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1 Introduction

It is of interest to compare two random variables in terms of their variability. While this topic
has been studied extensively in the univariate case, several attempts have been made to extend
it to the multivariate case. Important contributions in this case have been made by Giovagnoli
and Wynn (1995) Shaked and Shathikumar (1998) and Fernadez-Ponse and Suarez-Llorens
(2003), among others.

Let X and Y be two univariate random variables with distribution functions F' and G; and
with survival functions F and G, respectively. A basic concept for comparing variability in
distributions is that of dispersive ordering. X is said to be less dispersed than Y (denoted by
X <gisp Y) if

F7Y(B) —FYa) <G YB) -G (a) whenever 0 < a<p<1, (1.1)

where F~! and G~! are the right continuous inverses of the distribution functions F' and G,
respectively. This means that the difference between any two quantiles of X is smaller than
the difference between the corresponding quantiles of Y. In case the random variables X and
Y are of continuous type with hazard rates rr and rq, respectively, then X <4, Y if and only
if
r(GH(p)) < rr(F~H(p)), Vp € [0,1]. (1.2)

For more details on dispersive ordering, see Section 2B of Shaked and Shanthikumar (1994).

In analogy with the characterization (1.2) of the univariate dispersive ordering, we introduce
a new order in the multivariate case which we call upper orthant dispersive ordering and study
its properties. According to (1.2), X <y, Y if and only if the hazard rates of X and Y at the
quantiles of the same order p are ordered for all values of p € [0,1]. To this end, we first recall
the definition of hazard rate (or hazard gradient) in the multivariate case. Consider a random
vector X = (X1,...,X,) with a partially differentiable survival function F(x) = P{X > x}.
The function R = —log F is called the hazard function of X, and the vector rx of partial
derivatives, defined by

rx(x) = (rQ (x),...,r (x)) = (B%R(x), e —

for all x € {x : F(x) > 0}, is called the hazard gradient of X ( see Johnson and Kotz, 1975
and Marshall, 1975). Note that rgé) (x) can be interpreted as the conditional hazard rate of X;
evaluated at z;, given that X; > z; for all j # i. That is,

filws | (X5 > z5})

S
Fi(wi | ({X; > z,})
i

where f;(- | j;i{Xj > z;}) and Fy(- | j;i {X; > z;}) are, respectively, the conditional density

and the conditional survival functions of Xj, given that X; > z; for all j # 4. For convenience,



here and below we set rg? (x) = oo for all x € {x: F(x) = 0}. Now we define upper orthant

dispersive ordering.

Definition 1.1. Let X = (Xy,...,X,) and Y = (Y1,...,Y,) be two random wvectors with

respective survival functions F and G. We say that X is smaller than Y according to upper

uo— S
orthant dispersive ordering (denoted by X < Y ) if for all u; € [0,1], j=1,...,n,j#1,

Xi | (X5 > F N up)} | <aisp | Vil (Y5> G (wy)} ] (1.3)
j#i J#i

fori=1,...,n

In case the distributions under consideration are absolutely continuous, the upper or-
thant dispersive ordering can be equivalently expressed in terms of the hazard gradients at
the quantiles of the same orders of the conditional distributions. If we denote by z;(5;u)
and y;(f;u), the Sth quantiles of the conditional distributions (Xi | CAX; > Fj_l(u]-)}> and

J#
(Yi | ];z{Yj > Gj_l(uj)}>, respectively, then

wo—dis
XY e D (F N w), . T ), miBi0), - B ()
1

> (G ), G (), wi(Bs ), Gt () (1.4)

for every 8 € [0,1], u € [0,1]*"! and i = 1,...,n, where rgé) and rg) stand for the ith
components of the hazard gradients of X and Y, respectively.

The following slightly modified version of a theorem of Saunders and Moran (1978) provides
a useful tool for establishing dispersive ordering among members of a parametric family of

distributions.

THEOREM 1.1. Let X, be a random variable with distribution function F, for each a € R such
that

(i) F, is supported on some interval ( (@ xS_)) C (—o00,00) and has density f, which does not

vanish on any subinterval of (z° ) (+)),
(i) the derivative of F, with respect to a exists and denoted by F).

Then,
Xo >disp Xo+ for a, a* € R and a > a*, (1.5)

if and only if,
Fl!(z)/fo(z) is decreasing in x. (1.6)
In the next example we identify conditions under which two bivariate normal random vectors

are ordered according to upper orthant dispersive ordering. More examples are discussed in

the last section.



Example 1.1 (Bivariate Normal Distribution).

Let X and Y follow bivariate normal distributions with each with mean vector (0,0) and

with dispersion matrices

2 2 /
X 01 pPo102 Yy o1 P 0109
30 = ) and X' = , ) ,
pPo102 05 P 0109 05

respectively, with o; > 0 for 4 = 1,2. For the time being we are assuming that the marginal
distributions of X and Y are identical. The general case is considered later. We use Theorem

1.1 to prove that in case p and p' are of the same sign, then

, uo—disp
P <lpl=X =2 Y.

