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Ordering onvolutions of gamma random variablesBaha-Eldin Khaledi �Statistial Reseah Center, Tehran andDepartment of Statistis, Razi University, Kermanshah, IranSubhash C. KoharStat-Math Unit, Indian Statistial Institute,7, SJS Sansanwal MargNew Delhi 110016, INDIAAbstratLet a(i) and b(i) be the ith smallest omponents of a = (a1; : : : ; an) and b = (b1; : : : ; bn)respetively, where a;b 2 IR+n. The vetor a is said to be p-larger than the vetor b (denotedby a p� b ) if Qki=1 a(i) � Qki=1 b(i); for k = 1; : : : ; n. Let X�1 ; : : : ;X�n be independent ran-dom variables suh that X�i has gamma distribution with shape parameter a � 1 and saleparameter �i, i = 1; : : : ; n. It is shown that if � p� ��, thenPni=1X�i is greater thanPni=1X��iaording to dispersive as well as hazard rate orderings. This strengthens the results of Koharand Ma [Statistis & Probability Letters 43 (1999), 321-324℄ and Korwar [J. Multivariate Anal-ysis 80 (2002), 344-357℄ from usual majorization to p-larger ordering and leads to better boundson various quantities of interest.AMS lassi�ation : 60E15, 62N05, 62D05Key words : Shur funtions, majorization, p-larger ordering, log-onave density, dispersiveordering and hazard rate ordering.1 IntrodutionConvolutions of independent random variables our quite frequently in statistis, appliedprobability, operations researh and in many other areas. Their distribution theory is quiteompliated when the onvoluting random variables are not identially distributed. In suhsituations, it is of interest to obtain bounds and approximations on moments and other har-ateristis of interest for suh statistis.�Corresponding author. This researh is partialy supported by Statistial Reseah Center, Tehran, Iran.1



Kohar and Ma (1999) proved that a onvolution of independent exponential random vari-ables with unequal hazard rates is stohastially larger in the sense of dispersive ordering whenthe parameters of the exponential distributions are more dispersed in the sense of majorization.Korwar (2002) extended this result to the ase of gamma random variables with di�erent saleparameters but with a ommon shape parameter whose value is at least one. In this paperwe further investigate this problem when the sale parameters of the gamma random variablessatisfy some onstraints whih are weaker than majorization. The new results obtained in thispaper lead to better bounds on various quantities of interest. Other related work on this prob-lem where some other stohasti orders are also onsidered is by Bok et al. (1987), Boland,El-Neweihi and Proshan (1994) and Bon and Paltanea (1999).A random variableX is said to be more dispersed than another random variable Y (denotedby X �disp Y ) if F�1(v) � F�1(u) � G�1(v) � G�1(u); for 0 � u � v � 1, where F�1 andG�1 are the right ontinuous inverses of the distribution funtions F and G of X and Y ,respetively. It is well known that X �disp Y ) var(X) � var(Y ). For further properties ofdispersive order, see Shaked and Shanthikumar (1994).Let fx(1) � : : : � x(n)g denote the inreasing arrangement of the omponents of a vetorx = (x1; � � � ; xn). The vetor x is said to majorize another vetor y of the same dimension(written x m� y) if Pji=1 x(i) � Pji=1 y(i) for j = 1; : : : ; n � 1 and Pni=1 x(i) = Pni=1 y(i).Funtions that preserve the majorization ordering are alled Shur-onvex funtions. Bon andPaltanea (1999) de�ne a vetor x in IR+n to be be p-larger than another vetor y also in IR+n(written x p� y) if Qji=1 x(i) � Qji=1 y(i); j = 1; : : : ; n. It an be shown that for x;y 2 IR+n,x m� y =) x p� y: The onverse, however, may not be true.Let X�1 ; : : : ;X�n be independent random variables suh that for i = 1; : : : ; n, X�i hasgamma distribution with shape parameter a � 1 and sale parameter �i so that its densityfuntion is given by f(x; a; �i) = f1=�(a)g�ia xa�1exp(��ix); x > 0; 0; otherwise. We provein Theorem 2.1 in the next setion that when the ommon shape parameter a is a positiveinteger, � p� �� =) Pni=1X�i �disp Pni=1X��i : To prove it, we shall be repeatedly using thefollowing result due to Lewis and Thompson (1981).Theorem 1.1. Let Z be a random variable independent of random variables X and Y . IfX �disp Y and Z has a log-onave density, then X + Z �disp Y + Z:2 Main ResultsThe next theorem states the main result of this paper.Theorem 2.1. Let X�1 ; : : : ;X�n be independent random variables suh that X�i has gammadistribution with shape parameter a � 1 and sale parameter �i, for i = 1; : : : ; n. Then, � p� ��implies S(�1; : : : ; �n) �disp S(��1; : : : ; ��n); where S(�1; : : : ; �n) =Pni=1X�i .Proof : To prove this theorem we follow the same tehnique as used by Korwar (2002)2



