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MOMENT INEQUALITIES FOR SUPREMUM OF EMPIRICAL PROCESSES OFU-STATISTIC STRUCTURE AND APPLICATION TO DENSITY ESTIMATIONB.L.S. PRAKASA RAOIndian Statistial Institute, New DelhiAbstratWe derive moment inequalities for the supremum of empirial proesses of U -Statisti stru-ture and give appliation to kernel type density estimation and estimation of the distributionfuntion for funtions of observations.Mathematis Subjet lassi�ation : Primary 62G07.Keywords and Phrases : ; Moment inequality; Empirial proess of U-statisti struture; Kerneltype density estimation; Funtions of random variables. 11 IntrodutionMoment inequalities for the supremum of empirial proesses with appliations to kernel typeestimation of a density funtion and a distribution funtion for identially distributed observa-tions were investigated by Ahmad (2002) and by Prakasa Rao (2003) for �-mixing stationaryproesses. Kernel type density estimation was extensively disussed in Prakasa Rao (1983). LetXn; n � 1 be independent and identially distributed (i.i.d.) random variables and for a giveninteger m � 1; g : Rm ! R be a real-valued funtion symmetri in its arguments. Motivatedby examples to study the measure of degree of spatial randomness in a spatial point pattern(f. Diggle (1983)) through study of the distribution funtion of the inter-point distanes withg(x1; x2) = jx1�x2j with m = 2 and to study the distribution of sum of insurane laims withg(x1; : : : ; xm) = x1 + : : : + xm for some �xed m � 1; suh as, for instane, in health insurane(f. Panjer and Willmot (1992)), Frees (1994) investigated the problem of estimation of thedensity funtion of the random variable g(X1; : : : ;Xm) using the kernel method of density es-timation. We will derive some moment inequalities for the deviation of this density estimatorfrom the true density of the funtion g(X1; : : : ;Xm) assuming that it exists and obtain theoptimal rate for the bandwidth in the sense of the supremum norm. Ahmad and Fan (2001)obtained optimal bandwidths, optimal in the sense of minimization of the asymptoti meanintegrated squared error, for the kernel density estimator proposed by Frees (1994).1Corresponding address: Indian Statistial Institute, 7,S.J.S.Sansanwal Marg, New Delhi 110016, India; e-mail: blsp�isid.a.in
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2 Empirial proess of U-Statisti strutureLet Xn; n � 1 be independent and identially distributed (i.i.d.) random variables and letg : Rm ! R be a real-valued funtion. As a generalization of the usual empirial distributionfuntion, we onsider the empirial distribution funtion Hn(t) de�ned by the random variablesfg(Xi1 ; : : : ;Xim) : 1 � i1 < : : : < im � ng;that is, for �1 < t <1;Hn(t) = (nCm)�1X I(g(Xi1 ; : : : ;Xim) � t) (2. 1)hereafter alled the empirial kernel distribution funtion (EKDF). Here I(:) denotes the indi-ator funtion of a set, fi1; : : : ; img is an ordered subset of f1; : : : ; ng and P denotes that thesum is taken over all nCm suh subsets. For a �xed t , Hn(t) is a U -Statisti. Let H(t) be thedistribution funtion of g(X1; : : : ;Xm): The proessfpn(Hn(t)�H(t)); n � 1gis alled the empirial proess of U -Statisti struture. Observe that this proess redues to theusual empirial proess of the i.i.d. random variables fg(Xn); n � 1g in ase m = 1: Silverman(1976) established the weak onvergene of the proess. Sen (1983) disussed the propertiesof EKDF from the view point of U -Statisti theory and established Glivenko-Cantelli lemmatype result for the EKDF and studied the weak onvergene of the related empirial proessas de�ned above. Sering (1984) proved the entral limit theorems for funtionals of empirialdistribution funtion of U -Statisti struture in his study of genaralized L-Statistis. Silverman(1983) extended these results by proving the weak onvergene of the sequene of proessesfpn(Hn(t)�H(t));�1 < t <1g; n � 1to a ontinuous Gaussian proess in weighted sup-norm metris in D(�1;1): Dehling et al.(1987) obtained an almost sure approximation of the proess n(Hn�H) by a suitable Gaussianproess with a remainder term of the order O(n 12��); � > 0 extending the Kiefer'result for theempirial distribution funtion of i.i.d. random variables. As a onsequene of Corollary 2 inDehling et al. (1987), it follows thatDn = sup�1<t<1 jHn(t)�H(t)j = O(n�1=2(log log n)1=2) (2. 2)almost surely.Let � � (�(1); : : : ; �(n)) denote an arbitrary permutation of (1; : : : ; n): Following the blok-ing arguments of Hoe�ding in onnetion with his study of U -statistis, de�ne i.i.d. randomvariables Y �j+1 � g(X�(jm+1); : : : ;X�(jm+m)); j = 0; 1; : : : ; [ nm ℄� 1 (2. 3)2



