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1 Introduction

Suppose U is uniformly distributed on the interval [0, 1]. Let Y7 and Y5 be independent non-

negative random variables independent of a random variable Y and U. Suppose further that

4

Y =U(Y1 + yo)

in the sense that the random variables Y and U(Y; + Y2) have the same distribution. Kotz
and Stuetel (1988) proved that the above equation characterizes the exponential distribution.
We now extend such results to other distributions such as Pareto distribution and Weibull

distribution by unifying the results via binary associative operation on the random variables.

A binary operation * over real numbers is said to be associative if (z * y) * z = = * (y * 2)
and it is said to be reducible if x xy = x % z or y x w = z*xw if and only if z = y. The operation
* is said have an identity element € if x x € = x for all z. it is known that the general reducible
continuous solution of the functional equation is z * y = g '(g(z) + g(y)) where g(.) is a
continuous and strictly monotone function provided z, y, x xy belong to a fixed possibly infinite
interval A(cf. Aczel (1966)). The function g is determined up to a multiplicative constant,
that is, g7 " (g91(z) + g1(y)) = g5 '(92(z) + ga(y)) for all z and y in a fixed interval A imples
g2(z) = agi(x) for all z in that interval for some « # 0. We assume here after that the binary
operation is reducible and associative with the function continuous and strictly increasing.
Further asume that there exists an identity element é € R such that z xé = z, 2 € A. It is also

known that every continuous reducible and associative operation defined on an interval A is



commutative (cf. Aczel (1966), p.267).

Examples of such binary operations are given in Muliere and Scarsini (1987). For instance (i)
if A= (—o00,00) and zxy = x+y, then g(z) = z, (ii) if A = (0,00) and zxy = zy,z > 0,y > 0,
then g(z) = logz, (iii) if A = (0,00) and z * y = (® + y*)/* z > 0,5 > 0 for some a > 0,
then g(z) = z%, (iv) if A = (-1,00) and x xy = z +y+ 2y + 1,z > —1,y > —1, then
g(z) =log(l + z),(v) if A=(0,00) and z xy = zy/(z +y),z > 0,y > 0, then g(z) = 1/z, and
(vi) if A =(0,00) and z*y = (x +y)/(1 + zy),z > 0,y > 0, then g(z) = arth z.

A characterization of the multivariate normal distribution through a binary associative op-
eration which is associative was given in Prakasa Rao (1974) and in Prakasa Rao (1977) for
gaussian measures on locally compact abelian groups. Muliere and Scarsini (1987) characterize
a class of bivariate distributions that generalize the Marshal-Olkin bivariate exponential distri-
bution through a functional equation invoving two binary associative operations. Some general
results on characterization of probability distributions through binary associative operayions
are studied in Muliere and Prakasa Rao (2003). A characterization of bivariate probability
distributions using the bivariate lack of memory property under binary associative operation
is discussed in Prakasa Rao (2004).

We now study an extension of results in Kotz and Stuetel (1968) through binary associative
operation there by giving characterizations of Weibull, Pareto and exponential distributions.
By choosing the binary associative operation appropriately, we obtain characterizations for
different classes of distributions. For instance, (i) if z xy = z +y, then we obtain the character-
ization of exponential distribution; (ii) if xy = x xy, then we obtain the characterization of the
Pareto distribution ; and (iii) if 2 * y = (2® + y®)/®, then we obtain a characterization of the
Weibull distribution. Inter alia, we derive some properties of the uniform, Beta and Gamma

distributions.

2 Preliminaries

Suppose f(x) is a real-valued function that is defined almost everywhere for z > 0 and is such
that

1 o0
/ |f(z)]z tdr < 0o and / |f(2)]|z2 tde < oo
0 1

for some real numbers ¢; and ¢y with ¢; < ¢o. Then the Mellin tranform of f(z) is defined by

f6) = [t o

0

where s = ¢ + 7 is a complex variable with ¢; < ¢ < ¢o.



If the Mellin transform exists and is an analytic function of the complex variable s for

¢1 < Re(s) < ¢y, where ¢; and ¢y are real, then the inversion integral converges to the function

f(x), that is,
c+i00 R
f@ =g [ Foads

B 2—7” c—100
where ¢; < ¢ < cg where the integration path is parellel to the imaginary axis of the complex

plane s and the integral is iunderstood in the sense of the Cauchy principal value (cf. Polyanin
and Manzirov (1998), pp. 433-434; Springer (1979), pp.30-31.)

