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Sequential Testing for Simple Hypotheses for Pro
essesDriven by Fra
tional Brownian MotionB.L.S. PRAKASA RAOINDIAN STATISTICAL INSTITUTE, NEW DELHIAbstra
tWe prove the existen
e of an optimal sequential test pro
edure for a simple null hypothesisthat the observed pro
ess is a noise modeled by a fra
tional Brownian motion against thesimple alternate hypothesis that the observed pro
ess is the sum of an unobserved signal andthe noise.Keywords and phrases: Sto
hasti
 di�erential equations ; Fra
tional Brownian motion;Sequential test; Optimal test.AMS Subje
t 
lassi�
ation (2000): Primary 62M09, Se
ondary 60G15.1 Introdu
tionStatisti
al inferen
e for di�usion type pro
esses satisfying sto
hasti
 di�erential equationsdriven by Wiener pro
esses has been studied earlier and a 
omprehensive survey of variousmethods is given in Prakasa Rao (1999a). There has been a re
ent interest to study similarproblems for sto
hasti
 pro
esses driven by a fra
tional Brownian motion (fBm). Le Breton(1998) studied parameter estimation and �ltering in a simple linear model driven by a fra
tionalBrownian motion. In a re
ent paper, Kleptsyna and Le Breton (2002) studied parameter esti-mation problems for fra
tional Ornstein-Uhlenbe
k type pro
ess. This is a fra
tional analogueof the Ornstein-Uhlenbe
k pro
ess, that is, a 
ontinuous time �rst order autoregressive pro
essX = fXt; t � 0g whi
h is the solution of a one-dimensional homogeneous linear sto
hasti
di�erential equation driven by a fBm WH = fWHt ; t � 0g with Hurst parameter H 2 [1=2; 1):Su
h a pro
ess is the unique gaussian pro
ess satisfying the sto
hasti
 integral equationXt = � Z t0 Xsds+ �WHt ; t � 0:(1. 1)They investigate the problem of estimation of the parameters � and �2 based on the observationfXs; 0 � s � Tg and prove that the maximum likelihood estimator �̂T is strongly 
onsistent asT ! 1: We dis
ussed more general 
lasses of sto
hasti
 pro
esses satisfying linear sto
hasti
di�erential equations driven by a fBm and studied the asymptoti
 properties of the maximumlikelihood and the Bayes estimators for parameters involved in su
h pro
esses in Prakasa Rao(2003a,b). It is well known that sequential pro
edures 
an be used for estimation and testing1



problems leading to shorter expe
ted period of observation time as 
ompared to �xed samplepro
edures. Novikov (1972) investigated the asymptoti
 properties of a sequential maximumlikelihood estimator for the drift parameter in the Ornstein-Uhlenbe
k pro
ess, We have dis-
ussed analogous results for fra
tional Ornstein-Uhlenbe
k type pro
ess in Prakasa Rao (2004).We study the sequential testing problem for a simple null hypothesis that an observable pro-
ess is a spe
ial 
ase of the noise modeled by a fra
tional Brownian motion against the simplealternate hypothesis that the pro
ess also 
ontains an unobservable signal along with the noise.Self-similar pro
esses and fra
tional Brownian motion have been used for modeling phenomenawith long range depeden
e. It was re
ently observed that su
h a phenomena o

