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Designs for Diallel Cross Experimentswith Spe
i�
 Combining AbilitiesAshish Das and Aloke DeyIndian Statisti
al Institute, New DelhiSUMMARYFor the data 
olle
ted via a diallel 
ross experiment, a model that in
orporates both generaland spe
i�
 
ombining ability e�e
ts is postulated. Under su
h a model, 
onditions are derivedfor a blo
k design to be orthogonal in the sense that 
ontrasts among the general 
ombiningability e�e
ts, after eliminating the blo
k e�e
ts, are estimated free from the spe
i�
 
ombiningability e�e
ts. Conditions are also derived for su
h a design to be universally optimal. Someremarks are made on the existen
e of universally optimal designs.1. Introdu
tion and PreliminariesThe diallel 
ross is a type of mating design used in plant breeding to study the geneti
properties of a set of inbred lines. A 
ommon diallel 
ross experiment involves v = p(p� 1)=2
rosses of the type (i� j); i < j; i; j = 1; 2; : : : ; p; where p is the number of inbred lines under
onsideration. Hen
eforth, a 
ross (i � j) will be denoted simply by (i; j). The problem of�nding optimal blo
k designs for diallel 
ross experiments has re
eived 
onsiderable attentionre
ently and for a brief review and referen
es, see Dey (2002). It may be noted that witha few ex
eptions (e.g., Chai and Mukerjee (1999), Choi et al. (2002)), most of the resultson optimal blo
k designs for diallel 
rosses have been derived under a model that in
ludes thegeneral 
ombining ability (g.
.a.) e�e
ts, apart from the blo
k e�e
ts, but no spe
i�
 
ombiningability (s.
.a.) e�e
ts. A model where s.
.a. e�e
ts are ignored 
annot always be justi�ed frompra
ti
al 
onsiderations and thus, it is often ne
essary to 
onsider a model that in
ludes boththe g.
.a. and s.
.a. e�e
ts, even if interest 
entres around the estimation of g.
.a. e�e
ts
ontrasts only. In this paper, we work under a model that in
ludes both the g.
.a. and s.
.a.e�e
ts, though our primary interest is in the estimation of 
ontrasts among g.
.a. e�e
ts.In a diallel 
ross experiment the v 
rosses are regarded as treatments. If the (�xed) e�e
tof 
ross (i; j) is denoted by �ij, then we have the representation�ij = �� + gi + gj + sij; (1)where �� is the mean e�e
t of the treatments, the fgig stand for the general 
ombining ability(g.
.a.) e�e
ts, fsijg denote the spe
i�
 
ombining ability (s.
.a.) e�e
ts, andg1 + � � �+ gp = 0; (2)1



s1i + � � �+ s(i�1)i + si(i+1) + � � �+ sip = 0; 1 � i � p: (3)In what follows, we arrange the 
rosses in the order (1; 2); (1; 3); : : : ; (1; p),(2; 3); : : : ; (2; p); : : : ; (p � 1; p). Let g = (g1; : : : ; gp)0 and let � and s be v � 1 ve
tors withelements f�ijg and fsijg respe
tively. We follow Chai and Mukerjee (1999) to express the gen-eral and spe
i�
 
