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Sequential Testing for Simple Hypotheses for ProessesDriven by Frational Brownian MotionB.L.S. PRAKASA RAOINDIAN STATISTICAL INSTITUTE, NEW DELHIAbstratWe prove the existene of an optimal sequential test proedure for a simple null hypothesisthat the observed proess is a noise modeled by a frational Brownian motion against thesimple alternate hypothesis that the observed proess is the sum of an unobserved signal andthe noise.Keywords and phrases: Stohasti di�erential equations ; Frational Brownian motion;Sequential test; Optimal test.AMS Subjet lassi�ation (2000): Primary 62M09, Seondary 60G15.1 IntrodutionStatistial inferene for di�usion type proesses satisfying stohasti di�erential equationsdriven by Wiener proesses has been studied earlier and a omprehensive survey of variousmethods is given in Prakasa Rao (1999a). There has been a reent interest to study similarproblems for stohasti proesses driven by a frational Brownian motion (fBm). Le Breton(1998) studied parameter estimation and �ltering in a simple linear model driven by a frationalBrownian motion. In a reent paper, Kleptsyna and Le Breton (2002) studied parameter esti-mation problems for frational Ornstein-Uhlenbek type proess. This is a frational analogueof the Ornstein-Uhlenbek proess, that is, a ontinuous time �rst order autoregressive proessX = fXt; t � 0g whih is the solution of a one-dimensional homogeneous linear stohastidi�erential equation driven by a fBm WH = fWHt ; t � 0g with Hurst parameter H 2 [1=2; 1):Suh a proess is the unique gaussian proess satisfying the stohasti integral equationXt = � Z t0 Xsds+ �WHt ; t � 0:(1. 1)They investigate the problem of estimation of the parameters � and �2 based on the observationfXs; 0 � s � Tg and prove that the maximum likelihood estimator �̂T is strongly onsistent asT ! 1: We disussed more general lasses of stohasti proesses satisfying linear stohastidi�erential equations driven by a fBm and studied the asymptoti properties of the maximumlikelihood and the Bayes estimators for parameters involved in suh proesses in Prakasa Rao(2003a,b). It is well known that sequential proedures an be used for estimation and testing1



problems leading to shorter expeted period of observation time as ompared to �xed sampleproedures. Novikov (1972) investigated the asymptoti properties of a sequential maximumlikelihood estimator for the drift parameter in the Ornstein-Uhlenbek proess, We have dis-ussed analogous results for frational Ornstein-Uhlenbek type proess in Prakasa Rao (2004).We study the sequential testing problem for a simple null hypothesis that an observable pro-ess is a speial ase of the noise modeled by a frational Brownian motion against the simplealternate hypothesis that the proess also ontains an unobservable signal along with the noise.Self-similar proesses and frational Brownian motion have been used for modeling phenomenawith long range depedene. It was reently observed that suh a phenomena ours in problemsonneted with traÆ patterns of paket ows in high speed data net works suh as the internetand in the study of eonomi behaviour in �nane (f. Prakasa Rao (2004)). The motivationfor the present study omes from suh observations whih in turn an be looked as modellingin the branh of signal proessing. Suppose we surmise that a signal (whih is unobserved)is possibly transmitted over a hannel orrupted by a fBm. We are interested in testing thesimple hypothesis that there is no transmitted signal but only a noise modeled by a fBm that istransmitted through the hannel against the hypothesis that a signal is transmitted orruptedby a noise modeled by the fBm . We prove the existene of an optimal sequential testingproedure for suh a problem. Results obtained are analogues of similar results for di�usionproesses derived in Liptser and Shiryayev (2001b).2 PreliminariesLet (
;F ; (Ft); P ) be a stohasti basis satisfying the usual onditions.The natural �trationof a stohasti proess is understood as the P -ompletion of the �ltration generated by thisproess. Let WH = fWHt ; t � 0g be a normalized frational Brownian motion with Hurstparameter H 2 (0; 1), that is, a gaussian proess with ontinuous sample paths suh thatWH0 = 0; E(WHt ) = 0 andE(WHs WHt ) = 12 [s2H + t2H � js� tj2H ℄; t � 0; s � 0:(2. 1)Let us onsider a stohasti proess Y = fYt; t � 0g de�ned by the stohasti integral equationYt = Z t0 C(s)ds+ Z t0 B(s)dWHs ; Y0 = 0; t � 0(2. 2)where C = fC(t); t � 0g is an (Ft)-adapted proess and B = fB(t); t � 0g is a nonvanishingnonrandom funtion. For onveniene, we write (2.2) in the following stohasti di�erentialequation form dYt = C(t)dt+B(t)dWHt ; Y0 = 0; t � 0(2. 3)driven by the frational Brownian motion WH : The integralZ t0 B(s)dWHs(2. 4) 2