in his paper. First we onsider the ase when n = 2. Without loss of generality we assumethat �1 � �2 and ��1 � ��2. The proofs for the ases when �1 = �2, �1 = ��1, �1 = ��2 and��1 > ��2 follow from Theorem 1.1 while for the the ase when �1 = �2 and ��1 = ��2 follows fromthe fat that gamma random variables with a ommon shape parameter are dispersive orderedwith respet to their sale parameters. Now we only need to onsider the following two asesseparately in order to prove the desired result.Case (a) �1 > �2 and ��1 > ��2.First we onsider the ase when �1 6= ��1 and �2 6= ��2 and will disuss the other possibilitieslater. Let f(y; a; �1; �2) and F (y; a; �1; �2) denote the density funtion and the distributionfuntion of S(�1; �2), respetively. To prove the required result, in the light of Lemma 2.1 inKhaledi and Kohar (2002, p.16), it is suÆient to show that for 0 < y � x < 1,(i) F�1(x; a; ea1 ; ea2)� F�1(y; a; ea1 ; ea2) is Shur-onvex in (a1; a2),(ii) F�1(x; a; ea1 ; ea2)� F�1(y; a; ea1 ; ea2) is dereasing in a1 and a2,where ai = log �i, i = 1; 2.From the de�nition of dispersive ordering it follows that (i) is equivalent to(a1; a2) m� (a�1; a�2) =) S(ea1 ; ea2) �disp S(ea�1 ; ea�2 ); (2.1)where a�i = log��i , i = 1; 2.As seen in Korwar (2002) the density funtion of S(�; � �) for y > 0, an be written asf(y ; a; �) = p�(�(� �))a=�(a)fy=(2� � )ga�1=2exp(�y=2)Ia�1=2((�� =2)y); (2.2)where Ia�1=2(y) = f2(y=2)a�1=2=p��(a)gZ 10 (1� t2)(a�1)osh(ty)dt:Let ai = log �i and a�i = log ��i , i = 1; 2 and a1 + a2 = d. The onstraints �1 > �2 and ��1 > ��2respetively, are equivalent to a1 > a2 and a�1 > a�2. Using these in (2:2), we getf(y; a; a1) = p�ead=�(a)fy=(ea1 � ed�a1)g(a�1=2)exp(�ea1 + ed�a12 y)Ia�1=2(ea1 � ed�a12 y):Using the reurrene formula I 0v(z) = Iv+1(z) + (v=z)Iv(z) in f 0(y; a; a1), the derivative of fand after simpli�ations, we getf 0(y; a; a1)ae�d(e2a1 � e2(d�a1)2 )f(y; a+1;= ed�a1 � ea12 fyf(y; ; a; a1)�ae�d(ea1+ed�a1)f(y; a+1; a1)g:(2.3)The Laplae transform of f(y; a; a1), denoted by ga;a1(s), isga;a1(s) = eadf(s+ ea1)(s+ ed�a1)ga ; (2.4)3



and that of yf(y; a; a1) is �g0a;a1(s) = ��ga;a1(s)�s= aead(2s+ ea1 + ed�a1)f(s+ ea1)(s+ ed�a1)ga+1 : (2.5)Taking Laplae transforms of both sides of (2:3) and using the above relations, we getL(f 0(y; a; a1)) = ed�a1 � ea12 f�g0a;a1(s)� ae�d(ea1 + ed�a1)ga+1;a1(s)g: (2.6)Using the equality L(R y0 f 0(z; a; a1)dz) = L(f 0(y; a; a1))=s; and (2:6), (2:4) and (2:5), we obtainL(F 0(y; a; a1)) = ed�a1 � ea12s f�g0a;a1(s)� ae�d(ea1 + ed�a1)ga+1;a1(s)g= ae�d(ed�a1 � ea1)L(f(y; a+ 1; a1)): (2.7)Now, by taking the inverse Laplae transforms of both sides of (2:7) and dividing it byf(y; a; a1), we get F 0(y; a; a1)f(y; a; a1) = ae�d(ed�a1 � ea1)f(y; a+ 1; a1)f(y; a; a1) (2.8)Korwar (2002) has shown that f(y; a+ 1; a1)=f(y; a; a1) is inreasing in y. That is, the R.H.S.of (2:8) is dereasing in y, sine a1 > d � a1. Then (2.1) follows from Saunders and Moran(1978, p. 428).Note that (ii) is equivalent to saying that S(�1; �2) is dereasing in �1 and �2 aordingto dispersive ordering. Sine X�01 �disp X�1 for �1 > �01 and X�2 has a log-onave density, itfollows from Theorem 1.1 that S(�01; �2) �disp S(�1; �2). Similarly one an prove that S(�1; �2)is dereasing in �2.Case (b) �1 > �2 and ��1 = ��2.Again the required result for the ase when �1 = ��1 immediately follows from Theorem 1.1.Now let �1 6= ��1. In this ase (�1; �2) p� (��1; ��2) implies that ��1 � ~�, where ~� = (�1�2)1=2, thegeometri mean of �1; �2. First we prove the result for the ase when ��1 = ~�. It is easy to seethat, for m � 1, (�1; �2) p� (~�; ~�+ 1=m). Using this observation, it follows from ase (a) that,for m � 1, X�1 +X�2 �disp X~� + X~�+1=m: Using the fat that X~�+1=m L! X~� as m ! 