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Limit Distribution of Maximal Segmental Sore forPartial Sums for Random Number of I.I.D.Random VariablesB. L. S. PRAKASA RAO and M. SREEHARIIndian Statistial Institute, New Delhi and M. S. University, VadodaraAbstratMoleular sequene analysis via the study of loal sore is an important tehnique inthe study of moleular biology. Loal sore is the maximum segmental sore for the par-tial sums obtained via the soring sheme. Suppose the soring sheme is modeled by asequene of independent and identially distributed random variables. We obtain the limit-ing distribution of the maximal segmental sore for the partial sums for a random numberof independent and identially distributed random variables.Key words : Maximum segmental sore for partial sums; Random Limit Theorem; LoalSore; Moleular sequene analysis.AMS 2000 Subjet Classi�ation : Primary 60 G 50.
1 IntrodutionMoleular sequene analysis is an important tehnique useful in the study of moleular biology.A major problem is to identify interesting patterns in sequenes. Suppose A1; : : : ; An is anobserved sequene (DNA, protein et.) from a �nite alphabet (nuleotides or amino aids).Let � be a soring funtion. Soring assignments for nuleotides arise from onsiderations suhas biohemial ategorization, physial properties or assoiation with seondary strutures.The loal sore of the sequene A1; : : : ; An aording to the soring sheme � is de�ned byHn = max1�i�j�n(�jk=i�(Ak)):The loal sore Hn orresponds to a segment of the sequene with maximal aggregate sore.The properties of the loal sore Hn have been investigated using the probability model thatthe suessive letters of a sequene are generated by independent and identially distributedrandom variables. For a disussion on biologial sequene analysis, see Durbin et al. (1998)and Waterman (1995).



Let fXng be a sequene of independent and identially distributed ( i.i.d.) random variablesde�ned on a probability spae (
;F ; P ) satisfying the following assumptions: (i) P (X1 > 0) >0; (ii) E(X1) < 0; and (iii) the random variable X1 is bounded i.e., (P (jX1j < ) = 1 for someonstant  > 0 ).Let Sn = nPk=1Xk and Zn = max1�i�j�n (Sj � Si) : Iglehart (1972) proved the following theorem.Theorem 1.1 : If fXng is a sequene of non-lattie random variables satisfying the onditionsgiven above, then, as n!1;P [Zn � � logn � x℄! G(x) = exp h�ke�x=�i (1.1)where � and k are positive onstants depending on the distribution of X1:Karlin and Dembo (1992) extended this result to the lattie ase. Let S0 = 0: Using the ran-dom walk theory, Merier et. al. (2003) establish the exat distribution of the maximum partialsum M = supk�0 Sk of independent and identially distributed random variables fXi; i � 1gtaking values from the alphabet A = f+u; : : : ;�vg where u and v are positive integers withE(X1) < 0: They also obtain an approximation to the distribution of the loal sore. Note thatthe random variable Zn de�ned above is the `loal sore' in the study of moleular sequeneanalysis in moleular biology when Xi models �(Ai) and it also arises in the study of the max-imal waiting-time distribution for the single server queue GI / G / 1, et. Further details ofthese results and other examples an be found in the refrenes ited above. Our main aim inthis paper is to obtain a random version of Theorem 1.1.2 Main ResultLet fNng be a sequene of positive integer valued random variables de�ned on the probabilityspae (
;F ; P ) satisfying the ondition Nnkn p! N (2.1)for some sequene of integers fkng ; 0 < kn ! 1; where N is a positive random variable. Weprove the following random indexed version of the result in (1.1).Theorem 2.1: Under the onditions stated above,P (ZNn � � logNn � x)! G(x) (2.2)as n!1 for every x 2 R; where G(x) is as de�ned by (1.1).2