Let us denote by G, the distribution function of {X;|Xy > y} (we are suppressing its

dependence on y for the clarity of notation). Then

1 x +oo
Gp(zr) = m/ /y Ix1,x, (u, v)dudv

—0o0
1

+0o0
= m/y P(X; <z| X9 =v)fx,(v)dv

1 oo z—v N1 (o
S / Y T Ry U P
P(X2 >y) y 0'1(1—p2)1/2 09 09
and the corresponding conditional density function is

1 +oo T — %v 1 v
9(@) = P(Xy > y)oi (1 — p2)1/2 /y ¢ <W) o2 ’ <0_2> a

Now we compute

1 /+OO _%v(al(l - /02)1/2) + (1:;12[;1/2 (z — %U)

- P(X2>vw) J, ot (1 - p?)

z — o 1 v

XO(——22 VY H(—)d
¢(O'1(1—p2)1/2 (o] 0'2) v
which simplifies to
m2
_ a2 .
G/ (LE) e 20f /+OO (pa_—l2 — 'U) e_m(v_ Pi‘;z )de
P P(Xe > y)W2r )y  V2mop2(1 — p?)3/2
m2
202 zooy s

= - i ¢ T V) (L.7)

P(X2 > y)(2m)(1 — p?)/?
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Similarly, the conditional density function g,(z) can be written as

z2

() - /+OO ; R (1.8)
T) = e o2 -r 7 v. .
I = P(Xy > y)v2mor Jy o2l — p2)12(2m) /2
This gives
G, (z)
hz) = —L— = -0y 017w, (1),
9p(x)

where, 7y, (.) denotes the hazard rate of W,, a normal random variable with mean pxog/o;
and variance 02(1 — p?). Tt is known that the family of normal random variables with a fixed
variance but with different means, is ordered according to hazard rate order and the one with

smaller mean having greater hazard rate. Using this fact, it follows that if p > 0, then h(x)
uwo—disp

is increasing in z. Hence by Theorem 1.1, 0 < p' < p =X =< Y. If p < 0, then h(x)
is decreasing in x, hence (X7, X3) is increasing in p in the sense of upper orthant dispersive
ordering. This proves the required result.
|
The organization of the paper is as follows. In Section 2 we study some properties of the
upper orthant dispersive ordering as defined above. It is proved that if two random vectors have
the same dependence structure (copula), then they are ordered according to upper orthant dis-
persive ordering if and only if their corresponding marginals are ordered according to univariate
dispersive ordering. In Section 3 we consider the special case of nonnegative random variables
(more generally if the conditional distributions have common left end points of their supports).
It is shown that if two random vectors have the same marginal distributions and they are or-
dered according to upper orthant dispersive ordering, then their bivariate copulas are ordered
implying that one random vector is dependent in the sense of positive quadrant dependence
(PQD) than the other. We also study the connection between upper orthant dispersive ordering
and multivariate hazard rate ordering as introduced by Hu, Khaledi and Shaked (2002). The
last section is devoted to some examples and applications. It is shown that if two univariate
distributions are ordered according to dispersive ordering, then the corresponding vectors of

order statistics from them are ordered according to upper orthant dispersive ordering.

2  Properties of upper orthant dispersive Ordering

In this section we establish an interesting property of the upper orthant dispersive ordering
that if two n-dimensional random vectors X and Y have the same dependence structure in the
sense that they have the same copula, then dispersive ordering among the marginal distribu-
tions implies upper orthant dispersive ordering and vice versa. The notion of copula has been
introduced by Sklar (1959), and studied, among others by Kimeldrof and Sampson (1975),
under the name of uniform representation, and by Deheuvels (1978), under the name of de-

pendence function. A copula C is a cumulative distribution function with uniform margins on



[0,1]. Given a copula C, if one defines

F(X) :C(Fl(xl),F2($2),...Fn(mn)), X € Rn, (21)
then F' is a multivariate distribution function with margins as Fi, Fy, ..., F,. For any multi-
variate distribution function F' with margins as Fi, Fs, ..., F,, there exists a copula C' such

that (2.1) holds. If F' is continuous, then C is unique and can be constructed as follows
C(u) = FIF (1), Fy H(uz), ..., F,  (u)],  we[0,1]". (2.2)

It follows that if X and Y are two n- dimensional random vectors with margins as

(F1, Fy,...,F,) and (G1,Gs,...,Gy,), respectively and if they have the same copula, then
(F1(X1), Fo(X2),... Fy(Xy)) s (G1(Y1),G2(Ys),...Gp(Yy)). (2.3)

For i =1,...,n, let us denote by HZXu the cdf of the conditional distribution
(Xi | DX > ijl(uj)}) and by HY, that of (YZ | Y > G;l(uj)}). To prove the next
theorem, we first prove the following lemma, which may be of independent interest.