urs in problems
onne
ted with traÆ
 patterns of pa
ket 
ows in high speed data net works su
h as the internetand in the study of e
onomi
 behaviour in �nan
e (
f. Prakasa Rao (2004)). The motivationfor the present study 
omes from su
h observations whi
h in turn 
an be looked as modellingin the bran
h of signal pro
essing. Suppose we surmise that a signal (whi
h is unobserved)is possibly transmitted over a 
hannel 
orrupted by a fBm. We are interested in testing thesimple hypothesis that there is no transmitted signal but only a noise modeled by a fBm that istransmitted through the 
hannel against the hypothesis that a signal is transmitted 
orruptedby a noise modeled by the fBm . We prove the existen
e of an optimal sequential testingpro
edure for su
h a problem. Results obtained are analogues of similar results for di�usionpro
esses derived in Liptser and Shiryayev (2001b).2 PreliminariesLet (
;F ; (Ft); P ) be a sto
hasti
 basis satisfying the usual 
onditions.The natural �trationof a sto
hasti
 pro
ess is understood as the P -
ompletion of the �ltration generated by thispro
ess. Let WH = fWHt ; t � 0g be a normalized fra
tional Brownian motion with Hurstparameter H 2 (0; 1), that is, a gaussian pro
ess with 
ontinuous sample paths su
h thatWH0 = 0; E(WHt ) = 0 andE(WHs WHt ) = 12 [s2H + t2H � js� tj2H ℄; t � 0; s � 0:(2. 1)Let us 
onsider a sto
hasti
 pro
ess Y = fYt; t � 0g de�ned by the sto
hasti
 integral equationYt = Z t0 C(s)ds+ Z t0 B(s)dWHs ; Y0 = 0; t � 0(2. 2)where C = fC(t); t � 0g is an (Ft)-adapted pro
ess and B = fB(t); t � 0g is a nonvanishingnonrandom fun
tion. For 
onvenien
e, we write (2.2) in the following sto
hasti
 di�erentialequation form dYt = C(t)dt+B(t)dWHt ; Y0 = 0; t � 0(2. 3)driven by the fra
tional Brownian motion WH : The integralZ t0 B(s)dWHs(2. 4) 2



is not a sto
hasti
 integral in the Ito sense but one 
an de�ne the integral of a deterministi
fun
tion with respe
t to the fBM in a natural sense (
f. Norros et al. (1999)). Even though thepro
ess Y is not a semimartingale, one 
an asso
iate a semimartingale Z = fZt; t � 0g whi
his 
alled a fundamental semimartingale su
h that the natural �ltration (Zt) of the pro
ess Z
oin
ides with the natural �ltration (Yt) of the pro
ess Y (Kleptsyna et al. (2000a)). De�ne,for 0 < s < t; kH = 2H� (32 �H)�(H + 12);(2. 5) �H(t; s) = k�1H s 12�H(t� s) 12�H ;(2. 6) �H = 2H �(3� 2H)�(H + 12)�(32 �H) ;(2. 7) mHt = ��1H t2�2H ;(2. 8)where the fun
tion �(:) is the Euler gamma fun
tion andMHt = Z t0 �H(t; s)dWHs ; t � 0:(2. 9)The pro
ess MH is a gaussian martingale, 
alled the fundamental martingale (
f. Norros etal. (1999)) and its quadrati
 variation hMHt i = mHt : Further more the natural �ltration ofthe martingale MH 
oin
ides with the natural �tration of the fBm WH : In fa
t the sto
hasti
integral Z t0 B(s)dWHs(2. 10)
an be represented in terms of the sto
hasti
 integral with respe
t to the martingale MH : Fora measurable fun
tion f on [0; T ℄; letKfH(t; s) = �2H dds Z ts f(r)rH� 12 (r � s)H� 12 dr; 0 � s � t(2. 11)when the derivative exists in the sense of absolute 
ontinuity with respe
t to the Lebesguemeasure (see Samko et al. (1993) for suÆ
ient 
onditions). The following result is due toKleptsyna et al. (2000b).Therorem 2.1: LetMH be the fundamental martingale asso
iated with the fBmWH as givenby(2.9). Then Z t0 f(s)dWHs = Z t0 KfH(t; s)dMHs ; t 2 [0; T ℄(2. 12)a.s [P ℄ whenever both sides are well de�ned.Suppose the sample paths of the pro
ess fC(t)B(t) ; t � 0g are smooth enough (see Samko et al.(1993)) so that the pro
essQH(t) = ddmHt Z t0 �H(t; s)C(s)B(s)ds; t 2 [0; T ℄(2. 13) 3