The proof of the theorem depends on the following Lemmas.Lemma 2.2 : Let frng and fmng with rn � mn be two inreasing sequenes of positiveintegers and let fAng be a sequene of events suh that An depends only on the randomvariables Xrn ; : : : ;Xmn : Then, for any event A independent of n suh that P (A) > 0;P (AnjA)� P (An)! 0as n!1:Proof of the result is given in Lemma 1 in Barndor�-Nielsen (1964).Let rn = o(log kn); and Z?n = maxrn�i�j�kn(Sj � Si): ThenZ?n d= Zkn�rn (2.3)in the sense that they have idential distributions sine X1;X2; : : : ;Xn are i.i.d. randomvariables. Hene, as n!1; we haveP (Z?n � x+ � log kn) ' P (Z?n � x+ � log(kn � rn))beause rn = o(log kn): This an be proved by the following arguments. LetUn = Z?n � � log(kn � rn)and Fn(x) = P (Un � x):In view of (1.1) and (2.3), it follows thatFn(x) w! G(x)as n!1: Note thatP (Z?n � x+ � log kn) = P �Z?n � x+ � log(kn � rn)� � log kn � rnkn �= P �Un � x� � log kn � rnkn �= Fn�x� � log kn � rnkn � :Note that the distribution funtion G(x) is ontinuous for all x: An appliation of the Polya'stheorem and the fat that rn = o(log kn) implies thatFn�x� � log kn � rnkn � w! G(x)as n!1: Hene 3



P (Z?n � x+ � log kn)! G(x) (2.4)as n!1: Let Wn = max1�i�rn�1 maxi�j�kn (Sj � Si) :We now establish the mixing property for the sequene of events fAng whereAn = fZkn � x+ � log kng :Lemma 2.3 : For x 2 R and � as in (1.1) and any event A independent of n suh thatP (A) > 0; P (AnjA)� P (An)! 0as n!1:Proof. In view of Lemma 2.2P (Z?n � x+ � log knjA)� P (Z?n � x+ � log kn)! 0as n!1: Furthermore, in view of the observation at (2.3) and the assumption rn = o(log kn);we have from (1.1) and (2.4) that,P (Z?n � x+ � log kn) = P (Zkn�rn � x+ � log kn)! G(x) (2.5)as n!1: The proof of the Lemma 2.3 will be omplete if we prove thatP (AnjA)� P (Z?n � x+ � log knjA)! 0as n!1 for any event A with P (A) > 0: We observe thatAn = fZkn � x+ � log kng= fmax (Z?n;Wn) � x+ � log kngand hene P (A) jP (AnjA)� P (Z?n � x+ � log knjA)j� P (Z?n � x+ � log kn < Wn) : (2.6)Writing x+ � log kn = an(x); we observe that Wn > an(x) if and only if there exist integers rand s suh that r < s � kn; r � rn � 1 for whihsXj=rXj > an(x): (2.7)4



Clearly s > rn beause otherwise sXj=rXj < (s� r)and the inequality (2.7) an not hold for large n: Thus, the event [Wn > an(x)℄ implies thatfor some r < rn < s � kn; the inequality (2.7) holds and for suh values of r and sZ?n � Xrn +Xrn+1 + � � �+Xs = sXj=rXj � rn�1Xj=r Xj> an(x)� (rn � r) (beause jXij < )> an(x)� rn:Thus P (Z?n � x+ � log kn < Wn)� P [an(x)� rn < Z?n � an(x)℄! 0;as n ! 1; beause of the fat at (2.5) and the hoie of the sequene rn: The lemma nowfollows from (2.6).We now prove the main Theorem 2.1.Proof : Let i0 and m be two positive integers. Write�n = P �ZNn � x+ � logNn; ����Nnkn �N ���� > 1m� ;�n = P �ZNn � x+ � logNn; ����Nnkn �N ���� � 1m;N � i0m� ;and ni = P �ZNn � x+ � logNn; ����Nnkn �N ���� � 1m; im < N � i+ 1m � :Then P (ZNn � x+ � logNn) = �n + �n + 1Xi=i0 ni: (2.8)Writing n1i = �kn(i� 1)m � and n2i = �kn(i+ 2)m � ;we observe that ni � P [Zn1i � x+ � log n2ijMi℄ �i (2.9)where Mi = � im < N � i+ 1m � and �i = P (Mi):5