is not a stohasti integral in the Ito sense but one an de�ne the integral of a deterministifuntion with respet to the fBM in a natural sense (f. Norros et al. (1999)). Even though theproess Y is not a semimartingale, one an assoiate a semimartingale Z = fZt; t � 0g whihis alled a fundamental semimartingale suh that the natural �ltration (Zt) of the proess Zoinides with the natural �ltration (Yt) of the proess Y (Kleptsyna et al. (2000a)). De�ne,for 0 < s < t; kH = 2H� (32 �H)�(H + 12);(2. 5) �H(t; s) = k�1H s 12�H(t� s) 12�H ;(2. 6) �H = 2H �(3� 2H)�(H + 12)�(32 �H) ;(2. 7) mHt = ��1H t2�2H ;(2. 8)where the funtion �(:) is the Euler gamma funtion andMHt = Z t0 �H(t; s)dWHs ; t � 0:(2. 9)The proess MH is a gaussian martingale, alled the fundamental martingale (f. Norros etal. (1999)) and its quadrati variation hMHt i = mHt : Further more the natural �ltration ofthe martingale MH oinides with the natural �tration of the fBm WH : In fat the stohastiintegral Z t0 B(s)dWHs(2. 10)an be represented in terms of the stohasti integral with respet to the martingale MH : Fora measurable funtion f on [0; T ℄; letKfH(t; s) = �2H dds Z ts f(r)rH� 12 (r � s)H� 12 dr; 0 � s � t(2. 11)when the derivative exists in the sense of absolute ontinuity with respet to the Lebesguemeasure (see Samko et al. (1993) for suÆient onditions). The following result is due toKleptsyna et al. (2000b).Therorem 2.1: LetMH be the fundamental martingale assoiated with the fBmWH as givenby(2.9). Then Z t0 f(s)dWHs = Z t0 KfH(t; s)dMHs ; t 2 [0; T ℄(2. 12)a.s [P ℄ whenever both sides are well de�ned.Suppose the sample paths of the proess fC(t)B(t) ; t � 0g are smooth enough (see Samko et al.(1993)) so that the proessQH(t) = ddmHt Z t0 �H(t; s)C(s)B(s)ds; t 2 [0; T ℄(2. 13) 3



