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1 Introdu
tionLet X1:n � � � � � Xn:n be the order statisti
s asso
iated with the �rst n � 2 observationsin a sequen
e X1; X2; : : : of 
ontinuous random variables. Motivated in part by appli
a-tions in reliability theory, various authors have investigated the nature of the dependen
ethat may exist between Xi:n and Xj:n for 1 � i < j � n under di�erent distributionals
enarios. When the Xk are mutually independent and identi
ally distributed, it has beenknown sin
e the work of Bi
kel (1967) that
ov(Xi:n; Xj:n) � 0;but mu
h stronger statements 
an be made to qualify the asso
iation between Xi:n andXj:n, even when the Xk are from di�erent distributions. For details, refer to the paperby Boland et al. (1996) and referen
es therein.In 
ontrast, very little seems to be known about the relative degree of dependen
e thatmay exist between two arbitrary pairs of order statisti
s, say (Xi:n, Xj:n) and (Xi0:n,Xj0:n). The only 
ontributions appear to be those of Tukey (1958) and Kim and David(1990), both of whi
h pertain to the 
ase where the Xk are mutually independent andidenti
ally distributed. When the parent distribution has an in
reasing hazard rate anda de
reasing reverse hazard rate, Tukey (1958) showed that
ov(Xi0:n; Xj0:n) � 
ov(Xi:n; Xj:n) (1)must hold when either i = i0 and j � j 0; or j = j 0 and i0 � i: (2)As for Kim and David (1990), they proved that if both the hazard and the reverse hazardrates of the Xk are in
reasing, then inequality (1) remains valid when i = i0 and j � j 0,but goes the other way when j = j 0 and i0 � i.While these results are 
ertainly not 
ontradi
tory, it may be puzzling at �rst thatdi�erent 
onditions on the 
ommon distribution of the Xk 
ould 
ause the 
ovarian
ebetween Xi:n and Xj:n to in
rease or to de
rease as i and j pull apart. The key to theresolution, of 
ourse, is in the fa
t that the traditional notion of 
ovarian
e is not anappropriate measure of dependen
e when the pairs being 
ompared do not have thesame marginal distributions, as is 
learly the 
ase here.The purpose of this paper is to shed additional light into the dependen
e stru
ture of pairs2



of order statisti
s by showing that for any integers 1 � i � j � n and 1 � i0 � j 0 � n0su
h that i0 � i; j � i � j 0 � i0; n� i � n0 � i0; n0 � j 0 � n� j; (3)the pair (Xi:n; Xj:n) is more dependent than the pair (Xi0:n0; Xj0:n0) a

ording to thebivariate monotone regression dependen
e (or sto
hasti
ally in
reasing) ordering. Thisresult, whi
h is independent of the 
hoi
e of the parent distribution for the Xk, impliesin parti
ular that under 
ondition (3), and hen
e under 
ondition (2) when n = n0, onehas � (Xi0:n; Xj0:n) � � (Xi:n; Xj:n)where �(S; T ) stands for any measure of 
on
ordan
e between S and T in the sense ofS
arsini (1984), e.g., Spearman's rho, Kendall's tau, or Gini's 
oeÆ
ient of asso
iation.This 
on
lusion is in a

