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Dispersive Ordering - Some Appliations and ExamplesJongwoo Jeon1, Subhash Kohar2, Chul Gyu Park3 ?1 Department of StatistisSeoul National UniversitySeoul, 151-742, Korea2 Indian Statistial Institute7, SJS Sansanwal MargNew Delhi-110016, India3 Shool of Mathematis and StatistisCarleton UniversityOttawa, Ontario, K1S 5B6, CanadaReeived: date / Revised version: dateAbstrat A basi onept for omparing spread among probability distributions is that of dispersiveordering. Let X and Y be two random variables with distribution funtions F and G, respetively. LetF�1 and G�1 be their right ontinuous inverses (quantile funtions). We say that Y is less dispersedthan X ( Y �disp X) if G�1(�)�G�1(�) � F�1(�) � F�1(�), for all 0 < � � � < 1. This means thatthe di�erene between any two quantiles of G is smaller than the di�erene between the orrespondingquantiles of F . A onsequene of Y �disp X is that jY1 � Y2j is stohastially smaller than jX1 �X2jand this in turn implies var(Y ) � var(X) as well as E[jY1 � Y2j℄ � E[jX1 �X2j℄, where X1; X2 (Y1; Y2)are two independent opies of X (Y ). In this review paper, we give several examples and appliations ofdispersive ordering in statistis. Examples inlude those related to order statistis, spaings, onvolutionof non-identially distributed random variables and epoh times of non-homogeneous Poisson proesses.Key words : Exponential distribution, proportional hazard rates, hazard rate ordering, Shur funtions,majorization and p-larger ordering, onvolutions, parallel systems, gamma distribution.1 IntrodutionStohasti models are usually omplex in nature. Obtaining bounds and approximations for some of theirharateristis of interest is of pratial importane. That is, the approximation of a stohasti modeleither by a simpler model or by a model with simple onstituent omponents might lead to onvenientbounds and approximations for some partiular and desired harateristis of the model. Beginningwith the idea of stohasti ordering as introdued by Lehmann (1955), over the years several stohastiorders have been introdued in the literature for omparing di�erent aspets of probability distributions.In this review paper we fous on dispersive ordering, a partial ordering useful for omparing spread? This work was supported in part by KOSEF through Statistial Researh Center for Complex Systems at SeoulNational University. Subhash Kohar is thankful to Dr. B. Khaledi for many helpful disussions.



2 Jongwoo Jeon et al.among probability distributions. We give several examples of statistis that an be ordered aordingto dispersive ordering.We �rst review the various stohasti orders that will be useful in our disussion. Let us denote byf , F , F and rF the density funtion, the distribution funtion, the survival funtion and the hazard rateof a random variable X , respetively. Similarly, let g, G, G and rG denote these quantities for anotherrandom variable Y . Throughout this paper `inreasing' means nondereasing and `dereasing' meansnon inreasing.De�nition 1 A random variable Y is said to be stohastially smaller than another random variable X(denoted by Y �st X) if G(x) � F (x); for all x . (1)It is well known that (1) is equivalent toG�1(p) � F�1(p) 8p 2 (0; 1)as well as to E[�(Y )℄ � E[�(X)℄ (2)for all inreasing funtions � : R! R for whih the expetations exist. A stronger notion of stohastidominane is that of hazard rate ordering.De�nition 2 Y is said to be smaller than X in hazard rate ordering (denoted by Y �hr X) ifF (x)=G(x) is inreasing in x: (3)Let Xt denote a random variable desribing the residual lifetime of a random variable X at time tgiven that X > t. That is, Xt has the same distribution as that of X � tjX > t, with survival funtionF (x+ t)=F (t). It is easy to show that Y �hr X if and only ifYt �st Xt for all t � 0:In other words, the onditional distributions, given that the random variables are at least of a ertainsize, are all stohastially ordered (in the usual sense) in the same diretion. In ase the hazard ratesexist, it is easy to see that Y �hr X , if and only if, rF (x) � rG(x) for every x. The hazard rate orderingis also known as uniform stohasti ordering in the literature.De�nition 3 Y is said to be smaller than X in likelihood ratio ordering (denoted by Y �lr X) iff(x)=g(x) is inreasing in x.When the supports of X and Y have a ommon �nite left end-point, we have the following hain ofimpliations among the above stohasti orders :Y �lr X ) Y �hr X ) Y �st X:See Lehmann and Rojo (1992) for details.Now we de�ne multivariate stohasti ordering between two random vetors.De�nition 4 A random vetor Y = (Y1; : : : ; Yn) is smaller than another random vetor X = (X1; : : : ; Xn)in the multivariate stohasti order (denoted by Y st� X) if �(Y) �st �(X) for all inreasing funtions � : Rn ! R:



Dispersive Ordering - Some Appliations and Examples 3It is easy to see that multivariate stohasti ordering implies omponent-wise stohasti ordering.We will also be using the onept of majorization. Let fx(1) � x(2) � : : : � x(n)g denote the inreasingarrangement of the omponents of a vetor x = (x1; x2; : : : ; xn). Vetor x is said to majorize anothervetor y (written x m� y) if Pji=1 x(i) � Pji=1 y(i) forj = 1; : : : ; n � 1 and Pni=1 x(i) = Pni=1 y(i).Funtions that preserve the majorization ordering are alled Shur onvex funtions. See Marshall andOlkin (1979, Ch. 3) for more details. Vetor x is said to majorize vetor y weakly (written x w� y) ifPji=1 x(i) �Pji=1 y(i) for j = 1; : : : ; n.Reently Bon and Paltanea (1999) onsidered a new pre-order on IR+n, whih they all p-largerorder. A vetor x in IR+n is said to be p-larger than another vetor y, also in IR+n, (written x p� y) iflog(x) w� log(y), where log(x) denotes the vetor of the logarithms of the oordinates of x. It is knownthat x m� y =) (g(x1); : : : ; g(xn)) w� (g(y1); : : : ; g(yn)) for all onave funtions g (f. Marshal and Olkin(1979), p. 115). Sine log is a onave funtion, it follows that for x;y 2 IR+n, x m� y =) x p� y: Theonverse is, however, not true. For example, (0:2; 1; 5) p� (1; 2; 3) but majorization does not hold betweenthese two vetors.A basi onept for omparing spread among probability distributions is that of dispersive orderingas de�ned below.De�nition 5 Y is said to be less dispersed than X (denoted by Y �disp X) ifG�1(�)�G�1(�) � F�1(�)� F�1(�); whenever 0 < � � � < 1,: (4)Note that Y �disp X if and only if the following equivalent onditions hold :(i) F�1G(x) � x inreases in x,(ii) rF (F�1(p)) � rG(G�1(p)); 8p 2 (0; 1); (5)if the densities exist.(iii) YG�1(p) �st XF�1(p) 8p 2 (0; 1):Doksum (1969), while studying the eÆienies of ertain non-parametri tests, alled this orderingtail ordering. If (4) holds, Yanagimoto and Sibuya (1976) say that X is statistially more spread outthan Y . Saunders and Moran (1978), Bikel and Doksum (1979), Lewis and Thompson (1981) andShaked (1982) systematially studied this partial ordering as a stohasti order for omparing spreadamong probability distributions. Deshpande and Kohar (1983) pointed out the equivalene betweenthese onepts and established some onnetions between dispersive ordering and some other partialorders. Deshpande and Kohar (1982) and Deshpande and Mehta (1982) used dispersive ordering insome inferential problems to obtain bounds on eÆienies of tests and probabilities of orret seletions.Some important properties of dispersive ordering are :P1. Dispersive ordering is loation-invariant in the sense thatY �disp X , Y +  �disp X for any real .P2. X �disp �X whenever � > 1:P3. Y �disp X , �Y �disp �X:P4. ( Lewis and Thompson, 1981) Let Z be a random variable independent ofX and Y and Y �disp X .Then Y + Z �disp X + Z if and only if Z has a log-onave density.P5. If X and Y are suh that they have a ommon �nite left end point of their supports, thenY �disp X ) Y �st X:



4 Jongwoo Jeon et al.P6. (Rojo and He, 1991) If Y �disp X and Y �st X , then �(Y ) �disp �(X) for all inreasing onvexand all dereasing onave funtions �.P7. Y �disp X ) E[�(Y � E(Y ))℄ � E[�(X � E(X))℄ for every onvex funtion �, provided theexpetations exist. In partiular, Y �disp X implies var(Y ) � var(X) and EjY � E(Y )j � EjX �E(X)j.For more details regarding these stohasti orders, see Chapter 1 and Setion 2.B of Shaked and Shan-thikumar (1994).As indiated by (5), there is an intimate onnetion between hazard rate ordering and dispersiveordering and whih is made more expliit in the following result of Bagai and Kohar (1986).Theorem 1 Let X and Y be two nonnegative random variables.(a) If Y �hr X and either F or G is DFR (dereasing failure rate), then Y �disp X;(b) if Y �disp X and either F or G is IFR (inreasing failure rate), then Y �hr X.Sometimes it is not easy to establish hazard rate ordering or dispersive ordering diretly from thede�nitions and in those situations the above result an prove to be very useful. Here is an interestingexample.Example 1 Let X denote a gamma random variable with an integer shape parameter . Then for1 � 1 � 2, we show that X1 �disp X2 and X1 �hr X2 :We an express X2 as X1 +X2�1 , where X2�1 has gamma distribution with shape parameter2 � 1, a positive integer and is independent of X1 . Moreover X1 , being the sum of 1 independentexponential random variables, has log-onave density. It follows from property P4 thatX1 �disp X2 : (6)Sine X1 is IFR for 1 � 1, it follows from Theorem 1(b) and (6) that X1 �hr X2 .Saunders and Moran (1978) and Shaked (1982) proved the above result for gamma random variableswith arbitrary shape parameters using ompliated analyti methods. The following tehnique givenin Saunders and Moran (1978) is very useful in establishing dispersive ordering among members of aparametri family of probability distributions.Theorem 2 Let Xa be a random variable with distribution funtion Fa for eah a 2 R suh that(i) Fa is supported on some interval (x(a)� ; x(a)+ ) � (0;1) and has density fa whih does not vanish onany subinterval of (x(a)� ; x(a)+ ),(ii) derivative of Fa with respet to a exists and denoted by F 0a.Then, Xa �disp Xa� for a; a� 2 R and a > a�, (7)if and only if, F 0a(x)=fa(x) is dereasing in x. (8)Ahmed et al. (1986) established the following relations between super-additive (more NBU) orderingand dispersive ordering for nonnegative random variables. Reall that G is said to be super-additive withrespet to F (or Y is more NBU than X) (written as Y �su X) if F�1G(x+ y) � F�1G(x) +F�1G(y)for all x; y in the support of G.



Dispersive Ordering - Some Appliations and Examples 5Theorem 3 If Y �su X and Y �st X, then Y �disp X.Theorem 4 If Y �su X and limx!0+ F�1G(x)=x � 1, then Y �disp X.Similar relations between dispersive ordering and other partial orderings for aging, like onvex-orderingand star-ordering, were earlier obtained by Deshpande and Kohar (1983), Sathe (1984) and Bar-toszewiz (1985 a, 1985 b).It is easy to prove that Y �disp X implies jY1 � Y2j �st jX1 � X2j and whih in turn impliesvar(Y ) � var(X) as well as E[jY1 � Y2j℄ � E[jX1 � X2j℄, where X1; X2 (Y1; Y2) are two independentopies of X (Y ). Bartoszewiz (1986) extended this result to spaings of a random sample of size n.This is stated in the next theorem.Theorem 5 Let X1 :n; : : : ; Xn :n denote the order statistis of a random sample X1; : : : ; Xn from adistribution with distribution funtion F . Similarly, let Y1 :n; : : : ; Yn :n denote the order statistis ofa random sample Y1; : : : ; Yn from a distribution with distribution funtion G. Let the orrespondingspaings be denoted by Ui :n � Xi :n � Xi�1 :n and Vi :n � Yi :n � Yi�1 :n, for i = 1; : : : ; n, whereX0 :n = Y0 :n � 0. Then Y �disp X ) V st� U:This result leads to the following important onsequenes.Corollary 1 Under the onditions of Theorem 5(a) Yj :n � Yi :n �st Xj :n �Xi :n for 1 � i < j � n.In partiular, Yn :n � Yi :n �st Xn :n �X1 :n.(b) s2Y �st s2X ,where s2X and s2Y are the sample varianes of the two samples.() �Y �st �X ,where �X = ��n2���1XXi<j jXj :n �Xi :njis the Gini's mean di�erene for the X-sample. Similarly we de�ne �Y .Proof :(a) The result follows by adding the orresponding omponents of the random vetors U and V fromi+ 1 to j and using the above theorem.(b) Note that the sample variane an be expressed ass2X = [n(n� 1)℄�1XXi<j (Xj :n �Xi :n)2= [n(n� 1)℄�1XXi<j (Uj :n + Uj�1 :n + � � �+ Ui+1 :n)2whih is an inreasing funtion of U. Sine inreasing funtions of stohastially ordered random vetorsare stohastially ordered, the required result follows from the above theorem.() The proof follows from the previous theorem and the fat that, as in part (b), the Gini's meandi�erene an be expressed in the form of an inreasing funtion of the vetor of spaings.



