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on
ept for 
omparing spread among probability distributions is that of dispersiveordering. Let X and Y be two random variables with distribution fun
tions F and G, respe
tively. LetF�1 and G�1 be their right 
ontinuous inverses (quantile fun
tions). We say that Y is less dispersedthan X ( Y �disp X) if G�1(�)�G�1(�) � F�1(�) � F�1(�), for all 0 < � � � < 1. This means thatthe di�eren
e between any two quantiles of G is smaller than the di�eren
e between the 
orrespondingquantiles of F . A 
onsequen
e of Y �disp X is that jY1 � Y2j is sto
hasti
ally smaller than jX1 �X2jand this in turn implies var(Y ) � var(X) as well as E[jY1 � Y2j℄ � E[jX1 �X2j℄, where X1; X2 (Y1; Y2)are two independent 
opies of X (Y ). In this review paper, we give several examples and appli
ations ofdispersive ordering in statisti
s. Examples in
lude those related to order statisti
s, spa
ings, 
onvolutionof non-identi
ally distributed random variables and epo
h times of non-homogeneous Poisson pro
esses.Key words : Exponential distribution, proportional hazard rates, hazard rate ordering, S
hur fun
tions,majorization and p-larger ordering, 
onvolutions, parallel systems, gamma distribution.1 Introdu
tionSto
hasti
 models are usually 
omplex in nature. Obtaining bounds and approximations for some of their
hara
teristi
s of interest is of pra
ti
al importan
e. That is, the approximation of a sto
hasti
 modeleither by a simpler model or by a model with simple 
onstituent 
omponents might lead to 
onvenientbounds and approximations for some parti
ular and desired 
hara
teristi
s of the model. Beginningwith the idea of sto
hasti
 ordering as introdu
ed by Lehmann (1955), over the years several sto
hasti
orders have been introdu
ed in the literature for 
omparing di�erent aspe
ts of probability distributions.In this review paper we fo
us on dispersive ordering, a partial ordering useful for 
omparing spread? This work was supported in part by KOSEF through Statisti
al Resear
h Center for Complex Systems at SeoulNational University. Subhash Ko
har is thankful to Dr. B. Khaledi for many helpful dis
ussions.



2 Jongwoo Jeon et al.among probability distributions. We give several examples of statisti
s that 
an be ordered a

ordingto dispersive ordering.We �rst review the various sto
hasti
 orders that will be useful in our dis
ussion. Let us denote byf , F , F and rF the density fun
tion, the distribution fun
tion, the survival fun
tion and the hazard rateof a random variable X , respe
tively. Similarly, let g, G, G and rG denote these quantities for anotherrandom variable Y . Throughout this paper `in
reasing' means nonde
reasing and `de
reasing' meansnon in
reasing.De�nition 1 A random variable Y is said to be sto
hasti
ally smaller than another random variable X(denoted by Y �st X) if G(x) � F (x); for all x . (1)It is well known that (1) is equivalent toG�1(p) � F�1(p) 8p 2 (0; 1)as well as to E[�(Y )℄ � E[�(X)℄ (2)for all in
reasing fun
tions � : R! R for whi
h the expe
tations exist. A stronger notion of sto
hasti
dominan
e is that of hazard rate ordering.De�nition 2 Y is said to be smaller than X in hazard rate ordering (denoted by Y �hr X) ifF (x)=G(x) is in
reasing in x: (3)Let Xt denote a random variable des
ribing the residual lifetime of a random variable X at time tgiven that X > t. That is, Xt has the same distribution as that of X � tjX > t, with survival fun
tionF (x+ t)=F (t). It is easy to show that Y �hr X if and only ifYt �st Xt for all t � 0:In other words, the 
onditional distributions, given that the random variables are at least of a 
ertainsize, are all sto
hasti
ally ordered (in the usual sense) in the same dire
tion. In 
ase the hazard ratesexist, it is easy to see that Y �hr X , if and only if, rF (x) � rG(x) for every x. The hazard rate orderingis also known as uniform sto
hasti
 ordering in the literature.De�nition 3 Y is said to be smaller than X in likelihood ratio ordering (denoted by Y �lr X) iff(x)=g(x) is in
reasing in x.When the supports of X and Y have a 
ommon �nite left end-point, we have the following 
hain ofimpli
ations among the above sto
hasti
 orders :Y �lr X ) Y �hr X ) Y �st X:See Lehmann and Rojo (1992) for details.Now we de�ne multivariate sto
hasti
 ordering between two random ve
tors.De�nition 4 A random ve
tor Y = (Y1; : : : ; Yn) is smaller than another random ve
tor X = (X1; : : : ; Xn)in the multivariate sto
hasti
 order (denoted by Y st� X) if �(Y) �st �(X) for all in
reasing fun
tions � : Rn ! R:



Dispersive Ordering - Some Appli
ations and Examples 3It is easy to see that multivariate sto
hasti
 ordering implies 
omponent-wise sto
hasti
 ordering.We will also be using the 
on
ept of majorization. Let fx(1) � x(2) � : : : � x(n)g denote the in
reasingarrangement of the 
omponents of a ve
tor x = (x1; x2; : : : ; xn). Ve
tor x is said to majorize anotherve
tor y (written x m� y) if Pji=1 x(i) � Pji=1 y(i) forj = 1; : : : ; n � 1 and Pni=1 x(i) = Pni=1 y(i).Fun
tions that preserve the majorization ordering are 
alled S
hur 
onvex fun
tions. See Marshall andOlkin (1979, Ch. 3) for more details. Ve
tor x is said to majorize ve
tor y weakly (written x w� y) ifPji=1 x(i) �Pji=1 y(i) for j = 1; : : : ; n.Re
ently Bon and Paltanea (1999) 
onsidered a new pre-order on IR+n, whi
h they 
all p-largerorder. A ve
tor x in IR+n is said to be p-larger than another ve
tor y, also in IR+n, (written x p� y) iflog(x) w� log(y), where log(x) denotes the ve
tor of the logarithms of the 
oordinates of x. It is knownthat x m� y =) (g(x1); : : : ; g(xn)) w� (g(y1); : : : ; g(yn)) for all 
on
ave fun
tions g (
f. Marshal and Olkin(1979), p. 115). Sin
e log is a 
on
ave fun
tion, it follows that for x;y 2 IR+n, x m� y =) x p� y: The
onverse is, however, not true. For example, (0:2; 1; 5) p� (1; 2; 3) but majorization does not hold betweenthese two ve
tors.A basi
 
on
ept for 
omparing spread among probability distributions is that of dispersive orderingas de�ned below.De�nition 5 Y is said to be less dispersed than X (denoted by Y �disp X) ifG�1(�)�G�1(�) � F�1(�)� F�1(�); whenever 0 < � � � < 1,: (4)Note that Y �disp X if and only if the following equivalent 
onditions hold :(i) F�1G(x) � x in
reases in x,(ii) rF (F�1(p)) � rG(G�1(p)); 8p 2 (0; 1); (5)if the densities exist.(iii) YG�1(p) �st XF�1(p) 8p 2 (0; 1):Doksum (1969), while studying the eÆ
ien
ies of 
ertain non-parametri
 tests, 
alled this orderingtail ordering. If (4) holds, Yanagimoto and Sibuya (1976) say that X is statisti
ally more spread outthan Y . Saunders and Moran (1978), Bi
kel and Doksum (1979), Lewis and Thompson (1981) andShaked (1982) systemati
ally studied this partial ordering as a sto
hasti
 order for 
omparing spreadamong probability distributions. Deshpande and Ko
har (1983) pointed out the equivalen
e betweenthese 
on
epts and established some 
onne
tions between dispersive ordering and some other partialorders. Deshpande and Ko
har (1982) and Deshpande and Mehta (1982) used dispersive ordering insome inferential problems to obtain bounds on eÆ
ien
ies of tests and probabilities of 
orre
t sele
tions.Some important properties of dispersive ordering are :P1. Dispersive ordering is lo
ation-invariant in the sense thatY �disp X , Y + 
 �disp X for any real 
.P2. X �disp �X whenever � > 1:P3. Y �disp X , �Y �disp �X:P4. ( Lewis and Thompson, 1981) Let Z be a random variable independent ofX and Y and Y �disp X .Then Y + Z �disp X + Z if and only if Z has a log-
on
ave density.P5. If X and Y are su
h that they have a 
ommon �nite left end point of their supports, thenY �disp X ) Y �st X:



4 Jongwoo Jeon et al.P6. (Rojo and He, 1991) If Y �disp X and Y �st X , then �(Y ) �disp �(X) for all in
reasing 
onvexand all de
reasing 
on
ave fun
tions �.P7. Y �disp X ) E[�(Y � E(Y ))℄ � E[�(X � E(X))℄ for every 
onvex fun
tion �, provided theexpe
tations exist. In parti
ular, Y �disp X implies var(Y ) � var(X) and EjY � E(Y )j � EjX �E(X)j.For more details regarding these sto
hasti
 orders, see Chapter 1 and Se
tion 2.B of Shaked and Shan-thikumar (1994).As indi
ated by (5), there is an intimate 
onne
tion between hazard rate ordering and dispersiveordering and whi
h is made more expli
it in the following result of Bagai and Ko
har (1986).Theorem 1 Let X and Y be two nonnegative random variables.(a) If Y �hr X and either F or G is DFR (de
reasing failure rate), then Y �disp X;(b) if Y �disp X and either F or G is IFR (in
reasing failure rate), then Y �hr X.Sometimes it is not easy to establish hazard rate ordering or dispersive ordering dire
tly from thede�nitions and in those situations the above result 
an prove to be very useful. Here is an interestingexample.Example 1 Let X
 denote a gamma random variable with an integer shape parameter 
. Then for1 � 
1 � 
2, we show that X
1 �disp X
2 and X
1 �hr X
2 :We 
an express X
2 as X
1 +X
2�
1 , where X
2�
1 has gamma distribution with shape parameter
2 � 
1, a positive integer and is independent of X
1 . Moreover X
1 , being the sum of 
1 independentexponential random variables, has log-
on
ave density. It follows from property P4 thatX
1 �disp X
2 : (6)Sin
e X
1 is IFR for 
1 � 1, it follows from Theorem 1(b) and (6) that X
1 �hr X
2 .Saunders and Moran (1978) and Shaked (1982) proved the above result for gamma random variableswith arbitrary shape parameters using 
ompli
ated analyti
 methods. The following te
hnique givenin Saunders and Moran (1978) is very useful in establishing dispersive ordering among members of aparametri
 family of probability distributions.Theorem 2 Let Xa be a random variable with distribution fun
tion Fa for ea
h a 2 R su
h that(i) Fa is supported on some interval (x(a)� ; x(a)+ ) � (0;1) and has density fa whi
h does not vanish onany subinterval of (x(a)� ; x(a)+ ),(ii) derivative of Fa with respe
t to a exists and denoted by F 0a.Then, Xa �disp Xa� for a; a� 2 R and a > a�, (7)if and only if, F 0a(x)=fa(x) is de
reasing in x. (8)Ahmed et al. (1986) established the following relations between super-additive (more NBU) orderingand dispersive ordering for nonnegative random variables. Re
all that G is said to be super-additive withrespe
t to F (or Y is more NBU than X) (written as Y �su X) if F�1G(x+ y) � F�1G(x) +F�1G(y)for all x; y in the support of G.



Dispersive Ordering - Some Appli
ations and Examples 5Theorem 3 If Y �su X and Y �st X, then Y �disp X.Theorem 4 If Y �su X and limx!0+ F�1G(x)=x � 1, then Y �disp X.Similar relations between dispersive ordering and other partial orderings for aging, like 
onvex-orderingand star-ordering, were earlier obtained by Deshpande and Ko
har (1983), Sathe (1984) and Bar-toszewi
z (1985 a, 1985 b).It is easy to prove that Y �disp X implies jY1 � Y2j �st jX1 � X2j and whi
h in turn impliesvar(Y ) � var(X) as well as E[jY1 � Y2j℄ � E[jX1 � X2j℄, where X1; X2 (Y1; Y2) are two independent
opies of X (Y ). Bartoszewi
z (1986) extended this result to spa
ings of a random sample of size n.This is stated in the next theorem.Theorem 5 Let X1 :n; : : : ; Xn :n denote the order statisti
s of a random sample X1; : : : ; Xn from adistribution with distribution fun
tion F . Similarly, let Y1 :n; : : : ; Yn :n denote the order statisti
s ofa random sample Y1; : : : ; Yn from a distribution with distribution fun
tion G. Let the 
orrespondingspa
ings be denoted by Ui :n � Xi :n � Xi�1 :n and Vi :n � Yi :n � Yi�1 :n, for i = 1; : : : ; n, whereX0 :n = Y0 :n � 0. Then Y �disp X ) V st� U:This result leads to the following important 
onsequen
es.Corollary 1 Under the 
onditions of Theorem 5(a) Yj :n � Yi :n �st Xj :n �Xi :n for 1 � i < j � n.In parti
ular, Yn :n � Yi :n �st Xn :n �X1 :n.(b) s2Y �st s2X ,where s2X and s2Y are the sample varian
es of the two samples.(
) �Y �st �X ,where �X = ��n2���1XXi<j jXj :n �Xi :njis the Gini's mean di�eren
e for the X-sample. Similarly we de�ne �Y .Proof :(a) The result follows by adding the 
orresponding 
omponents of the random ve
tors U and V fromi+ 1 to j and using the above theorem.(b) Note that the sample varian
e 
an be expressed ass2X = [n(n� 1)℄�1XXi<j (Xj :n �Xi :n)2= [n(n� 1)℄�1XXi<j (Uj :n + Uj�1 :n + � � �+ Ui+1 :n)2whi
h is an in
reasing fun
tion of U. Sin
e in
reasing fun
tions of sto
hasti
ally ordered random ve
torsare sto
hasti
ally ordered, the required result follows from the above theorem.(
) The proof follows from the previous theorem and the fa
t that, as in part (b), the Gini's meandi�eren
e 
an be expressed in the form of an in
reasing fun
tion of the ve
tor of spa
ings.