ordan
e with the intuition that as order statisti
s Xi:n and Xj:ndraw apart, they tend to be less asso
iated.The de�nition of the monotone regression dependen
e ordering is re
alled in Se
tion 2,where a pre
ise statement of the main result appears as Proposition 2. Auxiliary te
hni
almaterial needed to 
arry out its proof is 
olle
ted in Se
tion 3, in
luding a result ofpossibly independent interest 
on
erning the dispersive properties of generalized spa
ingsfrom an exponential sample. The argument leading to Proposition 2 appears in Se
tion4, where some spe
ial 
ases are also dis
ussed. Se
tion 5 
ontains a 
losed-form formulafor �(Xi:n; Xj:n) whi
h extends that just reported by S
hmitz (in press) in the spe
ial
ase i = 1 and j = n. Some dire
tions for future work are outlined in Se
tion 6.2 PreliminariesFor i = 1; 2, let (Si; Ti) be a pair of 
ontinuous random variables with joint 
umulativedistribution fun
tion Hi and marginals Fi and Gi. As summarized in the books by Joe(1997), Nelsen (1999) or Drouet-Mari and Kotz (2001), thirty years of resear
h into
on
epts and measures of asso
iation have shown that the proper way of 
omparing therelative degree of dependen
e between (S1; T1) and (S2; T2) is in terms of their asso
iated
opulas, impli
itly de�ned in a unique fashion by the relationHi(s; t) = CifFi(s); Gi(t)g;valid for all s; t 2 R. Thus (S2; T2) is said to be more 
on
ordant (or more positivequadrant dependent) than (S1; T1), denoted by (S1; T1) �PQD (S2; T2), if and only if, for3



all u; v 2 (0; 1), C1(u; v) � C2(u; v): (4)As shown, e.g., by T
hen (1980), 
ondition (4) implies that�(S1; T1) � �(S2; T2) (5)where �(S; T ) represents Spearman's rho, Kendall's tau, Gini's 
oeÆ
ient, or indeed anyother 
opula-based measure of 
on
ordan
e satisfying the axioms of S
arsini (1984). Inthe spe
ial 
ase where F1 = F2 and G1 = G2, it also follows from (4) that the pairs(S1; T1) and (S2; T2) are ordered by Pearson's 
orrelation 
oeÆ
ient, namely
orr(S1; T1) � 
orr(S2; T2):In his survey, Joe (1997) mentions a number of bivariate sto
hasti
 ordering relations� that strengthen �PQD and hen
e imply (5) as well. One su
h notion that will bepursued here is that of greater monotone regression dependen
e, originally 
onsideredby Yanagimoto and Okamoto (1969) and later extended and further investigated byS
hriever (1987), Cap�era�a and Genest (1990), Blo
k et al. (1990), as well as Fang and Joe(1992). Although this ordering, as all other dependen
e orderings, involves a 
omparisonof the underlying 
opulas, an equivalent formulation of it will be given in De�nition 1below in terms of the original distributions of (S1; T1) and (S2; T2). The latter will provemore 
onvenient when time 
omes to 
ompare pairs of order statisti
s, in Se
tion 4.First, re
all that a

ording to Lehmann (1966), a variable T is said to be sto
hasti
allyin
reasing in another variable S if and only if, for all s; s0; t 2 R,s � s0 =) P(T � tjS = s0) � P(T � tjS = s): (6)If H denotes the joint distribution of the pair (S; T ), write H[s℄ for the distributionfun
tion of the 
onditional distribution of T given S = s. The above impli
ation maythen be expressed in the alternate forms � s0 =) H[s0℄ ÆH�1[s℄ (u) � u;where u 2 (0; 1). For 
onvenien
e, it will be assumed hen
eforth that H[s℄ is 
ontinuousand stri
tly in
reasing for every s 2 R, but obvious adaptations are possible when H[s℄has plateaus or jumps, and when the domain of S is restri
ted to an interval.4