is well-de�ned almost everywhere where wH and kH are as de�ned in (2.8) and (2.6) respe
tivelyand the derivative is understood in the sense of absoulute 
ontinuity. Let the pro
ess Z =(Zt; t 2 [0; T ℄) be de�ned by Zt = Z t0 �H(t; s)[B(s)℄�1dYs(2. 14)where the fun
tion �H(t; s) is as de�ned in (2.6). The pro
ess Z de�nes a semimartingaleasso
iated with the pro
ess Y and the natural �ltration (Zt) of Z 
oin
ides with the natural�tration (Yt) of Y: The following theorem is due to Kleptsyna et al.(2000a).Theorem 2.2: Suppose the sample paths of the pro
ess QH de�ned by (2.13) belong P -a.s toL2([0; T ℄; dwH ) where wH is as de�ned by (2.8). De�ne the pro
ess Z as in (2.14). Then thefollowing results hold.(i) The pro
ess Z is an (Ft) -semimartingale with the de
ompositionZt = Z t0 QH(s)dwHs +MHt(2. 15)where MH is the fundamental martingale given by (2.9). (ii) The pro
ess Y admits the repre-sentation Yt = Z t0 KBH(t; s)dZs(2. 16)where the fun
tion KBH(:; :) is as in (2.11), and (iii) The natural �trations of (Zt) and (Yt)
oin
ide.Kleptsyna et al.(2000a) derived the following Girsanov type formula as a 
onsequen
e ofTheorem 2.2.Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. De�ne�H(T ) = expf� Z T0 QH(t)dMHt � 12 Z T0 Q2H(t)dmHt g:(2. 17)Suppose that E(�H(T )) = 1: Then the measure P � = �H(T )P is a probability measure andthe probability measure of the pro
ess Y under P � is the same as that of the pro
ess V de�nedby Vt = Z t0 B(s)dWHs ; 0 � t � T:(2. 18).3 Main ResultsSuppose that � = f�t; t � 0g is an unobservable Ft-adapted pro
ess independent of the fBmW = fWHt ; t � 0g: Suppose that one of the following two hypotheses hold for the Ft-adaptedobservable pro
ess  = f t; t � 0g :H0 : d t = dWHt ;  0 = 0; t � 0;(3. 1) 4



and H1 : d t = �tdt+ dWHt ;  0 = 0; t � 0:(3. 2)If we interpret the pro
ess � as a signal and the fBm WH as the noise, then we are interestedin testing the simple hypothesis H1 indi
ating the presen
e of the signal in the observation ofthe pro
ess  against the simple hypothesis H0 that the signal � is absent. Assume that thesample paths of the pro
ess f�t; t � 0g are smooth enough so that the pro
essQ(t) = ddmHt Z t0 �H(t; s)�sds; t � 0(3. 3)is well-de�ned almost everywhere where mHt and �H(t; s) are as de�ned in (2.8) and (2.6)respe
tively. Suppose the sample paths of the pro
ess fQ(t); 0 � t � Tg belong almost surelyto L2([0; T ℄; dmHt ) for every T � 0: De�neZt = Z t0 �H(t; s)d s; t � 0:(3. 4)Then the pro
ess Z = fZt; t � 0g is an (Ft)-semimartingale with the de
ompositionZt = Z t0 Q(s)dwHs +MHt(3. 5)where MH is the fundamental martingale de�ned by (2.9) and the pro
ess  admits the rep-resentation  t = Z t0 KH(t; s)dZs:(3. 6)Here the fun
tion KH(:; :) is given by (2.11) with f � 1: We denote the probability mesure ofthe pro
ess  under Hi as Pi for i = 0; 1: Let E denote the expe
tation under the probabilitymeasure P and Ei denote the expe
tation under the hypothesis Hi; i = 0; 1: Let P Ti be themeasure indu
ed by the pro
ess f t; 0 � t � Tg under the hypothesis Hi: Following Theorem2.3, we get that the Radon-Nikodym derivative of P T1 with respe
t to P T0 is given bydP T1dP T0 = exp[Z T0 Q(s)dZs � 12 Z T0 Q2(s)dwHs ℄:(3. 7)Let us 
onsider the sequential plan � = �(�; Æ) for testing H0 versus H1 
hara
terized bythe stopping time � and the de
ision fun
tion Æ: We assume that � is a stopping time withrespe
t to the family of �-algebras Bt = �fx : xs; s � tg where x = fxt; t � 0g are 
ontinuousfun
tions with x0 = 0: The de
ision fun
tion Æ = Æ(x) is B� -measurable and takes the values0 and 1. Suppose x is the observed sample path. If Æ(x) takes the value 0, then it amountsto the de
ision that the hypothesis H0 is a

epted and if Æ(x) takes the value 1, then it willindi
ate the a

eptan
e of the hypothesis H1: For any sequential plan � = �(�; Æ); de�ne�(�) = P1(Æ( ) = 0); �(�) = P0(Æ( ) = 1):5