ombining abilities, i.e., g and s in terms of � . De�ne Q to be a p� v matrixwith rows indexed by 1; : : : ; p and 
olumns by the pairs (i; j); 1 � i < j � p, su
h that thefu; (i; j)gth entry of Q is 1 if u 2 (i; j) and zero, otherwise. We then haveQQ0 = (p� 2)Ip + Jpp; (QQ0)�1 = (p� 2)�1fIp � (2(p� 1))�1Jppg; (4)Q1v = (p� 1)1p; Q01p = 21v; (5)where, for positive integers 
; d, I
 is the 
th order identity matrix, 1
 is the 
� 1 ve
tor of allones and J
d = 1
10d: In view of this, (1) 
an be expressed as� = ��1v +Q0g + s; (6)where, from (2) and (3), we have 10pg = 0; Qs = 0: (7)Premultiplying (6) by Q and using (4), (5) and (7), one hasg = H1� ; s = � � ��1v �Q0g = H2� ; (8)where H1 = (QQ0)�1Q� (2v)�1Jpv = (p� 2)�1(Q� 2p�1Jpv); (9)and H2 = Iv �Q0(QQ0)�1Q = Iv � (p� 2)�1fQ0Q� 2(p� 1)�1Jvvg: (10)Sin
e H11v = 0; H21v = 0; H1H 02 = 0; Rank(H1) = p� 1; Rank(H2) = v � p; (11)it is 
lear that g and s represent treatment 
ontrasts 
arrying p�1 and v�p degrees of freedomrespe
tively and the 
ontrasts representing g are orthogonal to those representing s. It may benoted that for p = 3 lines, s = 0 and hen
e, in the present paper, we take p � 4 throughout.Consider now an arrangement of v treatments (
rosses) in a blo
k design with b blo
ks ea
hof size k � 2. The usual �xed e�e
ts model in
orporating both g.
.a and s.
.a. e�e
ts andwith un
orrelated homos
edasti
 errors is postulated. The main interest is in the estimationof 
ontrasts among the g.
.a. e�e
ts and, the s.
.a. e�e
ts, alongwith the blo
k e�e
ts aretreated as nuisan
e parameters. Under this set up, we derive 
onditions on the blo
k designsu
h that the g.
.a. e�e
ts, after eliminating the blo
k e�e
ts, are estimated free from the s.
.a.e�e
ts. Designs with this property will be 
alled orthogonal designs. We also derive suÆ
ient
onditions for orthogonal designs to be universally optimal.2



2. Orthogonal DesignsTo 
hara
terize orthogonal designs, it will be 
onvenient to 
onsider the problem via 
om-plete sets of orthonormal 
ontrasts, say L1� and L2� , representing g and s respe
tively. Then,by (8) and (11), we haveL1L01 = Ip�1; L2L02 = Iv�p; L1L02 = 0; R(L1) = R(H1);R(L2) = R(H2); (12)where R(�) denotes the row span of a matrix. Note that the subsequent results do not dependon the spe
i�
 
hoi
e of L1 and L2. Let P1 be a (p� 1)� p matrix su
h that  p� 1210pP1 ! is anorthogonal matrix and P2 be a (v � p)� v matrix satisfyingP2P 02 = Iv�p and P2Q0 = 0: (13)It follows then that P11p = 0; P1P 01 = Ip�1; P21v = 0; (14)where the last identity follows from (13) and (5). It is then easy to see that L1 and L2 satisfying(12) 
an be expressed as L1 = (p� 2)� 12P1Q and L2 = P2 (15)for any P1 and P2 satisfying (13) and (14). Thus,L01L1 = (p� 2)�1(Q0Q� 4p�1Jvv): (16)Under the stated model and a blo
k design d, the joint information matrix for  L1L2 ! � isgiven by Id = " L1CdL01 L1CdL02L2CdL01 L2CdL02 # ; (17)where Cd = Rd � k�1MdM 0d, Rd is the diagonal matrix of the repli
ations of the 
rosses underd and Md is the v � b in
iden
e matrix of 
rosses versus blo
ks. Note that Cd is the usualC-matrix of d with 
rosses as treatments and hen
e, Cd1v = 0. As shown in Lemma 1 below,in order that the design d is orthogonal in the sense of Se
tion 1, we must haveL2CdL01 = 0: (18)By (15), this is equivalent to P1QCdP 02 = 0: (19)Let Igd be the information matrix for L1� . Then, we have the following result.Lemma 1. (a) L1CdL01 � Igd is a nonnegative de�nite (n.n.d.) matrix.(b) Furthermore, Igd = L1CdL01 if and only if L2CdL01 = 0.3



