho(2)}

+ (2Ho — Hg){M (ho(x x (y¢+ 2))) —

when |ho(2)] = o(1), |hg(2)| = o(1). ;jFrom Lemma 4.2 (ii)
1

A(z) = 5 (ha(2)® + hg(2)?) + (2Ho — Hg)[ho(2)],

2
if |he (2)| < Ha, |hs(z)| < Hg. Then

f)\(Oa kaak,@) ~
(R2)ka—1 (R2)k571
0,a,8

XX (W, Vi )X (Vig)

where

Ky(ug,,vi;) = / dz eXP[—%Ca,ml?o>\(hoz(Z’)2 +hg(2)%)]
M (ho(ug, - (Vis + 2)))]-

R2
x exp[—ACq,spo(2Hy — Hp)

dug, 1 / dvi—1 K (g, , Vig)

a,B

Ozﬂ
10 1

By Lemma 3.1 and Lemma 4.3 (iii) and similar calculations as above, we have

1 A\ /8rC, 50 2
Farks) ~ (s Sl
noket) ~ (om) (M)

X / duka,1 / dvkﬂ,lJ%O(QHO_Hﬂ)(uka,vkﬁ)

(R2)ka—1 (RZ)k;B—l

1 1
X 7’““((51)0 +pg)Hu, ppHa, §poHa)7’“ﬂ (PaHa,

22

1
5 Po +pa)Ha

2

(4.24)

1
) _POHa)-



Since by Lemma 4.1 (ii), ®(p) = 4Cq, s{poHoHa(1 — 3py)H?2}, we have (4.24) from (4.12) and

the above estimates.

Proof of Theorem 2.2 First we examine the behaviour of the function 1,,(Co € A(k)|Tp)
as A — oo when k = (ko, ko, kg), with ko, ko, ks € N. From (1.3) and an argument similar to
that needed to obtain (4.1) we have

phophept
. 0
pxap(Co € A(k) | To) = Mk 1|k|#F)\(k) (4.25)
kO'k 'kﬁ
where
Fi(k) = €7A{pO‘B%£’R0UBB;R0‘+pa‘B%S,RaUB§§Ra\+pﬂ|B(1)€oﬁ,RguB“ BRB‘}

X / dXpo—1 / dYk, / Az 1a (k) (Co(Xko, Yo Zks))

(RQ)kO—l (RZ)ka (RQ)kﬂ

XXA’,,O’B (Ykas 2y )X,\;,B’ (Zk, Xko)Xf,’,B’ (Xko» Yka)-

From the above we see that the probability that the cluster contains sticks of three distinct
orientations is much smaller than that of only two distinct orientations.
For case (1), when a,b > 2, from (4.13), (4.21) and (4.18) we have

Jim. 4Ca 5 108 12 (Co € A(0, &, 8)[To) = pola + b — 1) + (1 = po)ab,
lim 4oa - 10g 13,(Co € A(k,0,0)|To) = paab+ 5 + (1 = pa)b,

. bs

1 1 A(k,£,0)|0 b+ 22 4+ (1 -pg)a
TS 0g iap(Co € A(k, £,0)[Fo) = pgab + = + (1 —pg)a

Since

pola+b—1) + (L - po)ab > min{peab + 22 7 T (L= pa)b,pgad + T + (1 = ppla},

we obtain Theorem 2.2 (1) (i) and (ii). From (4.18) we sce that
13p(Co € A(k,0,0)|Tg) exp{AB(p)} ~ cAFH5/2)

and
1o (Co € Ak, £,0)|Tg) exp{ A (p)} ~ ¢ NiFE-5/2,

with positive constants ¢ and ¢’ independent of A\. Thus we have (iii).
For case (2), when 1/2 < min{a,b} <2, a # b, a,b # 1, from (4.18) we have

) —1
/\ll}r{.lo 40 )\ IOgMAp(CO € A(O,k,€)|F0) = f(07a716)7
Jim 4Ca,5/\ log pixp(Co € A(K,0,£)|To) = f(B,0, )
) -1
/\li}rgo TS log pixp(Co € A(k,£,0)|T0) = f(c, 5,0).
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Thus we obtain Theorem 2.2 (2).
For case (3), when 0 < a =5 < 1, from (4.18) and (4.21) we have