is well-de�ned almost everywhere where wH and kH are as de�ned in (2.8) and (2.6) respetivelyand the derivative is understood in the sense of absoulute ontinuity. Let the proess Z =(Zt; t 2 [0; T ℄) be de�ned by Zt = Z t0 �H(t; s)[B(s)℄�1dYs(2. 14)where the funtion �H(t; s) is as de�ned in (2.6). The proess Z de�nes a semimartingaleassoiated with the proess Y and the natural �ltration (Zt) of Z oinides with the natural�tration (Yt) of Y: The following theorem is due to Kleptsyna et al.(2000a).Theorem 2.2: Suppose the sample paths of the proess QH de�ned by (2.13) belong P -a.s toL2([0; T ℄; dwH ) where wH is as de�ned by (2.8). De�ne the proess Z as in (2.14). Then thefollowing results hold.(i) The proess Z is an (Ft) -semimartingale with the deompositionZt = Z t0 QH(s)dwHs +MHt(2. 15)where MH is the fundamental martingale given by (2.9). (ii) The proess Y admits the repre-sentation Yt = Z t0 KBH(t; s)dZs(2. 16)where the funtion KBH(:; :) is as in (2.11), and (iii) The natural �trations of (Zt) and (Yt)oinide.Kleptsyna et al.(2000a) derived the following Girsanov type formula as a onsequene ofTheorem 2.2.Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. De�ne�H(T ) = expf� Z T0 QH(t)dMHt � 12 Z T0 Q2H(t)dmHt g:(2. 17)Suppose that E(�H(T )) = 1: Then the measure P � = �H(T )P is a probability measure andthe probability measure of the proess Y under P � is the same as that of the proess V de�nedby Vt = Z t0 B(s)dWHs ; 0 � t � T:(2. 18).3 Main ResultsSuppose that � = f�t; t � 0g is an unobservable Ft-adapted proess independent of the fBmW = fWHt ; t � 0g: Suppose that one of the following two hypotheses hold for the Ft-adaptedobservable proess  = f t; t � 0g :H0 : d t = dWHt ;  0 = 0; t � 0;(3. 1) 4



and H1 : d t = �tdt+ dWHt ;  0 = 0; t � 0:(3. 2)If we interpret the proess � as a signal and the fBm WH as the noise, then we are interestedin testing the simple hypothesis H1 indiating the presene of the signal in the observation ofthe proess  against the simple hypothesis H0 that the signal � is absent. Assume that thesample paths of the proess f�t; t � 0g are smooth enough so that the proessQ(t) = ddmHt Z t0 �H(t; s)�sds; t � 0(3. 3)is well-de�ned almost everywhere where mHt and �H(t; s) are as de�ned in (2.8) and (2.6)respetively. Suppose the sample paths of the proess fQ(t); 0 � t � Tg belong almost surelyto L2([0; T ℄; dmHt ) for every T � 0: De�neZt = Z t0 �H(t; s)d s; t � 0:(3. 4)Then the proess Z = fZt; t � 0g is an (Ft)-semimartingale with the deompositionZt = Z t0 Q(s)dwHs +MHt(3. 5)where MH is the fundamental martingale de�ned by (2.9) and the proess  admits the rep-resentation  t = Z t0 KH(t; s)dZs:(3. 6)Here the funtion KH(:; :) is given by (2.11) with f � 1: We denote the probability mesure ofthe proess  under Hi as Pi for i = 0; 1: Let E denote the expetation under the probabilitymeasure P and Ei denote the expetation under the hypothesis Hi; i = 0; 1: Let P Ti be themeasure indued by the proess f t; 0 � t � Tg under the hypothesis Hi: Following Theorem2.3, we get that the Radon-Nikodym derivative of P T1 with respet to P T0 is given bydP T1dP T0 = exp[Z T0 Q(s)dZs � 12 Z T0 Q2(s)dwHs ℄:(3. 7)Let us onsider the sequential plan � = �(�; Æ) for testing H0 versus H1 haraterized bythe stopping time � and the deision funtion Æ: We assume that � is a stopping time withrespet to the family of �-algebras Bt = �fx : xs; s � tg where x = fxt; t � 0g are ontinuousfuntions with x0 = 0: The deision funtion Æ = Æ(x) is B� -measurable and takes the values0 and 1. Suppose x is the observed sample path. If Æ(x) takes the value 0, then it amountsto the deision that the hypothesis H0 is aepted and if Æ(x) takes the value 1, then it willindiate the aeptane of the hypothesis H1: For any sequential plan � = �(�; Æ); de�ne�(�) = P1(Æ( ) = 0); �(�) = P0(Æ( ) = 1):5



