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SUMMARY

For the data collected via a diallel cross experiment, a model that incorporates both general
and specific combining ability effects is postulated. Under such a model, conditions are derived
for a block design to be orthogonal in the sense that contrasts among the general combining
ability effects, after eliminating the block effects, are estimated free from the specific combining
ability effects. Conditions are also derived for such a design to be universally optimal. Some

remarks are made on the existence of universally optimal designs.

1. Introduction and Preliminaries

The diallel cross is a type of mating design used in plant breeding to study the genetic
properties of a set of inbred lines. A common diallel cross experiment involves v = p(p — 1)/2
crosses of the type (i x j), i < j, i,7 =1,2,...,p, where p is the number of inbred lines under
consideration. Henceforth, a cross (i x j) will be denoted simply by (7,7). The problem of
finding optimal block designs for diallel cross experiments has received considerable attention
recently and for a brief review and references, see Dey (2002). It may be noted that with
a few exceptions (e.g., Chai and Mukerjee (1999), Choi et al. (2002)), most of the results
on optimal block designs for diallel crosses have been derived under a model that includes the
general combining ability (g.c.a.) effects, apart from the block effects, but no specific combining
ability (s.c.a.) effects. A model where s.c.a. effects are ignored cannot always be justified from
practical considerations and thus, it is often necessary to consider a model that includes both
the g.c.a. and s.c.a. effects, even if interest centres around the estimation of g.c.a. effects
contrasts only. In this paper, we work under a model that includes both the g.c.a. and s.c.a.
effects, though our primary interest is in the estimation of contrasts among g.c.a. effects.

In a diallel cross experiment the v crosses are regarded as treatments. If the (fixed) effect

of cross (4, 7) is denoted by 7;;, then we have the representation
Tij =T + i + gj + Sijs (1)

where 7 is the mean effect of the treatments, the {g;} stand for the general combining ability

(g.c.a.) effects, {s;;} denote the specific combining ability (s.c.a.) effects, and

gl+“‘+gp:07 (2)



S1it Sy T Sy o Fsip =0, 1 <9 <p. (3)

In what follows, we arrange the crosses in the order (1,2),(1,3),...,(1,p),
(2,3),...,(2,p),...,(p— 1,p). Let g = (g1,...,9p)" and let 7 and s be v x 1 vectors with
elements {7;;} and {s;;} respectively. We follow Chai and Mukerjee (1999) to express the gen-
eral and specific combining abilities, i.e., g and s in terms of 7. Define @) to be a p X v matrix
with rows indexed by 1,...,p and columns by the pairs (,7), 1 < i < j < p, such that the
{u, (i,7) }th entry of Q is 1 if u € (7, ) and zero, otherwise. We then have

QQ' = (p = 2)Ip + Jpp, (QQ) " =(p—2)"H{I — 20— 1)) T}, (4)

QL, = (p - l)lpa Qllp = 21,, (5)

where, for positive integers ¢, d, I. is the cth order identity matrix, 1. is the ¢ x 1 vector of all

ones and J.4 = 1.1),. In view of this, (1) can be expressed as
T=7L,+Q'g+s, (6)

where, from (2) and (3), we have
1,9 =0, Qs =0. (7)
Premultiplying (6) by @ and using (4), (5) and (7), one has

g=Hit,s=7—-71,—Q'g= Hor, (8)
where
Hy = (QQ) Q= (2v) " p = (p—2)1(Q — 2p "), 9)
and
Hy=1,-Q(QQ) 'Q=1-(p-2) {QQ-2(p—-1) "Ju}. (10)
Since
Hy1,=0, Hy1, =0, H H) =0, Rank(H;) = p — 1, Rank(H3) = v — p, (11)

it is clear that g and s represent treatment contrasts carrying p — 1 and v —p degrees of freedom
respectively and the contrasts representing g are orthogonal to those representing s. It may be
noted that for p = 3 lines, s = 0 and hence, in the present paper, we take p > 4 throughout.
Consider now an arrangement of v treatments (crosses) in a block design with b blocks each
of size k > 2. The usual fixed effects model incorporating both g.c.a and s.c.a. effects and
with uncorrelated homoscedastic errors is postulated. The main interest is in the estimation
of contrasts among the g.c.a. effects and, the s.c.a. effects, alongwith the block effects are
treated as nuisance parameters. Under this set up, we derive conditions on the block design
such that the g.c.a. effects, after eliminating the block effects, are estimated free from the s.c.a.
effects. Designs with this property will be called orthogonal designs. We also derive sufficient

conditions for orthogonal designs to be universally optimal.



