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Designs for Diallel Cross Experimentswith Spei� Combining AbilitiesAshish Das and Aloke DeyIndian Statistial Institute, New DelhiSUMMARYFor the data olleted via a diallel ross experiment, a model that inorporates both generaland spei� ombining ability e�ets is postulated. Under suh a model, onditions are derivedfor a blok design to be orthogonal in the sense that ontrasts among the general ombiningability e�ets, after eliminating the blok e�ets, are estimated free from the spei� ombiningability e�ets. Conditions are also derived for suh a design to be universally optimal. Someremarks are made on the existene of universally optimal designs.1. Introdution and PreliminariesThe diallel ross is a type of mating design used in plant breeding to study the genetiproperties of a set of inbred lines. A ommon diallel ross experiment involves v = p(p� 1)=2rosses of the type (i� j); i < j; i; j = 1; 2; : : : ; p; where p is the number of inbred lines underonsideration. Heneforth, a ross (i � j) will be denoted simply by (i; j). The problem of�nding optimal blok designs for diallel ross experiments has reeived onsiderable attentionreently and for a brief review and referenes, see Dey (2002). It may be noted that witha few exeptions (e.g., Chai and Mukerjee (1999), Choi et al. (2002)), most of the resultson optimal blok designs for diallel rosses have been derived under a model that inludes thegeneral ombining ability (g..a.) e�ets, apart from the blok e�ets, but no spei� ombiningability (s..a.) e�ets. A model where s..a. e�ets are ignored annot always be justi�ed frompratial onsiderations and thus, it is often neessary to onsider a model that inludes boththe g..a. and s..a. e�ets, even if interest entres around the estimation of g..a. e�etsontrasts only. In this paper, we work under a model that inludes both the g..a. and s..a.e�ets, though our primary interest is in the estimation of ontrasts among g..a. e�ets.In a diallel ross experiment the v rosses are regarded as treatments. If the (�xed) e�etof ross (i; j) is denoted by �ij, then we have the representation�ij = �� + gi + gj + sij; (1)where �� is the mean e�et of the treatments, the fgig stand for the general ombining ability(g..a.) e�ets, fsijg denote the spei� ombining ability (s..a.) e�ets, andg1 + � � �+ gp = 0; (2)1



s1i + � � �+ s(i�1)i + si(i+1) + � � �+ sip = 0; 1 � i � p: (3)In what follows, we arrange the rosses in the order (1; 2); (1; 3); : : : ; (1; p),(2; 3); : : : ; (2; p); : : : ; (p � 1; p). Let g = (g1; : : : ; gp)0 and let � and s be v � 1 vetors withelements f�ijg and fsijg respetively. We follow Chai and Mukerjee (1999) to express the gen-eral and spei� ombining abilities, i.e., g and s in terms of � . De�ne Q to be a p� v matrixwith rows indexed by 1; : : : ; p and olumns by the pairs (i; j); 1 � i < j � p, suh that thefu; (i; j)gth entry of Q is 1 if u 2 (i; j) and zero, otherwise. We then haveQQ0 = (p� 2)Ip + Jpp; (QQ0)�1 = (p� 2)�1fIp � (2(p� 1))�1Jppg; (4)Q1v = (p� 1)1p; Q01p = 21v; (5)where, for positive integers ; d, I is the th order identity