Observe that �(�) and �(�) are the �rst and seond kind of errors respetively. Let ��;� bethe lass of sequential plans for whih�(�) � �; �(�) � �where 0 < �+ � < 1; and Ei(Z �( )0 m2t ( )dmHt ) <1; i = 0; 1:(3. 8)We now state the main theorem giving the optimum sequential plan subjet to the onditionsstated above.Theorem 3.1: Suppose the proess Q = fQt;Ft; t � 0g de�ned above satis�es the onditionEjQtj <1; 0 � t <1:(3. 9)Let mt( ) = E1(QtjF t ):(3. 10)Suppose that PifZ 10 m2t ( )dmHt =1g = 1; i = 0; 1:(3. 11)Then there exists a sequential plan ~� = �(~� ; ~Æ) in the lass ��;� whih is optimal in the sensethat for any other sequential plan � = �(�; Æ) in ��;�;Ei(Z ~�( )0 m2t ( )dmHt ) � Ei(Z �( )0 m2t ( )dmHt ); i = 0; 1:(3. 12)The sequential plan ~� = �(~� ; ~Æ) is de�ned by the relations~�( ) = infft : �t( ) � B or �t( ) � Ag;and ~Æ( ) = 1 if �~�( ) � B;= 0 if �~�( ) � A;where �t( ) = Z t0 ms( )dZs � 12 Z t0 m2s( )dwHsand A = log �1� � ;B = log 1� �� :Further more E0(Z ~�( )0 m2t ( )dmHt ) = 2 V (�; �);(3. 13) 6



and E1(Z ~�( )0 m2t ( )dmHt ) = 2 V (�; �);(3. 14)where V (x; y) = (1� x) log 1� xy + x log x1� y :(3. 15)We �rst derive three lemmas whih will be used to prove the main result.Lemma 3.2: The sequential plan ~� = �(~� ; ~Æ) satis�es the propertiesPi(~� ( ) <1) = 1; i = 0; 1:(3. 16)Proof: Note that P0(~�( ) <1) = P (~� (WH) <1)sine  t =WHt under H0: Let�n(WH) = infft : Z t0 m2s(WH)dwHs � ng:Then�~�(WH)^�n(WH)(WH) = Z ~�(WH)^�n(WH)0 ms(WH)dMHt � 12 Z ~�(WH)^�n(WH)0 m2s(WH)dwHsand A � �~�(WH)^�n(WH)(WH) � B:Hene A � E(�~�(WH)^�n(WH)(WH)) � Bwhih implies that E(Z ~�(WH)^�n(WH)0 m2s(WH)dwHs ) � 2(B �A) <1sine 0 < �+ � < 1: In partiular, we haveE(Z ~�(WH)0 m2s(WH)dwHs ) � 2(B �A) <1:(3. 17)Sine E(Z ~�(WH)0 m2s(WH)dwHs ) � E(If~� (WH)=1g Z 10 m2s(WH)dwHs );7



it follows that P (~�(WH) <1) = 1 from the equation (3.11). Applying an analogous argument,we an prove that P1(~� ( ) <1) = 1: This ompletes the proof.Let �t = Zt � Z t0 ms( )dwHs :(3. 18)Then dZt = ms( )dwHs + d�t; t � 0(3. 19)where fvt;F t ; t � 0g is a ontinuous gaussian martingale with hvit = mHt : Further more, underH1; �t( ) = Z t0 ms( )d�s + 12 Z t0 m2s( )dwHs :(3. 20)This an be seen from Theorem 2 in Kleptsyna et al. (2000).Remarks: The random variable �~�( ) takes the values A and B only almost surely under theprobability mesures P0 as well as P1:Lemma 3.3: The sequential plan ~� = �(~� ; ~Æ) de�ned in Theorem 3.1 has the property�( ~�) = �;�( ~�) = �:Proof: Sine �( ~�) = P1(~Æ( ) = 0) = P1(�~� ( )( ) = A)and �( ~�) = P0(~Æ( ) = 1) = P1(�~�( )( ) = B);it is suÆient to prove thatP1(�~�( )( ) = A) = �;P0(�~�( )( ) = A) = �:(3. 21)Following the tehniques in Liptser and Shiryayev (2001b), p. 251, let a(x) and b(x); A � x � Bbe the solutions of the di�erential equationsa00(x) + a0(x) = 0; a(A) = 1; a(B) = 0(3. 22)and b00(x) + b0(x) = 0; b(A) = 0; b(B) = 1(3. 23)It an be heked that a(x) = eA(eB�x � 1)eB � eA ; b(x) = ex � eAeB � eA(3. 24)and a(0) = �; b(0) = �:(3. 25) 8