6 Jongwoo Jeon et al.In Se
tion 2, we establish some dispersive ordering results between su

essive order statisti
s froma DFR (de
reasing failure rate) distribution. Due to its spe
ial importan
e in reliability theory, Se
tion3 is ex
lusively devoted to the study of parallel systems with non-i.i.d. exponential 
omponents. Weexamine how the 
hanges in the parameters of the distributions a�e
t the lifetimes of parallel systemsin the sense of dispersive ordering and hazard rate ordering. These results are also extended to theproportional hazards rates (PHR) models. In Se
tion 4, we study dispersive ordering among normalizedspa
ings from some restri
ted families of distributions. The last se
tion is devoted to 
onvolutions ofindependent random variables di�ering in their s
ale parameters. The 
lasses of distributions studiedin
lude gamma, uniform and normal.2 Dispersive ordering among order statisti
sOrder statisti
s play an important role in statisti
s, in general, and in reliability theory, in parti
ular. Thetime to failure of a k-out-of-n system of n 
omponents 
orresponds to the (n� k + 1)th order statisti
.In parti
ular, the lifetime of a parallel system is the same as the largest order statisti
. Series andparallel systems are the simplest examples of 
oherent systems and they are the building blo
ks of more
omplex 
oherent systems. They have been studied extensively in the literature when the 
omponentsare independent and identi
ally distributed. But in real life, systems are usually made up of 
omponentswith non-identi
ally distributed lifetimes and often they are dependent as the 
omponents work in a
ommon environment. Sin
e their distribution theory is quite 
ompli
ated, fewer results are available inthe general 
ase. In this se
tion we give some results on dispersive ordering among order statisti
s fromdistribution with de
reasing failure rates.For i = 1; : : : ; n, we shall denote by Xi :n, the ith order statisti
 of a set of n random variablesX1; : : : ; Xn. TheXi's need not be independent nor identi
ally distributed. In 
aseX1; : : : ; Xn is a randomsample from a DFR distribution, David and Groenveld (1982) proved that var(Xi :n) � var(Xj :n) for1 � i < j � n. Ko
har (1996a) strengthened this result to prove that under the same 
ondition,Xi :n �disp Xj :n for 1 � i � j � n. Khaledi and Ko
har (2000a) further strengthened this result to
ompare order statisti
s of random samples with unequal sample sizes from DFR distributions.Theorem 6 Let X1; : : : ; Xn be a random sample from a DFR distribution. ThenXi :n �disp Xj :m for i � j and n� i � m� j: (9)To prove this theorem, we �rst prove it for the exponential distribution. Boland et al. (1998) proveda spe
ial 
ase of this result when the sample sizes are equal..Lemma 1 Let Xi :n be the ith order statisti
 of a random sample of size n from an exponential distri-bution with parameter �. ThenXi :n �disp Xj :m for i � j and n� i � m� j: (10)Proof : Suppose we have two independent random samples, X1; : : : ; Xn and X 01; : : : ; X 0m of sizes nand m from an exponential distribution with hazard rate parameter �. The ith order statisti
 Xi :n 
anbe written as a 
onvolution of sample spa
ings asXi :n = (Xi :n �Xi�1 :n) + � � �+ (X2 :n �X1 :n) +X1 :ndist= iXk=1En�i+k (11)



Dispersive Ordering - Some Appli
ations and Examples 7where for k = 1; : : : ; i; En�i+k is an exponential random variable with hazard rate (n� i+ k)�. It is awell known fa
t that En�i+k's are independent. Similarly we 
an express X 0j :m asX 0j :m dist= jXk=1E0m�j+k (12)where again for k = 1; : : : ; j; E0m�j+k is an exponential random variable with hazard rate (m� j + k)�and E0m�j+k 's are independent. It is easy to verify that En�i+1 �disp E0m�j+1 for n� i � m� j:Sin
e the 
lass of distributions with log- 
on
ave densities is 
losed under 
onvolutions (
f. Dhar-madhiakri and Joag-dev, 1988, p. 17), it follows from the repeated appli
ations of property P4 thatiXk=1En�i+k �disp iXk=1E0m�j+k: (13)Again sin
e Pjk=i+1 E0m�j+k , being the sum of independent exponential random variables has a log-
on
ave density and sin
e it is independent ofPik=1 E0n�i+k , it follows from property P4 that the R.H.Sof (13) is less dispersed than Pjk=1 E0m�j+k for i � j . That is,Xi :n dist= iXk=1En�i+k �disp jXk=1E0m�j+k dist= X 0j :m:Sin
e Xj :m and X 0j :m are sto
hasti
ally equivalent, (10) follows from this.The proof of the next lemma 
an be found in Bartoszewi
z (1987).Lemma 2 Let � : R+ ! R+ be a fun
tion su
h that �(0) = 0 and �(x) � x is in
reasing. Then forevery 
onvex and stri
tly in
reasing fun
tion  : R+ ! R+ the fun
tion  � �1(x) � x is in
reasing.Now we give a proof of Theorem 6 to show the te
hnique used in proving su
h results.Proof of Theorem 6 : The distribution fun
tion of Xj :m is Fj :m(x) = Bj :mF (x), where Bj :m isbeta distribution with parameters (j;m� j + 1).Let G denote the distribution fun
tion of a unit mean exponential random variable. Then Hj :m(x) =Bj :mG(x) is the distribution fun
tion of the jth order statisti
 in a random sample of size m from aunit mean exponential distribution. We 
an express Fj :m asFj :m(x) = Bj :mGG�1F (x)= Hj :mG�1F (x): (14)To prove the required result, we have to show that for i � j and n� i � m� j,F�1j :mFi :n(x) � x is in
reasing in x, F�1GH�1j :mHi :nG�1F (x)� x is in
reasing in x. (15)By Lemma 1, H�1j :mHi :n(x) � x is in
reasing in x for i � j and n � i � m � j. Also the fun
tion (x) = F�1G(x) is stri
tly in
reasing and it is 
onvex if F is DFR. The required result now followsfrom Lemma 2.Remark : A 
onsequen
e of Theorem 6 is that for random samples from a DFR distribution,Xi :n+1 �disp Xi :n �disp Xi+1 :n+1; for i = 1; : : : ; n:



8 Jongwoo Jeon et al.The DFR assumption is 
ru
ial for the above result to hold. For example, it 
an be shown that inthe 
ase of a random sample of size 2 from a uniform distribution over [0; 1℄, whi
h is not DFR, X1 : 2 isnot less dispersed than X2 : 2.Now we 
onsider the problem of 
omparing order statisti
s when the parent observations are inde-pendent but not ne
essarily identi
ally distributed. Boland, El-Neweihi and Pros
han (1994) have shownthat if X1; : : : ; Xn are independent random variables, then Xi : n �hr Xj :n, for 1 � i < j � n. Usingthis result and Theorem 1, we get the following theorem.Theorem 7 Let X1; : : : ; Xn be independent nonnegative random variables, then for 1 � i < j � n,Xi :n �disp Xj :n provided Xi :n is DFR.Even if we sample from a DFR distribution, it may not be true that Xi :n is DFR for every i 2f1; 2; : : : ; ng. But the smallest order statisti
s X1 :n is always DFR in this 
ase. This follows from thefa
t that the hazard rate of a series system of independent 
omponents is the sum of the hazard rates ofthe 
omponents. So if ea
h 
omponent of the series system has de
reasing failure rate, the system willhave DFR property. This leads us to the following result.Corollary 2 Let X1; : : : ; Xn be independent DFR random variables, then X1 :n �disp Xj :n for 1 < j �n. It follows from the above dis
ussion that amongst all k-out-of n systems made up of n independentDFR 
omponents, the series system is least dispersed but has greatest hazard rate.The next result is on dispersive ordering between series systems of independent DFR 
omponentsbased on di�erent number of 
omponents.Theorem 8 Let X1; : : : ; Xn+1 be independent DFR random variables. ThenX1 :n+1 �disp X1 :n:Proof : Sin
e the hazard rate of X1 :n is smaller than that of X1 :n+1,X1 :n+1 �hr X1 :n:The required result follows from Theorem 1 sin
e X1 :n has DFR distribution under the assumed
onditions.In the next theorem we establish dispersive ordering between order statisti
s when the randomsamples are drawn from di�erent distributions.Theorem 9 Let X1; : : : ; Xn be a random sample of size n from a 
ontinuous distribution F and letY1 : : : ; Ym be a random sample of size m from another 
ontinuous distribution G. If either F or G isDFR, then X �disp Y ) Xi :n �disp Yj :m for i � j and n� i � m� j. (16)Proof : Let F be a DFR distribution. Proof for the 
ase when G is DFR is similar. By Theorem 6,Xi :n �disp Xj :m for i � j and n � i � m � j. Bartoszewi
z (1986) proved that if X �disp Y thenXj :m �disp Yj :m. Combining these we get the required result.Sin
e the property X �hr Y together with the 
ondition that either F or G is DFR implies thatX �disp Y , we get the following result from the above theorem.



Dispersive Ordering - Some Appli
ations and Examples 9Corollary 3 Let X1; : : : ; Xn be a random sample of size n from a 
ontinuous distribution F andY1 : : : ; Ym be a random sample of size m from another 
ontinuous distribution G. If either F or Gis DFR, then X �hr Y ) Xi :n �disp Yj :m for i � j and n� i � m� j.Ko
har (1996b) obtained similar results for the epo
h times of a non-homogeneous Poisson pro
ess( or equivalently for re
ord values) with a de
reasing intensity fun
tion. One su
h result is given below.Theorem 10 Let fN(t); t � 0g be a non-homogeneous Poisson pro
ess with a de
reasing intensityfun
tion and let R1; R2; : : : be the su

