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Abstract A basic concept for comparing spread among probability distributions is that of dispersive
ordering. Let X and Y be two random variables with distribution functions F' and G, respectively. Let
F~1 and G~ be their right continuous inverses (quantile functions). We say that Y is less dispersed
than X (Y <gisp X) if G7H(B) — G (a) < F71(B) — F~'(a), for all 0 < a < B < 1. This means that
the difference between any two quantiles of G is smaller than the difference between the corresponding
quantiles of F. A consequence of ¥ <g;5p X is that |Y7 — Y3| is stochastically smaller than |X; — X5
and this in turn implies var(Y) < var(X) as well as E[|Y; — Ys|] < E[| X1 — X3|], where X, X5 (Y7,Y2)
are two independent copies of X (V7). In this review paper, we give several examples and applications of
dispersive ordering in statistics. Examples include those related to order statistics, spacings, convolution
of non-identically distributed random variables and epoch times of non-homogeneous Poisson processes.

Key words : Exponential distribution, proportional hazard rates, hazard rate ordering, Schur functions,

majorization and p-larger ordering, convolutions, parallel systems, gamma distribution.

1 Introduction

Stochastic models are usually complex in nature. Obtaining bounds and approximations for some of their
characteristics of interest is of practical importance. That is, the approximation of a stochastic model
either by a simpler model or by a model with simple constituent components might lead to convenient
bounds and approximations for some particular and desired characteristics of the model. Beginning
with the idea of stochastic ordering as introduced by Lehmann (1955), over the years several stochastic
orders have been introduced in the literature for comparing different aspects of probability distributions.
In this review paper we focus on dispersive ordering, a partial ordering useful for comparing spread
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among probability distributions. We give several examples of statistics that can be ordered according
to dispersive ordering.

We first review the various stochastic orders that will be useful in our discussion. Let us denote by
f, F, F and rp the density function, the distribution function, the survival function and the hazard rate
of a random variable X, respectively. Similarly, let g, G, G and r¢ denote these quantities for another
random variable Y. Throughout this paper ‘increasing’ means nondecreasing and ‘decreasing’ means

non increasing.

Definition 1 A random variable Y is said to be stochastically smaller than another random variable X
(denoted by Y <4 X ) if
G(z) < F(z), forallz . (1)

It is well known that (1) is equivalent to
G™Hp) < F~'(p) Ype(0,1)

as well as to
Elp(Y)] < E[p(X)] (2)

for all increasing functions ¢ : R — R for which the expectations exist. A stronger notion of stochastic

dominance is that of hazard rate ordering.

Definition 2 Y is said to be smaller than X in hazard rate ordering (denoted by Y <p,. X ) if
F(z)/G(z) is increasing in x. (3)

Let X; denote a random variable describing the residual lifetime of a random variable X at time ¢
given that X > ¢. That is, X; has the same distribution as that of X — ¢|X > ¢, with survival function
F(z +t)/F(t). It is easy to show that Y <j,. X if and only if

Y; <g4 X; forallt>D0.

In other words, the conditional distributions, given that the random variables are at least of a certain
size, are all stochastically ordered (in the usual sense) in the same direction. In case the hazard rates
exist, it is easy to see that Y <, X, if and only if, rp(z) < rg(z) for every x. The hazard rate ordering

is also known as wuniform stochastic ordering in the literature.

Definition 3 Y is said to be smaller than X in likelihood ratio ordering (denoted by Y <;- X ) if
f(z)/g(x) is increasing in x.

When the supports of X and Y have a common finite left end-point, we have the following chain of
implications among the above stochastic orders :

Y <y X=2Y < X =Y <g X,

See Lehmann and Rojo (1992) for details.

Now we define multivariate stochastic ordering between two random vectors.

Definition 4 A random vector Y = (Y1,...,Y}) is smaller than another random vector X = (X1, ..., X,)

st
in the multivariate stochastic order (denoted by’ Y < X) if (YY) <gt ¢(X) for all increasing functions ¢ : R™ — R.
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It is easy to see that multivariate stochastic ordering implies component-wise stochastic ordering.
We will also be using the concept of majorization. Let {a:(l) <z <... < w(n)} denote the increasing
arrangement of the components of a vector x = (1,22, ...,2,). Vector x is said to majorize another
vector y (written x g y) if Zle rG) < Egzl yu forj = 1,...,n — 1 and Y0 o) = Yim; ya)-
Functions that preserve the majorization ordering are called Schur convex functions. See Marshall and
Olkin (1979, Ch. 3) for more details. Vector x is said to majorize vector y weakly (written x g y) if
Zgzl T < Zgzl yu forj=1,...,n.