We will �rst prove that P1(�~�( )( ) = A) = �:(3. 26)Let �n( ) = infft : Z t0 m2s( )dwHs � ng:Applying the generalized Ito-Ventzell formula for ontinuous loal martingales (f. PrakasaRao (1999), p. 76), we obtain thata(�~� ( )^�n( )( )) = a(0) + Z ~�( )^�n( )0 a0(�t( ))ms( )d�s(3. 27) +12 Z ~�( )^�n( )0 [a0(�t( )) + a00(�t( ))℄m2s( )dwHs= �+ Z ~�( )^�n( )0 a0(�t( ))ms( )d�sBut E1 Z ~�( )^�n( )0 [a0(�t( ))ms( )℄2dwHs � supA�x�B[a0(x)℄2E1(Z ~�( )^�n( )0 m2s( )dwHs� n supA�x�B[a0(x)℄2 <1:Hene E1(Z ~�( )^�n( )0 a0(�t( ))ms( )d�s) = 0:Taking the expetation under the probability mesasure P1 on both sides of (3.27), we get thatE1(a(�~� ( )^�n( )( )) = �Observe that the funtion a(x) is bounded on the interval [A;B℄ and �n( ) ! 1 a.s. underP1 as n!1: An appliation of the dominated onvergene theorem proves thatE1[a(�~� ( )^�n( )( ))℄ = �:(3. 28)Applying Lemma 3.2, noting that �~�( ) takes only the values A and B a.s under the probabilitymeasure P1 and observing that a(A) = 1 and a(B) = 0; we obtain that� = E1[a((�~� ( ))℄(3. 29) = 1:P1(�~�( ) = A) + 0:P1(�~�( ) = B)= P1(�~�( ) = A):Similar arguments show that P0(�~�( ) = B) = �:(3. 30) 9



Lemma 3.4: The relations (3.13) and (3.14) hold for the sequential plan ~� = �(~� ; ~Æ):Proof: Proof of this lemma is analogous to the proof of Lemma 17.9 in Liptser and Shiryayev(2001b) as an appliation of generalized Ito-Ventzell formula for ontinuous loal martingales.We give a detailed proof here for ompleteness. Let gi(x); A � x � B; i = 0; 1 be the solutionsof the di�erential equationsg00i (x) + (�1)i+1g0i(x) = �2; gi(A) = gi(B) = 0; i = 0; 1:It an be heked that g0(x) = 2[(eB � eA+B�x)(B �A)eB � eA +A� x℄;g1(x) = 2[(eB � ex)(B �A)eB � eA �B + x℄and g0(0) = �2 V (�; �); g1(0) = 2 V (�; �):Suppose the hypothesis H0 holds. De�ne�n(WH) = infft : Z t0 m2s(WH)dwHs � ng; n � 1:Applying the generalized Ito-Ventzell formula to g0(�t(WH)); we obtain that(3. 31)g0(�~� (WH)^�n(WH)(WH)) = g0(0) + Z ~�(WH)^�n(WH)0 g000 (�t(WH))ms(WH)dMHs�12 Z ~�()^�n(WHs )0 [g00(�t(WHs ))� g000 (�t(WHs ))℄m2s(WHs )dwHs= g0(0) + Z ~�(WHs )^�n(WHs )0 g00(�t(WHs ))ms(WHs )dMHs+ Z ~�(WHs )^�n(WHs )0 m2s(WHs )dwHs :Sine E0(Z ~�(WHs )^�n(WHs )0 g00(�t(WHs ))ms(WHs )dMHs ) = 0;taking expetations with respet to the probability meaure P0 on both sides of the equation(3.31), we haveE0(Z ~�(WHs )^�n(WHs )0 m2s(WHs )dwHs ) = �g0(0) +E0(g0(�~�(WH)^�n(WH)(WH))):10



