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tLet a(i) and b(i) be the ith smallest 
omponents of a = (a1; : : : ; an) and b = (b1; : : : ; bn)respe
tively, where a;b 2 IR+n. The ve
tor a is said to be p-larger than the ve
tor b (denotedby a p� b ) if Qki=1 a(i) � Qki=1 b(i); for k = 1; : : : ; n. Let X�1 ; : : : ;X�n be independent ran-dom variables su
h that X�i has gamma distribution with shape parameter a � 1 and s
aleparameter �i, i = 1; : : : ; n. It is shown that if � p� ��, thenPni=1X�i is greater thanPni=1X��ia

ording to dispersive as well as hazard rate orderings. This strengthens the results of Ko
harand Ma [Statisti
s & Probability Letters 43 (1999), 321-324℄ and Korwar [J. Multivariate Anal-ysis 80 (2002), 344-357℄ from usual majorization to p-larger ordering and leads to better boundson various quantities of interest.AMS 
lassi�
ation : 60E15, 62N05, 62D05Key words : S
hur fun
tions, majorization, p-larger ordering, log-
on
ave density, dispersiveordering and hazard rate ordering.1 Introdu
tionConvolutions of independent random variables o

ur quite frequently in statisti
s, appliedprobability, operations resear
h and in many other areas. Their distribution theory is quite
ompli
ated when the 
onvoluting random variables are not identi
ally distributed. In su
hsituations, it is of interest to obtain bounds and approximations on moments and other 
har-a
teristi
s of interest for su
h statisti
s.�Corresponding author. This resear
h is partialy supported by Statisti
al Resea
h Center, Tehran, Iran.1



Ko
har and Ma (1999) proved that a 
onvolution of independent exponential random vari-ables with unequal hazard rates is sto
hasti
ally larger in the sense of dispersive ordering whenthe parameters of the exponential distributions are more dispersed in the sense of majorization.Korwar (2002) extended this result to the 
ase of gamma random variables with di�erent s
aleparameters but with a 
ommon shape parameter whose value is at least one. In this paperwe further investigate this problem when the s
ale parameters of the gamma random variablessatisfy some 
onstraints whi
h are weaker than majorization. The new results obtained in thispaper lead to better bounds on various quantities of interest. Other related work on this prob-lem where some other sto
hasti
 orders are also 
onsidered is by Bo
k et al. (1987), Boland,El-Neweihi and Pros
han (1994) and Bon and Paltanea (1999).A random variableX is said to be more dispersed than another random variable Y (denotedby X �disp Y ) if F�1(v) � F�1(u) � G�1(v) � G�1(u); for 0 � u � v � 1, where F�1 andG�1 are the right 
ontinuous inverses of the distribution fun
tions F and G of X and Y ,respe
tively. It is well known that X �disp Y ) var(X) � var(Y ). For further properties ofdispersive order, see Shaked and Shanthikumar (1994).Let fx(1) � : : : � x(n)g denote the in
reasing arrangement of the 
omponents of a ve
torx = (x1; � � � ; xn). The ve
tor x is said to majorize another ve
tor y of the same dimension(written x m� y) if Pji=1 x(i) � Pji=1 y(i) for j = 1; : : : ; n � 1 and Pni=1 x(i) = Pni=1 y(i).Fun
tions that preserve the majorization ordering are 
alled S
hur-
onvex fun
tions. Bon andPaltanea (1999) de�ne a ve
tor x in IR+n to be be p-larger than another ve
tor y also in IR+n(written x p� y) if Qji=1 x(i) � Qji=1 y(i); j = 1; : : : ; n. It 
an be shown that for x;y 2 IR+n,x m� y =) x p� y: The 
onverse, however, may not be true.Let X�1 ; : : : ;X�n be independent random variables su
h that for i = 1; : : : ; n, X�i hasgamma distribution with shape parameter a � 1 and s
ale parameter �i so that its densityfun
tion is given by f(x; a; �i) = f1=�(a)g�ia xa�1exp(��ix); x > 0; 0; otherwise. We provein Theorem 2.1 in the next se
tion that when the 
ommon shape parameter a is a positiveinteger, � p� �� =) Pni=1X�i �disp Pni=1X��i : To prove it, we shall be repeatedly using thefollowing result due to Lewis and Thompson (1981).Theorem 1.1. Let Z be a random variable independent of random variables X and Y . IfX �disp Y and Z has a log-
on
ave density, then X + Z �disp Y + Z:2 Main ResultsThe next theorem states the main result of this paper.Theorem 2.1. Let X�1 ; : : : ;X�n be independent random variables su
h that X�i has gammadistribution with shape parameter a � 1 and s
ale parameter �i, for i = 1; : : : ; n. Then, � p� ��implies S(�1; : : : ; �n) �disp S(��1; : : : ; ��n); where S(�1; : : : ; �n) =Pni=1X�i .Proof : To prove this theorem we follow the same te
hnique as used by Korwar (2002)2