LEMMA 2.1. If two n-dimensional random wvectors X and Y have the same copula, then for

1=1,...n,

Foo HX, '(8) =G0 HY, (), Be0,1], uelo1]"" (2.4)

Proof: Proving (2.4) is equivalent to proving that for i = 1,...n and u € [0, 1]""},

HiyoF ' (v) =H, a0 G (v), Yvelo1]

& PX; > F; }(v) | 'ﬂ'{Xj > Fi ' (ug)}]
= P[Y; > G; ' (v) | D{in G wy)}]l, Vo elo,1]
& P[F;(X;) J> v | ‘D'{Fj(Xj) > uj}]
= P[Gi(Yi) > v | Q{G‘:(Yj) >u;}], Vo el01].
i

which is true because of (2.3) since X and Y have the same copula.
|
THEOREM 2.1. Let X and Y be two n-dimensional random vectors with the same copula. Then

uo—disp

X =X Yifand only if X; <gisp Yi, 0 =1,...,n.

Proof : By definition

uo—disp

X < Y& Hiyuil(ﬁ) —Hi(uil(ﬂ) is increasing in B € [0,1], u € [0,1]* !, fori =1,...,n.
(2.5)



It follows from (2.4) that if X and Y have the same copula, then fori = 1,...nand u € [0,1]*"!,

HY,7'(B) - HYX ' (B) = G o Fy(HE, ' (B) — HE, L (B). (2.6)

)

for i =1,...n and for every g € [0, 1].

It is easy to see that the right hand side of (2.6) is increasing in 3 if and only if G ' Fj(z) — =
is increasing in z, that is, if and only if X; <4, Y;, ¢ = 1,...,n. This proves the desired
result. [

Recently Miiller and Scarsini (2001) have investigated some other multivariate stochastic
orders for which results parallel to Theorem 2.1 hold for those orders. The following interesting

property of the upper orthant dispersive ordering immediately follows from the above theorem.

COROLLARY 2.1. Let Y = (a1X1 + b1, 00X9 +bo, ..., an Xy, + bn) Then fOT a; > 1, b € IR,
uo—disp

X =< Y.

Proof : Since X and Y have the same copula, the required result follows immediately from

Theorem 2.1 [ |

Example 2.1 (Multivariate Normal Distributions).

Let X follow the p-variate multivariate normal distribution with mean vector g and dis-
persion matrix ¥ = ((0y;)), with o;; = pijo05, pii = 1,05 > 0,4,5 = 1,...,p. Let Y fol-
low the p-variate multivariate normal distribution with mean vector u’ and dispersion matrix
¥ = ((0f;)), with oj; = pijoior, 0f > 0,4,5 = 1,...,p. It is known that X and Y have

13
uo—disp

the same copula. It follows from Theorem 2.1 that X < Y if and only if 0; < o] for

1 =1,...,p. This result in conjunction with Example 1.1 leads us to the following result for

comparing two bivariate normal distributions.

Let X and Y follow bivariate normal distributions with dispersion matrices

2 12 o
o1 pPo102 ! o1 P 0109
Y= 2 ’ ¥ = I 12 ’
po102 O3 poioy oy
uo—disp

respectively. If 0 < o; < o] fori =1,2 and |p'| < |p| <1, then X =< Y.

It will be interesting to find necessary and sufficient conditions under which two multivariate
normal random vectors will be ordered according to upper orthant dispersive ordering in the
general case.

It follows immediately that if two random vectors are ordered according to upper orthant
dispersive ordering, then so are their corresponding subsets. In particular, their marginal

distributions will be then ordered according to univariate dispersive ordering.

uo—disp
THEOREM 2.2. Let X and Y be two n-dimensional random wvectors such that X < Y.

Then
uo—disp

X[ j Y[a



where I = {i1,19,...,10} C {1,2,...,n}, X7 = (X;,,...,X3,), Yr = (Y5,,...,Ys,) and k =

1,...,n.
The proof of the next result is also immediate.

THEOREM 2.3. Let X4,...,X,, be a set of independent random vectors where the dimension of
X;iski,i=1,....,m. Let Y1,..., Y, be another set of independent random wvariables where

the dimension of Y; is ki, 1 =1,...,m. Then

uo—disp ) uo—disp
(Xi <Y, 1= 1,...,m> = (X, X)) = (Y,...,Y,). (2.7)
Remark 2.1. : A consequence of (2.7) is that if X1,...,X, is a collection of independent
univariate random variables and Y1,...,Y, is another set of independent random wvariables,
uo—disp

then X; <gisp Yi, 1 =1,...,n implies X <X Y.