Recently Bon and Paltanea (1999) considered a new pre-order on IRT", which they call p-larger
order. A vector x in IRT" is said to be p-larger than another vector y, also in IRT", (written x é y) if
log(x) g log(y), where log(x) denotes the vector of the logarithms of the coordinates of x. It is known
that x g y = (9(z1),-..,9(z,)) g (9(y1), - - -,9(yn)) for all concave functions g (cf. Marshal and Olkin
(1979), p. 115). Since log is a concave function, it follows that for x,y € RT", x "g y —= X é y. The
converse is, however, not true. For example, (0.2, 1, 5) § (1,2, 3) but majorization does not hold between
these two vectors.

A basic concept for comparing spread among probability distributions is that of dispersive ordering

as defined below.

Definition 5 Y is said to be less dispersed than X (denoted by Y <gisp X) if
G (B) -G Ha) < F7HB) — F(a), whenever 0 <a< B <1, 4)
Note that Y <g;5p X if and only if the following equivalent conditions hold :

(i) F~'G(x) — x increases in w,
(i)
rr(F7H(p) <ra(GTHp), Yp € (0,1), ()
if the densities exist.
(ili) Yo-1() <ot Xp1(p) VP € (0,1).

Doksum (1969), while studying the efficiencies of certain non-parametric tests, called this ordering
tail ordering. If (4) holds, Yanagimoto and Sibuya (1976) say that X is statistically more spread out
than Y. Saunders and Moran (1978), Bickel and Doksum (1979), Lewis and Thompson (1981) and
Shaked (1982) systematically studied this partial ordering as a stochastic order for comparing spread
among probability distributions. Deshpande and Kochar (1983) pointed out the equivalence between
these concepts and established some connections between dispersive ordering and some other partial
orders. Deshpande and Kochar (1982) and Deshpande and Mehta (1982) used dispersive ordering in
some inferential problems to obtain bounds on efficiencies of tests and probabilities of correct selections.

Some important properties of dispersive ordering are :

P1. Dispersive ordering is location-invariant in the sense that
Y <gisp X €Y + ¢ <4isp X for any real c.

P2. X <gisp 0X whenever o > 1.

P3. Y <gisp X & =Y <gisp —X.

P4. (Lewis and Thompson, 1981) Let Z be a random variable independent of X and Y and Y <g;5p X.
Then Y + Z <gisp X + Z if and only if Z has a log-concave density.

P5. If X and Y are such that they have a common finite left end point of their supports, then
Y <gisp X =Y <4 X.
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P6. (Rojo and He, 1991) If Y <gisp X and YV <y X, then ¢(Y) <gisp ¢(X) for all increasing convex
and all decreasing concave functions ¢.

P7.Y <gsp X = E[¢(Y — E(Y))] < E[¢(X — E(X))] for every convex function ¢, provided the
expectations exist. In particular, Y <g;sp X implies var(Y) < var(X) and E|Y — E(Y)| < E|X —

For more details regarding these stochastic orders, see Chapter 1 and Section 2.B of Shaked and Shan-
thikumar (1994).
As indicated by (5), there is an intimate connection between hazard rate ordering and dispersive

ordering and which is made more explicit in the following result of Bagai and Kochar (1986).

Theorem 1 Let X and Y be two nonnegative random variables.

(a) IfY <pr X and either F or G is DFR (decreasing failure rate), then Y <gisp X ;
(b) if Y <a@isp X and either F or G is IFR (increasing failure rate), then Y <p, X.

Sometimes it is not easy to establish hazard rate ordering or dispersive ordering directly from the
definitions and in those situations the above result can prove to be very useful. Here is an interesting

example.

Ezample 1 Let X, denote a gamma random variable with an integer shape parameter . Then for
1 < v <7y, we show that
Xy, <disp Xy, and Xy, <pp X,

We can express X, as X, + X,,_,, where X,,_,, has gamma distribution with shape parameter
Y2 — 71, & positive integer and is independent of X,,,. Moreover X, , being the sum of v, independent
exponential random variables, has log-concave density. It follows from property P4 that

X% Sdisz) sz- (6)
Since X, is IFR for 4, > 1, it follows from Theorem 1(b) and (6) that X, <p, X,.

