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Abstract

Let a(;) and b(;) be the ith smallest components of a = (ay,...,a,) and b = (by,...,by)
respectively, where a,b € IRT". The vector a is said to be p-larger than the vector b (denoted
by a g b ) if Hle agy < H;c:l bay, fork =1,...,n. Let Xy,,...,X,, be independent ran-
dom variables such that X, has gamma distribution with shape parameter a > 1 and scale
parameter \;, ¢ = 1,...,n. It is shown that if A é A*, then Y71, X, is greater than > 7" | X)-
according to dispersive as well as hazard rate orderings. This strengthens the results of Kochar
and Ma [Statistics & Probability Letters 43 (1999), 321-324] and Korwar [J. Multivariate Anal-
ysis 80 (2002), 344-357] from usual majorization to p-larger ordering and leads to better bounds

on various quantities of interest.
AMS classification : 60E15, 62N05, 62D05
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1 Introduction

Convolutions of independent random variables occur quite frequently in statistics, applied
probability, operations research and in many other areas. Their distribution theory is quite
complicated when the convoluting random variables are not identically distributed. In such
situations, it is of interest to obtain bounds and approximations on moments and other char-

acteristics of interest for such statistics.
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Kochar and Ma (1999) proved that a convolution of independent exponential random vari-
ables with unequal hazard rates is stochastically larger in the sense of dispersive ordering when
the parameters of the exponential distributions are more dispersed in the sense of majorization.
Korwar (2002) extended this result to the case of gamma random variables with different scale
parameters but with a common shape parameter whose value is at least one. In this paper
we further investigate this problem when the scale parameters of the gamma random variables
satisfy some constraints which are weaker than majorization. The new results obtained in this
paper lead to better bounds on various quantities of interest. Other related work on this prob-
lem where some other stochastic orders are also considered is by Bock et al. (1987), Boland,
El-Neweihi and Proschan (1994) and Bon and Paltanea (1999).

A random variable X is said to be more dispersed than another random variable Y (denoted
by X >4isp Y) if F71(v) = F7'(u) > G (v) — G (u), for 0 <u<wv <1, where F~! and
G~! are the right continuous inverses of the distribution functions F and G of X and Y,
respectively. It is well known that X >4, Y = var(X) > var(Y). For further properties of
dispersive order, see Shaked and Shanthikumar (1994).

Let {z(1) < ... < @(,)} denote the increasing arrangement of the components of a vector
x = (r1, -+ ,2p). The vector x is said to majorize another vector y of the same dimension
(written x g y) if Eg:1 Ty < E{Zl yay for 5 = 1,...,n — 1T and Y70 2y = D0 ya)-
Functions that preserve the majorization ordering are called Schur-convex functions. Bon and

Paltanea (1999) define a vector x in IR™" to be be p-larger than another vector y also in IR*"
p . .
(written x = y) if []_, T < [, Y@),J = 1,...,n. It can be shown that for x,y € RT",

X Q y — X § y. The converse, however, may not be true.

Let X),,...,X), be independent random variables such that for « = 1,...,n, X,, has
gamma distribution with shape parameter ¢ > 1 and scale parameter \; so that its density
function is given by f(z;a,\;) = {1/T(a)} \i* 2 texp(—\iz), T > 0;0, otherwise. We prove
in Theorem 2.1 in the next section that when the common shape parameter a is a positive
integer, A § A= >0 X\ 2disp Di—1 Xaz. To prove it, we shall be repeatedly using the
following result due to Lewis and Thompson (1981).

THEOREM 1.1. Let Z be a random wvariable independent of random variables X and Y. If
X >4isp Y and Z has a log-concave density, then X + Z > 45, Y + Z.

2 Main Results

The next theorem states the main result of this paper.

THEOREM 2.1. Let X,,...,X), be independent random variables such that Xy, has gamma

p
distribution with shape parameter a > 1 and scale parameter \;, fori=1,...,n. Then, X = X*
implies S(A1, ..., An) Zaisp S(AT, ..., AE), where S(A1,...,A\,) = D0 X,

PROOF : To prove this theorem we follow the same technique as used by Korwar (2002)



in his paper. First we consider the case when n = 2. Without loss of generality we assume
that A\; > A2 and A] > A5. The proofs for the cases when A\ = Ao, A1 = A], Ay = A and
Al > A3 follow from Theorem 1.1 while for the the case when A\; = A2 and A7 = A3 follows from
the fact that gamma random variables with a common shape parameter are dispersive ordered
with respect to their scale parameters. Now we only need to consider the following two cases
separately in order to prove the desired result.