3 Main result

Let * be a binary associative operation as described in Section 1 and g(.) be the associated
function corresponding to the operation *. Suppose that g(X;) and g(Xs2) are independent and
identically distributed (i.i.d) non-negative random variables which are independent of another
random variable W. Our problem is to determine the distribution of the random variable W
such that

g(X) £ W [g (X, * X2)]. (1)

For any random variables X and Y, we write X 2 Y if X and Y have the same distribution.
From (1) we obtain
d
9(X) = Wg(X1) + g(X2)]. (2)

Let Fx(.) denote the distribution function of any random variable X and fx(.) denote the

probability density function of X whenever it exists. For any random variable X, let

bg(s) = F (es g(X)) = /Res g(w)de(sc)

denote the integral tranform of the distribution of g(X). Then (2) is equivalent to

y(5) = | g3l fw (whio ®
Then, in order to find fy(.), we need to solve the integral equation (3).

We give a solution of (3) using the technique of Mellin transforms (see A. D. Polyamin and
A. V. Manzhirov (1998), pp. 495-496). For completness, we give also the derivation of the
solution. Multiplying on both sides of the equation (3) by s~! and integrating with respect to

s from 0 to oo, we obtain that

| dwtwdu [T ewsttas = [T oy s (@)

In the equation (4), we note that



(1) ﬁg(t) = fooo ¢y(s)s' ds is the Mellin transform of the integral transform ¢y(s) of the
distribution of g(X), and

(ii) d;g(t) = [ (;Sg(s)st*lds is the Mellin transform of the integral transform ¢§(3) of the
distribution of the random variable g(X7) + g(X2) with X; and X5 independent.

Now we make the change of variable z = sw in the inner integral of the double integral. This

implies the relation o
#2(5) / fuv (w)w=dw = G (s). (5)

Taking into account the formula
| o sdw = fiv(i - s)
0

we can write the equation (5) in the form

da(s) fw (L = s) = dy(s). (6)

Replacing 1 — s by s in the equation (6) and solving the resulting equation for fy (s), we obtain

the Mellin transform

w (s :7(,%9(1_8) 7
fw(s) 21— (7)

of the required solution fy(w) of the equation (4).

Applying now the inversion formula for the Mellin transforms, we obtain the solution of the

integral equation (3) in the form

o 1 C+ioo¢§(1_5) —s
fw(w) = %/CZOO Mw ds. (8)

If (i) fw(w) >0, and (i) f;° fw(w)dw = 1, then we have the answer to our question stated
by the equation (1).

Remark 3.1: Obviously we can generalize the above discussion to find the distribution of a

random variable W independent of n i.i.d. random variables X;, 1 <14 < n satisfying
d
9(X) = Wlg(X1) +9(X2) + -+ +9(Xn)].

In analogy with (3), we obtain the integral equation

ba(9) = [yt i (w)



4 Examples

We present some examples in this section and derive some known results.

Example 4.1: Kotz and Steutel (1988) presented a new approach to characterize the expo-
nential distributions. They have proved that if U, X and X5 are independent random variables,
U is uniformly distributed in (0,1) and X7, X5 distributed as X, a nonnegative random vari-
able, satisfying X Ly [X1 + X3], then X is exponentialy distributed. Following our approach,
suppose that

(i) g(X) has the same distribution as g(X;) and ¢g(X3), which are independent, and

(ii) g(X) is exponentially distributed, and

(iii) ¢g(X) <L w [9(X1 * X2)] with the random variable W independent of X; and Xo.

We will now show that there is a unique solution to the above problem and that W has the

uniform distribution on (0, 1).

Without loss of generality, we assume that E(g(X)) = 1. Suppose that g(X) =Y has the
probability density function f,(y) given by

fyly) = e if y>0
= 0 if y <0.

The Laplace transform of Y is
1
L —
v(s) 1+s

and the corresponding Mellin transform of this Laplace transform Ly-(s) is

by(s) = Sin?m), 0 < Re(s) < 1.

The Laplace transform of g (X1) + g (X3) is

Lg(x)+9(x5) () = 1+ 5)2

and the corresponding Mellin transform of this Laplace transform Lg(x,)14(x,)(5)is

s = DT o

sin(7s)




where C?'_, % (cf. Polyanin and Manzhirov (1998), p.757). Observe that, for

n =1,
i - T'(s) _ I(s)  (s=1I'(s—1)
L PMP(s-1-1+1) T(s—1)  T(s—1)
= (3 — 1).
Hence
12(6) = — " (g _
o(s) = sin(ws)( D
and
: 9ol =)

- (sin(wg —s))> (_S(if(:rgl—_ﬁm - %

Using the inversion formula for the Mellin transform, we obtain that

fw(w):{ 1, 0<w<1

0, otherwise.

Thus we have the following result.

Proposition 4.1: Suppose that g(X;) and g(Xs2) are independent and identically distributed

non-negative random variables which are independent of another random variable W and that
d
9(X) =W g(X1 * X))

Then

i) g(X) has the same distribution as that of g(X;) and ¢g(Xs), and that

ii) g(X) is exponentially distributed,

imply that the random variable W has the uniform distribution on (0,1).