essive epo
h times. ThenRn �disp Rn+1; n = 1; 2; : : : :3 Dispersive ordering among parallel systems with heterogeneous 
omponentsThe exponential distribution plays a very important role in statisti
s. Be
ause of its non-aging property,it has many ni
e properties and it often gives very 
onvenient bounds on survival probabilities andother 
hara
teristi
s of interest for systems with non-exponential 
omponents. Pledger and Pros
han(1971) studied the problem of sto
hasti
ally 
omparing the order statisti
s of non-identi
ally distributedindependent exponential random variables with those 
orresponding to independent and identi
allydistributed exponential random variables. This topi
 has been followed up by many resear
hers in
ludingPros
han and Sethuraman (1976), Boland, El-Neweihi and Pros
han (1994), Dykstra, Ko
har and Rojo(1997), Boland, Shaked and Shanthikumar(1998), Bon and Paltanea (1999); and Khaledi and Ko
har(2000a, 2000b), among others. In this se
tion we 
ompare parallel systems 
onsisting of non-identi
al
omponents in terms of dispersive ordering and hazard rate ordering. First we 
onsider the 
ase whenthe 
omponents have exponential distributions and then extend the results to proportional hazards ratefamily.Pledger and Pros
han (1971) proved the following result.Theorem 11 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i, i = 1; : : : ; n. Let X�1 ; : : : ; X�n be another set of independent exponential random variables with X�ihaving hazard rate ��i . Then � m� �� impliesX1 :n st= X�1 :n and Xi :n �st X�i :n, i = 2; : : : ; n. (17)Pros
han and Sethuraman (1976) strengthened this result to establish multivariate sto
hasti
 or-dering between two ve
tors of order statisti
s. They proved that under the 
onditions of the abovetheorem, (X1 :n; : : : ; Xn :n) st� (X�1 :n; : : : ; X�n :n):The question is to what extent this result 
an be extended. For the spe
ial 
ase n = 2 and i = 2, Boland,El- Neweihi and Pros
han (1994) partially strengthened the above result of Pledger and Pros
han (1971)from sto
hasti
 ordering to hazard rate ordering. Their result is stated below.Theorem 12 Let r�1;�2(t) be the hazard rate of a parallel system of two 
omponents whose lifetimes areindependent exponential random variables with hazard rates �1 and �2, respe
tively. Then r�1;�2(t) isS
hur-
on
ave in (�1; �2). That is, (�1; �2) m� (��1; ��2) impliesX2 : 2 �hr X�2 : 2:



10 Jongwoo Jeon et al.Boland, El-Neweihi and Pros
han (1994) 
on
lude that Theorem 11 
annot be generalized for ar-bitrary n. They show with the help of an example that the hazard rate of a parallel system of threeexponential 
omponents is not S
hur 
on
ave in �. Dykstra, Ko
har and Rojo (1997) proved that, how-ever, the reversed hazard rate of Xn :n, the lifetime of a parallel system of n independent exponential
omponents, is S
hur-
onvex in �.The next natural problem is to 
ompare Xn :n with Yn :n, where Y1; : : : ; Yn is a random sample froman exponential distribution with hazard rate � = nXi=1�i=n. Ko
har and Rojo (1996) proved the followingresult.Theorem 13 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i for i = 1; : : : ; n. Let Y1; : : : ; Yn be a random sample from the exponential distribution with hazard rate�. Then Yn :n �disp Xn :n and Yn :n �hr Xn :n (18)These results give a lower bound for the varian
e of Xn :n and an upper bound on the hazard rateof Xn :n in terms of those of Yn :n.It will be interesting to know whether the above result 
an be extended to other order statisti
s.While we don't know the answer in general, we see from the next theorem that su
h a result is true forthe se
ond order statisti
.Theorem 14 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i for i = 1; : : : ; n. Let Y1; : : : ; Yn be a random sample from the exponential distribution with hazard rate�. Then Y2 :n �disp X2 :n:Proof : It follows from Theorem 3.7 of Ko
har and Korwar (1996) thatY2 :n � Y1 :n �disp X2 :n �X1 :n and X1 :n st= Y1 :n : (19)Sin
e the distribution of X1 :n (Y1 :n) is log
on
ave, it follows from property P4 of Se
tion 1 thatY2 :n = (Y2 :n � Y1 :n) + Y1 :n �disp (X2 :n �X1 :n) +X1 :n = X2 :n; (20)sin
e X2 :n �X1 :n is independent of X1 :n and Y2 :n � Y1 :n is independent of Y1 :n. That is,Y2 :n �disp X2 :n :In the following theorem Khaledi and Ko
har (2000b) improved upon the bounds of Dykstra, Ko
harand Rojo (1997) by repla
ing � with ~� = (Qni=1 �i)1=n, the geometri
 mean of the �'s.Theorem 15 Let X1; : : : ; Xn be independent exponential random variables with Xi having hazard rate�i, i = 1; : : : ; n. Let Z1; : : : ; Zn be a random sample of size n from an exponential distribution with
ommon hazard rate ~� = (Qni=1 �i)1=n. ThenXn :n �disp Zn :n and Xn :n �hr Zn :n:Corollary 4 Under the 
onditions of Theorem 15,
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Fig. 1 Graphs of hazard rates of X3 : 3(a) the hazard rate rXn :n of Xn :n satis�esrXn :n(x;�) � n~��1� exp(�~�x)�n�1 exp(�~�x)1� �1� exp(�~�x)�n ;(b) var(Xn :n;�) � 1~�2Pni=1 1(n�i+1)2 :The new bounds given by Corollary 4 are better than those obtained by Dykstra, Ko
har and Rojo(1997) sin
e the hazard rate of Yn :n is a nonde
reasing fun
tion of ~� and the fa
t that the geometri
mean of �i's, is smaller than their arithmeti
 mean.In Figures 1 and 2 we plot the hazard rates of parallel systems of three exponential 
omponents alongwith the upper bounds as given by Dykstra, Ko
har and Rojo (1997) and the one's given by Corollary4 (a). The ve
tor of parameters in Figure 1 is �1 = (1; 2; 3) and that in Figure 3.2 is �2 = (0:2; 2; 3:8).Note that �2 m� �1. It appears from these �gures that the improvements on the bounds are relativelymore if �i's are more dispersed in the sense of majorization. This is true be
ause the geometri
 mean isS
hur 
on
ave whereas the arithmeti
 mean is S
hur 
onstant and the hazard rate of a parallel systemof i.i.d. exponential 
omponents with 
ommon parameter ~� is in
reasing in ~�.
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r(x; 0:2; 2; 3:8)Fig. 2 Graphs of hazard rates of X3 : 33.1 Extensions to the PHR modelLet F denote the survival fun
tion of a non-negative random variableX with hazard rate h(�). A