-l 3
Jio Co 10g ixg(Co € A0, O[T) = poa + (1= Zpo)a’,
1
i 1 A(k,0,0)|T0) = ~paa®
15 g7 0B (Co € A0.0I00) = G+
~1 1
li 1 A(k,£,0)|To) = =pga® + a.
A8, 10, g 08 (o € A EOIT0) = psa” +

If po > pg, A(a, B) occurs whenever

1 2
—pga” + a,

3
— —po)a2 < 1

poa + (1 1

ie., a < 1i(po,pa,ps). Since li(po,pa,pg) > 1 for py < pg, we obtain Theorem 2.2 (3).
Finally for case (4), when 1 < a = b < 2, from (4.18) and (4.21) we have

3
log 1xp(Co € A(0,k,£)|To) = poa + (1 — =po)a?,

)
A;woa,ﬁx 1

-1 1
li 1 A(k,0,0)|0 0@ + =po + (1 — pa
530, x 08(Co € A0, OIF0) = pat pa (1= pae

1

li 1 A r 24z 1-— .
Jim 253 108 (G0 € Alk. £0)[To) = psa” + 305 + (1 = ps)a

If po > pg, we see that A(a, 8) occurs whenever

1
—pg + (1 — pg)a,

3
poa+ (1 — —pg)oz2 < pgoz2 + 1

4

ie., a <ly(po,pa,pps). Since ly(po,pa,pg) < 1 for pg > pg, we obtain Theorem 2.2 (4).
Also for case (4) a = b =1, from (4.18) and (4.21) we have Theorem 2.2 (5), easily.

5 Appendix

Proof of Lemma 3.1: We bound the volume of B%fRB (xx) by the volume of the smallest

parallelogram containing it.

B (x| < (2R + M(x))(2Rs + M(x})) sin(8 — o)
= 2R,2Rgsin(f — @) + (2Ra M (x}) + 2R; M (xg)) sin(8 — «)
+M (x() M (x}) sin(B — @)
= B |+ 2C0 s {Ha M (hy(xx)) + Hs M (ha(x4))}
+Ca,s M (hp(xx)) M (ha (xk))
which yields (3.5).

The inequality (3.6) follows on observing that

(1) |B%fRB (xx)| must include an area 2R, max{x?, e ,xﬁ} sin(f — «) along the ‘length’ of the
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connected cluster,
(ii) |B;£RB (x1)| must must include an area 2Rz max{zf, ..., z} } sin(f—«) along the ‘breadth’
of the connected cluster.
Thus removing the double counting obtained when we consider the parallelograms along the
breadth of the cluster we obtain (3.6).

To show the last inequality we must estimate the double counting more precisely. Observe
that the two halves of the parallelograms on the extremes (in either of the two directions « or

) of the region B%ﬁRB (x) constitute an area |B%£RB . Also if B%ﬁRﬂ (xx) is connected, then

the area of this region between the lines {z € R? : 2% = min{z{,...,z{}} and {z € R? : z* =
max{z{,...,z{}} has an area at least (2R, max{xf, . ,:ch} + 2Rg max{z¥,...,z{})sin(8 —
a) —max{z{,...,z¢} max{x?, e ,xﬁ} sin(f — «). Since z; = 0, (3.7) follows. ]

Proof of Lemma 4.1 If 2Hy > Hg and H, > Hg. Then

0, 0,8 _ 0, 0,8 0,8 0, 0, 0,8
1By i, U Byl = |Bjo i, \ Bgy iyl + |1 BRy ks \ B r. |+ |Bgy g, N By, kg
= 2Ry.2R4sina + Rgsin(r — B)Rgsin(8 — a)(sina) *
= Cap(4HoH, + Hp).

If 2Hy > H, and Hg > H,. Then, similarly, we have

1BRS e UBY r,) = 2Ro:2Rgsinf + Rysin(m — )R sin(8 — a)(sinf) !
= C,p(4HoHs + H2).

