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Abstract
We prove the existence of an optimal sequential test procedure for a simple null hypothesis
that the observed process is a noise modeled by a fractional Brownian motion against the
simple alternate hypothesis that the observed process is the sum of an unobserved signal and
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1 Introduction

Statistical inference for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes has been studied earlier and a comprehensive survey of various
methods is given in Prakasa Rao (1999a). There has been a recent interest to study similar
problems for stochastic processes driven by a fractional Brownian motion (fBm). Le Breton
(1998) studied parameter estimation and filtering in a simple linear model driven by a fractional
Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied parameter esti-
mation problems for fractional Ornstein-Uhlenbeck type process. This is a fractional analogue
of the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process
X = {X;,t > 0} which is the solution of a one-dimensional homogeneous linear stochastic
differential equation driven by a fBm W = {W} t > 0} with Hurst parameter H € [1/2,1).

Such a process is the unique gaussian process satisfying the stochastic integral equation
¢

(1. 1) X, = 9/ Xyds + oWt > 0.
0

They investigate the problem of estimation of the parameters § and o2 based on the observation
{X5,0 < s < T} and prove that the maximum likelihood estimator Or is strongly consistent as
T — oo. We discussed more general classes of stochastic processes satisfying linear stochastic
differential equations driven by a fBm and studied the asymptotic properties of the maximum
likelihood and the Bayes estimators for parameters involved in such processes in Prakasa Rao

(2003a,b). It is well known that sequential procedures can be used for estimation and testing



problems leading to shorter expected period of observation time as compared to fixed sample
procedures. Novikov (1972) investigated the asymptotic properties of a sequential maximum
likelihood estimator for the drift parameter in the Ornstein-Uhlenbeck process, We have dis-
cussed analogous results for fractional Ornstein-Uhlenbeck type process in Prakasa Rao (2004).
We study the sequential testing problem for a simple null hypothesis that an observable pro-
cess is a special case of the noise modeled by a fractional Brownian motion against the simple
alternate hypothesis that the process also contains an unobservable signal along with the noise.
Self-similar processes and fractional Brownian motion have been used for modeling phenomena
with long range depedence. It was recently observed that such a phenomena occurs in problems
connected with traffic patterns of packet flows in high speed data net works such as the internet
and in the study of economic behaviour in finance (cf. Prakasa Rao (2004)). The motivation
for the present study comes from such observations which in turn can be looked as modelling
in the branch of signal processing. Suppose we surmise that a signal (which is unobserved)
is possibly transmitted over a channel corrupted by a fBm. We are interested in testing the
simple hypothesis that there is no transmitted signal but only a noise modeled by a fBm that is
transmitted through the channel against the hypothesis that a signal is transmitted corrupted
by a noise modeled by the fBm . We prove the existence of an optimal sequential testing
procedure for such a problem. Results obtained are analogues of similar results for diffusion

processes derived in Liptser and Shiryayev (2001b).

2 Preliminaries

Let (Q,F,(F;), P) be a stochastic basis satisfying the usual conditions.The natural fitration
of a stochastic process is understood as the P-completion of the filtration generated by this
process. Let WH = {W}H t > 0} be a normalized fractional Brownian motion with Hurst
parameter H € (0,1), that is, a gaussian process with continuous sample paths such that
WH =0, E(WH) =0 and
1
(2. 1) EWHEWH) = 5[SQH + 2 s — 21t > 0,5 > 0.
Let us consider a stochastic process Y = {Y;,t > 0} defined by the stochastic integral equation

t t
2. 2) Y, :/ C(s)ds +/ B(s)dW Yy = 0,¢ > 0
0 0

where C = {C(t),t > 0} is an (F;)-adapted process and B = {B(t),t > 0} is a nonvanishing
nonrandom function. For convenience, we write (2.2) in the following stochastic differential

equation form

(2. 3) dY; = C(t)dt + B(t)dW/,Yy = 0,t > 0

driven by the fractional Brownian motion W¥#. The integral
t

(2. 4) / B(s)aw,!
0
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is not a stochastic integral in the Ito sense but one can define the integral of a deterministic
function with respect to the fBM in a natural sense (cf. Norros et al. (1999)). Even though the
process Y is not a semimartingale, one can associate a semimartingale Z = {Z;,t > 0} which
is called a fundamental semimartingale such that the natural filtration (Z;) of the process Z
coincides with the natural filtration ();) of the process Y (Kleptsyna et al. (2000a)). Define,
for 0 < s < ¢,