Saunders and Moran (1978) and Shaked (1982) proved the above result for gamma random variables
with arbitrary shape parameters using complicated analytic methods. The following technique given
in Saunders and Moran (1978) is very useful in establishing dispersive ordering among members of a
parametric family of probability distributions.

Theorem 2 Let X, be a random variable with distribution function F, for each a € R such that

(i) Fy, is supported on some interval (:U(_a),arf)) C (0,00) and has density f, which does not vanish on

any subinterval of (w(a),x(f)),

(ii) derivative of F, with respect to a exists and denoted by F.

Then,
Xq Zdisp X fOT’ a, a* € R and a > a*, (7)

if and only if,
F!(x)/fa(z) is decreasing in . (8)

Ahmed et al. (1986) established the following relations between super-additive (more NBU) ordering
and dispersive ordering for nonnegative random variables. Recall that G is said to be super-additive with
respect to F' (or Y is more NBU than X) (written as Y <, X) if F71G(z +y) > F'G(z) + F'G(y)
for all z, y in the support of G.
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Theorem 3 If Y <, X and Y <4 X, then Y <yi5p X.
Theorem 4 If Y <;, X and limg o+ F'G(z)/z > 1, then Y <gisp X.

Similar relations between dispersive ordering and other partial orderings for aging, like convex-ordering
and star-ordering, were earlier obtained by Deshpande and Kochar (1983), Sathe (1984) and Bar-
toszewicz (1985 a, 1985 b).

It is easy to prove that ¥V <y, X implies Y7 — Y2| <4 |X; — X2| and which in turn implies
var(Y) < var(X) as well as E[|Y; — Ys|] < E[|X1 — X3|], where X1, X5 (Y1,Y2) are two independent
copies of X (Y). Bartoszewicz (1986) extended this result to spacings of a random sample of size n.
This is stated in the next theorem.

Theorem 5 Let X;.,,...,X,., denote the order statistics of a random sample X1,...,X, from a
distribution with distribution function F. Similarly, let Y1.,,...,Y,.n denote the order statistics of
a random sample Y1,...,Y, from a distribution with distribution function G. Let the corresponding

spacings be denoted by U;., = X;.n — Xi—1:n and V. = Y.y — Yioq1.p, for i = 1,...,n, where
Xo0.n =Y5.n, =0. Then

st
Ygdist=>VjU.
This result leads to the following important consequences.

Corollary 1 Under the conditions of Theorem 5

(a) Y'Jn _)/;':n Sst Xjn _Xi:n fOT’ 1 S { <j S n.
In particular, Yn:n - Y;n Sst Xn:n - Xl:n'
(b) 5% <st 5%
where s% and s3- are the sample variances of the two samples.

(C) ny Sst nx,
where

nx = [(Z)]_l Zzi<j|Xj:n — Xiinl

is the Gini’s mean difference for the X -sample. Similarly we define ny .

Proor :
(a) The result follows by adding the corresponding components of the random vectors U and V from
1+ 1 to j and using the above theorem.

(b) Note that the sample variance can be expressed as

2 -1 2
sy = =11 YN (Xjin— Xin)
i<j
= [n(n - 1)]71 ZZ(UJ’H + Uj*lzn + -+ Ui+1:n)2

i<j
which is an increasing function of U. Since increasing functions of stochastically ordered random vectors
are stochastically ordered, the required result follows from the above theorem.
(¢) The proof follows from the previous theorem and the fact that, as in part (b), the Gini’s mean
difference can be expressed in the form of an increasing function of the vector of spacings.

|
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In Section 2, we establish some dispersive ordering results between successive order statistics from
a DFR (decreasing failure rate) distribution. Due to its special importance in reliability theory, Section
3 is exclusively devoted to the study of parallel systems with non-i.i.d. exponential components. We
examine how the changes in the parameters of the distributions affect the lifetimes of parallel systems
in the sense of dispersive ordering and hazard rate ordering. These results are also extended to the
proportional hazards rates (PHR) models. In Section 4, we study dispersive ordering among normalized
spacings from some restricted families of distributions. The last section is devoted to convolutions of
independent random variables differing in their scale parameters. The classes of distributions studied

include gamma, uniform and normal.