matrix, 1 is the � 1 vetor of allones and Jd = 110d: In view of this, (1) an be expressed as� = ��1v +Q0g + s; (6)where, from (2) and (3), we have 10pg = 0; Qs = 0: (7)Premultiplying (6) by Q and using (4), (5) and (7), one hasg = H1� ; s = � � ��1v �Q0g = H2� ; (8)where H1 = (QQ0)�1Q� (2v)�1Jpv = (p� 2)�1(Q� 2p�1Jpv); (9)and H2 = Iv �Q0(QQ0)�1Q = Iv � (p� 2)�1fQ0Q� 2(p� 1)�1Jvvg: (10)Sine H11v = 0; H21v = 0; H1H 02 = 0; Rank(H1) = p� 1; Rank(H2) = v � p; (11)it is lear that g and s represent treatment ontrasts arrying p�1 and v�p degrees of freedomrespetively and the ontrasts representing g are orthogonal to those representing s. It may benoted that for p = 3 lines, s = 0 and hene, in the present paper, we take p � 4 throughout.Consider now an arrangement of v treatments (rosses) in a blok design with b bloks eahof size k � 2. The usual �xed e�ets model inorporating both g..a and s..a. e�ets andwith unorrelated homosedasti errors is postulated. The main interest is in the estimationof ontrasts among the g..a. e�ets and, the s..a. e�ets, alongwith the blok e�ets aretreated as nuisane parameters. Under this set up, we derive onditions on the blok designsuh that the g..a. e�ets, after eliminating the blok e�ets, are estimated free from the s..a.e�ets. Designs with this property will be alled orthogonal designs. We also derive suÆientonditions for orthogonal designs to be universally optimal.2



2. Orthogonal DesignsTo haraterize orthogonal designs, it will be onvenient to onsider the problem via om-plete sets of orthonormal ontrasts, say L1� and L2� , representing g and s respetively. Then,by (8) and (11), we haveL1L01 = Ip�1; L2L02 = Iv�p; L1L02 = 0; R(L1) = R(H1);R(L2) = R(H2); (12)where R(�) denotes the row span of a matrix. Note that the subsequent results do not dependon the spei� hoie of L1 and L2. Let P1 be a (p� 1)� p matrix suh that  p� 1210pP1 ! is anorthogonal matrix and P2 be a (v � p)� v matrix satisfyingP2P 02 = Iv�p and P2Q0 = 0: (13)It follows then that P11p = 0; P1P 01 = Ip�1; P21v = 0; (14)where the last identity follows from (13) and (5). It is then easy to see that L1 and L2 satisfying(12) an be expressed as L1 = (p� 2)� 12P1Q and L2 = P2 (15)for any P1 and P2 satisfying (13) and (14). Thus,L01L1 = (p� 2)�1(Q0Q� 4p�1Jvv): (16)Under the stated model and a blok design d, the joint information matrix for  L1L2 ! � isgiven by Id = " L1CdL01 L1CdL02L2CdL01 L2CdL02 # ; (17)where Cd = Rd � k�1MdM 0d, Rd is the diagonal matrix of the repliations of the rosses underd and Md is the v � b inidene matrix of rosses versus bloks. Note that Cd is the usualC-matrix of d with rosses as treatments and hene, Cd1v = 0. As shown in Lemma 1 below,in order that the design d is orthogonal in the sense of Setion 1, we must haveL2CdL01 = 0: (18)By (15), this is equivalent to P1QCdP 02 = 0: (19)Let Igd be the information matrix for L1� . Then, we have the following result.Lemma 1. (a) L1CdL01 � Igd is a nonnegative de�nite (n.n.d.) matrix.(b) Furthermore, Igd = L1CdL01 if and only if L2CdL01 = 0.3