6 Jongwoo Jeon et al.In Setion 2, we establish some dispersive ordering results between suessive order statistis froma DFR (dereasing failure rate) distribution. Due to its speial importane in reliability theory, Setion3 is exlusively devoted to the study of parallel systems with non-i.i.d. exponential omponents. Weexamine how the hanges in the parameters of the distributions a�et the lifetimes of parallel systemsin the sense of dispersive ordering and hazard rate ordering. These results are also extended to theproportional hazards rates (PHR) models. In Setion 4, we study dispersive ordering among normalizedspaings from some restrited families of distributions. The last setion is devoted to onvolutions ofindependent random variables di�ering in their sale parameters. The lasses of distributions studiedinlude gamma, uniform and normal.2 Dispersive ordering among order statistisOrder statistis play an important role in statistis, in general, and in reliability theory, in partiular. Thetime to failure of a k-out-of-n system of n omponents orresponds to the (n� k + 1)th order statisti.In partiular, the lifetime of a parallel system is the same as the largest order statisti. Series andparallel systems are the simplest examples of oherent systems and they are the building bloks of moreomplex oherent systems. They have been studied extensively in the literature when the omponentsare independent and identially distributed. But in real life, systems are usually made up of omponentswith non-identially distributed lifetimes and often they are dependent as the omponents work in aommon environment. Sine their distribution theory is quite ompliated, fewer results are available inthe general ase. In this setion we give some results on dispersive ordering among order statistis fromdistribution with dereasing failure rates.For i = 1; : : : ; n, we shall denote by Xi :n, the ith order statisti of a set of n random variablesX1; : : : ; Xn. TheXi's need not be independent nor identially distributed. In aseX1; : : : ; Xn is a randomsample from a DFR distribution, David and Groenveld (1982) proved that var(Xi :n) � var(Xj :n) for1 � i < j � n. Kohar (1996a) strengthened this result to prove that under the same ondition,Xi :n �disp Xj :n for 1 � i � j � n. Khaledi and Kohar (2000a) further strengthened this result toompare order statistis of random samples with unequal sample sizes from DFR distributions.Theorem 6 Let X1; : : : ; Xn be a random sample from a DFR distribution. ThenXi :n �disp Xj :m for i � j and n� i � m� j: (9)To prove this theorem, we �rst prove it for the exponential distribution. Boland et al. (1998) proveda speial ase of this result when the sample sizes are equal..Lemma 1 Let Xi :n be the ith order statisti of a random sample of size n from an exponential distri-bution with parameter �. ThenXi :n �disp Xj :m for i � j and n� i � m� j: (10)Proof : Suppose we have two independent random samples, X1; : : : ; Xn and X 01; : : : ; X 0m of sizes nand m from an exponential distribution with hazard rate parameter �. The ith order statisti Xi :n anbe written as a onvolution of sample spaings asXi :n = (Xi :n �Xi�1 :n) + � � �+ (X2 :n �X1 :n) +X1 :ndist= iXk=1En�i+k (11)



Dispersive Ordering - Some Appliations and Examples 7where for k = 1; : : : ; i; En�i+k is an exponential random variable with hazard rate (n� i+ k)�. It is awell known fat that En�i+k's are independent. Similarly we an express X 0j :m asX 0j :m dist= jXk=1E0m�j+k (12)where again for k = 1; : : : ; j; E0m�j+k is an exponential random variable with hazard rate (m� j + k)�and E0m�j+k 's are independent. It is easy to verify that En�i+1 �disp E0m�j+1 for n� i � m� j:Sine the lass of distributions with log- onave densities is losed under onvolutions (f. Dhar-madhiakri and Joag-dev, 1988, p. 17), it follows from the repeated appliations of property P4 thatiXk=1En�i+k �disp iXk=1E0m�j+k: (13)Again sine Pjk=i+1 E0m�j+k , being the sum of independent exponential random variables has a log-onave density and sine it is independent ofPik=1 E0n�i+k , it follows from property P4 that the R.H.Sof (13) is less dispersed than