Proof. Re
all that the rows of [L01; L02℄0 form an orthonormal basis of the ortho
omplementof R(10v) in the v-dimensional Eu
lidean spa
e. It follows from (17) that Igd is L1CdL01 �L1CdL02(L2CdL02)�L2CdL01, where A� denotes a generalized inverse of a matrix A. Thus,L1CdL01 � Igd = L1CdL02(L2CdL02)�L2CdL01: (20)Suppose Rank(Cd) = t. Sin
e Cd is n.n.d., there exists a v � t matrix H of full 
olumn rank,su
h that Cd = H 0H. Then, by (20),L1CdL01 � Igd = L1H 0HL02(L2H 0HL02)�L2H 0HL01 = L1H 0pr(HL02)HL01; (21)is n.n.d., as pr(HL02) is n.n.d., where for a matrix X, pr(X) denotes the proje
tion on to the
olumn span of X. This proves (a).By (21), L1CdL01 = Igd if and only if pr(HL02)HL01 = 0, i.e., if and only if L2H 0HL01 =L2CdL01 = 0. This proves (b). 2Lemma 2. The following 
onditions are equivalent:(i) L2CdL01 = 0.(ii) L01L1Cd = CdL01L1.(iii) Q0QCd = CdQ0Q.Proof. Suppose L01L1Cd = CdL01L1. Then, L2CdL01 = L2CdL01L1L01 = L2L01L1CdL01 = 0.Conversely, suppose L2CdL01 = 0. Then, L02L2CdL01 = 0 and sin
e L01L1 + L02L2 = Iv �v�1Jvv , this implies that (Iv � v�1Jvv � L01L1)CdL01 = 0 ) CdL01 = L01L1CdL01 ) CdL01L1 =L01L1CdL01L1. Now, sin
e L01L1CdL01L1 is symmetri
, CdL01L1 = (CdL01L1)0 = L01L1Cd. Finally,from (14) and (15), it follows that L01L1Cd = CdL01L1 , Q0QCd = CdQ0Q. 2We now �nd an upper bound to tr(Igd), the tra
e of Igd. Let D be the 
olle
tion of alldesigns that keep L1� estimable. Sin
e by Lemma 1(a), for any d 2 D, L1CdL01�Igd is n.n.d.,we have tr(Igd) � tr(L1CdL01)= tr(CdL01L1)= tr(Cdf(p� 2)�1Q0Q� 4p�1Jvvg)= (p� 2)�1tr(CdQ0Q)= (p� 2)�1tr(RdQ0Q� k�1MdM 0dQ0Q):Now, tr(MdM 0dQ0Q) = tr(QMdM 0dQ0) = tr(NdN 0d) = Ppi=1Pbj=1 n2dij , where Nd = (ndij) =QMd is the p � b lines versus blo
ks in
iden
e matrix. Sin
e fndijg are integers andPpi=1Pbj=1 ndij = 2bk, Ppi=1Pbj=1 n2dij � bf2k(2x + 1)� px(x+ 1)g, where x = [2kp�1℄ and [�℄is the greatest integer fun
tion. Also, tr(RdQ0Q) = 2tr(Rd) = 2bk, sin
e ea
h diagonal elementof Q0Q equals 2. Thus, tr(Igd) � (p� 2)�1f2bk � bk�1(2k(2x + 1)� px(x+ 1))g or,tr(Igd) � (k(p� 2))�1bf2k(k � 2x� 1) + px(x+ 1)g = ! (say): (22)4



Remark. The expression in (22) is a
tually obvious from Das, Dey and Dean (1998,Theorem2.1) if one notes that tr(CdQ0Q) = tr(QCdQ0) and that QCdQ0 is the C-matrix of the blo
kdesign with lines as treatments.We next have the following result. Theorem 1. Suppose there exists a design d0 2 D su
hthat(i) Q0QCd0 = Cd0Q0Q and,(ii) QCd0Q0 = (p� 1)�1(p� 2)!(Ip � p�1Jpp), where ! > 0 is as in (22).Then, d0 is universally optimal in D for inferen
e on L1� .Proof. Let Igd0 be the information matrix for L1� under d0. Then, by (i),part (b) of Lemma 1 and Lemma 2, Igd0 = L1Cd0L01: Also, by (ii), L1Cd0L01 =(p� 2)�1P1QCd0Q0P 01 = (p� 1)�1!P1(Ip � p�1Jpp)P 01 = (p� 1)�1!Ip�1. Thus,Igd0 = (p� 1)�1!Ip�1: (23)Also, from (22), for every d 2 D, tr(Igd) � !; (24)and from (23), tr(Igd0) = tr((p� 1)�1!Ip�1) = !: (25)Sin
e by (23), Igd0 is a 
onstant times the identity matrix, in view of (24) and (25), the 
laimeduniversal optimality of d0 now follows from Kiefer (1975) and Sinha and Mukerjee (1982). 2We now derive a 
ondition, whi
h is equivalent to the 
onditions of Theorem 1. The 
ondi-tions in Theorem 1 areQ0QCd0 = Cd0Q0Q; and QCd0Q0 = (p� 1)�1(p� 2)!(Ip � p�1Jpp): (26)Lemma 3. The 
onditions in Theorem 1 are equivalent toQCd0 = (p� 1)�1!(Q� 2p�1Jpv): (27)Proof. Suppose (27) holds. Then, QCd0Q0 = (p � 1)�1!(QQ0 � 2(p � 1)p�1Jpp) = (p �1)�1(p� 2)!(Ip� p�1Jpp), and Q0QCd0 = (p� 1)�1!(Q0Q� 4p�1Jvv), whi
h is symmetri
, i.e.,Q0QCd0 = Cd0Q0Q. Thus (27) ) (26).Conversely, suppose (26) holds. Then, QCd0Q0Q = (p� 1)�1(p� 2)!(Ip� p�1Jpp)Q, by these
ond 
ondition of (26). This implies that QQ0QCd0 = (p � 1)�1(p � 2)!(Ip � p�1Jpp)Q, bythe �rst 
ondition in (26). Now, using (4), we haveQCd0 = (p� 1)�1!(Ip � (2(p � 1))�1Jpp)(Ip � p�1Jpp)Q5