Note that property (6) is not symmetri
 in S and T , but that in 
ase these variablesare independent, H[s0℄ ÆH�1[s℄ (u) � u for all u 2 (0; 1) and for all s; s0 2 R. Observe alsothat if �p = F�1(p) denotes the pth quantile of the marginal distribution of S, then (6)is equivalent to the 
ondition0 < p � q < 1 =) H[�q ℄ ÆH[�p℄�1(u) � uholding true for all u 2 (0; 1).This leads to the following de�nition of what it means for a bivariate distribution to bemore sto
hasti
ally in
reasing (or monotone regression dependent) than another one.De�nition 1 T2 is said to be more sto
hasti
ally in
reasing in S2 than T1 is in S1,denoted by (T1jS1) �SI (T2jS2) or H1 �SI H2, if and only if0 < p � q < 1 =) H2[�2q ℄ ÆH2[�2p℄�1(u) � H1[�1q ℄ ÆH1[�1p℄�1(u); (7)for all u 2 (0; 1), where for i = 1; 2, Hi[s℄ denotes the 
onditional distribution of Ti givenSi = s, and �ip = F�1i (p) stands for the pth quantile of the marginal distribution of Si.Obviously, (7) implies that T2 is sto
hasti
ally in
reasing in S2 if S1 and T1 are indepen-dent. It also implies that if T1 is sto
hasti
ally in
reasing in S1, then so is T2 in S2; and
onversely, if T2 is sto
hasti
ally de
reasing in S2, then so is T1 in S1.The bivariate normal family provides a simple illustration of a system of distributionsthat is ordered by �SI; in this 
ase, one has N�(�;�) �SI N�0(�0;�0) , � � �0, where� is either one of Pearson's, Spearman's or Kendall's 
oeÆ
ient. Numerous additionalexamples of bivariate distributions that are ordered in this fashion are given by Yanag-imoto and Okamoto (1969), S
hriever (1987), Cap�era�a and Genest (1990, 1993), Fangand Joe (1992), as well as Joe (1997, Chaps 2 and 5). The above de�nition 
oin
ides withtheirs when the pairs (S1; T1) and (S2; T2) have the same margins, i.e., when F1 = F2and G1 = G2. When the margins are di�erent, De�nition 1 is then equivalent to thatgiven by these authors, as applied to the underlying 
opulas C1 and C2.The main result to be proved in this paper may now be stated as follows.Proposition 2 Let X1:n � � � � � Xn:n and X1:n0 � � � � � Xn0:n0 be the order statis-ti
s asso
iated with two independent random samples of sizes n and n0 from the same
ontinuous distribution. Under 
onditions (3), one has(Xj0:n0jXi0:n0) �SI (Xj:njXi:n) :5



3 Auxiliary materialThe proof of Proposition 2 to be given in Se
tion 4 relies heavily on the notion ofdispersive ordering between two random variables X and Y , and properties thereof. For
ompleteness, the de�nition of this 
on
ept is re
alled below.
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De�nition 3 A random variable X with distribution fun
tion F is said to be less dis-persed than another variable Y with distribution G, written as X �DISP Y or F �DISP G,if and only if F�1(�)� F�1(�) � G�1(�)�G�1(�)for all 0 < � � � < 1. Equivalently, one must have FfF�1(u)� 
g � GfG�1(u)� 
g forevery 
 � 0 and u 2 (0; 1).For general information about the dispersive ordering and its properties, refer to Se
tion2.B of Shaked and Shanthikumar (1994). Of immediate relevan
e here is the followingobservation, whi
h derives from a 
onne
tion originally made by Lewis and Thompson(1981) between dispersive random variables and strongly unimodal distributions (see,e.g., Khaledi and Ko
har 2000).Lemma 4 Let X1, X2, Y1, Y2 be mutually independent random variables that are stronglyunimodal, i.e., whose densities are log-
on
ave. ThenX1 �DISP X2 and Y1 �DISP Y2 =) X1 + Y1 �DISP X2 + Y2:The proof of Proposition 2 will also make use of the following result 
on
erning thedispersive ordering between generalized spa
ings asso
iated with two random samples ofpossibly di�erent sample sizes from an exponential distribution. This result may be ofindependent interest.Lemma 5 Let X1:n � � � � � Xn:n be the order statisti
s asso
iated with a random sampleof size n from an exponential distribution, and for 0 � i < j � n, letD(n)ij = Xj:n �Xi:nstand for the (i; j)th generalized spa
ing, with X0:n � 0. Then for j � i � j 0 � i0 andn0 � j 0 � n� j, one has D(n)ij �DISP D(n0)i0j0 .Proof. Let X1; : : : ; Xn and X 01; : : : ; X 0n0 be two independent random samples from anexponential distribution with hazard rate �. ThenD(n)ij may be expressed as a 
onvolutionof j � i 
onse
utive spa
ings, namelyD(n)ij = (Xj:n �Xj�1:n) + � � �+ (Xi+1:n �Xi:n) � j�iXk=1En�j+k;7