in his paper. First we 
onsider the 
ase when n = 2. Without loss of generality we assumethat �1 � �2 and ��1 � ��2. The proofs for the 
ases when �1 = �2, �1 = ��1, �1 = ��2 and��1 > ��2 follow from Theorem 1.1 while for the the 
ase when �1 = �2 and ��1 = ��2 follows fromthe fa
t that gamma random variables with a 
ommon shape parameter are dispersive orderedwith respe
t to their s
ale parameters. Now we only need to 
onsider the following two 
asesseparately in order to prove the desired result.Case (a) �1 > �2 and ��1 > ��2.First we 
onsider the 
ase when �1 6= ��1 and �2 6= ��2 and will dis
uss the other possibilitieslater. Let f(y; a; �1; �2) and F (y; a; �1; �2) denote the density fun
tion and the distributionfun
tion of S(�1; �2), respe
tively. To prove the required result, in the light of Lemma 2.1 inKhaledi and Ko
har (2002, p.16), it is suÆ
ient to show that for 0 < y � x < 1,(i) F�1(x; a; ea1 ; ea2)� F�1(y; a; ea1 ; ea2) is S
hur-
onvex in (a1; a2),(ii) F�1(x; a; ea1 ; ea2)� F�1(y; a; ea1 ; ea2) is de
reasing in a1 and a2,where ai = log �i, i = 1; 2.From the de�nition of dispersive ordering it follows that (i) is equivalent to(a1; a2) m� (a�1; a�2) =) S(ea1 ; ea2) �disp S(ea�1 ; ea�2 ); (2.1)where a�i = log��i , i = 1; 2.As seen in Korwar (2002) the density fun
tion of S(�; 
� �) for y > 0, 
an be written asf(y ; a; �) = p�(�(
� �))a=�(a)fy=(2� � 
)ga�1=2exp(�
y=2)Ia�1=2((�� 
=2)y); (2.2)where Ia�1=2(y) = f2(y=2)a�1=2=p��(a)gZ 10 (1� t2)(a�1)
osh(ty)dt:Let ai = log �i and a�i = log ��i , i = 1; 2 and a1 + a2 = d. The 
onstraints �1 > �2 and ��1 > ��2respe
tively, are equivalent to a1 > a2 and a�1 > a�2. Using these in (2:2), we getf(y; a; a1) = p�ead=�(a)fy=(ea1 � ed�a1)g(a�1=2)exp(�ea1 + ed�a12 y)Ia�1=2(ea1 � ed�a12 y):Using the re
urren
e formula I 0v(z) = Iv+1(z) + (v=z)Iv(z) in f 0(y; a; a1), the derivative of fand after simpli�
ations, we getf 0(y; a; a1)ae�d(e2a1 � e2(d�a1)2 )f(y; a+1;= ed�a1 � ea12 fyf(y; ; a; a1)�ae�d(ea1+ed�a1)f(y; a+1; a1)g:(2.3)The Lapla
e transform of f(y; a; a1), denoted by ga;a1(s), isga;a1(s) = eadf(s+ ea1)(s+ ed�a1)ga ; (2.4)3



and that of yf(y; a; a1) is �g0a;a1(s) = ��ga;a1(s)�s= aead(2s+ ea1 + ed�a1)f(s+ ea1)(s+ ed�a1)ga+1 : (2.5)Taking Lapla
e transforms of both sides of (2:3) and using the above relations, we getL(f 0(y; a; a1)) = ed�a1 � ea12 f�g0a;a1(s)� ae�d(ea1 + ed�a1)ga+1;a1(s)g: (2.6)Using the equality L(R y0 f 0(z; a; a1)dz) = L(f 0(y; a; a1))=s; and (2:6), (2:4) and (2:5), we obtainL(F 0(y; a; a1)) = ed�a1 � ea12s f�g0a;a1(s)� ae�d(ea1 + ed�a1)ga+1;a1(s)g= ae�d(ed�a1 � ea1)L(f(y; a+ 1; a1)): (2.7)Now, by taking the inverse Lapla
e transforms of both sides of (2:7) and dividing it byf(y; a; a1), we get F 0(y; a; a1)f(y; a; a1) = ae�d(ed�a1 � ea1)f(y; a+ 1; a1)f(y; a; a1) (2.8)Korwar (2002) has shown that f(y; a+ 1; a1)=f(y; a; a1) is in
reasing in y. That is, the R.H.S.of (2:8) is de
reasing in y, sin
e a1 > d � a1. Then (2.1) follows from Saunders and Moran(1978, p. 428).Note that (ii) is equivalent to saying that S(�1; �2) is de
reasing in �1 and �2 a

