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Abstract

Molecular sequence analysis via the study of local score is an important technique in
the study of molecular biology. Local score is the maximum segmental score for the par-
tial sums obtained via the scoring scheme. Suppose the scoring scheme is modeled by a
sequence of independent and identically distributed random variables. We obtain the limit-
ing distribution of the maximal segmental score for the partial sums for a random number
of independent and identically distributed random variables.
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1 Introduction

Molecular sequence analysis is an important technique useful in the study of molecular biology.
A major problem is to identify interesting patterns in sequences. Suppose Aq,..., A, is an
observed sequence (DNA, protein etc.) from a finite alphabet (nucleotides or amino acids).
Let o be a scoring function. Scoring assignments for nucleotides arise from considerations such
as biochemical categorization, physical properties or association with secondary structures.
The local score of the sequence Ay, ..., A, according to the scoring scheme ¢ is defined by

_ J
H, = lsfgg?;n(zk:ia(Ak))-

The local score H,, corresponds to a segment of the sequence with maximal aggregate score.
The properties of the local score H,, have been investigated using the probability model that
the sucessive letters of a sequence are generated by independent and identically distributed
random variables. For a discussion on biological sequence analysis, see Durbin et al. (1998)
and Waterman (1995).



Let {X,,} be a sequence of independent and identically distributed ( i.i.d.) random variables
defined on a probability space (2, F, P) satisfying the following assumptions: (i) P(X; > 0) >
0; (ii) E(X;) < 0; and (iii) the random variable X; is bounded i.e., (P(|X1| < ¢) =1 for some

constant ¢ >0 ).

n
Let S, = Y Xy and Z, = max (S; — ;). Iglehart (1972) proved the following theorem.
= 1<i<j<n

Theorem 1.1 : If {X,} is a sequence of non-lattice random variables satisfying the conditions

given above, then, as n — o0,
P(Z, —60logn < z] - G(z) = exp [—ke*"p/a} (1.1)
where 0 and k are positive constants depending on the distribution of X;.

Karlin and Dembo (1992) extended this result to the lattice case. Let Sy = 0. Using the ran-
dom walk theory, Mercier et. al. (2003) establish the exact distribution of the maximum partial
sum M = sup>( Sk of independent and identically distributed random variables {Xi,i > 1}
taking values from the alphabet A = {+u,...,—v} where u and v are positive integers with
E(X1) < 0. They also obtain an approximation to the distribution of the local score. Note that
the random variable Z,, defined above is the ‘local score’ in the study of molecular sequence
analysis in molecular biology when X; models o(A;) and it also arises in the study of the max-
imal waiting-time distribution for the single server queue GI / G / 1, etc. Further details of
these results and other examples can be found in the refrences cited above. Our main aim in

this paper is to obtain a random version of Theorem 1.1.

2 Main Result

Let {N,} be a sequence of positive integer valued random variables defined on the probability

space (2, F, P) satisfying the condition

LN (2.1)

F|&

for some sequence of integers {ky}, 0 < k, — 0o, where N is a positive random variable. We

prove the following random indexed version of the result in (1.1).
Theorem 2.1: Under the conditions stated above,
P(Zy, —0log N, < z) = G(z) (2.2)

as n — oo for every x € R, where G(z) is as defined by (1.1).



The proof of the theorem depends on the following Lemmas.

Lemma 2.2 : Let {r,} and {m,} with r, < m, be two increasing sequences of positive
integers and let {A4,} be a sequence of events such that A, depends only on the random
variables X, ,..., X, . Then, for any event A independent of n such that P(A) > 0,

P(An|A) - P(An) =0
as n — OQ.

Proof of the result is given in Lemma 1 in Barndorff-Nielsen (1964).

Let rp, = o(logky), and Z = max (S; —.5;). Then

rn<i<j<kn
* d
Zy =2k, —r, (2.3)
in the sense that they have identical distributions since Xi, Xo,..., X, are ii.d. random

variables. Hence, as n — oo, we have
P(Z; <x+0logk,) ~ P (Z, <x+0log(k, —ry))
because r, = o(log k;). This can be proved by the following arguments. Let
Up = Zp, — 0log(kn — 1)

and
F,(z) =P(U, <z).

In view of (1.1) and (2.3), it follows that
Fy(z) = G()
as n — o0o. Note that

P(Z;<xz+0logk, = P

ko —
<Z;§$+910g(kn—rn)—910g nk Tn)
n
(Ungx—elogk”k_”>

kn_n
= Fn(ac—t?log ? r )

n

= P

Note that the distribution function G(z) is continuous for all . An application of the Polya’s

theorem and the fact that r,, = o(log k) implies that

F, <x — Olog knk_ T”) 2 G(x)

n

as n — 0o. Hence



P(Zy <x+0logk,) — G(x) (2.4)
as n — 0o. Let

W, = max max (S;—5;).
1<i<rn—1i<j<kn

We now establish the mixing property for the sequence of events { A, } where

Ap ={Z, <z +0logky}.