ordingto the proportional hazard rates (PHR) model, the independent random variables X1; : : : ; Xn are su
hthat Xi has hazard rate �ih(�), i = 1; : : : ; n. Theorem 15 
an be extended to the PHR model as shownbelow.Theorem 16 Let X1; : : : ; Xn be independent random variables su
h that Xi has hazard rate �ih(�),i = 1; : : : ; n, where h(�) is the hazard rate of some non-negative random variable. Let Y1; : : : ; Yn be arandom sample from a distribution with 
ommon hazard rate ~�h(�), where ~� = (Qni=1 �i)1=n. Then(a) Xn :n �hr Yn :n, and(b) if F is DFR, then Xn :n �disp Yn :n.Proof : Let H(x) = � logF (x) denote the 
umulative hazard rate of F . Let Zi = H(Xi) andWi = H(Yi), i = 1; : : : ; n. Sin
e Xi's follow the PHR model, it is easy to see that Zi is exponentialwith hazard rate �i and Wi is exponential with hazard rate ~�, i = 1; : : : ; n. Theorem 15 implies thatZn :n �hr Wn :n. Using this fa
t, (sin
e H�1, the right inverse of H , is nonde
reasing), it is easy to showthat H�1(Zn :n) �hr H�1(Wn :n), from whi
h the part (a) of the theorem follows.(b) It follows from Theorem 15 that Zn :n �disp Wn :n and also Zn :n �st Wn :n. The fun
tion H�1(x)is 
onvex sin
e F is DFR and it is 
learly nonde
reasing. Using this, it follows from property P6 thatH�1(Zn :n) �disp H�1(Wn :n), whi
h is equivalent to Xn :n �disp Yn :n.4 Dispersive ordering among spa
ingsLet X1; : : : ; Xn be a random sample from a 
ontinuous distribution with 
df F and let Di :n = (n� i+1)(Xi :n�Xi�1 :n) denote the ith normalized spa
ing, i = 1; : : : ; n, with X0 :n � 0. It is well known thatD1 :n; : : : ; Dn :n are independent and identi
ally distributed if and only if F is exponential. Barlow and
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ations and Examples 13Pros
han (1966) proved that if F is a DFR (IFR) distribution, then the su

essive normalized spa
ingsare in
reasing (de
reasing) sto
hasti
ally. Ko
har and Kirmani (1995) partially strengthened this resultto the hazard rate ordering when the underlying random variables are DFR. This is stated below.Theorem 17 Let X1; : : : ; Xn be a random sample of size n from a DFR distribution. Then(a) Di :n �hr Di+1 :n for i = 1; : : : ; n� 1;(b) Di :n+1 �hr Di :n; for n � i and for �xed i:Barlow and Pros
han (1966) have shown that spa
ings of i.i.d. DFR random variables have also DFRdistributions. The proof of the next theorem follows from the relation between hazard rate ordering anddispersive ordering and the above theorem.Theorem 18 If X1; : : : ; Xn is a random sample from a DFR distribution, then(a) Di :n �disp Di+1 :n, for i = 1; : : : ; n� 1;(b) Di :n+1 �disp Di :n for n � i and for �xed iKo
har (1996
) obtained similar results for the inter-o