1
(2. 5) ki = 2HT (g ~ H)T(H + ),
(2. 6) kp(tys) = kyts? H(t— s)2=H
2H T'(3 — 2H)T'(H + 1
2.7 g — ( : )I( +2)7
I'(5 —H)
(2. 8) myt = A 2
where the function I'(.) is the Euler gamma function and
t
(2. 9) MH :/ kp(t,s)dWi t > 0.
0

The process M is a gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variation (Mf’) = mf!. Further more the natural filtration of
the martingale M coincides with the natural fitration of the fBm W . In fact the stochastic

integral
t
(2. 10) / B(s)aw !
0

can be represented in terms of the stochastic integral with respect to the martingale M. For

a measurable function f on [0, 7], let
f d [t H—3 H-3
(2. 11) KH(t,s):—2Hd—/ flr)r 2(r—s)" 2dr,0 <s <t
S Js

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure (see Samko et al. (1993) for sufficient conditions). The following result is due to
Kleptsyna et al. (2000b).

Therorem 2.1: Let M be the fundamental martingale associated with the fBm W as given
by(2.9). Then

t t

(2. 12) / f(s)awlt :/ KL (t,s)dMH ¢ € 0,T]
0 0

a.s [P] whenever both sides are well defined.

Suppose the sample paths of the process {%, t > 0} are smooth enough (see Samko et al.
(1993)) so that the process

— /Ot K (t, s)@ds,t € [0,T]



is well-defined almost everywhere where w! and ky are as defined in (2.8) and (2.6) respectively
and the derivative is understood in the sense of absoulute continuity. Let the process Z =
(Zi,t € 10,T]) be defined by

(2. 14) Zy = /Ot kp(t,s)[B(s)]tdY;

where the function kg (t,s) is as defined in (2.6). The process Z defines a semimartingale
associated with the process Y and the natural filtration (2;) of Z coincides with the natural
fitration ()%) of Y. The following theorem is due to Kleptsyna et al.(2000a).

Theorem 2.2: Suppose the sample paths of the process @y defined by (2.13) belong P-a.s to
L%([0,T],dw™) where w¥ is as defined by (2.8). Define the process Z as in (2.14). Then the
following results hold.

(i) The process Z is an (F;) -semimartingale with the decomposition

t
(2. 15) Z =/ Qu(s)dw] + M
0
where M# is the fundamental martingale given by (2.9). (i) The process Y admits the repre-
sentation ;
(2. 16) Y, = / KE(t,s)dZ,
0

where the function K5(.,.) is as in (2.11), and (iii) The natural fitrations of (Z;) and ())

coincide.

Kleptsyna et al.(2000a) derived the following Girsanov type formula as a consequence of
Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

1

T T
(2. 17 Aa(T) = exp{= [ Quitjam 5 [ Qhy(amf).

Suppose that E(Ag(T)) = 1. Then the measure P* = Ay (T)P is a probability measure and
the probability measure of the process Y under P* is the same as that of the process V' defined
by

(2. 18) W:/()tB(s)dWSH,OgtST.

3 Main Results

Suppose that 8 = {6;,t > 0} is an unobservable F;-adapted process independent of the fBm
W = {W/H ¢ > 0}. Suppose that one of the following two hypotheses hold for the F;-adapted
observable process 9 = {t¢,t > 0} :

(3. 1) Hy : dipy = dWH 4pg = 0, > 0;



and
(3. 2) Hy : dipy = 0ydt + dWH 4py = 0,1 > 0.

If we interpret the process @ as a signal and the fBm W as the noise, then we are interested
in testing the simple hypothesis H; indicating the presence of the signal in the observation of
the process ¢ against the simple hypothesis Hy that the signal 0 is absent. Assume that the
sample paths of the process {0;,¢ > 0} are smooth enough so that the process

_d
~ dml!

t
(3. 3) Qt) / ko (£, 8)0sds, ¢ > 0

0
is well-defined almost everywhere where m!’ and ky(t,s) are as defined in (2.8) and (2.6)
respectively. Suppose the sample paths of the process {Q(t),0 < ¢ < T} belong almost surely
to L2([0,T],dm}!) for every T > 0. Define

t
(3. 4) Z, = / ki (t, s)dips, t > 0,
0

Then the process Z = {Z;,t > 0} is an (F;)-semimartingale with the decomposition
t

(3. 5) Zy Z/ Q(s)dwl + M/
0

where M¥ is the fundamental martingale defined by (2.9) and the process ¢ admits the rep-

resentation

(3. 6) by = /0 'Kt $)dZs.