2. Orthogonal Designs

To characterize orthogonal designs, it will be convenient to consider the problem via com-
plete sets of orthonormal contrasts, say L;7 and LoT, representing g and s respectively. Then,
by (8) and (11), we have

LlL’l = ip-1, L2L’2 = IU*P? LILIQ = Oa R(Ll) = R(Hl)aR(IQ) = R(HQ)v (12)

where R(-) denotes the row span of a matrix. Note that the subsequent results do not depend

1
L
on the specific choice of Ly and Ls. Let Py be a (p — 1) X p matrix such that ( p p > s an
1

orthogonal matrix and P, be a (v — p) X v matrix satisfying
PPy =1,_, and P,Q =0. (13)
It follows then that
P1,=0, PP =1,_;, P»1,=0, (14)

where the last identity follows from (13) and (5). It is then easy to see that Ly and Lo satisfying
(12) can be expressed as
Li=(p—-2)2PQ and L, = P, (15)

for any P; and P, satisfying (13) and (14). Thus,
LllLl =(p- 2)71(QIQ - 41071‘]1111)- (16)

L
Under the stated model and a block design d, the joint information matrix for ( Ll ) T is
2

given by
LCyL LCyL}

, (17)
LyCyLl, LyCyll

d =

where Cy = Rqg — k™' M M 4, Rg is the diagonal matrix of the replications of the crosses under
d and My is the v x b incidence matrix of crosses versus blocks. Note that Cy is the usual
C-matrix of d with crosses as treatments and hence, Cy1, = 0. As shown in Lemma 1 below,

in order that the design d is orthogonal in the sense of Section 1, we must have
LoCyLy = 0. (18)

By (15), this is equivalent to
PLQC,Py = 0. (19)
Let Z,q be the information matrix for Li7. Then, we have the following result.

Lemma 1. (a) LiCyqL} — Zyq is a nonnegative definite (n.n.d.) matriz.
(b) Furthermore, Tyq = L1CqL if and only if LoCyL] = 0.



Proof. Recall that the rows of [L), L}]" form an orthonormal basis of the orthocomplement
of R(1}) in the v-dimensional Euclidean space. It follows from (17) that Z,q is LiCyL| —
L,CyLY(LoCyLl)~ LyCyLy, where A~ denotes a generalized inverse of a matrix A. Thus,

Llchll — Igd = LICdLIQ (LQCdLIQ)iLQCdLll (20)

Suppose Rank(Cy) = ¢. Since Cy is n.n.d., there exists a v x ¢ matrix H of full column rank,
such that Cy = H'H. Then, by (20),

L1CyLy — Tyq = LiH'HLy(LoH'HLY) " LyH'HL, = Ly H'pr(HLY)HIY, (21)

is n.n.d., as pr(HL)) is n.n.d., where for a matrix X, pr(X) denotes the projection on to the
column span of X. This proves (a).

By (21), L1CyqL} = Zyq if and only if pr(HLy)HL] = 0, i.e., if and only if LyH'HL| =
LyCyL) = 0. This proves (b). O
Lemma 2. The following conditions are equivalent:

(i) LoCyLy = 0.

(ii) L\ L1Cy = C4L} L.

(iti) Q'QCy = C4Q'Q.

Proof. Suppose L1L,Cy = C4LiLy. Then, LyCyL = LoCyLiLiL| = LoLiL1Cy4L} = 0.
Conversely, suppose LoCyL] = 0. Then, L5LyCyL} = 0 and since LiLy + LyLy = I, —
v~ L Jyy, this implies that (I, — v 'Jy, — LY L1)CyLl) = 0 = CyL| = LYL1CyL = CyLi Ly =
LY L,C4Li Ly. Now, since L} L1CyL} Ly is symmetric, CyLi Ly = (CyL| L1)" = L} L,Cy. Finally,
from (14) and (15), it follows that L L1Cy = C4L L, < Q'QC; = CyQ'Q. O

We now find an upper bound to tr(Zyq), the trace of Z,4. Let D be the collection of all
designs that keep L;7 estimable. Since by Lemma 1(a), for any d € D, L;C4L| — Zyq is n.n.d.,

we have

tr(Zgq) < tr(Li1C4LY)
= tr(CqLiLy)
= tr(Ca{lp —2)7'Q'Q — 4p™ " Juu})
= (p—2)7'tr(CaQ'Q)
= (p—2)7"tr(RQ'Q — k™' MyMQ'Q).
Now, tr(MgMyQ'Q) = tr(QMaMjQ') = tr(NgNjy) = Y7_ 30y n;, where Ny = (ngij) =
QM is the p x b lines versus blocks incidence matrix. Since {ng;;} are integers and
P 22:1 nai; = 2bk, Y0, 22:1 nfh-j > b{2k(27 + 1) — pz(z + 1)}, where z = [2kp '] and []
is the greatest integer function. Also, tr(RyQ'Q) = 2tr(R,;) = 2bk, since each diagonal element
of Q'Q equals 2. Thus, tr(Zyg) < (p — 2)7'{2bk — bk~ (2k(22 + 1) — pz(z + 1))} or,

tr(Zyq) < (k(p — 2))7'0{2k(k — 22 — 1) + pz(z + 1)} = w (say). (22)