where the E` are mutually independent exponential random variables, the hazard rateof E` being `�. Similarly, D(n0)i0j0 � j0�i0Xk=1 E 0n0�j0+kfor some mutually independent exponential random variables E 0̀ with hazard rate `�.Now it is easy to see that for k = 1; : : : ; j � i and n0 � j 0 � n� j, one hasEn�j+k �DISP E 0n0�j0+k:Sin
e the 
lass of distributions with log-
on
ave densities is 
losed under 
onvolutionsof independent random variables (see Dharmadhikari and Joag-Dev 1988, p. 17), it thusfollows from repeated appli
ations of Lemma 4 thatj�iXk=1En�j+k �DISP j�iXk=1E 0n0�j0+k :A further appli
ation of Lemma 4 implies thatj�iXk=1E 0n0�j0+k �DISP j�iXk=1E 0n0�j0+k + j0�i0Xk=j�i+1E 0n0�j0+k ;sin
e the two summands on the right-hand side are sums of mutually independent ex-ponential random variables, and hen
e are independent and have log-
on
ave densities.This 
on
ludes the proof. }Note in passing that if i = i0 = 0 in Lemma 5, then one hasj � j 0 and n0 � j 0 � n� j =) Xj:n �DISP Xj0:n0; (8)a fa
t that was already established by Khaledi and Ko
har (2000).Finally, the following lemma formalizes the observation that the 
opula asso
iated witha pair of order statisti
s does not depend on the parent distribution.Lemma 6 Let X1:n � � � � � Xn:n be the order statisti
s asso
iated with a random sampleof size n from a 
ontinuous distribution F . The pairs (Xi:n; Xj:n) and (Ui:n; Uj:n) =(F (Xi:n); F (Xj:n)) then share the same 
opula, whatever the 
hoi
es of 1 � i < j � n.Proof. Let Fi and Gi denote the marginal distributions of Xi:n and Ui:n, respe
tively.Then Fi = Gi Æ F , sin
e the probability integral transformation U = F (X) is order8



preserving, and thus 
onverts the ith order statisti
 of F into the ith order statisti
 of auniform random variable on (0; 1). ThusP nXi:n � F�1i (u); Xj:n � F�1i (v)o = P nUi:n � G�1i (u); Uj:n � G�1i (v)o :for all u; v 2 (0; 1), whi
h establishes the 
oin
iden
e of the 
opulas. }4 Proof of Proposition 2In view of Lemma 6, it may be assumed without loss of generality that the parent dis-tribution of the Xk is exponential. Now under this assumption, the 
onse
utive spa
ingsare mutually independent. Therefore,H2[x℄(y)�P (Xj:n � yj Xi:n = x) = P ( Xj:n �Xi:n � y � xj Xi:n = x)=P ( Xj:n �Xi:n � y � x) = Lijn(y � x) (say);namely the distribution fun
tion of D(n)ij at y � x.Let �2p and �2q denote the pth and qth quantiles of Xi:n, respe
tively. Then for 0 < p �q < 1, H2[�2q℄ ÆH�12[�2p℄(v) = Lijn nL�1ijn(v)� (�2q � �2p)o ; (9)for arbitrary v 2 (0; 1). Similarly, for the order statisti
s Xj0:n0 and Xi0:n0, one hasH1[�1q ℄ ÆH�11[�1p℄(v) = Li0j0n0 nL�1i0j0n0(v)� (�1q � �1p)o ;for all v 2 (0; 1), where �1p and �1q respe
tively denote the pth and qth quantiles of thedistribution of Xi0:n0.In order to prove Proposition 2, therefore, one needs only show that under 
onditions(3), one has 0 < p � q < 1 =) H2[�2q ℄ ÆH2[�2p℄�1(v) � H1[�1q ℄ ÆH1[�1p℄�1(v);i.e., Lijn nL�1ijn(v)� (�2q � �2p)o � Li0j0n0 nL�1i0j0n0(v)� (�1q � �1p)o (10)for all v 2 (0; 1). 9