2 Dispersive ordering among order statistics

Order statistics play an important role in statistics, in general, and in reliability theory, in particular. The
time to failure of a k-out-of-n system of n components corresponds to the (n — &k + 1)th order statistic.
In particular, the lifetime of a parallel system is the same as the largest order statistic. Series and
parallel systems are the simplest examples of coherent systems and they are the building blocks of more
complex coherent systems. They have been studied extensively in the literature when the components
are independent and identically distributed. But in real life, systems are usually made up of components
with non-identically distributed lifetimes and often they are dependent as the components work in a
common environment. Since their distribution theory is quite complicated, fewer results are available in
the general case. In this section we give some results on dispersive ordering among order statistics from
distribution with decreasing failure rates.

For i = 1,...,n, we shall denote by Xj;.,, the ith order statistic of a set of n random variables
Xi1,...,X,. The X;’s need not be independent nor identically distributed. In case X, ..., X,, is arandom
sample from a DFR distribution, David and Groenveld (1982) proved that var(X;.,) < var(X;.,) for
1 <14 < j < n. Kochar (1996a) strengthened this result to prove that under the same condition,
Xiin <agisp Xj.nfor 1 < i < j < n.Khaledi and Kochar (2000a) further strengthened this result to
compare order statistics of random samples with unequal sample sizes from DFR, distributions.

Theorem 6 Let X1,...,X,, be a random sample from a DFR distribution. Then
Xi:n Sdistj:m fOT’lSJandn—lZm—J (9)

To prove this theorem, we first prove it for the exponential distribution. Boland et al. (1998) proved

a special case of this result when the sample sizes are equal..

Lemma 1 Let X;.,, be the ith order statistic of a random sample of size n from an exponential distri-

bution with parameter X\. Then
Xi:n Sdistj:m fOT’lSJandn—lZm—J (10)

PROOF : Suppose we have two independent random samples, Xq,..., X, and Xi, . ,X;n of sizes n
and m from an exponential distribution with hazard rate parameter A. The ith order statistic X;., can

be written as a convolution of sample spacings as

Xiin = (Xi:n_Xi—l:n)+"'+(X2:n_X1:n)+X1:n

i
dis
=t > B itk (11)
k=1
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where for k =1,...,4, E,_ ;i is an exponential random variable with hazard rate (n —i + k)A. It is a

well known fact that E,,_;1;’s are independent. Similarly we can express X ]I .m a8

J
/ dist !
Xj:m = ZEmfj+k (12)
k=1

’

where again for k =1,...,7, E

m
7
and B, ;.

Since the class of distributions with log- concave densities is closed under convolutions (cf. Dhar-

_j+k is an exponential random variable with hazard rate (m — j + k)A
. s are independent. It is easy to verify that E,—_i11 <gisp E;nfjﬂ forn—i>m—j.

madhiakri and Joag-dev, 1988, p. 17), it follows from the repeated applications of property P4 that
i i
> Enivk <disp Y Em—jik: (13)
k=1 k=1
Again since Zi:z 41 E;nfj 4> being the sum of 'indegendent exponential random variables has a log-
concave density and since it is independent of ) _, E, i}, it follows from property P4 that the R.H.S
of (13) is less dispersed than Y 7_, B, fori <j. Thatis,

i

i J
dist / dist '
Xin = ZEn—H-k <disp § Em—j+k = Xj:m'
k=1 k=1

Since X ., and XJ’- . m are stochastically equivalent, (10) follows from this.

The proof of the next lemma can be found in Bartoszewicz (1987).

Lemma 2 Let ¢ : R™ — R be a function such that $(0) = 0 and ¢(x) — x is increasing. Then for

every convex and strictly increasing function ¢ : RT™ — R the function ¢t (x) — x is increasing.

Now we give a proof of Theorem 6 to show the technique used in proving such results.
Proof of Theorem 6 : The distribution function of X;.,, is Fj.m(z) = Bj.nF(z), where B;.,, is
beta distribution with parameters (j,m — j + 1).
Let G denote the distribution function of a unit mean exponential random variable. Then H; ., (z) =
Bj.,,G(x) is the distribution function of the jth order statistic in a random sample of size m from a

unit mean exponential distribution. We can express Fj ., as

Fj.m(z) = B;.nGG™'F(x)
= Hj.,,G™'F(z). (14)

To prove the required result, we have to show that for i < jand n—i>m — j,
F;%Fi:n(x) —x isincreasing in x
& F_lGijlmHi;nG_lF(a:) —x  is increasing in x. (15)

By Lemma 1, Hj_:lmH,-:n(x) — x is increasing in z for ¢ < j and n — i > m — j. Also the function
Y(xz) = F~1G(x) is strictly increasing and it is convex if F' is DFR. The required result now follows
from Lemma 2.

|
REMARK : A consequence of Theorem 6 is that for random samples from a DFR distribution,

Xi:nJrl Sdisp in Sdisp Xi+1:n+1; for i = ]-;---;n-
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The DFR assumption is crucial for the above result to hold. For example, it can be shown that in
the case of a random sample of size 2 from a uniform distribution over [0, 1], which is not DFR, X; .5 is
not less dispersed than Xs.o.