urren
e times of a non-homogeneous Poissonpro
ess.Ko
har and Korwar (1996) studied the problem of 
omparing spa
ings of independent exponentialrandom variables with possibly di�erent parameters. One of their results on dispersive ordering is statedbelow.Theorem 19 Let X1; : : : ; Xn be independent exponential random variables with Xi having exponentialdistribution with hazard rate �i, i = 1; : : : ; n and let Di :n be the ith normalized spa
ing, i = 1; : : : ; n.Let X�1 ; : : : ; X�n be a random sample of size n from an exponential distribution with 
ommon hazard rate� = nXi=1�i=n and let D?i :n be the 
orresponding ith normalized spa
ing. Then(a) D?i :n �disp Di :n; for i = 2; : : : ; n;(b) (�1; �2) m� (��1; ��2)) D2 : 2(��1; ��2) �disp D2 : 2(�1; �2):Ko
har and Korwar (1996) 
onje
tured that in the 
ase of independent exponentials with di�erentparameters, Di :n �hr Di+1 :n for i = 1; : : : ; n� 1. Khaledi and Ko
har (2001) proved it for the spe
ial
ase when all ex
ept one of the parameters are equal. That is, they proved the above 
onje
ture when�1 = � � � = �n�1 = � and �n = ��. Su
h a model is known as a single- outlier exponential model withparameters (�; ��).Theorem 20 (Khaledi and Ko
har, 2001) Let X1; : : : ; Xn follow the single-outlier exponential model.Then Di :n �hr Di+1 :n and Di :n �disp Di+1 :n i = 1; : : : ; n� 1:The next theorem for the two-sample problem is proved in (Khaledi and Ko
har, 2001).Theorem 21 Let X1; : : : ; Xn follow the single-outlier exponential model with parameters (�1; ��1) andlet Y1; : : : ; Yn be another set of random variables following the single-outlier exponential model withparameters (�2; ��2). If ��1 < ��2 < �2 < �1 and ��1 + (n� 1)�1 = ��2 + (n� 1)�2, (21)then D(1)i :n �hr D(2)i :n and D(1)i :n �disp D(2)i :n; i = 1; : : : n;



14 Jongwoo Jeon et al.where D(1)i :n and D(2)i :n, respe
tively, are the ith spa
ings of single outlier exponential models with param-eters (�1; ��1) and (�2; ��2).Remark : Note that under (4.1), (��1; �1; : : : ; �1) m� (��2; �2; : : : ; �2).5 Dispersive ordering among 
onvolutions of random variablesStatisti
s whi
h 
an be expressed as linear 
ombinations of random variables, arise frequently in statisti
sand their distribution theory 
an be quite 
ompli
ated in many 
ases. From time to time attempts havebeen made in the literature to obtain bounds and approximations for their distributions.In this se
tion we study 
onvolutions of independent random variables di�ering in their s
ale pa-rameters and 
ompare them a

ording to dispersive ordering as the ve
tors of parameters vary. Boland,El-Neweihi and Pros
han (1994) proved that a 
onvolution of independent exponential random variableswith unequal hazard rates is sto
hasti
ally larger a

ording to likelihood ratio ordering when the param-eters of the exponential distributions are more dispersed in the sense of majorization. Ko
har and Ma(1999) established the following dispersive ordering result for a 
onvolution of independent exponentialrandom variables under the same 
onditions.Theorem 22 Let X�1 ; : : : ; X�n be independent exponential random variables with respe
tive hazard rates�1; : : : ; �n, respe
tively. Then � m� �� impliesnXi=1X�i �disp nXi=1X��i :This result 
an be immediately extended to 
onvolutions of independent Erlang random variableswith di�erent s
ale parameters but with a 
ommon shape parameter greater than 1. Korwar (2002) hasgeneralized this result to 
onvolutions of gamma random variables with an arbitrary 
ommon shapeparameter greater than 1. Some related work on this problem is by Bo
k et al. (1987), Tong (1988 and1994) Bon and Paltanea (1999) and Ma (2000), among others.Khaledi and Ko
har (2002, 2003) pursued this problem further and obtained dispersive orderingresults for 
onvolutions of heterogeneous exponential , uniform and normal random variables under p-larger ordering, a partial ordering weaker than majorization. These results lead to better bounds onvarious quantities of interest asso
iated with these statisti
s.Theorem 23 Let X�1 ; : : : ; X�n be independent random variables su
h that X�i has gamma distribu-tion with shape parameter a � 1 and s
ale parameter �i, for i = 1; : : : ; n. Then, � p� �� impliesS(�1; : : : ; �n) �disp S(��1; : : : ; ��n); where S(�1; : : : ; �n) =Pni=1X�i .A similar result holds for 
onvolution of uniform and normal random variables. While the proof inthe 
ase of normal random variables is obvious, the proof in the 
ase of uniform random variables isgiven in Khaledi and Ko
har (2002). It is stated below.Theorem 24 Let X�1 ; : : : ; X�n be independent random variables su
h that X�i has U(0; 1=�i) distribu-tions, for i = 1; : : : ; n. Then, � p� �� impliesnXi=1X�i �disp nXi=1X��i :Korwar (2002) obtained a result similar to the above with p-larger ordering repla
ed by majorization.
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