4



Remark. The expression in (22) is actually obvious from Das, Dey and Dean (1998, Theorem
2.1) if one notes that tr(CyQ'Q) = tr(QCyQ") and that QCyQ" is the C-matrix of the block

design with lines as treatments.
We next have the following result. Theorem 1. Suppose there exists a design dy € D such

that
(i) Q'QCq, = Cy,Q'Q and,
(i) QCy, Q' = (p — 1)"L(p — 2)w(I, — p~'Jpp), where w > 0 is as in (22).

Then, dy is universally optimal in D for inference on LyT.

Proof. Let Zyq, be the information matrix for L;7 under dy.  Then, by (i),
part (b) of Lemma 1 and Lemma 2, Z,, = LCyL}. Also, by (ii), L1Cy4 L] =
(p—2)7'PIQCE,Q'P = (p— 1) 'wPi(ly —p~"Jpp) P = (p — 1)"'wlp1. Thus,
Tyay = (p— 1) w1 (23)
Also, from (22), for every d € D,
tr(Zyq) < w, (24)
and from (23),
(Zyay) = tx((p — 1)l 1) = w. (25)

Since by (23), Zyq, is a constant times the identity matrix, in view of (24) and (25), the claimed
universal optimality of dy now follows from Kiefer (1975) and Sinha and Mukerjee (1982). O

We now derive a condition, which is equivalent to the conditions of Theorem 1. The condi-

tions in Theorem 1 are

Q'QCy, = Cy,Q'Q, and QC1, Q" = (p— 1) ' (p — 2w(l, —p ' Jpp). (26)

Lemma 3. The conditions in Theorem 1 are equivalent to

QCaqo = (p— 1) 'w(Q — 2p™" ). (27)

Proof. Suppose (27) holds. Then, QCy,Q = (p — 1)~ w(QQ" — 2(p — V)p~Jp) = (p —
D= p—2)w(I, —p~ '), and Q'QCy, = (p—1)"'w(Q'Q — 4p~1J,), which is symmetric, i.e.,
QR'QCy, = Cy,Q'Q. Thus (27) = (26).

Conversely, suppose (26) holds. Then, QCy,Q'Q = (p— 1)t (p — 2)w(I, —p 1 Jpp)Q, by the
second condition of (26). This implies that QQ'QCy, = (p — 1) (p — 2)w(l, — p~'Jp)Q, by
the first condition in (26). Now, using (4), we have

QCaq = -1D""wly — 20— 1) Jpp) (I — 0™ Jpp)Q

5



or, QCy, = (p — 1)~ 'w(Q — 2p~1J,,) and thus, (26) = (27). O

3. Construction of Designs

In this section, we consider the issue of determining designs that satisfy the conditions of
Theorem 1. We first have the following result, which is in the spirit of the discussion in Dey

and Mukerjee (1999; Section 2.3, page 12) in a different context.

Lemma 4. In order to keep LiT estimable under a design d (blocked or unblocked), it is

necessary that every cross appears at least once in the design.

Proof. Suppose L7 is estimable under d and if possible, suppose some cross, say (1,2), never
appears in d. Then, R(L1) C R(Cy) and the first column of Cy is null. Hence the first column
of L, is also null. We shall now show that this is impossible. Suppose the first column of L;
is null. Then, the first column of L} L; is null, i.e., by (16), the first column of Q'Q — 4p~'J,,
is null. This implies that the first element of the first column of Q'Q must equal 4p~!. But,
by the definition of @), the first element in the first column of Q'Q equals 2, which leads to a

contradiction, since p > 2. O

In view of Lemma 4, the smallest design that keeps L1T estimable under the stated model is
one in which each cross is replicated just once.

For a single replicate design di, Cy = I, — k=1 My, Mj . Hence, (27) & Q(I, —
k™1My, M) ) = (p— 1) 'w(Q — 2p~ ' Jpy), which is equivalent to

(p -1- w)Q + QWP_IJpU = k_l(p - 1)QMd1Mé1- (28)
Also, for dy, Mél My, = kI,. Hence,
(28) = QMy, = Ny, = 2kp T, (29)

where Ny, is the p x b lines versus blocks incidence matrix. That is, each line occurs 2kp !

times in each block.
We next check whether (29) = (28). Suppose (29) holds. Then,

K QMg My = k™" 2kp~ I My = 2p7 1,1 M) = 2p~ ", (30)

Furthermore, if (29) holds, then 2kp ! is an integer, i.e., x = 2kp ! and, in such a case, one
can show that w = p — 1. Hence, under (29), the right hand side of (28) equals 2(p — 1)p~1.J,,
and by (30), it follows that (29) = (28). Hence, we get the following result.