Pjk=1 E0m�j+k for i � j . That is,Xi :n dist= iXk=1En�i+k �disp jXk=1E0m�j+k dist= X 0j :m:Sine Xj :m and X 0j :m are stohastially equivalent, (10) follows from this.The proof of the next lemma an be found in Bartoszewiz (1987).Lemma 2 Let � : R+ ! R+ be a funtion suh that �(0) = 0 and �(x) � x is inreasing. Then forevery onvex and stritly inreasing funtion  : R+ ! R+ the funtion  � �1(x) � x is inreasing.Now we give a proof of Theorem 6 to show the tehnique used in proving suh results.Proof of Theorem 6 : The distribution funtion of Xj :m is Fj :m(x) = Bj :mF (x), where Bj :m isbeta distribution with parameters (j;m� j + 1).Let G denote the distribution funtion of a unit mean exponential random variable. Then Hj :m(x) =Bj :mG(x) is the distribution funtion of the jth order statisti in a random sample of size m from aunit mean exponential distribution. We an express Fj :m asFj :m(x) = Bj :mGG�1F (x)= Hj :mG�1F (x): (14)To prove the required result, we have to show that for i � j and n� i � m� j,F�1j :mFi :n(x) � x is inreasing in x, F�1GH�1j :mHi :nG�1F (x)� x is inreasing in x. (15)By Lemma 1, H�1j :mHi :n(x) � x is inreasing in x for i � j and n � i � m � j. Also the funtion (x) = F�1G(x) is stritly inreasing and it is onvex if F is DFR. The required result now followsfrom Lemma 2.Remark : A onsequene of Theorem 6 is that for random samples from a DFR distribution,Xi :n+1 �disp Xi :n �disp Xi+1 :n+1; for i = 1; : : : ; n:



8 Jongwoo Jeon et al.The DFR assumption is ruial for the above result to hold. For example, it an be shown that inthe ase of a random sample of size 2 from a uniform distribution over [0; 1℄, whih is not DFR, X1 : 2 isnot less dispersed than X2 : 2.Now we onsider the problem of omparing order statistis when the parent observations are inde-pendent but not neessarily identially distributed. Boland, El-Neweihi and Proshan (1994) have shownthat if X1; : : : ; Xn are independent random variables, then Xi : n �hr Xj :n, for 1 � i < j � n. Usingthis result and Theorem 1, we get the following theorem.Theorem 7 Let X1; : : : ; Xn be independent nonnegative random variables, then for 1 � i < j � n,Xi :n �disp Xj :n provided Xi :n is DFR.Even if we sample from a DFR distribution, it may not be true that Xi :n is DFR for every i 2f1; 2; : : : ; ng. But the smallest order statistis X1 :n is always DFR in this ase. This follows from thefat that the hazard rate of a series system of independent omponents is the sum of the hazard rates ofthe omponents. So if eah omponent of the series system has dereasing failure rate, the system willhave DFR property. This leads us to the following result.Corollary 2 Let X1; : : : ; Xn be independent DFR random variables, then X1 :n �disp Xj :n for 1 < j �n. It follows from the above disussion that amongst all k-out-of n systems made up of n independentDFR omponents, the series system is least dispersed but has greatest hazard rate.The next result is on dispersive ordering between series systems of independent DFR omponentsbased on di�erent number of omponents.Theorem 8 Let X1; : : : ; Xn+1 be independent DFR random variables. ThenX1 :n+1 �disp X1 :n:Proof : Sine the hazard rate of X1 :n is smaller than that of X1 :n+1,X1 :n+1 �hr X1 :n:The required result follows from Theorem 1 sine X1 :n has DFR distribution under the assumedonditions.In the next theorem we establish dispersive ordering between order statistis when the randomsamples are drawn from di�erent distributions.Theorem 9 Let X1; : : : ; Xn be a random sample of size n from a ontinuous distribution F and letY1 : : : ; Ym be a random sample of size m from another ontinuous distribution G. If either F or G isDFR, then X �disp Y ) Xi :n �disp Yj :m for i � j and n� i � m� j. (16)Proof : Let F be a DFR distribution. Proof for the ase when G is DFR is similar. By Theorem 6,Xi :n �disp Xj :m for i � j and n � i � m � j. Bartoszewiz (1986) proved that if X �disp Y thenXj :m �disp Yj :m. Combining these we get the required result.Sine the property X �hr Y together with the ondition that either F or G is DFR implies thatX �disp Y , we get the following result from the above theorem.