Finally if H,, Hg > 2Hj, then

0, 08 | _ (R, 0,6 0, 0,6
1Bro.k. Y BRyr,l = |BRor. |+ 1BRy | = |BRy.r, N BRy gyl
= 4RyR,sina + 4RyRgsin B — 4R} sin asin B(sin(8 — «))
= 4C, sHo(Hy + Hg — Hy).

This proves the lemma. u
Proof of Lemma 4.2 Suppose that 2Hy > Hg and H, > Hg. Also assume that |ho(z)] <
H, — Hg and |hg(x)| < 2Hy — Hg. In this case we have B%OO"RQ U B%’f’RB represented as the
union of the two parallelograms ABCD and EFGH in Figure 5, while B?{’;J‘Ra UB%{?RQ (x) is the
union of ABCD and IJK L. The difference between these two regions is thus the difference of

the “dashed” triangles and the “solid” triangles outside the parallelo ram ABCD. 1t is easily
RZ sin?(8—a)
)

seen that the sum of the area of the “dashed” triangles is s;;(o;}s_n;? [T+ (o1 — 2255
. . . . R% sin B sin(8—a) .

while the sum of the areas of the solid triangles is ———————. This proves the first case

Lemma 4.2 (i). By considering similar figures, the other parts of the lemma follow. [

Proof of Lemma 4.3 First we consider the situation when y; = 0, £ = 1 and k = 2 with

z9 = 0 and z; such that

29| < Ra — 2R§, |27] < Rg — 2RY. (5.26)
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Figure 6: The two shaded regions in the left figure combine on collapsing the lines AD and BC.
The shaded parallelogram in the right figure is double counted.

We note here that this choice of 2 ensures the existence of the hatched region in Figure 6
which is isomorphic to a parallelogram with sides making angles «v and 8 with the z-axis.
From Figure 6 we see that if we collapse the lines AD and BC into one and remove

the parallelogram contained between these lines then each of the parallelograms B%él r, and
0,

0, . .
Bg, g, (1) become isomorphic to BRO,RQ—Rg'

Moreover the shaded area which represents

0, 0, 0, 0, .. . 0, 0,
((BRnga (w1, 22) U BY? () \ (B 5, U BRf,Rﬂ)) is isomorphic to (BRzRa_Rg (21, 22) \ By o

. 0, 0, 0, 0, 0, 0,
Since (Bye . U BRﬁRB) C (B, (z1,32) U BRﬁRB) and BR®, o (21,72) 2 Bty po
we have
0, 0,
Ca:ﬂA(x%yl) = |BR(;l,Ra—Rg (x2) \ BR(;l,Ra—Rg|' (5.27)

Now observe that a similar result may be obtained when z; =0, k=1and £ =2, yo =0

and y; such that
Y| < Ra —2RS, |y°| < Rg —2RL. (5.28)
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In this case we obtain

CasA(w1,y2) = By oo W2)\ Byl gl (5.29)

In case both £ = 2 and ¢ = 2 with z; and y; satisfying (5.26) and (5.28) we see from Figure
6 that if we add the areas obtained in (5.27) and (5.29) there is double counting of the shaded
parallelogram with sides of length |$1| and |y¢| and area |z¢ ||y1 | sin(ﬁ — «). Thus we have
Coz,,@A(X%YZ) |BR0R —RY (XZ)\BR Ra R0|+|BR0R RO (YZ)\ Ro Rg— Rg|_|x?||y?|8in(ﬁ_
Q).

In general, for any k£ and ¢, we see that if
M(xz) < Ry —2RY, and M(y,) < Rg — 2R} (5.30)

there will be many such shaded areas which will be double counted. These areas need not be
all distinct and the total area of this double counted region is at most M (xg )M (yy) sin(B8 — ).
Now note that the condition (4.5) guarantees that (5.30) holds. Hence Lemma 4.3 (i) follows.

The remaining parts of the lemmas follow from similar arguments and are explained through
Figures 7 and 8. u

Lemma 4.4 follows similarly and its proof is omitted.

Ry

Figure 7: The shaded triangles in the left figure give the last two terms in (4.6), while the
shaded parallelogram in the right figure is double counted.
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Ro RO RO

Figure 8: The shaded areas are double counted and is deducted in (4.7).
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