Proof. Reall that the rows of [L01; L02℄0 form an orthonormal basis of the orthoomplementof R(10v) in the v-dimensional Eulidean spae. It follows from (17) that Igd is L1CdL01 �L1CdL02(L2CdL02)�L2CdL01, where A� denotes a generalized inverse of a matrix A. Thus,L1CdL01 � Igd = L1CdL02(L2CdL02)�L2CdL01: (20)Suppose Rank(Cd) = t. Sine Cd is n.n.d., there exists a v � t matrix H of full olumn rank,suh that Cd = H 0H. Then, by (20),L1CdL01 � Igd = L1H 0HL02(L2H 0HL02)�L2H 0HL01 = L1H 0pr(HL02)HL01; (21)is n.n.d., as pr(HL02) is n.n.d., where for a matrix X, pr(X) denotes the projetion on to theolumn span of X. This proves (a).By (21), L1CdL01 = Igd if and only if pr(HL02)HL01 = 0, i.e., if and only if L2H 0HL01 =L2CdL01 = 0. This proves (b). 2Lemma 2. The following onditions are equivalent:(i) L2CdL01 = 0.(ii) L01L1Cd = CdL01L1.(iii) Q0QCd = CdQ0Q.Proof. Suppose L01L1Cd = CdL01L1. Then, L2CdL01 = L2CdL01L1L01 = L2L01L1CdL01 = 0.Conversely, suppose L2CdL01 = 0. Then, L02L2CdL01 = 0 and sine L01L1 + L02L2 = Iv �v�1Jvv , this implies that (Iv � v�1Jvv � L01L1)CdL01 = 0 ) CdL01 = L01L1CdL01 ) CdL01L1 =L01L1CdL01L1. Now, sine L01L1CdL01L1 is symmetri, CdL01L1 = (CdL01L1)0 = L01L1Cd. Finally,from (14) and (15), it follows that L01L1Cd = CdL01L1 , Q0QCd = CdQ0Q. 2We now �nd an upper bound to tr(Igd), the trae of Igd. Let D be the olletion of alldesigns that keep L1� estimable. Sine by Lemma 1(a), for any d 2 D, L1CdL01�Igd is n.n.d.,we have tr(Igd) � tr(L1CdL01)= tr(CdL01L1)= tr(Cdf(p� 2)�1Q0Q� 4p�1Jvvg)= (p� 2)�1tr(CdQ0Q)= (p� 2)�1tr(RdQ0Q� k�1MdM 0dQ0Q):Now, tr(MdM 0dQ0Q) = tr(QMdM 0dQ0) = tr(NdN 0d) = Ppi=1Pbj=1 n2dij , where Nd = (ndij) =QMd is the p � b lines versus bloks inidene matrix. Sine fndijg are integers andPpi=1Pbj=1 ndij = 2bk, Ppi=1Pbj=1 n2dij � bf2k(2x + 1)� px(x+ 1)g, where x = [2kp�1℄ and [�℄is the greatest integer funtion. Also, tr(RdQ0Q) = 2tr(Rd) = 2bk, sine eah diagonal elementof Q0Q equals 2. Thus, tr(Igd) � (p� 2)�1f2bk � bk�1(2k(2x + 1)� px(x+ 1))g or,tr(Igd) � (k(p� 2))�1bf2k(k � 2x� 1) + px(x+ 1)g = ! (say): (22)4



Remark. The expression in (22) is atually obvious from Das, Dey and Dean (1998,Theorem2.1) if one notes that tr(CdQ0Q) = tr(QCdQ0) and that QCdQ0 is the C-matrix of the blokdesign with lines as treatments.We next have the following result. Theorem 1. Suppose there exists a design d0 2 D suhthat(i) Q0QCd0 = Cd0Q0Q and,(ii) QCd0Q0 = (p� 1)�1(p� 2)!(Ip � p�1Jpp), where ! > 0 is as in (22).Then, d0 is universally optimal in D for inferene on L1� .Proof. Let Igd0 be the information matrix for L1� under d0. Then, by (i),part (b) of Lemma 1 and Lemma 2, Igd0 = L1Cd0L01: Also, by (ii), L1Cd0L01 =(p� 2)�1P1QCd0Q0P 01 = (p� 1)�1!P1(Ip � p�1Jpp)P 01 = (p� 1)�1!Ip�1. Thus,Igd0 = (p� 1)�1!Ip�1: (23)Also, from (22), for every d 2 D, tr(Igd) � !; (24)and from (23), tr(Igd0) = tr((p� 1)�1!Ip�1) = !: (25)Sine by (23), Igd0 is a onstant times the identity matrix, in view of (24) and (25), the laimeduniversal optimality of d0 now follows from Kiefer (1975) and Sinha and Mukerjee (1982). 2We now derive a ondition, whih is equivalent to the onditions of Theorem 1. The ondi-tions in Theorem 1 areQ0QCd0 = Cd0Q0Q; and QCd0Q0 = (p� 1)�1(p� 2)!