Observe that �(�) and �(�) are the �rst and se
ond kind of errors respe
tively. Let ��;� bethe 
lass of sequential plans for whi
h�(�) � �; �(�) � �where 0 < �+ � < 1; and Ei(Z �( )0 m2t ( )dmHt ) <1; i = 0; 1:(3. 8)We now state the main theorem giving the optimum sequential plan subje
t to the 
onditionsstated above.Theorem 3.1: Suppose the pro
ess Q = fQt;Ft; t � 0g de�ned above satis�es the 
onditionEjQtj <1; 0 � t <1:(3. 9)Let mt( ) = E1(QtjF t ):(3. 10)Suppose that PifZ 10 m2t ( )dmHt =1g = 1; i = 0; 1:(3. 11)Then there exists a sequential plan ~� = �(~� ; ~Æ) in the 
lass ��;� whi
h is optimal in the sensethat for any other sequential plan � = �(�; Æ) in ��;�;Ei(Z ~�( )0 m2t ( )dmHt ) � Ei(Z �( )0 m2t ( )dmHt ); i = 0; 1:(3. 12)The sequential plan ~� = �(~� ; ~Æ) is de�ned by the relations~�( ) = infft : �t( ) � B or �t( ) � Ag;and ~Æ( ) = 1 if �~�( ) � B;= 0 if �~�( ) � A;where �t( ) = Z t0 ms( )dZs � 12 Z t0 m2s( )dwHsand A = log �1� � ;B = log 1� �� :Further more E0(Z ~�( )0 m2t ( )dmHt ) = 2 V (�; �);(3. 13) 6



and E1(Z ~�( )0 m2t ( )dmHt ) = 2 V (�; �);(3. 14)where V (x; y) = (1� x) log 1� xy + x log x1� y :(3. 15)We �rst derive three lemmas whi
h will be used to prove the main result.Lemma 3.2: The sequential plan ~� = �(~� ; ~Æ) satis�es the propertiesPi(~� ( ) <1) = 1; i = 0; 1:(3. 16)Proof: Note that P0(~�( ) <1) = P (~� (WH) <1)sin
e  t =WHt under H0: Let�n(WH) = infft : Z t0 m2s(WH)dwHs � ng:Then�~�(WH)^�n(WH)(WH) = Z ~�(WH)^�n(WH)0 ms(WH)dMHt � 12 Z ~�(WH)^�n(WH)0 m2s(WH)dwHsand A � �~�(WH)^�n(WH)(WH) � B:Hen
e A � E(�~�(WH)^�n(WH)(WH)) � Bwhi
h implies that E(Z ~�(WH)^�n(WH)0 m2s(WH)dwHs ) � 2(B �A) <1sin
e 0 < �+ � < 1: In parti
ular, we haveE(Z ~�(WH)0 m2s(WH)dwHs ) � 2(B �A) <1:(3. 17)Sin
e E(Z ~�(WH)0 m2s(WH)dwHs ) � E(If~� (WH)=1g Z 10 m2s(WH)dwHs );7



it follows that P (~�(WH) <1) = 1 from the equation (3.11). Applying an analogous argument,we 
an prove that P1(~� ( ) <1) = 1: This 
ompletes the proof.Let �t = Zt � Z t0 ms( )dwHs :(3. 18)Then dZt = ms( )dwHs + d�t; t � 0(3. 19)where fvt;F t ; t � 0g is a 
ontinuous gaussian martingale with hvit = mHt : Further more, underH1; �t( ) = Z t0 ms( )d�s + 12 Z t0 m2s( )dwHs :(3. 20)This 
an be seen from Theorem 2 in Kleptsyna et al. (2000).Remarks: The random variable �~�( ) takes the values A and B only almost surely under theprobability mesures P0 as well as P1:Lemma 3.3: The sequential plan ~� = �(~� ; ~Æ) de�ned in Theorem 3.1 has the property�( ~�) = �;�( ~�) = �:Proof: Sin
e �( ~�) = P1(~Æ( ) = 0) = P1(�~� ( )( ) = A)and �( ~�) = P0(~Æ( ) = 1) = P1(�~�( )( ) = B);it is suÆ
ient to prove thatP1(�~�( )( ) = A) = �;P0(�~�( )( ) = A) = �:(3. 21)Following the te
hniques in Liptser and Shiryayev (2001b), p. 251, let a(x) and b(x); A � x � Bbe the solutions of the di�erential equationsa00(x) + a0(x) = 0; a(A) = 1; a(B) = 0(3. 22)and b00(x) + b0(x) = 0; b(A) = 0; b(B) = 1(3. 23)It 
an be 
he
ked that a(x) = eA(eB�x � 1)eB � eA ; b(x) = ex � eAeB � eA(3. 24)and a(0) = �; b(0) = �:(3. 25) 8