Taking limit as n!1; we obtain thatE0(Z ~�( )0 m2t ( )dmHt ) = �g0(0) = 2 V (�; �);(3. 32)Similarly we an prove thatE1(Z ~�( )0 m2t ( )dmHt ) = �g1(0) = 2 V (�; �);(3. 33)This ompletes the proof.We now prove Theorem 3.1.Proof of Theorem 3.1: Let � = �(�; Æ) be any sequential plan in the lass ��;�): Let P �ibe the restrition of the probability measure Pi restrited to the �-algebra B� for i = 0; 1:In view of the onditions (3.8), (3.9), (3.11) and the representation (3.20), it follows that theprobability measures P �i ; i = 0; 1 are equivalent by Theorem 7.10 in Liptser and Shiryayev(2001a). Further morelog dP �1dP �0 (�;WH) = Z �(WH)0 ms(WH)dMHs � 12 Z �(WH)0 m2s(WH)dwHs ;and log dP �1dP �0 (�;  ) = Z �( )0 ms( )dZs � 12 Z �( )0 m2s( )dwHs ;Therefore E0(log dP �0dP �1 (�;  )) = 12E0(Z �( )0 m2s( )dwHs )(3. 34) = 12E0(Z �(WH)0 m2s(WH)dwHs )and E1(log dP �1dP �0 (�;  )) = 12E1(Z �( )0 m2s( )dwHs ):(3. 35)Applying the Jensen's inequality and following the arguments similar to those in Liptser andShiryayev (2001b), p.254-255, it an be shown that12E1(Z �( )0 m2s( )dwHs ) � (1� �) log 1� �� + � log �1� �(3. 36) = 12E1(Z ~�( )0 m2s( )dwHs ):by using the Lemma 3.4. HeneE1(Z ~�( )0 m2s( )dwHs ) � E1(Z �( )0 m2s( )dwHs ):(3. 37) 11



Similarly we an prove thatE0(Z ~�( )0 m2s( )dwHs ) � E0(Z �( )0 m2s( )dwHs ):(3. 38)This ompletes the proof of the Theorem 3.1.Remarks: As a speial ase of the above result, suppose that �t = h(t) where h(t) is nonrandombut di�erentiable funtion suh thatZ 10 h2(t)dt =1; h(t)h0(t) � 0; t � 0:(3. 39)Let �; � be given suh that 0 < �+� < 1: Let ��;� be the lass of sequential plans as disussedearlier for given �; � with 0 < � + � < 1: Consider the plan �T = (T; ÆT ) having the �xedobservation time T for 0 < T <1 and belonging to the lass ��;�:Then the optimal sequentialplan ~� = (~� ; ~Æ) 2 ��;� has the propertiesEi(~�) � T; i = 0; 1:(3. 40)This an be seen by heking that, for i = 0; 1;Ei(Z ~�( )0 h2(t)dt � Ei(Z T0 h2(t)dt)(3. 41) = Z T0 h2(t)dt = �(T ) (say)whih in turn implies that �(T ) � Ei(Z ~�( )0 h2(t)dt(3. 42) = Ei(�(~� ( )))� �(Ei(~� ( )))by observing that the funtion �(:) is onvex and by applying the Jensen's inequality. Theabove inequality in turn proves thatEi(~�( )) � T; i = 0; 1:(3. 43)ReferenesKleptsyna, M.L. and Le Breton, A. (2002) Statistial analysis of the frational Ornstein-Uhlenbek type proess, Statist. Infer. for Stoh. Pro., 5, 229-248.Kleptsyna, M.L. and Le Breton, A. and Roubaud, M.-C.(2000a)General approah to �lteringwith frational brownian noises-Appliation to linear systems, Stohastis and StohastiReports, 71, 119-140. 12
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