(Ip � p�1Jpp): (26)Lemma 3. The onditions in Theorem 1 are equivalent toQCd0 = (p� 1)�1!(Q� 2p�1Jpv): (27)Proof. Suppose (27) holds. Then, QCd0Q0 = (p � 1)�1!(QQ0 � 2(p � 1)p�1Jpp) = (p �1)�1(p� 2)!(Ip� p�1Jpp), and Q0QCd0 = (p� 1)�1!(Q0Q� 4p�1Jvv), whih is symmetri, i.e.,Q0QCd0 = Cd0Q0Q. Thus (27) ) (26).Conversely, suppose (26) holds. Then, QCd0Q0Q = (p� 1)�1(p� 2)!(Ip� p�1Jpp)Q, by theseond ondition of (26). This implies that QQ0QCd0 = (p � 1)�1(p � 2)!(Ip � p�1Jpp)Q, bythe �rst ondition in (26). Now, using (4), we haveQCd0 = (p� 1)�1!(Ip � (2(p � 1))�1Jpp)(Ip � p�1Jpp)Q5



or, QCd0 = (p� 1)�1!(Q� 2p�1Jpv) and thus, (26) ) (27). 23. Constrution of DesignsIn this setion, we onsider the issue of determining designs that satisfy the onditions ofTheorem 1. We �rst have the following result, whih is in the spirit of the disussion in Deyand Mukerjee (1999; Setion 2.3, page 12) in a di�erent ontext.Lemma 4. In order to keep L1� estimable under a design d (bloked or unbloked), it isneessary that every ross appears at least one in the design.Proof. Suppose L1� is estimable under d and if possible, suppose some ross, say (1; 2), neverappears in d. Then, R(L1) � R(Cd) and the �rst olumn of Cd is null. Hene the �rst olumnof L1 is also null. We shall now show that this is impossible. Suppose the �rst olumn of L1is null. Then, the �rst olumn of L01L1 is null, i.e., by (16), the �rst olumn of Q0Q� 4p�1Jvvis null. This implies that the �rst element of the �rst olumn of Q0Q must equal 4p�1. But,by the de�nition of Q, the �rst element in the �rst olumn of Q0Q equals 2, whih leads to aontradition, sine p > 2. 2In view of Lemma 4, the smallest design that keeps L1� estimable under the stated model isone in whih eah ross is repliated just one.For a single repliate design d1, Cd1 = Iv � k�1Md1M 0d1 . Hene, (27) , Q(Iv �k�1Md1M 0d1) = (p� 1)�1!(Q� 2p�1Jpv), whih is equivalent to(p� 1� !)Q+ 2!p�1Jpv = k�1(p� 1)QMd1M 0d1 : (28)Also, for d1, M 0d1Md1 = kIb. Hene,(28)) QMd1 = Nd1 = 2kp�1Jpb; (29)where Nd1 is the p � b lines versus bloks inidene matrix. That is, eah line ours 2kp�1times in eah blok.We next hek whether (29) ) (28). Suppose (29) holds. Then,k�1QMd1M 0d1 = k�12kp�1JpbM 0d1 = 2p�11p10bM 0d1 = 2p�1Jpv: (30)Furthermore, if (29) holds, then 2kp�1 is an integer, i.e., x = 2kp�1 and, in suh a ase, onean show that ! = p� 1. Hene, under (29), the right hand side of (28) equals 2(p� 1)p�1Jpvand by (30), it follows that (29) ) (28). Hene, we get the following result.Theorem 2. For a single repliate design d1, (27) holds if and only ifNd1 = 2kp�1Jpb:6



We next onsider a general equirepliate design, say d2. For suh a design, Cd2 = rIv �k�1Md2M 0d2 , where r is the ommon repliation of the rosses and Md2 is the rosses versusbloks inidene matrix of d2. It follows then that(27), (r(p� 1)� !)Q+ 2!p�1Jpv = k�1(p� 1)QMd2M 0d2 : (31)We need the following result in the sequel.Lemma 5. The v � v matrix W = " QP2 # is nonsingular.Proof. With W as above, we haveWW 0 = " QQ0 QP 02P2Q0 P2P 02 # :The result then follows, sine QQ0 = (p� 2)Ip + Jpp , P2P 02 = Iv�p ; and P2Q0 = 0. 