Now we consider the problem of comparing order statistics when the parent observations are inde-
pendent but not necessarily identically distributed. Boland, El-Neweihi and Proschan (1994) have shown
that if X,,...,X,, are independent random variables, then X;., <p» Xj.p, for 1 <i < j < n. Using

this result and Theorem 1, we get the following theorem.

Theorem 7 Let X1, ..., X, be independent nonnegative random variables, then for 1 <i < j <n,
Xi:n Zdisp Xj:n provided X;., is DFR.

Even if we sample from a DFR distribution, it may not be true that X;., is DFR for every i €
{1,2,...,n}. But the smallest order statistics X7 ., is always DFR in this case. This follows from the
fact that the hazard rate of a series system of independent components is the sum of the hazard rates of
the components. So if each component of the series system has decreasing failure rate, the system will

have DFR property. This leads us to the following result.

Corollary 2 Let X1,..., X, be independent DFR random variables, then Xi.pn <qisp Xj:n for1 <j <
n.

It follows from the above discussion that amongst all k-out-of n systems made up of n independent
DFR components, the series system is least dispersed but has greatest hazard rate.
The next result is on dispersive ordering between series systems of independent DFR components

based on different number of components.

Theorem 8 Let X, ...,X,,+1 be independent DFR random variables. Then
X1:n+1 Zdisp X1:n-

PROOF : Since the hazard rate of X;.,, is smaller than that of Xj.,,41,
X1:nt+1 <nr X1:n-

The required result follows from Theorem 1 since X;., has DFR distribution under the assumed
conditions.
|
In the next theorem we establish dispersive ordering between order statistics when the random
samples are drawn from different distributions.

Theorem 9 Let Xy,...,X, be a random sample of size n from a continuous distribution F and let
Yi...,Y,, be a random sample of size m from another continuous distribution G. If either F or G is
DFR, then

X <aispY = Xiin <disp Yj:m fori<jandn—i>m—j. (16)

PRrROOF: Let F be a DFR distribution. Proof for the case when G is DF R is similar. By Theorem 6,

Xiin <daisp Xj:m for i < j and n —i > m — j. Bartoszewicz (1986) proved that if X <g5p Y then
Xj:m Zdisp Yj:m- Combining these we get the required result.

|

Since the property X <. Y together with the condition that either F' or G is DFR implies that

X <iisp Y, we get the following result from the above theorem.
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Corollary 3 Let X,,...,X, be a random sample of size n from a continuous distribution F and
Yi...,Y,, be a random sample of size m from another continuous distribution G. If either F or G
is DF R, then

XghryﬁXi:nSdispY'j:mforiSj andn—iZm—j-

Kochar (1996b) obtained similar results for the epoch times of a non-homogeneous Poisson process
( or equivalently for record values) with a decreasing intensity function. One such result is given below.

Theorem 10 Let {N(t),t > 0} be a non-homogeneous Poisson process with a decreasing intensity
function and let Ry, R, ... be the successive epoch times. Then

Rn Sdisp Rn—i—l, n:1,2,....

3 Dispersive ordering among parallel systems with heterogeneous components

The exponential distribution plays a very important role in statistics. Because of its non-aging property,
it has many nice properties and it often gives very convenient bounds on survival probabilities and
other characteristics of interest for systems with non-exponential components. Pledger and Proschan
(1971) studied the problem of stochastically comparing the order statistics of non-identically distributed
independent exponential random variables with those corresponding to independent and identically
distributed exponential random variables. This topic has been followed up by many researchers including
Proschan and Sethuraman (1976), Boland, El-Neweihi and Proschan (1994), Dykstra, Kochar and Rojo
(1997), Boland, Shaked and Shanthikumar(1998), Bon and Paltanea (1999); and Khaledi and Kochar
(2000a, 2000b), among others. In this section we compare parallel systems consisting of non-identical
components in terms of dispersive ordering and hazard rate ordering. First we consider the case when
the components have exponential distributions and then extend the results to proportional hazards rate

family.

