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Abstract
We derive moment inequalities for the supremum of empirical processes of U-Statistic struc-
ture and give application to kernel type density estimation and estimation of the distribution

function for functions of observations.
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1 Introduction

Moment inequalities for the supremum of empirical processes with applications to kernel type
estimation of a density function and a distribution function for identically distributed observa-
tions were investigated by Ahmad (2002) and by Prakasa Rao (2003) for ¢-mixing stationary
processes. Kernel type density estimation was extensively discussed in Prakasa Rao (1983). Let
Xp,n > 1 be independent and identically distributed (i.i.d.) random variables and for a given
integer m > 1, g : R™ — R be a real-valued function symmetric in its arguments. Motivated
by examples to study the measure of degree of spatial randomness in a spatial point pattern
(cf. Diggle (1983)) through study of the distribution function of the inter-point distances with
g(x1,x9) = |x1 — 9| with m = 2 and to study the distribution of sum of insurance claims with
g(x1,...,om) =21+ ...+ oy for some fixed m > 1, such as, for instance, in health insurance
(cf. Panjer and Willmot (1992)), Frees (1994) investigated the problem of estimation of the
density function of the random variable g(Xy, ..., X,,) using the kernel method of density es-
timation. We will derive some moment inequalities for the deviation of this density estimator
from the true density of the function g(Xi,...,X,,) assuming that it exists and obtain the
optimal rate for the bandwidth in the sense of the supremum norm. Ahmad and Fan (2001)
obtained optimal bandwidths, optimal in the sense of minimization of the asymptotic mean

integrated squared error, for the kernel density estimator proposed by Frees (1994).
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2 Empirical process of U-Statistic structure

Let X,,n > 1 be independent and identically distributed (i.i.d.) random variables and let
g : R™ — R be a real-valued function. As a generalization of the usual empirical distribution

function, we consider the empirical distribution function H, () defined by the random variables
{g(Xil,...,Xim) 1< <. <y Sn},

that is, for —oo < t < o0,
Hy(t) = (ne,) ™ Y 1(9(Xiys -5 Xiy,) < 1) (2. 1)
[+

hereafter called the empirical kernel distribution function (EKDF). Here I(.) denotes the indi-
cator function of a set, {i1,...,iy} is an ordered subset of {1,...,n} and >, denotes that the
sum is taken over all n¢,, such subsets. For a fixed ¢ , H,(t) is a U-Statistic. Let H(t) be the
distribution function of g(Xy, ..., X,,;). The process

{Vn(Hn(t) — H(t)),n > 1}

is called the empirical process of U-Statistic structure. Observe that this process reduces to the
usual empirical process of the i.i.d. random variables {g(X,),n > 1} in case m = 1. Silverman
(1976) established the weak convergence of the process. Sen (1983) discussed the properties
of EKDF from the view point of U-Statistic theory and established Glivenko-Cantelli lemma
type result for the EKDF and studied the weak convergence of the related empirical process
as defined above. Serfling (1984) proved the central limit theorems for functionals of empirical
distribution function of U-Statistic structure in his study of genaralized L-Statistics. Silverman

(1983) extended these results by proving the weak convergence of the sequence of processes
{Vn(Hy(t) — H(t)),—o0o <t <oo},n>1

to a continuous Gaussian process in weighted sup-norm metrics in D(—o00,00). Dehling et al.
(1987) obtained an almost sure approximation of the process n(H, — H) by a suitable Gaussian
process with a remainder term of the order O(n%”‘), A > 0 extending the Kiefer’result for the
empirical distribution function of i.i.d. random variables. As a consequence of Corollary 2 in
Dehling et al. (1987), it follows that

D, = sup |H,(t)—H(t)| = O(n '?(loglogn)'/?) (2. 2)

—oo<t<oo

almost surely.

Let o = (a(1),...,a(n)) denote an arbitrary permutation of (1,...,n). Following the block-
ing arguments of Hoeffding in connection with his study of U-statistics, define i.i.d. random

variables



where [7*] denotes the largest integer less than or equal to ;. Then Y., Y%, are Lid.

random variables with the distribution function H and the empirical distribution function

n

Hy(t) = [—]7' Y _IYQ <1]. (2. 4)

m )

Furthermore, it is known that

Hy(t) = () ™' Y H(t) (2. 5)

which is also known as the Hoeffding identity. Hence
Hy(t) — H(t) = (n!) ™" Y_{Hp(t) — H(t)}
@
which implies that
sup [Ha(t) = H(H) < (n!)" Zsup |Hy () — H(t)].
Therefore
E(sup [Hn(t) — H(t)]) < (nt)~" za: E(sup [Hy (t) — H(®)])-
Since the random variables X,,,n > 1 are i.i.d. random variables. it follows that

E(sup |H; (1) = H(t)))

is the same for any permutation o = («(1),...,a(n)) of (1,...,n). Hence
E(sup |Hn(t) — H(t)]) < B(sup [Hy (t) — H(t)]) (2. 6)
for any permutation « of (1,...,n). Therefore, from the results given in the inequality 2.1 of

Ahmad (2002) for the deviation of the empirical distribution function from the true distribution

function for i.i.d. random variables, it follows that

Blsup [H32 () = H(1)]) < Ko ] (2.7)

- m

for any integer r > 1 where

K, = {2r/2 L(r/2)}'/". (2. 8)

Furthermore, the inequality 2.2 of Ahmad (2002) implies that

Blexplty/[ 7| sup [H () ~ H)I)) < 1+ VErte” 2. 9)

for every n > m. Combining the above facts, we have the following result for the EKDF H,,.