ordingto dispersive ordering. Sin
e X�01 �disp X�1 for �1 > �01 and X�2 has a log-
on
ave density, itfollows from Theorem 1.1 that S(�01; �2) �disp S(�1; �2). Similarly one 
an prove that S(�1; �2)is de
reasing in �2.Case (b) �1 > �2 and ��1 = ��2.Again the required result for the 
ase when �1 = ��1 immediately follows from Theorem 1.1.Now let �1 6= ��1. In this 
ase (�1; �2) p� (��1; ��2) implies that ��1 � ~�, where ~� = (�1�2)1=2, thegeometri
 mean of �1; �2. First we prove the result for the 
ase when ��1 = ~�. It is easy to seethat, for m � 1, (�1; �2) p� (~�; ~�+ 1=m). Using this observation, it follows from 
ase (a) that,for m � 1, X�1 +X�2 �disp X~� + X~�+1=m: Using the fa
t that X~�+1=m L! X~� as m ! 1, itfollows that X~� +X~�+1=m L! Y , as m!1, where Y is a gamma random variable with shapeparameter 2a and s
ale parameter ~�. Combining these observations, the required result in this
ase follows from Theorem 3 of Lewis and Thompson (1981).The result for the 
ase when ��1 > ~� follows from the above 
ase and the fa
t that gammarandom variables with a 
ommon shape parameters are de
reasing a

ording to dispersiveordering with respe
t to their s
ale parameters. This 
ompletes the proof of this 
ase.Now we give the proof for n > 2. As in the 
ase of n = 2, it is easy to see that S(�1; : : : ; �n)is de
reasing in �i a

ording to dispersive ordering, for i = 1; : : : ; n. It remains to showthat a m� a� =) S(ea1 ; : : : ; ean) �disp S(ea�1 ; : : : ; ea�n); where ai = log �i and a�i = log ��i ,4



i = 1; ; : : : ; n. To prove this, it is suÆ
ient to 
onsider the 
ase when (a1; a2) m� (a�1; a�2), andai = a�i , i = 3; : : : ; n. Note that S(ea3 ; : : : ; ean) has a log-
on
ave density be
ause a 
lass ofdistributions with log-
on
ave densities is 
losed under 
onvolutions (
f. Dharmadhiakri andJoag-dev, 1988, p. 17). Sin
e S(ea1 ; ea2) �disp S(ea�1 ; ea�2 ), adding S(ea3 ; : : : ; ean) to both sidesof the above inequality, we �nd that the required result follows from Theorem 1.1.A random variable X with survival fun
tion F is said to be larger than another randomvariable Y with survival fun
tion G a

ording to hazard rate ordering (denoted by X �hr Y ) ifF (x)=G(x) is in
reasing in x. The following result is an immediate 
onsequen
e of Theorem 2.1,Theorem 2.1 of Bagai and Ko
har(1986, p.1381) and the fa
t a 
onvolution of IFR distributionsis IFR.Corollary 2.1. Let X�1 ; : : : ;X�n be independent random variables su
h that X�i has gammadistribution with shape parameter a � 1 and s
ale parameter �i, for i = 1; : : : ; n. Then,� p� �� implies S(�1; : : : ; �n) �hr S(��1; : : : ; ��n):A spe
ial 
ase of the above 
orollary when random variables X�i 's have exponential dis-tributions, has been proved by Bon and Paltanea (1999). Sin
e for a positive ve
tor �,(�1; : : : ; �n) p� (~�; : : : ; ~�), where ~� is the geometri
 mean of the ~�'s, we get the followinglower bounds on various quantities of interest asso
iated with 
onvolutions of gamma randomvariables.Corollary 2.2. Let X�1 ; : : : ;X�n be independent random variables su
h that X�i has gammadistribution with shape parameter a � 1 and s
ale parameter �i, for i = 1; : : : ; n. Then,(a) S(�1; : : : ; �n) �disp S(~�; : : : ; ~�)(b) S(�1; : : : ; �n) �hr S(~�; : : : ; ~�) whi
h implies(
) S(�1; : : : ; �n) �st S(~�; : : : ; ~�);where ~� is the geometri
 mean of the �i's.The bounds given by Korwar (2002) are in terms of arithmeti
 mean � =Pni=1 �i insteadof the geometri
 mean on the right hand sides of the above inequalities.In Figures 2.1 and 2.2, we plot the distribution fun
tions of 
onvolutions of two independentgamma random variables along with the bounds given by Corollary 2.2 (
) and by Korwar(2002). In Figures 2.3 and 2.4, we plot the hazard fun
tions of 
onvolutions of two independentgamma random variables along with the bounds given by Corollary 2.2 (b) and by Korwar(2002). The ve
tor of parameters in Figures 2.1 and 2.3 is �1 = (1; 2) and that in Figures2.2 and 2.4 is �2 = (0:25; 2:75). Note that �2 m� �1. It appears from these �gures that theimprovements on the bounds are relatively more if �i's are more dispersed in the sense ofmajorization. This is due to the fa
t that the geometri
 mean is S
hur 
on
ave whereas thearithmeti
 mean is S
hur 
onstant and the distribution (hazard rate) of 
onvolutions of i.i.d.gamma random variables with 
ommon parameter ~� is de
reasing (in
reasing) in ~�.5
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