or, QCd0 = (p� 1)�1!(Q� 2p�1Jpv) and thus, (26) ) (27). 23. Constru
tion of DesignsIn this se
tion, we 
onsider the issue of determining designs that satisfy the 
onditions ofTheorem 1. We �rst have the following result, whi
h is in the spirit of the dis
ussion in Deyand Mukerjee (1999; Se
tion 2.3, page 12) in a di�erent 
ontext.Lemma 4. In order to keep L1� estimable under a design d (blo
ked or unblo
ked), it isne
essary that every 
ross appears at least on
e in the design.Proof. Suppose L1� is estimable under d and if possible, suppose some 
ross, say (1; 2), neverappears in d. Then, R(L1) � R(Cd) and the �rst 
olumn of Cd is null. Hen
e the �rst 
olumnof L1 is also null. We shall now show that this is impossible. Suppose the �rst 
olumn of L1is null. Then, the �rst 
olumn of L01L1 is null, i.e., by (16), the �rst 
olumn of Q0Q� 4p�1Jvvis null. This implies that the �rst element of the �rst 
olumn of Q0Q must equal 4p�1. But,by the de�nition of Q, the �rst element in the �rst 
olumn of Q0Q equals 2, whi
h leads to a
ontradi
tion, sin
e p > 2. 2In view of Lemma 4, the smallest design that keeps L1� estimable under the stated model isone in whi
h ea
h 
ross is repli
ated just on
e.For a single repli
ate design d1, Cd1 = Iv � k�1Md1M 0d1 . Hen
e, (27) , Q(Iv �k�1Md1M 0d1) = (p� 1)�1!(Q� 2p�1Jpv), whi
h is equivalent to(p� 1� !)Q+ 2!p�1Jpv = k�1(p� 1)QMd1M 0d1 : (28)Also, for d1, M 0d1Md1 = kIb. Hen
e,(28)) QMd1 = Nd1 = 2kp�1Jpb; (29)where Nd1 is the p � b lines versus blo
ks in
iden
e matrix. That is, ea
h line o

urs 2kp�1times in ea
h blo
k.We next 
he
k whether (29) ) (28). Suppose (29) holds. Then,k�1QMd1M 0d1 = k�12kp�1JpbM 0d1 = 2p�11p10bM 0d1 = 2p�1Jpv: (30)Furthermore, if (29) holds, then 2kp�1 is an integer, i.e., x = 2kp�1 and, in su
h a 
ase, one
an show that ! = p� 1. Hen
e, under (29), the right hand side of (28) equals 2(p� 1)p�1Jpvand by (30), it follows that (29) ) (28). Hen
e, we get the following result.Theorem 2. For a single repli
ate design d1, (27) holds if and only ifNd1 = 2kp�1Jpb:6