Pledger and Proschan (1971) proved the following result.
Theorem 11 Let X1,...,X, be independent exponential random variables with X; having hazard rate
Xi, i =1,...,n. Let X7,..., X, be another set of independent exponential random variables with X}

having hazard rate \;. Then X ”E A* implies

Xoon X7, and Xy >0 X1, i=2,...,0. (17)

1:n
Proschan and Sethuraman (1976) strengthened this result to establish multivariate stochastic or-
dering between two vectors of order statistics. They proved that under the conditions of the above
theorem,
st
(Xlzna- . -:Xn:n) t (Xl*:na te 7X;;:n)'
The question is to what extent this result can be extended. For the special case n = 2 and ¢ = 2, Boland,

El- Neweihi and Proschan (1994) partially strengthened the above result of Pledger and Proschan (1971)
from stochastic ordering to hazard rate ordering. Their result is stated below.

Theorem 12 Let 7y, »,(t) be the hazard rate of a parallel system of two components whose lifetimes are

independent exponential random variables with hazard rates A1 and g, respectively. Then ry, »,(t) is
m
Schur-concave in (A1, \2). That is, (A1, A2) = (A}, Ay) implies

X2 >pr X3, 0
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Boland, El-Neweihi and Proschan (1994) conclude that Theorem 11 cannot be generalized for ar-
bitrary n. They show with the help of an example that the hazard rate of a parallel system of three
exponential components is not Schur concave in A. Dykstra, Kochar and Rojo (1997) proved that, how-
ever, the reversed hazard rate of X, .,, the lifetime of a parallel system of n independent exponential
components, is Schur-convex in A.

The next natural problem is to compare X,,.,, with Y,,.,, where Y7,...,Y,, is a random sample from
n

an exponential distribution with hazard rate A = Z)‘i /n. Kochar and Rojo (1996) proved the following
i=1
result.

Theorem 13 Let X, ..., X, be independent exponential random variables with X; having hazard rate
Aifori=1,...,n. LetY1,...,Y, be a random sample from the exponential distribution with hazard rate
X. Then

Yn:n Sdisp Xn:n and Yn:n Shr Xn:n (18)

These results give a lower bound for the variance of X,,.,, and an upper bound on the hazard rate
of X,,., in terms of those of Y,,.,,.

It will be interesting to know whether the above result can be extended to other order statistics.
While we don’t know the answer in general, we see from the next theorem that such a result is true for
the second order statistic.

Theorem 14 Let X, ..., X, be independent exponential random variables with X; having hazard rate
Aifori=1,...,n. Let Y1,...,Y, be a random sample from the exponential distribution with hazard rate
X. Then

Yo.n Zdisp Xo:n.
Proor: It follows from Theorem 3.7 of Kochar and Korwar (1996) that
Youn = Yiin <disp Xoon — X120 and Xy, £Vi., . (19)
Since the distribution of X ., (Y1.,) is logconcave, it follows from property P4 of Section 1 that
Yoin=02:n = Yiin) + Yiin <aisp (Xoin —Xi1:n) + X100 = Xo o, (20)
since X5., — X1., is independent of X;., and Y5.,, — Y7 ., is independent of Y7 .,. That is,
Yo.n Zdisp X2:n -

|
In the following theorem Khaledi and Kochar (2000b) improved upon the bounds of Dykstra, Kochar
and Rojo (1997) by replacing X with A = ([T, A;)!/", the geometric mean of the \’s.

i=

Theorem 15 Let X1,...,X, be independent exponential random variables with X; having hazard rate
Ai, t=1,...,n. Let Zy,...,Z, be a random sample of size n from an exponential distribution with

common hazard rate X = ([[7_, A\;)"/™. Then
Xn:n Zdisp Zn:n and Xn:n Zhr Znn

Corollary 4 Under the conditions of Theorem 15,
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2r r(x;2,2,2)

T(l‘, 61/3,61/3, 61/3)

r(x;1,2,3)

0.5 1 15 2

Fig. 1 Graphs of hazard rates of X3.3
(a) the hazard rate rx, ., of Xyn.n satisfies

n\ (1 - exp(—j\x))Tkl exp(—Az)

1- (1 - ea:p(—;\a:))n

"X, .o (T3 A) <

(b) var(Xp:n; A) > ;%E?:l_(nﬂ'lﬂ_y :

The new bounds given by Corollary 4 are better than those obtained by Dykstra, Kochar and Rojo
(1997) since the hazard rate of Y., is a nondecreasing function of X and the fact that the geometric
mean of A;’s, is smaller than their arithmetic mean.