Theorem 2.1: Let X;,1 <7 < n be iid. random variables and H,, be the empirical kernel
distribution function corresponding to a kernel g(z1,..., %) as defined earlier and let H be

the distrbution function of ¢g(X1,..., X,,;). Then, for every integer r > 1, and for all n > m,
E(sup |H,(t) — H(t)|) < K, [—~] /2 (2. 10)
t m

where K, is an absolute constant as defined in (2.8) and for every n > m,

E(exp{t\/% sup |H,(y) — H(y)|}) <1+ v2rte?’. (2. 11)

3 Application to Density Estimation

Following the notation introduced in the previous section, suppose that the distribution function
H(t) of the random variable g(X1, ..., X,,) has the probability density function h(t). Suppose

that the function A(t) has a continuous and bounded second derivative with
sup |h"(t)| = Cp, < o0.
t

Frees (1994) studied the problem of estimation of the density function h(t) by the kernel method
of density estimation (cf. Prakasa Rao (1983)). Let w( ) be a bounded symmetric probability
density function with mean zero and finite variance o2 . Further suppose that it is of bounded

variation with total variation V.

The kernel type density estimator h,,(t) of h(t) introduced by Frees (1994) is given by

hn(t) ncm 12 Zlban--- 7Xim)) (3 ].)

where b, is the bandwidth such that b, — 0 as n — co. Let
JIn = S%p | (t) — h(t)].

Applying the Taylor’s expansion for the function h(t — ub,) around the point ¢ and observ-
ing that w(.) is a bounded symmetric probability density function with mean zero and finite

variance, it is easy to check that

)= 1)) < I3 [ oG - - [T oG haEw] 62

+|b/ () () - h)

< sup |Hp(y Z,Ch
bn —00<y<00
1 b )

< — sup  [Hu(y) — H(y)|Vw + 50y, Ch
b —oo<y<oo 2

2
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@
=
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where D,, is as defined by (2.2). Hence

1 b2
E(Jn) < 7= E(Dn)Va + 5173, Ch. (3. 3)

n

Applying the bound on E(D,,) derived in Theorem 2.1, we have

1. n. b2
E(Jn) < Kpp[]712Vy + 2103, O (3. 4)

n T
Choosing by, such that
1

b ]71/2 = b?w

[

n
m

3

that is,

b, = [%]—1/6,
we get an optimum bound on E(J,) as far as the rate of convergence is concerned and for a
such choice of the bandwidth by,

B(J,) = O(1=] '1*). (3. 5)

Following equation (12) of Ahmad and Fan (2001), observe that the optimal bandwidth for
minimizing the asymptotic mean integrated squared error (AMISE) of the density estimator
By (t) is of the order (nc,, )~/ as opposed to the optimal bandwidth for minimizing the bound
on the mean uniform deviation of the density estimator obtained above which is of the order

[%]_1/6. If m = 1, then these orders reduce to n=1/3 and n~Y/6 respectively.

Let us now consider the problem of estimation of the functional

I(h) = / B2 (t)dt. (3. 6)
— 00
An estimator of I(h) is I(hy). Note that

100) =10 = | [ (ha®) = b0) B 0) + ()
< [ Ity = k@b (®) + A0t

< swp () = hO] [ Iha(t) + hDde
—oo<Lt<oo —00

= 2 sup |hp(t) = h(t)] = 2J,.

—oo<t<o0o
The last equality follows from the fact that the functions h,,(t) and h(t) are probability density

functions. Hence

1 b;
ElI(hy) = I(A)| < 2= B(Dy)Vi + 513, C] (3. 7)
n
1 . n b2
< 2K, — [TV, 4+ 2ol ).
< 2 " b [m] Vi + 9 7 Ch]
If b, = [2]~'/5, then the above bound reduces to
n.,_
E|I(hn) = I(h)| = O(—]"'/%). (3. 8)



4 Application to Estimation of Distribution Function

Let us now consider the problem of estimating the distribution function H(.) of g(X1,...,Xp)
based on the i.i.d. observations {X;,1 < i < n} for a fixed integer m > 1. Let R,(z) be a se-
quence of distribution functions converging weakly to the distribution function R(z) degenerate

at zero such that

sup |Ry(z) — R(z)| = o(dn) (4. 1)
—00<r <0
where ¢, — 0 as n — oo. Define
‘E[n(t) = (ncm)_l ZRn(t - g(Xil" .- ’Xim)) (4 2)
Let
Z, = sup |Hy(t)—H(t)| (4. 3)
—oo<t<o0
< sup |H,(t) — EHy(t)| + sup |EH,(t) — H(t)|-
—oo<t<oo —oo<t<oo
But
(4. 4)
sup [H,(t) = BH,(0)] = sw | [ Ru(t—y)dHa(y)
—oo<t<o0o —oo<t< 00
/ Ra(t — y)dH(y)|
= sw | [ () - H)dR( )
7oo<t<oo
<
Therefore
Zn < Dp+ sup |EH,(t)— H(t)| (4. 5)
—oo<t<oo
It can be checked that
sup |BH, (0 -HOl < s | [ Rt =y)lk(m)dy (@ ©)
—o0o<t<oo —oo<t<oo J—o00
< sup  [Rn(t) — R(t)] h(y)dy
—o0o<t<oo —00
S
Hence
E(Zy) < E(D,) + 6, (4. 7)
Applying Theorem 2.1 |, we get that
E(Zy) <K [—] 'V +56 (4. 8)



Remarks: It is interesting to note that the bounds obtained in Theorem 2.1 and hence
the bounds given in the inequalities (3.4), (3.7) and (4.8) do not depend on the function
g(x1,...,Ty). Further more the results agree with the optimal rate for bandwidth obtained in

Ahmad (2002) for the case m = 1, that is, for the standard problem of density estimation.
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