Dispersive Ordering - Some Appliations and Examples 9Corollary 3 Let X1; : : : ; Xn be a random sample of size n from a ontinuous distribution F andY1 : : : ; Ym be a random sample of size m from another ontinuous distribution G. If either F or Gis DFR, then X �hr Y ) Xi :n �disp Yj :m for i � j and n� i � m� j.Kohar (1996b) obtained similar results for the epoh times of a non-homogeneous Poisson proess( or equivalently for reord values) with a dereasing intensity funtion. One suh result is given below.Theorem 10 Let fN(t); t � 0g be a non-homogeneous Poisson proess with a dereasing intensityfuntion and let R1; R2; : : : be the suessive epoh times. ThenRn �disp Rn+1; n = 1; 2; : : : :3 Dispersive ordering among parallel systems with heterogeneous omponentsThe exponential distribution plays a very important role in statistis. Beause of its non-aging property,it has many nie properties and it often gives very onvenient bounds on survival probabilities andother harateristis of interest for systems with non-exponential omponents. Pledger and Proshan(1971) studied the problem of stohastially omparing the order statistis of non-identially distributedindependent exponential random variables with those orresponding to independent and identiallydistributed exponential random variables. This topi has been followed up by many researhers inludingProshan and Sethuraman (1976), Boland, El-Neweihi and Proshan (1994), Dykstra, Kohar and Rojo(1997), Boland, Shaked and Shanthikumar(1998), Bon and Paltanea (1999); and Khaledi and Kohar(2000a, 2000b), among others. In this setion we ompare parallel systems onsisting of non-identialomponents in terms of dispersive ordering and hazard rate ordering. First we onsider the ase whenthe omponents have exponential distributions and then extend the results to proportional hazards ratefamily.Pledger and Proshan (1971) proved the following result.Theorem 11 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i, i = 1; : : : ; n. Let X�1 ; : : : ; X�n be another set of independent exponential random variables with X�ihaving hazard rate ��i . Then � m� �� impliesX1 :n st= X�1 :n and Xi :n �st X�i :n, i = 2; : : : ; n. (17)Proshan and Sethuraman (1976) strengthened this result to establish multivariate stohasti or-dering between two vetors of order statistis. They proved that under the onditions of the abovetheorem, (X1 :n; : : : ; Xn :n) st� (X�1 :n; : : : ; X�n :n):The question is to what extent this result an be extended. For the speial ase n = 2 and i = 2, Boland,El- Neweihi and Proshan (1994) partially strengthened the above result of Pledger and Proshan (1971)from stohasti ordering to hazard rate ordering. Their result is stated below.Theorem 12 Let r�1;�2(t) be the hazard rate of a parallel system of two omponents whose lifetimes areindependent exponential random variables with hazard rates �1 and �2, respetively. Then r�1;�2(t) isShur-onave in (�1; �2). That is, (�1; �2) m� (��1; ��2) impliesX2 : 2 �hr X�2 : 2:



10 Jongwoo Jeon et al.Boland, El-Neweihi and Proshan (1994) onlude that Theorem 11 annot be generalized for ar-bitrary n. They show with the help of an example that the hazard rate of a parallel system of threeexponential omponents is not Shur onave in �. Dykstra, Kohar and Rojo (1997) proved that, how-ever, the reversed hazard rate of Xn :n, the lifetime of a parallel system of n independent exponentialomponents, is Shur-onvex in �.The next natural problem is to ompare Xn :n with Yn :n, where Y1; : : : ; Yn is a random sample froman exponential distribution with hazard rate � = nXi=1�i=n. Kohar and Rojo (1996) proved the followingresult.Theorem 13 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i for i = 1; : : : ; n. Let Y1; : : : ; Yn be a random sample from the exponential distribution with hazard rate�. Then Yn :n �disp Xn :n and Yn :n �hr Xn :n (18)These results give a lower bound for the variane of Xn :n and an upper bound on the hazard rateof Xn :n in terms of those of Yn :n.It will be interesting to know whether the above result an be extended to other order statistis.While we don't know the answer in general, we see from the next theorem that suh a result is true forthe seond order statisti.Theorem 14 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i for i = 1; : : : ; n. Let Y1; : : : ; Yn be a random sample from the exponential distribution with hazard rate�. Then Y2 :n �disp X2 :n:Proof : It follows from Theorem 3.7 of Kohar and Korwar (1996) thatY2 :n � Y1 :n �disp X2 :n �X1 :n and X1 :n st= Y1 :n : (19)Sine the distribution of X1 :n (Y1 :n) is logonave, it follows from property P4 of Setion 1 thatY2 :n = (Y2 :n � Y1 :n) + Y1 :n �disp (X2 :n �X1 :n) +X1 :n = X2 :n; (20)sine X2 :n �X1 :n is independent of X1 :n and Y2 :n � Y1 :n is independent of Y1 :n. That is,Y2 :n �disp X2 :n :In the following theorem Khaledi and Kohar (2000b) improved upon the bounds of Dykstra, Koharand Rojo (1997) by replaing � with ~� = (Qni=1 �i)1=n, the geometri mean of the �'s.Theorem 15 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i, i = 1; : : : ; n. Let Z1; : : : ; Zn be a random sample of size n from an exponential distribution withommon hazard rate ~� = (Qni=1 �i)1=n. ThenXn :n �disp Zn :n and Xn :n �hr Zn :n:Corollary 4 Under the onditions of Theorem 15,
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Fig. 1 Graphs of hazard rates of X3 : 3(a) the hazard rate rXn :n of Xn :n satis�esrXn :n(x;�) � n~��1� exp(�~�x)�n�1 exp(�~�x)1� �1� exp(�~�x)�n ;(b) var(Xn :n;�) � 1~�2Pni=1 1(n�i+1)2 :The new bounds given by Corollary 4 are better than those obtained by Dykstra, Kohar and Rojo(1997) sine the hazard rate of Yn :n is a nondereasing funtion of ~� and the fat that the geometrimean of �i's, is smaller than their arithmeti mean.In Figures 1 and 2 we plot the hazard rates of parallel systems of three exponential omponents alongwith the upper bounds as given by Dykstra, Kohar and Rojo (1997) and the one's given by Corollary4 (a). The vetor of parameters in Figure 1 is �1 = (1; 2; 3) and that in Figure 3.2 is �2 = (0:2; 2; 3:8).Note that �2 m� �1. It appears from these �gures that the improvements on the bounds are relativelymore if �i's are more dispersed in the sense of majorization. This is true beause the geometri mean isShur onave whereas the arithmeti mean is Shur onstant and the hazard rate of a parallel systemof i.i.d. exponential omponents with ommon parameter ~� is inreasing in ~�.