Case (a) A1 > Ay and A] > AJ.

First we consider the case when A\; # A] and Ay # A3 and will discuss the other possibilities
later. Let f(y;a,A1,A2) and F(y;a, A1, A2) denote the density function and the distribution
function of S(A1, A2), respectively. To prove the required result, in the light of Lemma 2.1 in
Khaledi and Kochar (2002, p.16), it is sufficient to show that for 0 <y < z < 1,

(i) F Ywz;a,e™,e®) — FY(y;a,e,e) is Schur-convex in (ay, as),
(i) FYz;a,e",e®) — Fl(y;a,e,e) is decreasing in a; and as,
where a; =log A;, 1 =1, 2.
From the definition of dispersive ordering it follows that (i) is equivalent to

m * *
(ala a2) t (a*{,a%) = S(eal’e@) Zdisp S(ealae%)a (21)

where a; = log\}, ¢ =1,2.

As seen in Korwar (2002) the density function of S(A, ¢ — A) for y > 0, can be written as

Fly5a,2) = Va(A(e = 2)*/D(a){y/ (X = )} 2exp(—cy/2) L, 172((A = ¢/2)y),  (2.2)

where
1
T, 1 o(y) = {20y/2) V2 /AT (@)} / (1 — )@ Deosh(ty)dt.

Let a; = log A\; and a; =log A}, ¢ = 1,2 and a; + az = d. The constraints A\; > Ay and A] > A}
respectively, are equivalent to a; > a2 and a] > a3. Using these in (2.2), we get

et 1 6d—al el — 6d—al

flysa,a1) = e [T (a){y/ (" — e ") D exp(—————y)Lu172(

Using the recurrence formula I} (z) = I,41(2) + (v/2)I,(2) in f'(y;a,a1), the derivative of f

and after simplifications, we get

, d 620,1 _ 62(d_a1) ed—al _ Lal d d
f'(y;a,a1)ae”%( 5 )f(y;a+1, = 5 WSy, a,a1)—ae (e +eT ) fys atl, ar)}
(2.3)
The Laplace transform of f(y;a,a1), denoted by gq 4, (s), is
6ad
Ga,a1 (8) = (2.4)

{(s +em)(s +edmer)}e’



and that of yf(y;a,a;) is

99,4, (5)
Y — _ Jaai\7/
ga,al (S) 85

B ae“d(25 + e + 6d_a1) 2.5
- {(s + em1)(s + ed—ar)jatl’ (2:5)

Taking Laplace transforms of both sides of (2.3) and using the above relations, we get

d—a; _ ell

2

(&

L(f'(y;a,01)) = {=Ga.a () = ae™ (™ + e )gas1a, ()} (2.6)

Using the equality L( [} f'(z;a,a1)dz) = L(f'(y;a,a1))/s; and (2.6), (2.4) and (2.5), we obtain

! ed_al B eal ! —d/ a1 d—a1
L(F'(y;a,a1)) = T{_ga,al (s) —ae “(e" +e" " )gat1,a:(5)}
= ae e — ") L(f(y;a +1,a1)). (2.7)

Now, by taking the inverse Laplace transforms of both sides of (2.7) and dividing it by
flys a,a1), we get
F'(y;a,a1) — et — eal)f(y;a-i- 1,a1)
fy;a,a1) f(y; a,a1)
Korwar (2002) has shown that f(y;a + 1,a1)/f(y;a,ay) is increasing in y. That is, the R.H.S.
of (2.8) is decreasing in y, since a; > d — a;. Then (2.1) follows from Saunders and Moran
(1978, p. 428).

Note that (ii) is equivalent to saying that S(A1,A,) is decreasing in A\; and A2 according

(2.8)

to dispersive ordering. Since X X, Zdisp Xy, for Ay > ] and X, has a log-concave density, it
follows from Theorem 1.1 that S(X], XA2) >4isp S(A1, A2). Similarly one can prove that S(Aq, A2)
is decreasing in Ag.

Case (b) A1 > A and A\] = AJ.