Also ni � P (Zn2i � x+ � log n1ijMi)�i � P �����Nnkn �N ���� > 1m;Mi� : (2.10)Let " > 0: Choose i0 so large suh that for i � i0G(x� � log i+ 2i� 1) � G(x� ")and G(x+ � log i+ 2i� 1) � G(x+ "):Then hoose m large enough so that P (N � i0m) < ": Finally hoose n0 large so that for n � n0P �����Nnkn �N ���� > 1m� < ":Then, by Lemma 2.3, we get from (1.1),(2.8), (2.9) and (2.10), that as n!1G(x� ") 1Xi=i0 �i � " � limP (ZNn � x+ � logNn)� limP (ZNn � x+ � logNn)� G(x+ ") 1Xi=i0 �i + 2":In view of the ontinuity of the funtion G(x) at x; we haveP (ZNn � x+ � logNn)! G(x)as n!1: This ompletes the proof of Theorem 2.1.In analogy to Theorem 2 in Sreehari (1968), we an derive the following theorem.Theorem 2.4 : Under the onditions stated earlier,P (ZNn � x+ � log kn)! Z 10 G(x� � log u) dP (N � u)as n!1 for every x:Proof : Let m be a positive integer. Write�?n = P �ZNn � x+ � log kn; ����Nnkn �N ���� > 1m��?n = P �ZNn � x+ � log kn; ����Nnkn �N ���� � 1m; N � 2m�6



and ?ni = P �ZNn � x+ � log kn; ����Nnkn �N ���� � 1m; im < N � i+ 1m � :Then P (ZNn � x+ � log kn) = �?n + �?n + 1Xi=2 ?ni; (2.11)and ?ni � P [Zn1i � x+ � log knjMi℄�i (2.12)where n1i; Mi and �i are as de�ned in Theorem 2.1. Also?ni � P (Zn2i � x+ � log knjMi)�i � P �����Nnkn �N ���� > 1m;Mi� : (2.13)Let " > 0: Choose m large enough so thatP �N < 2m� < ":Choose n0 as in Theorem 2.1. Then, by Lemma 2.3, we get from (1.1),(2.11), (2.12) and (2.13),as n!1; 1Xi=2 G�x+ � log mi+ 2��i � " � limn P (ZNn � x+ � log kn)� limn P (ZNn � x+ � log kn) � 1Xi=2 G�x+ � log mi� 1��i + 2": (2.14)Sine both 1Xi=2 G�x+ � log mi+ 2��i = 1Xi=2 G�x� � log i+ 2m ��iand 1Xi=2 G�x+ � log mi� 1� �i = 1Xi=2 G�x� � log i� 1m ��i! Z 10 G (x� � log u) dP (N � u)as m!1; by the usual arguments onerning the Riemann-Stieltjes integral, it follows from(2.14) that P (ZNn � x+ � log kn)! Z 10 P (Z + � log u � x) dP (N � u)as n!1 where Z is a random variable with distribution funtion G(:):Note : If the random variable N is a onstant, C; say, thenP (ZNn � x+ � log kn)! P (Z + � logC � x)7



as n!1:This result also follows from Theorem 2.1 and the Slutsky's theorem.Remarks :(1) It may be possible to dedue the Theorem 2.1 from general results in Csorgo(1974) for sequenes of random variables fZng by using our Lemma 2.3 and then heking theAnsombe's ondition. But our proof is diret. For general results on weak onvergene ofprobability measures on omplete separable metri spaes indexed by random sequenes, seePrakasa Rao (1973).(2) If the random variable N is independent of the sequene of random variables fXng ; we donot need Lemma 2.3.(3) If the random sequene fNng is independent of the sequene of random variables fXng ;then perhaps the assumption that Nnkn p! N as n!1may be weakened to onvergene in distribution of the sequene Nn=kn to N as n! 1 as inKorolev (1994).
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