We will �rst prove that P1(�~�( )( ) = A) = �:(3. 26)Let �n( ) = infft : Z t0 m2s( )dwHs � ng:Applying the generalized Ito-Ventzell formula for 
ontinuous lo
al martingales (
f. PrakasaRao (1999), p. 76), we obtain thata(�~� ( )^�n( )( )) = a(0) + Z ~�( )^�n( )0 a0(�t( ))ms( )d�s(3. 27) +12 Z ~�( )^�n( )0 [a0(�t( )) + a00(�t( ))℄m2s( )dwHs= �+ Z ~�( )^�n( )0 a0(�t( ))ms( )d�sBut E1 Z ~�( )^�n( )0 [a0(�t( ))ms( )℄2dwHs � supA�x�B[a0(x)℄2E1(Z ~�( )^�n( )0 m2s( )dwHs� n supA�x�B[a0(x)℄2 <1:Hen
e E1(Z ~�( )^�n( )0 a0(�t( ))ms( )d�s) = 0:Taking the expe
tation under the probability mesasure P1 on both sides of (3.27), we get thatE1(a(�~� ( )^�n( )( )) = �Observe that the fun
tion a(x) is bounded on the interval [A;B℄ and �n( ) ! 1 a.s. underP1 as n!1: An appli
ation of the dominated 
onvergen
e theorem proves thatE1[a(�~� ( )^�n( )( ))℄ = �:(3. 28)Applying Lemma 3.2, noting that �~�( ) takes only the values A and B a.s under the probabilitymeasure P1 and observing that a(A) = 1 and a(B) = 0; we obtain that� = E1[a((�~� ( ))℄(3. 29) = 1:P1(�~�( ) = A) + 0:P1(�~�( ) = B)= P1(�~�( ) = A):Similar arguments show that P0(�~�( ) = B) = �:(3. 30) 9



Lemma 3.4: The relations (3.13) and (3.14) hold for the sequential plan ~� = �(~� ; ~Æ):Proof: Proof of this lemma is analogous to the proof of Lemma 17.9 in Liptser and Shiryayev(2001b) as an appli
ation of generalized Ito-Ventzell formula for 
ontinuous lo
al martingales.We give a detailed proof here for 
ompleteness. Let gi(x); A � x � B; i = 0; 1 be the solutionsof the di�erential equationsg00i (x) + (�1)i+1g0i(x) = �2; gi(A) = gi(B) = 0; i = 0; 1:It 
an be 
he
ked that g0(x) = 2[(eB � eA+B�x)(B �A)eB � eA +A� x℄;g1(x) = 2[(eB � ex)(B �A)eB � eA �B + x℄and g0(0) = �2 V (�; �); g1(0) = 2 V (�; �):Suppose the hypothesis H0 holds. De�ne�n(WH) = infft : Z t0 m2s(WH)dwHs � ng; n � 1:Applying the generalized Ito-Ventzell formula to g0(�t(WH)); we obtain that(3. 31)g0(�~� (WH)^�n(WH)(WH)) = g0(0) + Z ~�(WH)^�n(WH)0 g000 (�t(WH))ms(WH)dMHs�12 Z ~�()^�n(WHs )0 [g00(�t(WHs ))� g000 (�t(WHs ))℄m2s(WHs )dwHs= g0(0) + Z ~�(WHs )^�n(WHs )0 g00(�t(WHs ))ms(WHs )dMHs+ Z ~�(WHs )^�n(WHs )0 m2s(WHs )dwHs :Sin
e E0(Z ~�(WHs )^�n(WHs )0 g00(�t(WHs ))ms(WHs )dMHs ) = 0;taking expe
tations with respe
t to the probability meaure P0 on both sides of the equation(3.31), we haveE0(Z ~�(WHs )^�n(WHs )0 m2s(WHs )dwHs ) = �g0(0) +E0(g0(�~�(WH)^�n(WH)(WH))):10