In general, there does not seem to be any direct connection between upper orthant dispersive
ordering and the multivariate dispersive ordering as introduced by Fernadez-Ponse and Suarez-
Llorens (2003). According to their definition X <p;s, Y may not imply that X; <p;,, ¥; for
1=1,...,n. Also the multivariate dispersive ordering as defined by them may not be preserved
under permutations of the variables. On the other hand the upper orthant dispersive ordering
is invariant under same permutation of the two vectors and their marginals are also ordered
according to univariate dispersive ordering. Obviously if X uo_jdwp Y, then trXx < trXy,

where Y x and Yy denote the dispersion matrices of X and Y, respectively.

3  The case of nonnegative random variables

In this section we will restrict our attention to the case when the random vectors under con-
sideration are nonnegative or more generally, they have a finite common left endpoint of their
supports. We will see that certain results hold in this case which may not hold in the general

case. The following assumptions will be made at some places in this paper :

Assumption A : The random variables {X; | j;i {X; > ijl(uj)}} and {Y; | ];l{Yj >
G;l(u]-)}} have a finite common left endpoint of their supports for all w and for i =1,...,n.

In the univariate case, for nonnegative random variables, there is an intimate connection
between hazard rate ordering and dispersive ordering and which is made more explicit in the
following result of Bagai and Kochar (1986). We use this theorem to prove some of the results

of this section.

THEOREM 3.1. Let X and Y be two univariate random variables with distribution functions F
and G, respectively such that F(0) = G(0) =0. Then

(a) if Y <p, X and either F' or G is DFR (decreasing failure rate), then Y <gisp X;



(b) if Y <gisp X and either F or G is IFR (increasing failure rate), then Y <, X.

For a bivariate random vector (S,T"), we say that T is right tail increasing in S if P[T >
t|S > s] is increasing in s for all ¢, and denote this relationship by RTI(T'|S). If S and T are
continuous lifetimes, then 7" is right tail increasing in S if and only if r(s|T" > t) < r(s|T >
0) = rg(s) for all s > 0 and for each fixed ¢. The RTI property is weaker than the RCSI
property, but stronger than PQD (positive quadrant dependence). In the next theorem we
study the effect of positive dependence on upper orthant dispersive ordering for nonnegative

random vectors.

THEOREM 3.2. Let X = (X1, X3) be a bivariate random wvector such that the left end point
of the support of {XZ-|X]~ > ijl(u)} is finite and independent of u € [0,1] fori,j = 1,2. Let

X! = (X1, Xt be a random vector of independent random variables such that X; 2 XiI, 1=1,2.
(a) If X; is RTI in X, i # j, and X; is DFR for i,j=1,2. Then

uo—disp

(X1,X2) = (X{,X3). (3.1)
uo—disp
(b) If (X1,X2) = (X{,X3) and X; is IFR for i = 1,2, then X; is RTI in X, i # j,
ij=1,2.
Proof : (a)  Note that RTI(X;|X;) if and only if for all u > 0,
{Xi|Xj > Fj_l(u)} >nr Xi. (3.2)
It follows from Theorem 3.1(a) that if, in addition, X; is DFR, then
{Xi|Xj > Fj_l(u)} > gisp Xi 2 XTI (3.3)
Since this holds for 4, j = 1,2, the required result follows.
uo—disp
(b)  (X1,X2) = (X{,X?) implies for all u > 0,
(XX > F ) b 2ap XT 2 X, i £, 00 = 1,2

This together with the assumption that X; and X5 are IFR implies (3.2) by Theorem 3.1 (b).
This proves that RTI(X;|X;), i # 7, 1,5 = 1,2.
|

THEOREM 3.3. Let X and Y be two n-dimensional random wvectors satisfying the Assumption
uo—disp

A and such that X; st Yi,i=1,...,n. Then X =< Y implies that

G <Y, forii=1,....n, i#j, (3.4)

where CZXJ (CZYJ) denotes the copula of (X4, X;)((Ys,Y;)).

9



Proof :
uo—disp uo—disp

= Y= (XX) 20 (YY), i# g 65 €L, nl, (3.5)
from which it follows that
{Xi | X5 > Fj_l(uj)} Sdisp {Yz | Yy > Gjl(w)}, uj € [0,1],
and which in turn implies
(%1% > F7 ) } <o {9195 > 67wy} wy € 0,1) (3.6)

under the Assumption A since dispersive ordering implies stochastic ordering when the random
variables have a finite common left end point of their supports. If we denote by F; ; (G; ;) the
joint survival function of (X1, X;) ((Y;,Y})), then (3.6) can be written as,

Fij(a, Fy ' (uyg))

IN

@i,j(a),Gj*l(u]-)), for x > 0,u; € [0,1]

& Fii(Fw), Fy ) < Gij(FyHug), G uyg)) for all wj,ug € [0, 1]

& Fi,j(Fi_l(ui),Fj_l(uj)) < @i,j(Gi_l(ui),Gj_l(uj)) for all u;,u; € [0,1]
(since X; 2 Y;,i=1,...,n)

& 65;(%,10]') < azj(ui,u]-) for all u;,uj € [0,1]