Again the required result for the case when A; = A} immediately follows from Theorem 1.1.
Now let A1 # A% In this case (A1, Ao) = (A}, A3) implies that AT > X, where A = (A1Ao)'/2, the
geometric mean of A;, Ay. First we prove the result for the case when \] = X It is easy to see
that, for m > 1, (A1, A2) § (A, A+ 1/m). Using this observation, it follows from case (a) that,

for m > 1, Xy, + Xy, 2aisp X5 +X5\+1/m' Using the fact that Xi+1/m A X5 as m — oo, it

follows that X5 + X5, /m A Y, as m — 00, where Y is a gamma random variable with shape
parameter 2a and scale parameter A\. Combining these observations, the required result in this
case follows from Theorem 3 of Lewis and Thompson (1981).

The result for the case when A7 > X follows from the above case and the fact that gamma
random variables with a common shape parameters are decreasing according to dispersive
ordering with respect to their scale parameters. This completes the proof of this case.

Now we give the proof for n > 2. As in the case of n = 2, it is easy to see that S(\1,..., Ap)
is decreasing in \; according to dispersive ordering, for ¢ = 1,...,n. It remains to show

m * *
that a > a* = S(e",...,e") >g4isp S(e™,...,e%), where a; = log); and af = log A},
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i =1,,...,n. To prove this, it is sufficient to consider the case when (a, a2) g (a3, a3), and
a; = al, i = 3,...,n. Note that S(e”®,...,e%") has a log-concave density because a class of
distributions with log-concave densities is closed under convolutions (cf. Dharmadhiakri and
Joag-dev, 1988, p. 17). Since S(e,e*) >4sp S(e%, e%), adding S(e®,...,e*) to both sides
of the above inequality, we find that the required result follows from Theorem 1.1. [ |

A random variable X with survival function F is said to be larger than another random
variable Y with survival function G according to hazard rate ordering (denoted by X >, Y) if
F(r)/G(z) is increasing in x. The following result is an immediate consequence of Theorem 2.1,
Theorem 2.1 of Bagai and Kochar(1986, p.1381) and the fact a convolution of I F'R distributions

is IFR.

COROLLARY 2.1. Let Xy,,..., Xy, be independent random variables such that Xy; has gamma

distribution with shape parameter a > 1 and scale parameter X;, for i = 1,...,n. Then,
P

A= X implies S(A1, ..., An) Zhr S(A], .. ).

A special case of the above corollary when random variables X},’s have exponential dis-

tributions, has been proved by Bon and Paltanea (1999). Since for a positive vector A,
P . - - -

(A, An) = (A,...,A), where X is the geometric mean of the A’s, we get the following

lower bounds on various quantities of interest associated with convolutions of gamma random

variables.
COROLLARY 2.2. Let X,,,..., Xy, be independent random variables such that Xy, has gamma
distribution with shape parameter a > 1 and scale parameter \;, for i =1,...,n. Then,

(a) S()\l,...,)\n) Zdisp S(S\, ,5\)
(b) S(A1,...,An) Znr S(A, ..., X) which implies

(¢) SOy ) > SN, ..., N),

where X is the geometric mean of the \;’s.

The bounds given by Korwar (2002) are in terms of arithmetic mean A = Y 7 | \; instead
of the geometric mean on the right hand sides of the above inequalities.

In Figures 2.1 and 2.2, we plot the distribution functions of convolutions of two independent
gamma random variables along with the bounds given by Corollary 2.2 (c) and by Korwar
(2002). In Figures 2.3 and 2.4, we plot the hazard functions of convolutions of two independent
gamma random variables along with the bounds given by Corollary 2.2 (b) and by Korwar
(2002). The vector of parameters in Figures 2.1 and 2.3 is Ay = (1,2) and that in Figures
2.2 and 2.4 is A2 = (0.25,2.75). Note that Aq Q A1. It appears from these figures that the
improvements on the bounds are relatively more if \;’s are more dispersed in the sense of
majorization. This is due to the fact that the geometric mean is Schur concave whereas the
arithmetic mean is Schur constant and the distribution (hazard rate) of convolutions of i.i.d.

gamma random variables with common parameter A is decreasing (increasing) in .
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Figure 2.1. Graphs of distribution functions of S(A1, A2)
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Figure 2.2. Graphs of distribution functions of S(A1, A2)
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Figure 2.3. Graphs of hazard rates of S(A;, A2)
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Figure 2.4. Graphs of hazard rates of S(A1, \2)
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