Now under the assumed 
ondition that i0 � i and n� i � n0� i0, it follows from (8) thatXi0:n0 �DISP Xi:n, so that 0 � �1q � �1p � �2q � �2p for 0 < p � q < 1. Thus for �xedv 2 (0; 1), it follows thatLijn nL�1ijn(v)� (�2q � �2p)o � Lijn nL�1ijn(v)� (�1q � �1p)o : (11)At the same time, however, Lemma 5 implies that D(n)ij �DISP D(n0)i0j0 , so thatLijn nL�1ijn(v)� 
o � Li0j0n0 nL�1i0j0n0(v)� 
o (12)for every 
 � 0 and hen
e in parti
ular when 
 = �1q � �1p. The 
onjun
tion of (11) and(12) yields (10), so the proof is 
omplete. }The following set of immediate 
onsequen
es of Proposition 2 is of spe
ial interest.Corollary 7 Let X1:n � � � � � Xn:n be the order statisti
s asso
iated with a randomsample X1; : : : ; Xn from some 
ontinuous distribution. Then(a) (Xk:nj Xi:n) �SI (Xj:nj Xi:n) for all 1 � i < j < k � n;(b) (Xj:nj Xi:n) �SI (Xj+1:n+1j Xi+1:n+1) for all 1 � i < j � n;(
) (Xn+1:n+1j X1:n+1) �SI (Xn:nj X1:n) for every integer n � 2.It is 
lear from the above result that for �xed n, the asso
iation between the 
omponentsof a pair (Xi:n; Xj:n) of order statisti
s, as measured by the �SI ordering, de
reases asi and j get further apart. This �nding generalizes those of Tukey (1958) and Kim andDavid (1990). It may also be seen from the above that the dependen
e of the largestorder statisti
 on the smallest one de
reases as sample size in
reases.It is worth emphasizing here that 
ontrary to Tukey (1958) and Kim and David (1990),Proposition 2 and Corollary 7 do not rely on any spe
i�
 assumption about the parentdistribution of the order statisti
s. This is in 
ontrast with the results of Av�erous andDortet-Bernadet (2000) 
on
erning the ordering of the largest order statisti
 on thesmallest one in the non-
opula-based formulation of the more-sto
hasti
ally-in
reasingordering that they use.The following 
orollary makes it 
lear that under the 
onditions given in Proposition2, any measure of 
on
ordan
e satisfying the axioms of S
arsini (1984) will agree with10



the ordering �SI, whereas 
ovarian
e (whi
h is not a margin-free measure of asso
iation)may not.Corollary 8 Let X1:n � � � � � Xn:n and X1:n0 � � � � � Xn0:n0 be the order statisti
s asso-
iated with two independent random samples of sizes n and n0 from the same 
ontinuousdistribution. Under 
onditions (3), one has� (Xi0:n0; Xj0:n0) � � (Xi:n; Xj:n)where � may stand for Spearman's rho, Kendall's tau, Gini's 
oeÆ
ient, or any othermeasure of 
on
ordan
e in the sense of S
arsini (1984).5 Kendall's tau for a pair of order statisti
sIn the 
ourse of 
he
king the validity of Corollary 7 in spe
i�
 