Theorem 2. For a single replicate design dy, (27) holds if and only if

Ny, = 2kp T



We next consider a general equireplicate design, say d». For such a design, Cy, = rl, —
k~1Mg,M 4,» where 7 is the common replication of the crosses and My, is the crosses versus

blocks incidence matrix of dy. It follows then that

27) < (rp—1) —w)Q +2wp ' py =k (p — 1)QMy, M}, . (31)

We need the following result in the sequel.

Lemma 5. The v x v matric W = [ ] 18 nonsingular.

Py
Proof. With W as above, we have

W — [ QQ' QP ]

P,Q' PP

The result then follows, since QQ' = (p — 2)I, + Jpp , PoPy =1, , and P,Q" = 0.
O
Now, since W is nonsingular matrix of order v and My, is a v X b matrix, the column span
of My, is a subspace of the column span of W', i.e., there exist matrices A; and As of orders

p X band (v — p) x b respectively, such that
My, = Q"Ay + P3A;. (32)
In view of (32), we have k1 = 1, My, = 1,Q"A; + 1, ;A = 1,Q" Ay = (p — 1)1, Ay, so that
1A = (p—1)""k1}.

Also, 1, = My,1, = Q"A11, + PjAs1,. This implies that rQ1, = QQ'A11, + QPjAs1, =
QQ'A11y,. Thus, using (4),
ALy =r(QQ)7'QL, = 71,
Finally, r1, = Mg,1 = Q'A11,+ Py As1, = Q'(51,) + P3As1, = 1, + Py As1,. Premultiplying
by P», this implies that
Asly = 0.

We now have the following result.

Lemma 6. The condition (31) is equivalent to
A1AL =0 (33)

and
A =kp-1)"p-2)"H{(r(p — 1) —w)lp — (2p) " (rp — 2w) Jpp }- (34)



Proof. By (32), QMy, = QQ'A; + QPjAs = QQ'A;, which implies that
QMg, My, = QQ'A(A1Q + ASPy). (35)
Now suppose (31) holds. Then
(r(p—1) =w)Q +2wp™ py = k™ (p — 1)QMy, Mg, = k™ (p — 1)QQ' A1 (A1Q + Ay Py). (36)

Postmultiplying both sides of (36) by P, and recalling that QP; =0, J,, Py =0, P,Py = I,,_,
we have 0 =k 1(p — 1)QQ' A1 A, = A1 A, = 0, as QQ’ is nonsingular. This proves (33).
Again, postmultiplying both sides of (36) by @’ and simplifying, we get A; A} as in (34).
Conversely, let (33) and (34) hold. Then, by (35), we have k' (p — 1)QMy4, M}, = k=" (p —
D(QQ'A1A1Q + QQ'A1ALPy) = kH(p — 1)QQ'A1 AL Q, by (33). Substituting for QQ' and
Ay Al from (4) and (34) respectively, the right hand side yields on simplification (r(p — 1) —
w)Q + 2wp~tJ,,, which is (31). O

To summarize, in order that Theorem 1 holds in the case of an equireplicate design, My,
must be of the form
Mg, = Q"A1 + Py A

where (i) A; and Ay satisfy (33) and (34) and, (i) A11, = 51,, 17A; = k(p — 1) '1} and
As1, = 0.

From (31) it is seen that dy is orthogonal and balanced for g.c.a. effects if
(T(p - 1) - 6)Q + 25p71=]pv = kil(p - I)QMdthliza (36)

where § is any positive constant. Furthermore, if § = w, the design is universally optimal as
well.

If My,Mj, = aQ'Q + BJyy, for some scalars «, 8 satisfying (p — 1)(4a + pf) = 2rk, then
(36) holds. It can be verified that equireplicate designs for diallel crosses derived from trian-
gular incomplete block designs with usual parameters v = p(p — 1)/2,b,7,k, A1, A2 (see e.g.,
Dey and Midha (1996)) satisfy (36) and are thus, orthogonal and balanced for g.c.a. effects.
Furthermore, if

p(p—1)(p — 2)\; = bz{4k — p(z + 1)},

where x = [2kp~!] then § = w and in such a case, the design is universally optimal for estimating
g.c.a. effects in the presence of s.c.a. effects. This supports the findings in Chai and Mukerjee
(1999).

Now, consider an equireplicate design ds, such that Ny, = QMy, = kafljpb. Then,
w = r(p—1) and thus, (31) holds. Hence, such a design is universally optimal for g.c.a. effects
under the stated model. Families of such designs have been given by Choi et al. (2002).

The existence of the above two classes of designs does not preclude the existence of other
designs which are also universally optimal under the present set up. Further work needs to be

done for determining such designs.
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