2Now, sine W is nonsingular matrix of order v and Md2 is a v � b matrix, the olumn spanof Md2 is a subspae of the olumn span of W 0, i.e., there exist matries A1 and A2 of ordersp� b and (v � p)� b respetively, suh thatMd2 = Q0A1 + P 02A2: (32)In view of (32), we have k10b = 10vMd2 = 10vQ0A1 + 10vP 02A2 = 10vQ0A1 = (p� 1)10pA1, so that10pA1 = (p� 1)�1k10b:Also, r1v = Md21b = Q0A11b + P 02A21b. This implies that rQ1v = QQ0A11b + QP 02A21b =QQ0A11b. Thus, using (4), A11b = r(QQ0)�1Q1v = r21p:Finally, r1v =Md21b = Q0A11b+P 02A21b = Q0( r21p)+P 02A21b = r1v+P 02A21b. Premultiplyingby P2, this implies that A21b = 0:We now have the following result.Lemma 6. The ondition (31) is equivalent toA1A02 = 0 (33)and A1A01 = k(p� 1)�1(p� 2)�1f(r(p� 1)� !)Ip � (2p)�1(rp� 2!)Jppg: (34)7



Proof. By (32), QMd2 = QQ0A1 +QP 02A2 = QQ0A1, whih implies thatQMd2M 0d2 = QQ0A1(A01Q+A02P2): (35)Now suppose (31) holds. Then(r(p� 1)� !)Q+ 2!p�1Jpv = k�1(p� 1)QMd2M 0d2 = k�1(p� 1)QQ0A1(A01Q+A02P2): (36)Postmultiplying both sides of (36) by P 02 and realling that QP 02 = 0; JpvP 02 = 0; P2P 02 = Iv�p,we have 0 = k�1(p� 1)QQ0A1A02 ) A1A02 = 0, as QQ0 is nonsingular. This proves (33).Again, postmultiplying both sides of (36) by Q0 and simplifying, we get A1A01 as in (34).Conversely, let (33) and (34) hold. Then, by (35), we have k�1(p� 1)QMd2M 0d2 = k�1(p�1)(QQ0A1A01Q + QQ0A1A02P2) = k�1(p � 1)QQ0A1A01Q, by (33). Substituting for QQ0 andA1A01 from (4) and (34) respetively, the right hand side yields on simpli�ation (r(p � 1) �!)Q+ 2!p�1Jpv, whih is (31). 2To summarize, in order that Theorem 1 holds in the ase of an equirepliate design, Md2must be of the form Md2 = Q0A1 + P 02A2where (i) A1 and A2 satisfy (33) and (34) and, (ii) A11b = r21p, 10pA1 = k(p � 1)�110b andA21b = 0.From (31) it is seen that d2 is orthogonal and balaned for g..a. e�ets if(r(p� 1)� Æ)Q+ 2Æp�1Jpv = k�1(p� 1)QMd2M 0d2 ; (36)where Æ is any positive onstant. Furthermore, if Æ = !, the design is universally optimal aswell.If Md2M 0d2 = �Q0Q + �Jvv for some salars �; � satisfying (p � 1)(4� + p�) = 2rk, then(36) holds. It an be veri�ed that equirepliate designs for diallel rosses derived from trian-gular inomplete blok designs with usual parameters v = p(p � 1)=2; b; r; k; �1 ; �2 (see e.g.,Dey and Midha (1996)) satisfy (36) and are thus, orthogonal and balaned for g..a. e�ets.Furthermore, if p(p� 1)(p� 2)�1 = bxf4k � p(x+ 1)g;where x = [2kp�1℄ then Æ = ! and in suh a ase, the design is universally optimal for estimatingg..a. e�ets in the presene of s..a. e�ets. This supports the �ndings in Chai and Mukerjee(1999).Now, onsider an equirepliate design d2, suh that Nd2 = QMd2 = 2kp�1Jpb. Then,! = r(p� 1) and thus, (31) holds. Hene, suh a design is universally optimal for g..a. e�etsunder the stated model. Families of suh designs have been given by Choi et al. (2002).The existene of the above two lasses of designs does not prelude the existene of otherdesigns whih are also universally optimal under the present set up. Further work needs to bedone for determining suh designs. 8
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