Lemma 2.3 : For x € R and € as in (1.1) and any event A independent of n such that
P(A) >0,

as n — 00.
Proof. In view of Lemma 2.2
P(Z; <z +0logkylA) — P(Z, <z+0logk,) —0

as n — 00. Furthermore, in view of the observation at (2.3) and the assumption r, = o(log k),
we have from (1.1) and (2.4) that,

P(Zy <x+0logk,) = P(Zk,—r, <z+0logky)
- G(x) (2.5)

as n — 0o. The proof of the Lemma 2.3 will be complete if we prove that
P(A,|A) — P(Z; <x+0logky|A) = 0
as n — oo for any event A with P(A) > 0. We observe that

Ay = {Zi, <o +0loghy)
= {max (Z;, W,) <z +0logky,}

and hence

P(A) |P(An|4) — P(Z} < &+ 0108 k| )
< P(Zy<z+0logk, <W,). (2.6)

Writing x + 0log k,, = a,(x), we observe that W,, > a,(x) if and only if there exist integers r
and s such that r < s < k,,, r <r, — 1 for which

ZXj > ap(x). (2.7)
j=r
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Clearly s > r, because otherwise
S
Z X;<e(s—r)
j=r

and the inequality (2.7) can not hold for large n. Thus, the event [W,, > a,(z)] implies that

for some r < r,, < s < ky, the inequality (2.7) holds and for such values of 7 and s

rp—1

S
7y > Xpy A Xppi o+ X=X Y X
j=r j=r

> ap(z) —c(rp, —r) (because|X;| < ¢)

an(z) — crp.
Thus

P(Z) <z +0logk, < W)
<

~

[an(z) — crp < Z) < ap(z)]

—

=

as n — 0o, because of the fact at (2.5) and the choice of the sequence r,,. The lemma now
follows from (2.6).

We now prove the main Theorem 2.1.

Proof : Let ip and m be two positive integers. Write

N, 1
o, = P(ZNn <z + 60log Ny, —n—N‘ >—>,
kn, m
N, 1 )
Bn = P(ZNn <z + 0log Ny, —n—N‘ g—,NgZ—()),
kn m m
and N 1 11
%i:P[ZNn <z+60logN,, |-~ - N <, L<N< s ]
kn, m’'m m
Then
(0.0
P(Zn, Sx—l—ﬁlogNn):an—i—ﬁn—i—Z’yni. (2.8)
i=ip
Writing
kn(i—1 kn(i+2
- [M] and  ny; = [M]
m m
we observe that
Vi < PZy,; < o+ 0logno| M) m; (2.9)

where

. "
Mi:{i<N§Z+ } and m = P(M;).

m m



Also .

n

1
> —,Mi> : (2.10)
m

Let € > 0. Choose iy so large such that for 7 > 4

4 2
G(x—@logz,i_l) > G(z—¢)

and Lo
G(x—i—@logzj:l) < G(z+e).

Then choose m large enough so that P(N < %0) < €. Finally choose ng large so that for n > ng

N, 1
P(‘—"—N‘ >—> <e.
kn, m
Then, by Lemma 2.3, we get from (1.1),(2.8), (2.9) and (2.10), that as n — oo

G(z —¢) Zm —¢e < limP(Zy, <z +0logNy,)
1=1g

< lLimP(Zy, < x4+ 6logN,)

< Glz+e)d m+2e.

i=ig
In view of the continuity of the function G(z) at =, we have
P(Zyn, <x+0logN,) — G(z)

as n — oo. This completes the proof of Theorem 2.1.
In analogy to Theorem 2 in Sreehari (1968), we can derive the following theorem.

Theorem 2.4 : Under the conditions stated earlier,
o
P(Zn, <z +0logk,) — / G(z —flogu)dP(N < u)
0

as n — oo for every x.

Proof : Let m be a positive integer. Write

N, 1
ay = P(ZNngac—i—Hlogkn, —n—N‘>—>
kn, m
N, 1 2
kn, m m




and

N, 1 + 1
fy&-zP(ZNn <z +0logk,, |— —N| < —, i<N§ vt )
kn, m’'m m
Then
oo
P(Zy, <z +0loghy) = b + B4+ > Viis (2.11)
i=2
and
Vi < P [Znyy <+ Olog k| Mi] (2.12)
where ny;, M; and m; are as defined in Theorem 2.1. Also
Yoi = P (Zy,, <+ 0logky|M;)m ( Ml> . (2.13)

Let € > 0. Choose m large enough so that

2
P (N < —> <e.
m
Choose ng as in Theorem 2.1. Then, by Lemma 2.3, we get from (1.1),(2.11), (2.12) and (2.13),

as n — 00,

ZG(x—i—Hlog,m )Wi—sgli_mP(ZNn <z +0logk,)
1+ 2 n

i=2
> m
< mP(ZNn§x+010gkn)§ZG<x+010g, >7ri+25.
" i—2 i—1
(2.14)

Since both .

ZG($+910 )W'_ZG<$—010 Z+2>7r

- g D) i 4 g i

=2 1=2
and

> m > 1—1
ZG(Q:—}—Hlogi_1>7ri:ZG(x—010g -
=2 1=2
— / G (z —0logu)dP (N < u)
0

as m — 00, by the usual arguments concerning the Riemann-Stieltjes integral, it follows from
(2.14) that

P(Zn, <z+0logky,) —)/ P(Z+0logu < z) dP(N < u)
0

as n — oo where Z is a random variable with distribution function G(.).

Note : If the random variable N is a constant, C, say, then

P(Zn, <xz+0logk,) — P(Z+0logC < z)



as n — 0o.
This result also follows from Theorem 2.1 and the Slutsky’s theorem.

Remarks :(1) It may be possible to deduce the Theorem 2.1 from general results in Csorgo
(1974) for sequences of random variables {Z,} by using our Lemma 2.3 and then checking the
Anscombe’s condition. But our proof is direct. For general results on weak convergence of
probability measures on complete separable metric spaces indexed by random sequences, see
Prakasa Rao (1973).

(2) If the random variable N is independent of the sequence of random variables { X, }, we do

not need Lemma 2.3.

(3) If the random sequence {N,} is independent of the sequence of random variables { X},

then perhaps the assumption that

AN as n— oo

S

may be weakened to convergence in distribution of the sequence N, /k, to N as n — oo as in
Korolev (1994).
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