Here the function Kpg(.,.) is given by (2.11) with f = 1. We denote the probability mesure of
the process 9 under H; as P; for 1 = 0,1. Let £ denote the expectation under the probability
measure P and FE; denote the expectation under the hypothesis H;,i = 0,1. Let PiT be the
measure induced by the process {1;,0 < ¢ < T} under the hypothesis H;. Following Theorem
2.3, we get that the Radon-Nikodym derivative of P{ with respect to P} is given by

dPl

T T
(3. 7) erxp[/o Q)iz 5 [ @],

Let us consider the sequential plan A = A(r,6) for testing Hy versus H; characterized by
the stopping time 7 and the decision function . We assume that 7 is a stopping time with
respect to the family of o-algebras B; = o{z : z5,s < t} where z = {x4,¢t > 0} are continuous
functions with zp = 0. The decision function § = §(x) is Br-measurable and takes the values
0 and 1. Suppose z is the observed sample path. If §(z) takes the value 0, then it amounts
to the decision that the hypothesis Hy is accepted and if §(z) takes the value 1, then it will
indicate the acceptance of the hypothesis Hy. For any sequential plan A = A(7,0), define

a(A) = Pi(6(¢) = 0), B(A) = Po(6(¢) = 1).



Observe that a(A) and B(A) are the first and second kind of errors respectively. Let A, g be

the class of sequential plans for which
a(A) <o, B(A) <8

where 0 < a4+ 8 < 1, and
W, |

(3. 8) El-(/ m2($)dm™) < 00,i =0, 1.
0

We now state the main theorem giving the optimum sequential plan subject to the conditions

stated above.

Theorem 3.1: Suppose the process Q = {Qy, F¢,t > 0} defined above satisfies the condition

(3. 9) E|Q: < 00,0 <t < o0.

Let

(3. 10) mi(y) = Er(Qu|F).

Suppose that o

(3. 11) Pi{/ m2()dmll = 0o} =1,i=0,1.
0

Then there exists a sequential plan A = A(T, 5) in the class A, g which is optimal in the sense
)

that for any other sequential plan A = A(7,0) in Ay g,

O " ACOR 0
3. 12) Ei(/0 m2()dmi) < Ei(/0 m2()dm!),i = 0,1,
The sequential plan A = A(7,4) is defined by the relations

7(¢p) = inf{t : A(¥) 2 B or M(¢) < A

and
0() = 1if Az > B,
where
t 1 t 9 H
M) = [ i)z, -5 [ miw)do!
and
A=log % B—logi—“
=logy—p, B=lg—
Further more
W) "
(3. 13) ol [ mE)dmi") =2 V(B0



and

a
(3. 14) B[ mE)aml’) = 2 V(o).
where )
(3. 15) Viz,y) = (1 —z)log _w—l—xloglf .

We first derive three lemmas which will be used to prove the main result.
Lemma 3.2: The sequential plan A = A(7,0) satisfies the properties

(3. 16) P(7(4) < 00) = 1,i = 0,1.

Proof: Note that
Py(7(1h) < o0) = P(F(W!) < o0)
since i, = WtH under Hy. Let

t
on(WH) = inf{t / m2(WH)dw!? > n}.
0

Then
FWH NG, (WH) 1 FWH)Ae, (WH)
Af(WH)AUn(WH)(WH) :/0 ms(WH)thH - 5/0 m?(WH)dwf
and
A< Nwinyne, iy (W) < B.
Hence

A < EXzymyne,wmy(WT)) < B
which implies that

B(

FWH Ao (WH)
/ m2(WH)dw) < 2(B - A) < 00

0

since 0 < a + 8 < 1. In particular, we have
F(WH)
3. 17) E(/ m2(W)dw!) < 2(B — A) < .
0
Since
F(WH) 00
B[ mE Wl 2 B [ mi00"dwl),
0 0
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it follows that P(7(W*H) < co) = 1 from the equation (3.11). Applying an analogous argument,
we can prove that P;(7(¢) < oo) = 1. This completes the proof.

Let .
(3. 18) v =274 —/ ms(1p)dwl .
0
Then
(3. 19) dZ; = ms(p)dw? + dv,t >0

where {vy, .7-';’0 ,t > 0} is a continuous gaussian martingale with (v); = m/’. Further more, under
Hla

(3. 20 M) = [ mohv, + 5 [ md)dul

This can be seen from Theorem 2 in Kleptsyna et al. (2000).

Remarks: The random variable Az(,) takes the values A and B only almost surely under the

probability mesures P as well as P;.

Lemma 3.3: The sequential plan A = A(7,6) defined in Theorem 3.1 has the property

Proof: Since
and

it is sufficient to prove that

(3. 21) Pr( Az (9) = A) = a; Po( My () = A) = B.