ases, it 
ame to theauthors' attention that a simple 
losed-form formula 
ould be found for the populationvalue of Kendall's � 
oeÆ
ient of 
on
ordan
e between any two order statisti
s asso
iatedwith a random sample from a 
ontinuous distribution. This result, whi
h is given next,may be viewed as an extension of a 
ontemporaneous �nding of S
hmitz (in press), whoonly 
onsidered the 
ase i = 1, j = n.Proposition 9 Let X1:n � � � � � Xn:n be the order statisti
s asso
iated with a randomsample of size n from some 
ontinuous distribution. Then for 1 � i < j � n, thepopulation value of Kendall's 
oeÆ
ient of 
on
ordan
e between Xi:n and Xj:n is givenby �(Xi:n; Xj:n)= 1� 2(n� 1)2n� 1 �n� 2i� 1 � n� i� 1j � i� 1!� n�jXs=0 i�1Xr=0�nr ��n� rs �� 2n� 2n� j + s; r + i� 1! :Proof. Let Y1; : : : ; Yn be an independent random sample from the same distribution asthe Xk, and let Y1:n � � � � � Yn:n be the 
orresponding order statisti
s. By de�nition,�(Xi:n; Xj:n) = 1� 4p, wherep = P (Xi:n < Yi:n; Xj:n > Yj:n) :11



To 
ompute this probability, it suÆ
es to determine the proportion of the (2n)! equallylikely arrangements of the Xk and the Y` for whi
h the eventXi:n < Yi:n < Yj:n < Xj:n (13)o

urs. To this end, suppose that Xi:n = Xm and Xj:n = Xm0 for some �xed m;m0 2f1; : : : ; ng with m 6= m0. In order that (13) holds, the remaining n � 2 of the Xk andall the Y` must then be positioned in su
h a way that, for some r 2 f0; : : : ; i � 1g ands 2 f0; : : : ; n� jg,(i) exa
tly i� 1 of the Xk and exa
tly r of the Y` are less than Xm;(ii) exa
tly n� j of the Xk and exa
tly s of the Y` are greater than Xm0 ;(iii) the remaining j � i� 1 values of the Xk and n� r � s values of the Y` are lo
ated inthe interval (Xm; Xm0).Upon summing over the di�erent possible values of r and s, one �ndsp=n(n� 1) n� 2i� 1! n� i� 1j � i� 1!�n�jXs=0 i�1Xr=0 nr! n� rs !(n� r � s+ j � i� 1)!(r + i� 1)!(n� j + s)!(2n)! ;where the fa
tor n(n� 1) at the beginning of the formula 
omes be
ause there are thatmany ways of 
hoosing Xm and Xm0 , and the fra
tion inside the sum is obtained throughan enumeration of the possible arrangements of the other Xk and Y`, 
onditionally on(i){(iii) and the positions of Xm and Xm0 . A simple algebrai
 manipulation then yieldsthe �nal formula for tau. }The above formula for Kendall's tau simpli�es as follows in a few spe
ial 
ases:(a) for 1 � i < j = n,�(Xi:n; Xn:n) = �1 + 2(n� 1)2n� 1  n� 2i� 1! nXr=i  nr!�� 2n� 2r + i� 1� ;(b) for 1 � i < j = i+ 1 � n,�(Xi : n; Xi+1:n) = 1�  ni!2��2n2i � ;12