Example 4.2: Suppose that g(X;) and g(X3) are independent identically distributed (abso-
lutely continuous) nonnegative random variables and W is a random variable, independent of

X, and Xy, with bounded support. Suppose that

9(X) LW [g(X1) + g(X2)]

Then, if



i) g(X) has the same distribution as that of g(X;) and ¢g(X3), and

ii) g(X) ~ I'(1,a), Gamma distribution with parameters 1 and a;

then W ~ Beta(a,a), Beta distribution with parameters ¢ and a.

We write that Z ~ I'(1, a), if the probability density function of Z is given by

zaflefz

= 0, z < 0.

The Laplace transform of Z is Lz(s) = (ﬁ) " The Mellin transform of this Laplace transform

Ly(s) is
/ (l—l-x) o e

With the change of variable H——x =y, we obtain that

Bols) = / (L= gy
= B(a—s,s) =
where B(.,.) is the Beta-function.

Suppose g(X7) ~ I'(1,a) and g(Xs2) ~ I'(1,a) and X; and X5 are independent. Then the
Laplace transform of g(X;) + g(Xs) is

1 2a
Lyg(x1)+g(x2) (8) = (1 + 5)

and the Mellin transform of this Laplace transform is

L'(s)I'(2a — 5).

B(2a — s,s) = I'(2a)

From the result obtained in Section 2, we observe that the Mellin transform of W is

c(s) = g(1—s)
fW( ) $§(1 _ 8)
_ Bla—(1-5),(1-9))
B(2a — (1 —s),(1—29))
Tl —=s)T(a+s—1) I'(2a)
B I'(a) ['(2a +s—1)I'(1 — s)

I'(2a)'(a+s—1)
L(s)P(2a+s—1)




Using the inversion formula for Mellin transforms, we obtain that

fw(w) = !

a—1 a—1
_— 1-— P<w<l1
B(a,a)w (1= w)™, ==

which in turn proves that the random variable W ~ Beta(a,a), that is, W has the Beta

disribution with parameters a and a.
If, in the above example, we assume that

i) g(X), g(X1) and ¢g(X2) are independent but not necessarily identically distributed such
that g(X) ~T'(L,a), g(X1) ~ T'(1,a) and g(X3) ~ I'(1,b),

then , it can be shown that W ~ Beta(a,b).

This can be seen from the facts

R I'(s)I'(a — s
o) = e,
R I'(s)I'(a+b—s
¢g(X1)+g(X2)(S) = ( )F((aib) )a
then
. qASg(Xl)(l —3) Ml—-s)'(a+s—1) I'(a+b)

fw(s) = = =
w bg(x1)+g(x2) (1 = 8)

['(a) 'l—s)'a+b+s—1)
T'(a+b)(a+s—1)
F(@)l(a+b+s—1)

Using the inversion formula for Mellin transforms, we obtain that

fw(w) = w1 —w) !, 0<w<l.

Characterization of exponential distribution

We now combine the results obtained above in the following proposition.

Proposition 4.2: Suppose that g(X;) and g(Xs2) are independent and identically distributed
nonnegative random variables which are independent of another random variable W and sup-
pose that

g(X) £ W [g(X1) + g(X2)]

Then any two of the following three conditions imply the third condition:



i) g(X) has the same distribution as that of g(X;) and g(X2);
ii) W has a uniform distribution on (0, 1); and

iii) g(X) is exponentially distributed.

Proof: We have observed that the conditions (i) and (iii) imply (ii) from Proposition 4.1. It is
clear that the conditions (ii) and (iii) imply (i). This can be seen by the following arguments.

From the equation (6), we have

da(s) fw (1 = 5) = dg(s).(10)

Since W is uniform on [0, 1], the Mellin tranform of W is fiy(s) = L. Since the random
variable g(X) is standard exponential, the Mellin transform of the Laplace transform of g(X)
is

~ s

bq(s) =

sin(7s)

Therefore
B(s) = (1l —s) _ _m(s—1)
g

sin(7s) sin(7s)

from the equation (10). Using the inversion formula of Mellin and Laplace transforms, we

obtain that the random variables g(X1) and g(X5) have standard exponential distributions.
We now prove that (i), (ii) imply (iii). From (9) and (i), we have

by(s) = [ [bg(sw)]? fw(w)dw.

R

Condition (ii) implies that
1
bu(s) = [ (@ytou))?au

1 /1
= ;/0 (;SZ(w)dw.

Following Kotz and Steutel (1998) and Alamatsaz (1985), we obtain that

1

bg(s) = T+ ag(s)

with a¢ > 0. Hence g(X) has an exponential distribution. It is immediate to verify that

1 ¢g(1—5)

s g1-s)
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