We next 
onsider a general equirepli
ate design, say d2. For su
h a design, Cd2 = rIv �k�1Md2M 0d2 , where r is the 
ommon repli
ation of the 
rosses and Md2 is the 
rosses versusblo
ks in
iden
e matrix of d2. It follows then that(27), (r(p� 1)� !)Q+ 2!p�1Jpv = k�1(p� 1)QMd2M 0d2 : (31)We need the following result in the sequel.Lemma 5. The v � v matrix W = " QP2 # is nonsingular.Proof. With W as above, we haveWW 0 = " QQ0 QP 02P2Q0 P2P 02 # :The result then follows, sin
e QQ0 = (p� 2)Ip + Jpp , P2P 02 = Iv�p ; and P2Q0 = 0. 2Now, sin
e W is nonsingular matrix of order v and Md2 is a v � b matrix, the 
olumn spanof Md2 is a subspa
e of the 
olumn span of W 0, i.e., there exist matri
es A1 and A2 of ordersp� b and (v � p)� b respe
tively, su
h thatMd2 = Q0A1 + P 02A2: (32)In view of (32), we have k10b = 10vMd2 = 10vQ0A1 + 10vP 02A2 = 10vQ0A1 = (p� 1)10pA1, so that10pA1 = (p� 1)�1k10b:Also, r1v = Md21b = Q0A11b + P 02A21b. This implies that rQ1v = QQ0A11b + QP 02A21b =QQ0A11b. Thus, using (4), A11b = r(QQ0)�1Q1v = r21p:Finally, r1v =Md21b = Q0A11b+P 02A21b = Q0( r21p)+P 02A21b = r1v+P 02A21b. Premultiplyingby P2, this implies that A21b = 0:We now have the following result.Lemma 6. The 
ondition (31) is equivalent toA1A02 = 0 (33)and A1A01 = k(p� 1)�1(p� 2)�1f(r(p� 1)� !)Ip � (2p)�1(rp� 2!)Jppg: (34)7



Proof. By (32), QMd2 = QQ0A1 +QP 02A2 = QQ0A1, whi
h implies thatQMd2M 0d2 = QQ0A1(A01Q+A02P2): (35)Now suppose (31) holds. Then(r(p� 1)� !)Q+ 2!p�1Jpv = k�1(p� 1)QMd2M 0d2 = k�1(p� 1)QQ0A1(A01Q+A02P2): (36)Postmultiplying both sides of (36) by P 02 and re
alling that QP 02 = 0; JpvP 02 = 0; P2P 02 = Iv�p,we have 0 = k�1(p� 1)QQ0A1A02 ) A1A02 = 0, as QQ0 is nonsingular. This proves (33).Again, postmultiplying both sides of (36) by Q0 and simplifying, we get A1A01 as in (34).Conversely, let (33) and (34) hold. Then, by (35), we have k�1(p� 1)QMd2M 0d2 = k�1(p�1)(QQ0A1A01Q + QQ0A1A02P2) = k�1(p � 1)QQ0A1A01Q, by (33). Substituting for QQ0 andA1A01 from (4) and (34) respe
tively, the right hand side yields on simpli�
ation (r(p � 1) �!)Q+ 2!p�1Jpv, whi
h is (31). 2To summarize, in order that Theorem 1 holds in the 
ase of an equirepli
ate design, Md2must be of the form Md2 = Q0A1 + P 02A2where (i) A1 and A2 satisfy (33) and (34) and, (ii) A11b = r21p, 10pA1 = k(p � 1)�110b andA21b = 0.From (31) it is seen that d2 is orthogonal and balan
ed for g.
.a. e�e
ts if(r(p� 1)� Æ)Q+ 2Æp�1Jpv = k�1(p� 1)QMd2M 0d2 ; (36)where Æ is any positive 
onstant. Furthermore, if Æ = !, the design is universally optimal aswell.If Md2M 0d2 = �Q0Q + �Jvv for some s
alars �; � satisfying (p � 1)(4� + p�) = 2rk, then(36) holds. It 
an be veri�ed that equirepli
ate designs for diallel 
rosses derived from trian-gular in
omplete blo
k designs with usual parameters v = p(p � 1)=2; b; r; k; �1 ; �2 (see e.g.,Dey and Midha (1996)) satisfy (36) and are thus, orthogonal and balan
ed for g.
.a. e�e
ts.Furthermore, if p(p� 1)(p� 2)�1 = bxf4k � p(x+ 1)g;where x = [2kp�1℄ then Æ = ! and in su
h a 
ase, the design is universally optimal for estimatingg.
.a. e�e
ts in the presen
e of s.
.a. e�e
ts. This supports the �ndings in Chai and Mukerjee(1999).Now, 
onsider an equirepli
ate design d2, su
h that Nd2 = QMd2 = 2kp�1Jpb. Then,! = r(p� 1) and thus, (31) holds. Hen
e, su
h a design is universally optimal for g.
.a. e�e
tsunder the stated model. Families of su
h designs have been given by Choi et al. (2002).The existen
e of the above two 
lasses of designs does not pre
lude the existen
e of otherdesigns whi
h are also universally optimal under the present set up. Further work needs to bedone for determining su
h designs. 8
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