(
) for i = 1 and j = n, �(X1:n; Xn:n) = 1=(2n� 1), as reported by S
hmitz (in press).For illustration purposes, Tables 1 and 2 give the values of �(Xi:n; Xj:n) for all 
hoi
esof 1 � i < j � n and for n = 6 and 7, respe
tively. The various monotoni
ity propertiesstated in Proposition 2 and its 
orollaries 
an be readily veri�ed from these tables. Inaddition, the tables show an obvious diagonal symmetry property that is not immediately
lear from Proposition 9. This is a simple 
onsequen
e of the following result.Proposition 10 Let X1:n � � � � � Xn:n be the order statisti
s asso
iated with a randomsample of size n from some 
ontinuous distribution. Then for arbitrary i; j 2 f1; : : : ; ng,the pairs (�Xi:n;�Xj:n) and (Xn�i+1:n; Xn�j+1:n) have the same 
opula. Consequently,one has �(Xi:n; Xj:n) = �(Xn�i+1:n; Xn�j+1:n); (14)where � is any measure of 
on
ordan
e in the sense of S
arsini (1984).Proof. Sin
e by Lemma 6 the 
opula of a pair of order statisti
s has the distribution-free property, it 
an be assumed without loss of generality that the parent distributionis uniform on the interval (0; 1). Under this assumption, it 
an be easily veri�ed thatthe pairs (Xn�i+1:n; Xn�j+1:n) and (1 �Xi:n; 1�Xj:n) have the same joint distribution.Therefore, (�Xi:n;�Xj:n) and (Xn�i+1:n; Xn�j+1:n) have the same 
opula, and (14) holdsby Axiom 5 of S
arsini (see Nelsen 1999, p. 136). }Table 1The values of 3003 � �(Xi:6;Xj:6). ji 2 3 4 5 61 1365 910 650 455 2732 1638 1118 767 4553 1703 1118 6504 1638 9105 1365
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Table 2The values of 3003 � �(Xi:7;Xj:7). ji 2 3 4 5 6 71 1386 945 700 525 378 2312 1680 1190 875 623 3783 1778 1253 875 5254 1778 1190 7005 1680 9456 1386It may also be seen from Tables 1 and 2 that �(Xi:n; Xj:n) in
reases with sample size nfor �xed 1 � i < j � n, a fa
t that 
an be veri�ed readily in the spe
ial 
ases dis
ussedabove, as well as when j = i+1. This is possibly true in general. Furthermore, it is easyto 
he
k from the spe
ial 
ase (b) mentioned above that �(Xi:n; Xi+1:n) in
reases in i for1 � i � d(n � 1)=2e, where dxe denotes the smallest integer y � x. More generally, itwould appear (but remains to be shown) that�(Xi:n; Xi+k:n) � �(Xi+1:n; Xi+k+1:n)for all 1 � i � d(n� k)=2e.In his paper, S
hmitz (in press) gives an expli
it formula for the value of Spearman'srho between the smallest and largest order statisti
s in a random sample of arbitrarysize. Unfortunately, it does not seem possible to generalize this expression to any twoorder statisti
s, although the 
oeÆ
ient 
an be 
omputed easily in spe
i�
 
ases usinga symboli
 
al
ulator su
h as maple. Still, it may be observed (as S
hmitz does in hisspe
ial 
ase) that � (Xi:n; Xj:n) � � (Xi:n; Xj:n) ;sin
e Cap�era�a and Genest (1993) showed that these two measures of dependen
e are soordered whenever one of the variables is sto
hasti
ally in
reasing in the other. That Xj:nis sto
hasti
ally in
reasing in Xi:n for 1 � i < j � n is easy to see from (9), whi
h implies14



at on
e that H2[�2q ℄ ÆH�12[�2p℄(v) � v for all v 2 (0; 1) whenever 0 < p � q < 1.6 Con
lusionThis paper has 
ontinued the work of Tukey (1958) and Kim and David (1990) by
omparing the degree of asso
iation present in two pairs of order statisti
s from the same
ontinuous distribution. Conditions were found under whi
h the 
opulas of two su
h pairsare ordered in the sto
hasti
ally in
reasing, or monotone regression dependen
e, orderingof Yanagimoto and Okamoto (1969).There are several ways in whi
h this investigation might be 
ontinued. One possibilitywould be to seek more restri
tive 
onditions under whi
h sto
hasti
 in
reasingness 
ouldbe repla
ed by stronger dependen
e orderings. Other options would be to 
onsider the
ase of dis
rete or non-identi
ally distributed observations. For example, partial resultsare already available from the authors for an ordering of Cap�era�a and Genest (1990) thatstrengthens �SI, and for heterogenous exponential parent distributions. Be
ause of thepossibility of ties, however, extensions to the 
ase of dis
rete parent distributions willprobably prove most 
hallenging.A
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