& Ci(j(ui,uj) < C{j(ui,uj) for all u;,u; € [0, 1]

where C(u,v) =1 —u — v + C(u.v).
|
If (3.4) holds and the margins of (X;, X;) and (Y;,Y}) are equal, then we say that (Y;,Y})
is more PQD (positive quadrant dependent) than (X;, X;) (cf. Joe, 1997, p.36 ). Note that
Ci)fj(ui, u;) = u;u; in case X; and X are independent and Ci)fj (ui,uj) > wiug for all ug, u; € [0, 1]
in case X; and X; are PQD. Thus according to Theorem 3.3, if the Assumption A holds and if

uo—dis

P
X and Y have the same margins and X =< Y, then the Y;’s are more dependent than the

X;’s according to PQD ordering. We get the following result as a special case.

COROLLARY 3.1. Let X = (X1, Xs) be a bivariate random vector such that the left end point
of the support of {Xi|Xj > Fj_l(u)} is finite and independent of u € [0,1], for i # j and
i,j =1,2. Let XTI = (X1, X1 be a random vector of independent random variables such that
X; £ X!, i=1,2. Then

17
uo—disp

(X1,X2) = (X{,X3) = X is PQD. (3.7)

Contrast this result with Theorem 3.2 (b) which is a stronger one since RTI implies PQD.
However, here no assumption on the monotonicity of the hazard rates is made in the second

case.

10



Remark 3.1. The Assumption A is very crucial for Theorem 3.3 and Corollary 3.1 to hold.
As a counter example, let Y1 and Ys be two independent U (0,1) random variables. Let X1 = X,
be also uniformly distributed over (0,1). Note that X1 and X9 are strongly positively dependent
as they satisfy the Frechet upper bound. Let us compare (X1, Xs) with (Y1,Y3) according to

upper orthant dispersive ordering. The relevant conditional distributions to compare are
[X1]X1 > u] and [Y1|Ys > u], 0 <u < 1.

The left-hand conditional distribution is U(u,1) and the right-hand conditional distribution is

uo—disp
U(0,1). Hence (X1,X2) = (Y1,Y3), but C > CY. 2, contradictory to (3.4). The reason
for this contradiction is that unless the Assumptwn A is satisfied, dispersive ordering may not

imply stochastic ordering.

THEOREM 3.4. Let X and Y be two n-dimensional random vectors satisfying the Assumption

uo—disp
A and such that X <X Y. Then

w < CN <CY i j=1,...,n,i#]j. (3.8)

implies

Cov(hy(X:), ha(X;)) < Cov(h(Yi), ha(Y;)) (3.9)

for all increasing convex functions hi and ho for which the above covariances ezit.

Proof : Without loss of generality, let i = 1 and j = 2. The survival functions of (hl(X 1), ha2(X2)),
h1(X1), ho(X2), respectively, are H (1, 22) = F(h; *(x1), hy ' (22)), Hi(z1) = F1(hy (1)) and
Hy(w1) = Fo(hy'(29)). Similarly, the survival functions of (hy (Y1), hg(Yg)) hi(Y1), ho(Y2),
respectively, are K (z1,29) = G(h]'(x1),hy (22)), Ki(z1) = Gi(h] (1)) and Ka(z1) =
Go(hy ' (2)). Covariance between hy(X;) and ho(X3), if it exists, can be expressed as

COU(hl(Xl),hQ(XQ)) = //(F(wl,xg)—Fl(xl)ﬁg(xg))dxldxg

= / / (F(hy 1), by (w2)) = Fr(hy (1)) Falhy ! (v2)) dords

_ // ) F (0) = (1—w)(1 - v))
U o

( h(E 1((u)))> ( ((21((«))))) dudv

_ /0/01 v) (L u)(1—v))

(P ) (W)Y
" (f1<Ff1(u>>(f2(F;1<v>>dd (310)

X

uo—disp

where hi'(z1) = F7'(u) and hy () = Fy '(v). The assumption X < Y implies that
X; <disp Y; from which it follows that f;(F; '(u)) > ¢;(G; *(u)) and F; '(u) < G; H(u), i = 1,2,

11



under the Assumption A. Now h!(z) is increasing in z, since h(x) is convex. Combining these
facts, the required result follows from assumption (3.8).
|

THEOREM 3.5. Let X and Y be two n-dimensional random vectors satisfying the Assumption
A and let ¢q,...