In Figures 1 and 2 we plot the hazard rates of parallel systems of three exponential components along
with the upper bounds as given by Dykstra, Kochar and Rojo (1997) and the one’s given by Corollary
4 (a). The vector of parameters in Figure 1 is A; = (1,2, 3) and that in Figure 3.2 is Az = (0.2, 2, 3.8).
Note that Ag g A1. It appears from these figures that the improvements on the bounds are relatively
more if \;’s are more dispersed in the sense of majorization. This is true because the geometric mean is
Schur concave whereas the arithmetic mean is Schur constant and the hazard rate of a parallel system

of i.i.d. exponential components with common parameter A is increasing in .
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2r r(x;2,2,2)

r(z; (1.52)Y3, (1.52)1/3(1.52)1/3)

r(x;0.2,2,3.8)

0.5 1 15 2

Fig. 2 Graphs of hazard rates of X3.3

3.1 Extensions to the PHR model

Let F' denote the survival function of a non-negative random variable X with hazard rate h(-). According
to the proportional hazard rates (PHR) model, the independent random variables Xi, ..., X,, are such
that X; has hazard rate A;h(-), i = 1,...,n. Theorem 15 can be extended to the PHR model as shown
below.

Theorem 16 Let X,..., X, be independent random variables such that X; has hazard rate \;h(-),
i =1,...,n, where h(-) is the hazard rate of some non-negative random variable. Let Y1,...,Y,, be a

random sample from a distribution with common hazard rate Ah(-), where X = (ITi, M)/ ™. Then

(a) Xn:n Zhr Yn:n, and
(b) if F is DFR, then X, .n >disp Yn:n-

PROOF : Let H(z) = —logF(z) denote the cumulative hazard rate of F. Let Z; = H(X;) and
W; = H(Y;), i=1,...,n. Since X;’s follow the PHR model, it is easy to see that Z; is exponential
with hazard rate \; and W; is exponential with hazard rate A, i = 1,...,n. Theorem 15 implies that

Zn:n Zhr Wi n. Using this fact, (since H1, the right inverse of H, is nondecreasing), it is easy to show
that H Y(Z,,.n) >hr H (W, .,), from which the part (a) of the theorem follows.
(b) It follows from Theorem 15 that Z,., >4isp Wa.n and also Zy,.,, >st Wy .. The function H*(z)
is convex since F' is DFR and it is clearly nondecreasing. Using this, it follows from property P6 that
H™Y(Z,.n) >aisp H (W, ), which is equivalent to X,,.pn >disp Y :n-

|

4 Dispersive ordering among spacings

Let Xi,..., X, be a random sample from a continuous distribution with cdf F and let D;.,, = (n —i +
1)(X;.n — Xi—1.n) denote the ith normalized spacing, i = 1,...,n, with Xy.,, = 0. It is well known that

D;.,,...,D,., are independent and identically distributed if and only if F' is exponential. Barlow and
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Proschan (1966) proved that if F' is a DFR (IFR) distribution, then the successive normalized spacings
are increasing (decreasing) stochastically. Kochar and Kirmani (1995) partially strengthened this result
to the hazard rate ordering when the underlying random variables are DFR. This is stated below.

Theorem 17 Let X4,..., X, be a random sample of size n from a DFR distribution. Then

(a)Di:nShrDi+1:n forizl,...,n—l,
(b) Di.nt1 <hr Di.ny,  forn > and for fized i.

Barlow and Proschan (1966) have shown that spacings of i.i.d. DFR random variables have also DFR
distributions. The proof of the next theorem follows from the relation between hazard rate ordering and
dispersive ordering and the above theorem.

Theorem 18 If X,...,X,, is a random sample from a DFR distribution, then

(a) Di:n Sdisp Di+1:n: fOT’?: = 1,...,71- 17
(b) D;.nt+1 <disp Di.n for n > i and for fized i

Kochar (1996¢) obtained similar results for the inter-occurrence times of a non-homogeneous Poisson
process.

Kochar and Korwar (1996) studied the problem of comparing spacings of independent exponential
random variables with possibly different parameters. One of their results on dispersive ordering is stated
below.