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r(x; 0:2; 2; 3:8)Fig. 2 Graphs of hazard rates of X3 : 33.1 Extensions to the PHR modelLet F denote the survival funtion of a non-negative random variableX with hazard rate h(�). Aordingto the proportional hazard rates (PHR) model, the independent random variables X1; : : : ; Xn are suhthat Xi has hazard rate �ih(�), i = 1; : : : ; n. Theorem 15 an be extended to the PHR model as shownbelow.Theorem 16 Let X1; : : : ; Xn be independent random variables suh that Xi has hazard rate �ih(�),i = 1; : : : ; n, where h(�) is the hazard rate of some non-negative random variable. Let Y1; : : : ; Yn be arandom sample from a distribution with ommon hazard rate ~�h(�), where ~� = (Qni=1 �i)1=n. Then(a) Xn :n �hr Yn :n, and(b) if F is DFR, then Xn :n �disp Yn :n.Proof : Let H(x) = � logF (x) denote the umulative hazard rate of F . Let Zi = H(Xi) andWi = H(Yi), i = 1; : : : ; n. Sine Xi's follow the PHR model, it is easy to see that Zi is exponentialwith hazard rate �i and Wi is exponential with hazard rate ~�, i = 1; : : : ; n. Theorem 15 implies thatZn :n �hr Wn :n. Using this fat, (sine H�1, the right inverse of H , is nondereasing), it is easy to showthat H�1(Zn :n) �hr H�1(Wn :n), from whih the part (a) of the theorem follows.(b) It follows from Theorem 15 that Zn :n �disp Wn :n and also Zn :n �st Wn :n. The funtion H�1(x)is onvex sine F is DFR and it is learly nondereasing. Using this, it follows from property P6 thatH�1(Zn :n) �disp H�1(Wn :n), whih is equivalent to Xn :n �disp Yn :n.4 Dispersive ordering among spaingsLet X1; : : : ; Xn be a random sample from a ontinuous distribution with df F and let Di :n = (n� i+1)(Xi :n�Xi�1 :n) denote the ith normalized spaing, i = 1; : : : ; n, with X0 :n � 0. It is well known thatD1 :n; : : : ; Dn :n are independent and identially distributed if and only if F is exponential. Barlow and



Dispersive Ordering - Some Appliations and Examples 13Proshan (1966) proved that if F is a DFR (IFR) distribution, then the suessive normalized spaingsare inreasing (dereasing) stohastially. Kohar and Kirmani (1995) partially strengthened this resultto the hazard rate ordering when the underlying random variables are DFR. This is stated below.Theorem 17 Let X1; : : : ; Xn be a random sample of size n from a DFR distribution. Then(a) Di :n �hr Di+1 :n for i = 1; : : : ; n� 1;(b) Di :n+1 �hr Di :n; for n � i and for �xed i:Barlow and Proshan (1966) have shown that spaings of i.i.d. DFR random variables have also DFRdistributions. The proof of the next theorem follows from the relation between hazard rate ordering anddispersive ordering and the above theorem.Theorem 18 If X1; : : : ; Xn is a random sample from a DFR distribution, then(a) Di :n �disp Di+1 :n, for i = 1; : : : ; n� 1;(b) Di :n+1 �disp Di :n for n � i and for �xed iKohar (1996) obtained similar results for the inter-ourrene times of a non-homogeneous Poissonproess.Kohar and Korwar (1996) studied the problem of omparing spaings of independent exponentialrandom variables with possibly di�erent parameters. One of their results on dispersive ordering is statedbelow.Theorem 19 Let X1; : : : ; Xn be independent exponential random variables with Xi having exponentialdistribution with hazard rate �i, i = 1; : : : ; n and let Di :n be the ith normalized spaing, i = 1; : : : ; n.Let X�1 ; : : : ; X�n be a random sample of size n from an exponential distribution with ommon hazard rate� = nXi=1�i=n and let D?i :n be the orresponding ith normalized spaing. Then(a) D?i :n �disp Di :n; for i = 2; : : : ; n;(b) (�1; �2) m� (��1; ��2)) D2 : 2(��1; ��2) �disp D2 : 2(�1; �2):Kohar and Korwar (1996) onjetured that in the ase of independent exponentials with di�erentparameters, Di :n �hr Di+1 :n for i = 1; : : : ; n� 1. Khaledi and Kohar (2001) proved it for the speialase when all exept