Following the techniques in Liptser and Shiryayev (2001b), p. 251, let a(z) and b(z),A <z < B

be the solutions of the differential equations

(3. 22) a’(z) +d'(z) =0,a(A) =1,a(B) =0
and
(3. 23) V'(z) + b/ (z) =0,b(A) =0,6(B) =1
It can be checked that

eA(eB_“: -1 e? — et
(3. 24) a(z) = B A b(z) = B,
and
(3. 25) a(0) = o; b(0) = B.



We will first prove that
(3. 26) P M) (¥) = A) = a.
Let

on(¢) = inf{t: /Ot m2(¢)dw? > n}.

Applying the generalized Ito-Ventzell formula for continuous local martingales (cf. Prakasa
Rao (1999), p. 76), we obtain that

(Y)Nan(¥)
320 alnnm®) = a0+ [ o O ()m (),
F(W)Aon(¥)
=3 @ () + " Oy () ()l
0

Hp)Aou(y) |
—a+t /0 o' (e () yms () vy

But
F()Non (¥) F(P)Non (¥)
2 @ u)ms ()P dul! < sup [ (@) Er( mi(y)du?’
< n sup [d'(z)]? < co.
A<z<B
Hence
HB)Aou () |
g a/ () (4)dws) = 0.

Taking the expectation under the probability mesasure P; on both sides of (3.27), we get that

Er(a(Ms@)nonw) (¥) =

Observe that the function a(x) is bounded on the interval [A, B] and o,(%) — oo a.s. under

Py as n — co. An application of the dominated convergence theorem proves that

(3. 28) Era(Az)nen ) (¥))] = .

Applying Lemma 3.2, noting that Az(,) takes only the values A and B a.s under the probability
measure P; and observing that a(A) = 1 and a(B) = 0, we obtain that

(3. 29) a = Eifa((Azy))]

Similar arguments show that
(3. 30) Py(Azy) = B) = B.



Lemma 3.4: The relations (3.13) and (3.14) hold for the sequential plan A = A(7,0).

Proof: Proof of this lemma is analogous to the proof of Lemma 17.9 in Liptser and Shiryayev
(2001b) as an application of generalized Ito-Ventzell formula for continuous local martingales.
We give a detailed proof here for completeness. Let g;(z), A <z < B,i = 0,1 be the solutions

of the differential equations

g7 (&) + (=1)"gi(z) = —2,9i(A) = ¢:(B) = 0,i = 0, L.

It can be checked that

go(z) =2[ v — + A — x|
eP —e
g1(z) = 2[( B E(Z 4) B + z]

and

90(0) = =2 V(B,2);91(0) =2 V(e B).

Suppose the hypothesis Hy holds. Define
t

on(WH) = inf{t : / m2(WH)dw > n},n > 1.
0

Applying the generalized Ito-Ventzell formula to go(A(WH)), we obtain that

(3. 31)
H WA W), H Hy 2o H
90(s i avny (W) = go0) + / 9o (W) (W) d]
1 7O (W) 0 " H\\1. 2t HY g H
3 (9 (At(W )) = g0 Ae(W ) Img (W) dwy
/\Un
= go(0) + / gy (W) (W)
/\O’n
+/ mf(WsH)dwsH.
Since
%(WSH)/\U—H(WSH) ! H H H
2y gb (W) my (WH)dm ) = o,

taking expectations with respect to the probability meaure Py on both sides of the equation
(3.31), we have

WireuWtly Y
E(| m (W) dwlt) = ~g0(0) + Bo(go(rs )0, vty (W)

10



Taking limit as n — oo, we obtain that

7(¥)
(3. 32) Eo(/o m2()dmil) = —go(0) = 2 V(B, a),

Similarly we can prove that

7(¥)
(3. 33 B[ mE)dm) = ~g(0) =2 V(. ),
This completes the proof.
We now prove Theorem 3.1.

Proof of Theorem 3.1: Let A = A(7,0) be any sequential plan in the class A, gy. Let P
be the restriction of the probability measure P; restricted to the o-algebra B, for i = 0, 1.
In view of the conditions (3.8), (3.9), (3.11) and the representation (3.20), it follows that the
probability measures P],7 = 0,1 are equivalent by Theorem 7.10 in Liptser and Shiryayev
(2001a). Further more

(W) (W)
log ZPI (r, W) :/0 ms(WH)dM P — %/0 m2(WH)dw!,
and
dP] ()
08 L ) = [ matwraz, =2 [ mrwyant
dFP; 0
Therefore
dP§ 1 7(¥)
(3. 34) Eyllog o (np) = SBo([ mip)dul)
1 0
1 W o H g H
= SB[ mEwdulh)
0
and W
dP] 1 T
(3. 35) Eiflog Sk (n) = B[ mi)dul’).
0 0

Applying the Jensen’s inequality and following the arguments similar to those in Liptser and
Shiryayev (2001b), p.254-255, it can be shown that

(%) _
(3. 36) %El(/ m2()dw?) > (1 -a)log Lo, alog
0

5
(%)
= a( mE)dul).

o
1-p

by using the Lemma 3.4. Hence

() (%)
3. 37 w( [ miwanty < B[ mirant).