Theorem 19 Let X1,...,X,, be independent exponential random variables with X; having exponential
distribution with hazard rate A\;, © =1,...,n and let D;.,, be the ith normalized spacing, i=1,...,n.

Let X{,..., X} be a random sample of size n from an exponential distribution with common hazard rate
n

A= Z)\i/n and let DY, be the corresponding ith normalized spacing. Then
i=1

(a) D}.,, <aisp Di:n, fori=2,...,n,

() (A1, X2) = (AT, A3) = D2.2(A1, A3) Zaisp D2:2(A1, A2).

Kochar and Korwar (1996) conjectured that in the case of independent exponentials with different
parameters, D;.,, <pr Diy1.p for i =1,...,n — 1. Khaledi and Kochar (2001) proved it for the special
case when all except one of the parameters are equal. That is, they proved the above conjecture when
Al =+ = Ap—1 = A and A\, = X*. Such a model is known as a single- outlier exponential model with
parameters (A, A*).

Theorem 20 (Khaledi and Kochar, 2001) Let X1,...,X,, follow the single-outlier exponential model.
Then
Dj.pn <phr Di—i—l:n and Dj.p Sdisp Di+1:n i=1,...,n—-1

The next theorem for the two-sample problem is proved in (Khaledi and Kochar, 2001).

Theorem 21 Let X1,..., X, follow the single-outlier exponential model with parameters (A1, \}) and
let Y1,...,Y,, be another set of random wvariables following the single-outlier exponential model with
parameters (\a, \5). If

AP <AL <A <A and A+ (n— DAL = A+ (n — 1)Ag, (21)

then
2

:)n and Dl(l) Zdisp Dl(2)n,l = ]., ...n,

n

p >, D!
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1

where D; . and Dl@)n, respectively, are the ith spacings of single outlier exponential models with param-

:
eters (A1, A]) and (A2, A3).

Remark : Note that under (4.1), (A}, \1,..., A1) "g (A5, A2, .., \9).
5 Dispersive ordering among convolutions of random variables

Statistics which can be expressed as linear combinations of random variables, arise frequently in statistics
and their distribution theory can be quite complicated in many cases. From time to time attempts have
been made in the literature to obtain bounds and approximations for their distributions.

In this section we study convolutions of independent random variables differing in their scale pa-
rameters and compare them according to dispersive ordering as the vectors of parameters vary. Boland,
El-Neweihi and Proschan (1994) proved that a convolution of independent exponential random variables
with unequal hazard rates is stochastically larger according to likelthood ratio ordering when the param-
eters of the exponential distributions are more dispersed in the sense of majorization. Kochar and Ma
(1999) established the following dispersive ordering result for a convolution of independent exponential
random variables under the same conditions.

Theorem 22 Let X, ,..., X, beindependent exponential random variables with respective hazard rates

m
AL, ..., A, respectively. Then X = X* implies

n n
ZXM > disp ZXA; .
i=1 i=1

This result can be immediately extended to convolutions of independent Erlang random variables
with different scale parameters but with a common shape parameter greater than 1. Korwar (2002) has
generalized this result to convolutions of gamma random variables with an arbitrary common shape
parameter greater than 1. Some related work on this problem is by Bock et al. (1987), Tong (1988 and
1994) Bon and Paltanea (1999) and Ma (2000), among others.

Khaledi and Kochar (2002, 2003) pursued this problem further and obtained dispersive ordering
results for convolutions of heterogeneous exponential , uniform and normal random variables under p-
larger ordering, a partial ordering weaker than majorization. These results lead to better bounds on
various quantities of interest associated with these statistics.

Theorem 23 Let Xy,,..., Xy, be independent random variables such that Xy, has gamma distribu-

P
tion with shape parameter a > 1 and scale parameter \;, for i = 1,...,n. Then, X\ = X" implies
S, An) Zaisp ST, ..., AL), where S(Ar, ..., An) = Y1 X,

A similar result holds for convolution of uniform and normal random variables. While the proof in
the case of normal random variables is obvious, the proof in the case of uniform random variables is
given in Khaledi and Kochar (2002). It is stated below.

Theorem 24 Let X, ..., Xy, be independent random variables such that Xy, has U(0,1/X;) distribu-

p
tions, fori=1,...,n. Then, X = X" implies

n n
E X >disp E Xar.
i=1 =1

Korwar (2002) obtained a result similar to the above with p-larger ordering replaced by majorization.
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