, dn be increasing convex functions on IRT. Then

uo—disp uo—disp
X 2 Y= (@iX),..,¢u(Xn) 2 (¢1(N1),-- -, ¢n(Yn))
Proof : Note that the cdf of ¢;(X;) is Fy (z) = Fj(gb;l(x)) with its inverse as Fq;jl(u) =
¢j(FJ_1(u)). We have to prove that for i =1,...,n,u; € (0,1), j=1,...,n,j #1,
) (65(X)) > Fpup)} | <aisp | #6(Ya) | ({65(Y7) > G (u))}
J#i J#i
That is,

) > ¢ (F;* (ug))} (Y,

Sdisp

) | (e (X;

J#i

which is equivalent to

(

) XG> F )} | <aisp
JFi
Using Assumption A, for i =1,...,n, uj € (0,1),
Xi | (X, > F}

J#

D85 (Y5) > ¢,(G (up)} |
J#i

Vi) | (Y > G ()}
J7#i

Sy JF 0,

<dzsp Y|m{Y>G ( )}
J7#i

implies
(X 14 > By M)} ) <a (Vi 105> G (wy)})
Now the required result follows from Theorem 2.2 of Rojo and He (1991), since ¢;’s are
increasing convex functions.
|
Hu, Khaledi and Shaked (2002) gave the following definition of multivariate (weak) hazard

rate ordering.

Definition 3.1. Let X and Y be n-dimensional random vectors with hazard gradients rx and
ry, respectively. We say that X s smaller than Y according to weak hazard rate ordering

(written as X <wnr Y) if

Xi | (WX > 2} | <ne | Vil (Y5> 25} |

JF J#F
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fori=1,2,...,n, x € IR".
That s, if
rgé)(x) ng)(x), i=1,2,...,n, x € R".

In the next theorem, we establish results analogous to Theorem 3.1 between upper orthant

dispersive ordering and multivariate weak hazard rate ordering under the Assumption A.

THEOREM 3.6. Let X and Y be two n-dimensional random vectors satisfying the Assumption
A.

(a) If 'Y <wn X and either rgé)(x) or rg)(x) is decreasing in x, for i = 1,...,n, then
uo—disp
Y =< X
uo—disp . (3) (4) .. . . .
(b) If Y <X X and either r¢’ (x) or ry/(X) is increasing in x, for i = 1,...,n, then
Y Swhr X.

Proof : (a) Under the Assumption A, Y <., X, implies that Y; <¢ X;, i =1,...,n, which

is equivalent to G; *(u) < F; '(u), for u € [0,1], i = 1,...,n. Again, Y <,p, X implies

that for i = 1,...,n, (Y; | j#{Y > zj}) <g (Xi | j;z’{XJ' > x;}). Taking z; = ijl(uj-),

j =1,...,n,j # i, we find that this implies y}(8;u) < z;(8;u), where y(5;u) is the Sth

quantiles of the conditional distribution (YZ | J;Z{Y} > Fj—l(uj)}> and z;(f;u) is as defined
(1)

earlier. On the other hand, ry/(x) decreasing in x implies that
Y[ (WY > a5} | <a | Yl (Y > a5} |
JF J#
for zj <%, j=1...,n, j #i. This along with G; '(u;) < F; *(u;), implies that

Using these observations we get,

P (E ), B (i) m(Br), o By () <
P9 (B ) F (i), wi(Bw), - Fy )

since Y <ynr X. The right hand side of this inequality is less than or equal to

(G ), G (i) (B ), G )
since rg) (x) is decreasing in x. This completes the proof of (a).

uo—disp

b) From the assumption Y =< X, it follows that

(L ), B (i) (B, B ()
< (G ), G (i) i (B ), G () (3.11)



and

Xi | (WX > F Hup)h, | 2a [ Yl (Y5> G wg)} |

J#i J#i
which implies that, z;(;u) > y;(f;u) and ijl(u]-) > G;l(uj-), j=1,....n, 7 # i. Using
these facts and the assumption that rg) (x) increasing in x, it follows that, for i = 1,...,n, the

R.H.S. of (3.11) is less than or equal to

’)"g) (Ffl(ul), .. ,Fi:ﬁ(ui—l)axi(m u),... ,Fn_l(un)) = rg)(X)-

That is, we have shown that for ¢ =1,...,n,

and hence the required result.
|

Remark 3.2. : If rgé)(xl,...,xi, ...y Tp) increases in x; for i = 1,...,n then we say that
the the random vector X has a multivariate increasing hazard rate distribution (cf. Johnson
and Kotz, 1975). The condition rg?(xl,...,xi,...,xn) increasing in xj, j = 1,...,n, j # 1,
1 =1,...,n describes a condition of positive dependence that is equivalent to saying that the

random vector X has RCSI ( right corner set increasing) dependence property. That is,
PIX1 > m1,..., Xy >z, X1 > 2], .., Xy > a0
is increases in xy, 1 =1,...,n.

We will now study some preservation properties of the upper orthant dispersive order un-
der random compositions. Such results are often referred to as preservations under ‘random
mapping’ (see Shaked and Wong (1995)), or preservations of ‘stochastic convexity’ (see Shaked
and Shanthikumar (1994, Chapter 6) and Denuit, Lefévre, and Utev (1999), and references

therein).