Taking limit as n!1; we obtain thatE0(Z ~�( )0 m2t ( )dmHt ) = �g0(0) = 2 V (�; �);(3. 32)Similarly we 
an prove thatE1(Z ~�( )0 m2t ( )dmHt ) = �g1(0) = 2 V (�; �);(3. 33)This 
ompletes the proof.We now prove Theorem 3.1.Proof of Theorem 3.1: Let � = �(�; Æ) be any sequential plan in the 
lass ��;�): Let P �ibe the restri
tion of the probability measure Pi restri
ted to the �-algebra B� for i = 0; 1:In view of the 
onditions (3.8), (3.9), (3.11) and the representation (3.20), it follows that theprobability measures P �i ; i = 0; 1 are equivalent by Theorem 7.10 in Liptser and Shiryayev(2001a). Further morelog dP �1dP �0 (�;WH) = Z �(WH)0 ms(WH)dMHs � 12 Z �(WH)0 m2s(WH)dwHs ;and log dP �1dP �0 (�;  ) = Z �( )0 ms( )dZs � 12 Z �( )0 m2s( )dwHs ;Therefore E0(log dP �0dP �1 (�;  )) = 12E0(Z �( )0 m2s( )dwHs )(3. 34) = 12E0(Z �(WH)0 m2s(WH)dwHs )and E1(log dP �1dP �0 (�;  )) = 12E1(Z �( )0 m2s( )dwHs ):(3. 35)Applying the Jensen's inequality and following the arguments similar to those in Liptser andShiryayev (2001b), p.254-255, it 
an be shown that12E1(Z �( )0 m2s( )dwHs ) � (1� �) log 1� �� + � log �1� �(3. 36) = 12E1(Z ~�( )0 m2s( )dwHs ):by using the Lemma 3.4. Hen
eE1(Z ~�( )0 m2s( )dwHs ) � E1(Z �( )0 m2s( )dwHs ):(3. 37) 11



Similarly we 
an prove thatE0(Z ~�( )0 m2s( )dwHs ) � E0(Z �( )0 m2s( )dwHs ):(3. 38)This 
ompletes the proof of the Theorem 3.1.Remarks: As a spe
ial 
ase of the above result, suppose that �t = h(t) where h(t) is nonrandombut di�erentiable fun
tion su
h thatZ 10 h2(t)dt =1; h(t)h0(t) � 0; t � 0:(3. 39)Let �; � be given su
h that 0 < �+� < 1: Let ��;� be the 
lass of sequential plans as dis
ussedearlier for given �; � with 0 < � + � < 1: Consider the plan �T = (T; ÆT ) having the �xedobservation time T for 0 < T <1 and belonging to the 
lass ��;�:Then the optimal sequentialplan ~� = (~� ; ~Æ) 2 ��;� has the propertiesEi(~�) � T; i = 0; 1:(3. 40)This 
an be seen by 
he
king that, for i = 0; 1;Ei(Z ~�( )0 h2(t)dt � Ei(Z T0 h2(t)dt)(3. 41) = Z T0 h2(t)dt = �(T ) (say)whi
h in turn implies that �(T ) � Ei(Z ~�( )0 h2(t)dt(3. 42) = Ei(�(~� ( )))� �(Ei(~� ( )))by observing that the fun
tion �(:) is 
onvex and by applying the Jensen's inequality. Theabove inequality in turn proves thatEi(~�( )) � T; i = 0; 1:(3. 43)Referen
esKleptsyna, M.L. and Le Breton, A. (2002) Statisti
al analysis of the fra
tional Ornstein-Uhlenbe
k type pro
ess, Statist. Infer. for Sto
h. Pro
., 5, 229-248.Kleptsyna, M.L. and Le Breton, A. and Roubaud, M.-C.(2000a)General approa
h to �lteringwith fra
tional brownian noises-Appli
ation to linear systems, Sto
hasti
s and Sto
hasti
Reports, 71, 119-140. 12
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