where [ nm ℄ denotes the largest integer less than or equal to nm : Then Y �1 ; : : : ; Y �[ nm ℄ are i.i.d.random variables with the distribution funtion H and the empirial distribution funtionH�n (t) = [ nm ℄�1 [ nm ℄Xj=1 I[Y �j � t℄: (2. 4)Furthermore, it is known that Hn(t) = (n!)�1X� H�n (t) (2. 5)whih is also known as the Hoe�ding identity. HeneHn(t)�H(t) = (n!)�1X� fH�n (t)�H(t)gwhih implies that supt jHn(t)�H(t)j � (n!)�1X� supt jH�n (t)�H(t)j:Therefore E(supt jHn(t)�H(t)j) � (n!)�1X� E(supt jH�n (t)�H(t)j):Sine the random variables Xn; n � 1 are i.i.d. random variables. it follows thatE(supt jH�n (t)�H(t)j)is the same for any permutation � � (�(1); : : : ; �(n)) of (1; : : : ; n): HeneE(supt jHn(t)�H(t)j) � E(supt jH�n (t)�H(t)j) (2. 6)for any permutation � of (1; : : : ; n): Therefore, from the results given in the inequality 2.1 ofAhmad (2002) for the deviation of the empirial distribution funtion from the true distributionfuntion for i.i.d. random variables, it follows thatE(supt jH�n (t)�H(t)j) � Kr[ nm ℄�1=2 (2. 7)for any integer r � 1 where Kr = f r2r=2�(r=2)g1=r : (2. 8)Furthermore, the inequality 2.2 of Ahmad (2002) implies thatE(expftr[ nm ℄ supy jH�n (y)�H(y)jg) � 1 +p2�te2t2 (2. 9)for every n � m: Combining the above fats, we have the following result for the EKDF Hn:3



Theorem 2.1: Let Xi; 1 � i � n be i.i.d. random variables and Hn be the empirial kerneldistribution funtion orresponding to a kernel g(x1; : : : ; xm) as de�ned earlier and let H bethe distrbution funtion of g(X1; : : : ;Xm): Then, for every integer r � 1; and for all n � m;E(supt jHn(t)�H(t)j) � Kr[ nm ℄�1=2 (2. 10)where Kr is an absolute onstant as de�ned in (2.8) and for every n � m;E(expftr[ nm ℄ supy jHn(y)�H(y)jg) � 1 +p2�te2t2 : (2. 11)3 Appliation to Density EstimationFollowing the notation introdued in the previous setion, suppose that the distribution funtionH(t) of the random variable g(X1; : : : ;Xm) has the probability density funtion h(t). Supposethat the funtion h(t) has a ontinuous and bounded seond derivative withsupt jh00(t)j = Ch <1:Frees (1994) studied the problem of estimation of the density funtion h(t) by the kernel methodof density estimation (f. Prakasa Rao (1983)). Let w(:) be a bounded symmetri probabilitydensity funtion with mean zero and �nite variane �2w: Further suppose that it is of boundedvariation with total variation Vw:The kernel type density estimator hn(t) of h(t) introdued by Frees (1994) is given byhn(t) = (nCmbn)�1X w( t� g(Xi1 ; : : : ;Xim)bn ) (3. 1)where bn is the bandwidth suh that bn ! 0 as n!1: LetJn = supt jhn(t)� h(t)j:Applying the Taylor's expansion for the funtion h(t � ubn) around the point t and observ-ing that w(:) is a bounded symmetri probability density funtion with mean zero and �nitevariane, it is easy to hek thatjhn(t)� h(t)j � j 1bn Z 1�1w( t� ybn )dHn(y)� 1bn Z 1�1w( t� ybn )dH(y)j (3. 2)+j 1bn Z 1�1w( t� ybn )dH(y)� h(t)j� 1bn sup�1<y<1 jHn(y)�H(y)jj Z 1�1 dw( t� ybn )j+ b2n2 �2wCh� 1bn sup�1<y<1 jHn(y)�H(y)jVw + b2n2 �2wCh� 1bnDnVw + b2n2 �2wCh4