Let {Fg, 0 € X} be a family of n-dimensional survival functions, where X is a subset of
the real line. Let X (6) denote a random vector with survival function Fy. For any random
variable © with support in X, and with distribution function H, let us denote by X (©) a

random vector with survival function G given by
Glz) = / Folz)dH(0), € R
X

THEOREM 3.7. Consider a family of n-dimensional survival functions {Fy, 0 € X} as above.
Let ©1 and Oy be two random variables with supports in X and distribution functions Hy and
Hs, respectively. Let Y1 and Yo be two random vectors such that Y ; =g X(0;), i = 1,2; that

is, suppose that the survival function of Y ; is given by

éi(:c):/xﬁg(:c)dﬂi(@), zelR" i=1,2.
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If
(a)
X (0) <ynr X(0")  whenever 0 <0, (3.12)

(b) ©1 and ©2 are ordered in the univariate hazard rate order; that is,
01 <pr O9, (3.13)
(c) rgé)(e)(xl,...,xn) is decreasing in xzj, j =1,...,n,i=1,...,n, then

uo—disp

Y: < Y. (3.14)

Proof : Hu, Khaledi and Shaked (2002) proved that assumptions (a) and (b) imply that
Y, <unr Y. Now we show that for s = 1,...,n, ng (1,...,2,) is decreasing in z;, 7 =
1,...,n, Then the required result will follow from Theorem 3.6 (a). Assumption (a) is equivalent
to Fyp(x) being TP, in (0,z;), j = 1,...,n. rg?(e)(xl, ..., &p) decreasing in z;, j = 1,...,n,
j # i is equivalent to Fy(z1,...,z,) being TP in (z;,%;), 4,5 = 1,...,n, j # 4. Using these
observations, it follows that Gi(x) is TP, in (z;,;), i,j = 1,...,n (cf. Karlin, 1968) which

is equivalent to rgz()l (z1,...,%,) decreasing in z;, j = 1,...,n, j # 4. It is worth noting that
Tgé)(a) (1,...,z,) decreasing in x; is equivalent to the fact that {XZ|];Z {X; > z;}}isa DFR

random variable, i = 1,...,n. Now G1(x) can be written as follows
G160 = [ Pt > a1 | (10> 2D B > 231 = Lo # L (0).
j#i J#
That is (Y1,...,Y,) is a sort of mixture of DF R random variables, therefore —9log G ;(x)/0z;

is decreasing in x;, which is equivalent to T$)1 (1,...,2,) decreasing in z;. This completes the

proof.
|

4 Examples and Applications

Example 4.1 (Multivariate Pareto distributions).

For a > 0, let X, = (Xg,1,...,Xqn) have the survival function I, given by
Fo(z1,...,zy) = (le —n—i—l) , x;>1,1=1,2,...,n;
i=1

see, for example, Kotz, Balakrishnan, and Johnson (2000, page 600). The corresponding density

function is given by

n

—a—n
fa(xl,...,xn):a(a+1)---(a+n—1)<in—n+1> , orp>1,1=1,2,...,n.
i=1

15



Hu, Khaledi and Shaked (2002) showed that X,, <upr Xa,, whenever a; > ay. On the other
(4) _
hand, 7")2 (x) = ?zla?rnﬂ’
uo—disp
follows that X5, =< Xa,, whenever a; > as.

is decreasing in z;, j = 1,...,n. Then from Theorem 3.6(a) it

Example 4.2 (Bivariate Farlie-Gumbel-Morgenstern distributions).

For a € (-1, 1), let X, = (Xq,1,Xq,2) have the survival function F,, given by

Fo(x1,22) = F1(z1)Fa(z2)[1 + a(l = F1(21))(1 = Fa(21))]

and Yo = (Ya,1, Ya,2) have the survival function G, given by

Go(21,m2) = G1(21)Ga(x2)[L + (1l = Gi(21)) (1 — Ga(z1))]
where Iy, Fy, G and G5 are arbitrary univariate survival functions (which happen to be
the marginal survival functions of X, 1, Xq 2, Ya,1 and Y, o, respectively, independently of «).
Assume that X, ; <gisp Yo, @ = 1,2. It is easy to see that c*e (u,v) = cYe (u,v). Then from

uo—disp

Theorem 2.1 it follows that X, =< Y,.
Example 4.3 (Multivariate Gumbel Exponential distributions).