Similarly we can prove that

7(¥) 7(¥)

(3. 38) B[ mip)du) < Bol [ mp)dulh).
0 0

This completes the proof of the Theorem 3.1.

Remarks: As a special case of the above result, suppose that 8; = h(t) where h(t) is nonrandom
but differentiable function such that

(3. 39) /OOO R%(t)dt = oo, h(t)Rh'(t) > 0,t > 0.

Let o, 8 be given such that 0 < o+ < 1. Let A, g be the class of sequential plans as discussed
earlier for given «, 8 with 0 < a + 8 < 1. Consider the plan Ay = (T, dr) having the fixed
observation time 7" for 0 < T < oo and belonging to the class A, 3. Then the optimal sequential
plan A = (7,0) € A, g has the properties

(3. 40) Ei(7) <T,i=0,1.
This can be seen by checking that, for ¢ = 0,1,
), T,
(3. 41) Ei(/ R2(tdt < Ei(/ h2(t)dt)
0 0
T
_ / B2(t)dt = B(T) (say)
0
which in turn implies that

(3. 42) (T)

AV
3
S~
Rl
>
[N

=

QL

~

> O(Ei(7(¢)))

by observing that the function ®(.) is convex and by applying the Jensen’s inequality. The

above inequality in turn proves that
References

Kleptsyna, M.L. and Le Breton, A. (2002) Statistical analysis of the fractional Ornstein-
Uhlenbeck type process, Statist. Infer. for Stoch. Proc., 5, 229-248.

Kleptsyna, M.L. and Le Breton, A. and Roubaud, M.-C.(2000a)General approach to filtering
with fractional brownian noises-Application to linear systems, Stochastics and Stochastic
Reports, 71, 119-140.

12



Kleptsyna, M.L. and Le Breton, A. and Roubaud, M.-C.(2000b) Parameter estimation and
optimal filtering for fractional type stochastic systems, Statist. Infer. Stoch. Proc., 3,
173-182.

Le Breton, A. (1998) Filtering and parameter estimation in a simple linear model driven by
a fractional Brownian motion, Statist. Probab. Lett. .38, 263-274.

Liptser, R.S. and Shiryayev, A.N. (2001a) Statistics of Random Processes 1: General Theory,
Springer, Berlin, Second Edition.

Liptser, R.S. and Shiryayev, A.N. (2001b) Statistics of Random Processes 1I: Applications,
Springer, Berlin, Second Edition.

Norros, 1., Valkeila, E., and Virtamo, J. (1999) An elementary approach to a Girsanov type

formula and other analytical results on fractional Brownian motion, Bernoulli, 5, 571-587.

Novikov, A.A. (1972) Sequential estimation of the parameters of diffusion processes, Mathe-
matical Notes, 12, 812-818.

Prakasa Rao, B.L.S. (1999a) Statistical Inference for Diffusion Type Processes, Arnold, Lon-
don and Oxford University Press, New York.

Prakasa Rao, B.L.S. (1999b) Semimartingales and Their Statistical Inference, CRC Press,
Boca Raton and Chapman and Hall, London.

Prakasa Rao, B.L.S. (2003a) Parametric estimation for linear stochastic differential equations

driven by fractional Brownian motion, Random Oper. and Stoch. Equ., 11, 229-242.

Prakasa Rao, B.L.S. (2003b) Berry-Esseen bound for MLE for linear stochastic differential
equations driven by fractional Brownian motion, Preprint, Indian Statistical Institute,
New Delhi.

Prakasa Rao, B.L.S. (2004) Sequential estimation for fractional Ornstein-Uhlenbeck process,
Sequential Analysis (To appear).

Prakasa Rao, B.L.S. (2004) Self-similar processes, fractional Brownian motion and statistical

Inference, Preprint, Indian Statistical Institute, New Delhi.

Samko, S.G., Kilbas, A.A., and Marichev, O.I. (1993) Fractional Integrals and derivatives,

Gordon and Breach Science.

13