one of the parameters are equal. That is, they proved the above onjeture when�1 = � � � = �n�1 = � and �n = ��. Suh a model is known as a single- outlier exponential model withparameters (�; ��).Theorem 20 (Khaledi and Kohar, 2001) Let X1; : : : ; Xn follow the single-outlier exponential model.Then Di :n �hr Di+1 :n and Di :n �disp Di+1 :n i = 1; : : : ; n� 1:The next theorem for the two-sample problem is proved in (Khaledi and Kohar, 2001).Theorem 21 Let X1; : : : ; Xn follow the single-outlier exponential model with parameters (�1; ��1) andlet Y1; : : : ; Yn be another set of random variables following the single-outlier exponential model withparameters (�2; ��2). If ��1 < ��2 < �2 < �1 and ��1 + (n� 1)�1 = ��2 + (n� 1)�2, (21)then D(1)i :n �hr D(2)i :n and D(1)i :n �disp D(2)i :n; i = 1; : : : n;



14 Jongwoo Jeon et al.where D(1)i :n and D(2)i :n, respetively, are the ith spaings of single outlier exponential models with param-eters (�1; ��1) and (�2; ��2).Remark : Note that under (4.1), (��1; �1; : : : ; �1) m� (��2; �2; : : : ; �2).5 Dispersive ordering among onvolutions of random variablesStatistis whih an be expressed as linear ombinations of random variables, arise frequently in statistisand their distribution theory an be quite ompliated in many ases. From time to time attempts havebeen made in the literature to obtain bounds and approximations for their distributions.In this setion we study onvolutions of independent random variables di�ering in their sale pa-rameters and ompare them aording to dispersive ordering as the vetors of parameters vary. Boland,El-Neweihi and Proshan (1994) proved that a onvolution of independent exponential random variableswith unequal hazard rates is stohastially larger aording to likelihood ratio ordering when the param-eters of the exponential distributions are more dispersed in the sense of majorization. Kohar and Ma(1999) established the following dispersive ordering result for a onvolution of independent exponentialrandom variables under the same onditions.Theorem 22 Let X�1 ; : : : ; X�n be independent exponential random variables with respetive hazard rates�1; : : : ; �n, respetively. Then � m� �� impliesnXi=1X�i �disp nXi=1X��i :This result an be immediately extended to onvolutions of independent Erlang random variableswith di�erent sale parameters but with a ommon shape parameter greater than 1. Korwar (2002) hasgeneralized this result to onvolutions of gamma random variables with an arbitrary ommon shapeparameter greater than 1. Some related work on this problem is by Bok et al. (1987), Tong (1988 and1994) Bon and Paltanea (1999) and Ma (2000), among others.Khaledi and Kohar (2002, 2003) pursued this problem further and obtained dispersive orderingresults for onvolutions of heterogeneous exponential , uniform and normal random variables under p-larger ordering, a partial ordering weaker than majorization. These results lead to better bounds onvarious quantities of interest assoiated with these statistis.Theorem 23 Let X�1 ; : : : ; X�n be independent random variables suh that X�i has gamma distribu-tion with shape parameter a � 1 and sale parameter �i, for i = 1; : : : ; n. Then, � p� �� impliesS(�1; : : : ; �n) �disp S(��1; : : : ; ��n); where S(�1; : : : ; �n) =Pni=1X�i .A similar result holds for onvolution of uniform and normal random variables. While the proof inthe ase of normal random variables is obvious, the proof in the ase of uniform random variables isgiven in Khaledi and Kohar (2002). It is stated below.Theorem 24 Let X�1 ; : : : ; X�n be independent random variables suh that X�i has U(0; 1=�i) distribu-tions, for i = 1; : : : ; n. Then, � p� �� impliesnXi=1X�i �disp nXi=1X��i :Korwar (2002) obtained a result similar to the above with p-larger ordering replaed by majorization.
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