For positive parameters A = {A; : I C {1,2,...,n},I # @}, let X\ = (X1, Xo,...,Xp)
have the survival function F given by

Fyx(z1,z9,...,2y) = exp{ — Z)q Hielxi}, (21,22, ..,25) > (0,0,...,0);
I;

see Kotz, Balakrishnan, and Johnson (2000, page 406). For another set of positive parameters
A ={\:1C{L,2,...,n},I # @}, let Y- = (Y1,Y2,...,Y,) have the survival function Gy-.
Let X; =4 Y;, 4 =1,...,n, that is \; = A}. We show that if A > A", then for ¢ =1,...,n,

Xi | VIX5 > N up)} | <aisp | Vil (WY > Gl u)} ) wy €0, (4.1)
J# J#i

Since X; =4 Y;, i =1,...,n, (4.1) is equivalent to
Xi | (WX > ai} | <aisp | Vil (WY > 25} ), i=1,...,n (4.2)
J#i J#

Let x; = (z1,...,%i-1,Ti+1,---,n) . The survival function of (Xl | j;i{Xj > xj}>, denoted
by Fi(zi;x;) is

Fl(xl, Xi) =expl —T; A + Z )\ijmj + Z )\ijkxjxk 4+ ..+ Mon ij . (4.3)
J J#k J#
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Similarly, the survival function of {Y; | Y; > z;, j # i}, denoted by G;(z;;x;) is

Gi(ziixi) = exp { —z; { Ai + Z AijTj + Z ATk + -+ Mo H T : (4.4)
J J#k J#i

Now the ratio

gi(wi; X;) (4.5)
Fi(i5%3)
is increasing in z;. That is
Xi | m{X] >$j} <hr Yl | ﬂ{}/j,>$]’} , izl,...,n. (4.6)

J#i J#i
On the other hand, the random variable {X; | X; > x;, j # ¢} has exponential distribution
which is DFR. Combining this observation with (4.6), it follows form Theorem 3.1(a) that

(4.2) holds. Now applying Theorem 3.3 to this example, we get that Ci):j is decreasing in A,
where C{\,j denotes the copula of (X;, X;)

Application 4.1. Order Statistics

Let Xy,...,X, (Y1,...,Y,) be arandom sample from a univariate distribution with strictly
increasing distribution function F' (G). Bartoszewicz (1986) has shown that F' <4, G implies
Xim <disp Yim, @ = 1,...,n where X, (Yip,) is the ith order statistic of the X-sample (Y-
sample). We shall strengthen this result to prove that F' <4, G implies

uo—disp

(Xlzna--- aXn:n) j (lena--- 7Yn:n)- (47)

We first show that in the case of random samples from continuous distributions, the copulas
of order statistics are independent of the parent distributions. Note that Y;., 2GR (Ximn),
i = 1,...n. Since the function G~ 'F is strictly increasing, it follows from Theorem 2.4.3 of
Nelsen (1998) that C'(Xi.n, Xjin) = C(Yiu, Yim), for 4,5 = 1,...,n. It now immediately follows
from Theorem 2.1 that F' <4, G implies (4.7).

Since the order statistics from a random sample are positively associated (cf. Boland et al.,
1996) and since (Xi.u, ..., Xpm) and (Y1, ..., Yy.) have the same copula, the conditions of
Theorem 3.4 are satisfied. Hence for i,5 € {1,...,n},

Cov(h1(Xin), h2(Xjm)) < Cov(hi(Yim), h2(Yjm)),

for all increasing convex functions h; and hy for which the above covariances exit. This result
was originally proved by Bartoszewicz (1985) using a different method. A similar result can be

established for record values.

Application 4.2. Record values
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Let Xi,...,Xp,... (Y1,...,Y,,...) be a sequence of random variables from a univariate
distribution F' (G). It is known that F' <y, G implies R} <disp RY ., where RX (RY) is
the mth record value of the X-sequence (Y-sequence). We first show that in case of random
sequences from continuous distributions, the copulas of record values are independent of the

parent distributions. Then it will immediately follows from Theorem 2.1 that F' <4, G implies

uo—disp

(Rpy -y Roy ) =X (RY,,...,RY). (4.8)
Let M(z) = —log F(x), then the distribution function of R;X can be expressed as Frx(z) =

Gm(M(z)), where G, (z) is the distribution function of a Gamma random variable with scale
parameter one and shape parameter m. Similarly, let N (z) = —log G(z), then the distribution
function of RY, is Fry (z) = G (N(z)). Now M(X1),...,M(Xp),...and N(Y1),..., N(Yy),...
both are sequences of independent and identical exponential random variables with mean one.

Using this observation, it follows that

st st

X X — * — * — * — *
(R LR )V EMOYRE), .., M N(RE, ) and (RY, ... RY, )= (NTHRE,),....N"HR;,)),

my?°

where R} is the mth record value of a sequence of i.i.d exponential random variables with

mean one.

CRX(UIV"aun) = FRX (Flggll(ul)77F}anlln(un)>
= P(RY, SFgh (w),o RY, < Fl (w),)
= P(M_I(R;(nl) < M_lGr_nll(ul)a"'a
M~ (Ry,,) < MGy, (ug))
= P(Ry, <Gy (w),... Ry, < G (un))
= P (Nil(R:;n) < NﬁlG;ﬁ (u1)7 T
NN Ry, < N7'GL (un))
= P(RY, < Fgl (). By, < Fl (ua),)

= CRY(ul,...,un).

This proves the desired result.
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