where Dn is as de�ned by (2.2). HeneE(Jn) � 1bnE(Dn)Vw + b2n2 �2wCh: (3. 3)Applying the bound on E(Dn) derived in Theorem 2.1, we haveE(Jn) � Kr 1bn [ nm ℄�1=2Vw + b2n2 �2wCh: (3. 4)Choosing bn suh that 1bn [ nm ℄�1=2 = b2n;that is, bn = [ nm ℄�1=6;we get an optimum bound on E(Jn) as far as the rate of onvergene is onerned and for asuh hoie of the bandwidth bn; E(Jn) = O([ nm ℄�1=3): (3. 5)Following equation (12) of Ahmad and Fan (2001), observe that the optimal bandwidth forminimizing the asymptoti mean integrated squared error (AMISE) of the density estimatorhn(t) is of the order (nCm)�1=3 as opposed to the optimal bandwidth for minimizing the boundon the mean uniform deviation of the density estimator obtained above whih is of the order[ nm ℄�1=6: If m = 1; then these orders redue to n�1=3 and n�1=6 respetively.Let us now onsider the problem of estimation of the funtionalI(h) = Z 1�1 h2(t)dt: (3. 6)An estimator of I(h) is I(hn): Note thatjI(hn)� I(h)j = j Z 1�1(hn(t)� h(t))(hn(t) + h(t))dtj� Z 1�1 jhn(t)� h(t)jjhn(t) + h(t)jdt� sup�1<t<1 jhn(t)� h(t)j Z 1�1 jhn(t) + h(t)jdt= 2 sup�1<t<1 jhn(t)� h(t)j = 2Jn:The last equality follows from the fat that the funtions hn(t) and h(t) are probability densityfuntions. Hene EjI(hn)� I(h)j � 2[ 1bnE(Dn)Vw + b2n2 �2wCh℄ (3. 7)� 2[Kr 1bn [ nm ℄�1=2Vw + b2n2 �2wCh℄:If bn = [ nm ℄�1=6; then the above bound redues toEjI(hn)� I(h)j = O([ nm ℄�1=3): (3. 8)5



4 Appliation to Estimation of Distribution FuntionLet us now onsider the problem of estimating the distribution funtion H(:) of g(X1; : : : ;Xm)based on the i.i.d. observations fXi; 1 � i � ng for a �xed integer m � 1: Let Rn(x) be a se-quene of distribution funtions onverging weakly to the distribution funtion R(x) degenerateat zero suh that sup�1<x<1 jRn(x)�R(x)j = o(Æn) (4. 1)where Æn ! 0 as n!1: De�neĤn(t) = (nCm)�1X Rn(t� g(Xi1 ; : : : ;Xim)) (4. 2)Let Zn = sup�1<t<1 jĤn(t)�H(t)j (4. 3)� sup�1<t<1 jĤn(t)�EĤn(t)j+ sup�1<t<1 jEĤn(t)�H(t)j:But (4. 4)sup�1<t<1 jĤn(t)�EĤn(t)j = sup�1<t<1 j Z 1�1Rn(t� y)dHn(y)� Z 1�1Rn(t� y)dH(y)j= sup�1<t<1 j Z 1�1(Hn(y)�H(y))dRn(t� y)j� Dn:Therefore Zn � Dn + sup�1<t<1 jEĤn(t)�H(t)j: (4. 5)It an be heked thatsup�1<t<1 jEĤn(t)�H(t)j � sup�1<t<1 j Z 1�1 jRn(t� y)�R(t� y)jh(y)dy (4. 6)� sup�1<t<1 jRn(t)�R(t)j Z 1�1 h(y)dy� Æn:Hene E(Zn) � E(Dn) + Æn: (4. 7)Applying Theorem 2.1 , we get thatE(Zn) � Kr[ nm ℄�1=2 + Æn: (4. 8)6



Remarks: It is interesting to note that the bounds obtained in Theorem 2.1 and henethe bounds given in the inequalities (3.4), (3.7) and (4.8) do not depend on the funtiong(x1; : : : ; xm). Further more the results agree with the optimal rate for bandwidth obtained inAhmad (2002) for the ase m = 1; that is, for the standard problem of density estimation.ReferenesAhmad, I.A. (2002) On moment inequalities of the supremum of empirial proesses withappliations to kernel estimation, Statist. Probab. Lett., 57, 215-220.Ahmad, I.A. and Fan, Y. (2001) Optimal bandwidths for kernel density estimators for fun-tions of observations, Statist. Probab. Lett., 51, 245-251.Dehling, H., Denker, M., and Philipp, W. (1987) The almost sure invariane priniple for theempirial proess of U -Statisti struture, Ann. Inst. Henri Poinare, 23, 121-134.Diggle, P. (1983) Statistial Analysis of Spatial Point Pattern, Aademi Press, New York.Frees, E.W. (1994) Estimating densities of funtions of observations, J. Amer. Statist. Asso.,89, 517-525.Panjer, H.H., and Willmot, G.E. (1992) Insurane Risk Models, Soiety of Atuaries, Shaum-burg, Illinois.Prakasa Rao, B.L.S. (1983) Nonparametri Funtional Estimation, Aademi Press, New York.Prakasa Rao, B.L.S. (2003) Moment inequalities for supremum of empirial proesses for�-mixing sequenes, Communiations in Statistis - Theory and Methods, 32, 1695-1701.Sen, P.K. (1983) On the limiting behavior of the empirial kernel distribution funtion, Cal-utta Statistial Assoiation Bulletin, 32, 1-8.Sering, R. (1984) Generlized L�;M�; and R- statistis, Ann. Statist., 12, 76-86.Silverman, B.W. (1976) Limit theorems for dissoiated random variables, Adv. Appl. Prob.,8, 806-819.Silverman, B.W. (1983) Convergene of a lass of empirial distribution funtions of dependentrandom variables, Ann. Probab., 11, 745-751.
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