1, itfollows that X~� +X~�+1=m L! Y , as m!1, where Y is a gamma random variable with shapeparameter 2a and sale parameter ~�. Combining these observations, the required result in thisase follows from Theorem 3 of Lewis and Thompson (1981).The result for the ase when ��1 > ~� follows from the above ase and the fat that gammarandom variables with a ommon shape parameters are dereasing aording to dispersiveordering with respet to their sale parameters. This ompletes the proof of this ase.Now we give the proof for n > 2. As in the ase of n = 2, it is easy to see that S(�1; : : : ; �n)is dereasing in �i aording to dispersive ordering, for i = 1; : : : ; n. It remains to showthat a m� a� =) S(ea1 ; : : : ; ean) �disp S(ea�1 ; : : : ; ea�n); where ai = log �i and a�i = log ��i ,4



i = 1; ; : : : ; n. To prove this, it is suÆient to onsider the ase when (a1; a2) m� (a�1; a�2), andai = a�i , i = 3; : : : ; n. Note that S(ea3 ; : : : ; ean) has a log-onave density beause a lass ofdistributions with log-onave densities is losed under onvolutions (f. Dharmadhiakri andJoag-dev, 1988, p. 17). Sine S(ea1 ; ea2) �disp S(ea�1 ; ea�2 ), adding S(ea3 ; : : : ; ean) to both sidesof the above inequality, we �nd that the required result follows from Theorem 1.1.A random variable X with survival funtion F is said to be larger than another randomvariable Y with survival funtion G aording to hazard rate ordering (denoted by X �hr Y ) ifF (x)=G(x) is inreasing in x. The following result is an immediate onsequene of Theorem 2.1,Theorem 2.1 of Bagai and Kohar(1986, p.1381) and the fat a onvolution of IFR distributionsis IFR.Corollary 2.1. Let X�1 ; : : : ;X�n be independent random variables suh that X�i has gammadistribution with shape parameter a � 1 and sale parameter �i, for i = 1; : : : ; n. Then,� p� �� implies S(�1; : : : ; �n) �hr S(��1; : : : ; ��n):A speial ase of the above orollary when random variables X�i 's have exponential dis-tributions, has been proved by Bon and Paltanea (1999). Sine for a positive vetor �,(�1; : : : ; �n) p� (~�; : : : ; ~�), where ~� is the geometri mean of the ~�'s, we get the followinglower bounds on various quantities of interest assoiated with onvolutions of gamma randomvariables.Corollary 2.2. Let X�1 ; : : : ;X�n be independent random variables suh that X�i has gammadistribution with shape parameter a � 1 and sale parameter �i, for i = 1; : : : ; n. Then,(a) S(�1; : : : ; �n) �disp S(~�; : : : ; ~�)(b) S(�1; : : : ; �n) �hr S(~�; : : : ; ~�) whih implies() S(�1; : : : ; �n) �st S(~�; : : : ; ~�);where ~� is the geometri mean of the �i's.The bounds given by Korwar (2002) are in terms of arithmeti mean � =Pni=1 �i insteadof the geometri mean on the right hand sides of the above inequalities.In Figures 2.1 and 2.2, we plot the distribution funtions of onvolutions of two independentgamma random variables along with the bounds given by Corollary 2.2 () and by Korwar(2002). In Figures 2.3 and 2.4, we plot the hazard funtions of onvolutions of two independentgamma random variables along with the bounds given by Corollary 2.2 (b) and by Korwar(2002). The vetor of parameters in Figures 2.1 and 2.3 is �1 = (1; 2) and that in Figures2.2 and 2.4 is �2 = (0:25; 2:75). Note that �2 m� �1. It appears from these �gures that theimprovements on the bounds are relatively more if �i's are more dispersed in the sense ofmajorization. This is due to the fat that the geometri mean is Shur onave whereas thearithmeti mean is Shur onstant and the distribution (hazard rate) of onvolutions of i.i.d.gamma random variables with ommon parameter ~� is dereasing (inreasing) in ~�.5
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Figure 2.1. Graphs of distribution funtions of S(�1; �2)
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Figure 2.2. Graphs of distribution funtions of S(�1; �2)
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Figure 2.3. Graphs of hazard rates of S(�1; �2)
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