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CHACTERIZATION OF SOME PROBABILITY DISTRIBUTIONSTHROUGH BINARY ASSOCIATIVE OPERATIONPietro Muliere and B.L.S.Prakasa RaoBo

oni University, Milano and Indian Statisti
al Institute, New DelhiAbstra
t: A binary operation * over real numbers is said to be asso
iative if (x�y)�z = x�(y�z)and it is said to be redu
ible if x � y = x � z or y �w = z �w if and only if z = y: The operation* is said have an identity element ~e if x � ~e = x for all x: We 
hara
terize di�erent probabilitydistributions under binary operations on the random variables.AMS (2000) Subje
t Classi�
ation: Primary 62E10.Keywords and phrases: Chara
terization, Binary asso
iative operation, Exponential distribu-tion, Beta distribution, Gamma distribution, Uniform distribution, Weibull distribution, Paretodistribution.1 Introdu
tionSuppose U is uniformly distributed on the interval [0; 1℄. Let Y1 and Y2 be independent non-negative random variables independent of a random variable Y and U: Suppose further thatY d= U(Y1 + y2)in the sense that the random variables Y and U(Y1 + Y2) have the same distribution. Kotzand Stuetel (1988) proved that the above equation 
hara
terizes the exponential distribution.We now extend su
h results to other distributions su
h as Pareto distribution and Weibulldistribution by unifying the results via binary asso
iative operation on the random variables.A binary operation * over real numbers is said to be asso
iative if (x � y) � z = x � (y � z)and it is said to be redu
ible if x � y = x � z or y �w = z �w if and only if z = y: The operation* is said have an identity element ~e if x � ~e = x for all x: it is known that the general redu
ible
ontinuous solution of the fun
tional equation is x � y = g�1(g(x) + g(y)) where g(:) is a
ontinuous and stri
tly monotone fun
tion provided x; y; x�y belong to a �xed possibly in�niteinterval A(
f. A
zel (1966)). The fun
tion g is determined up to a multipli
ative 
onstant,that is, g�11 (g1(x) + g1(y)) = g�12 (g2(x) + g2(y)) for all x and y in a �xed interval A implesg2(x) = �g1(x) for all x in that interval for some � 6= 0: We assume here after that the binaryoperation is redu
ible and asso
iative with the fun
tion 
ontinuous and stri
tly in
reasing.Further asume that there exists an identity element ~e 2 �R su
h that x � ~e = x; x 2 A: It is alsoknown that every 
ontinuous redu
ible and asso
iative operation de�ned on an interval A is1




ommutative (
f. A
zel (1966), p.267).Examples of su
h binary operations are given in Muliere and S
arsini (1987). For instan
e (i)if A = (�1;1) and x�y = x+y; then g(x) = x; (ii) if A = (0;1) and x�y = xy; x > 0; y > 0;then g(x) = log x; (iii) if A = (0;1) and x � y = (x� + y�)1=�; x > 0; y > 0 for some � > 0;then g(x) = x�; (iv) if A = (�1;1) and x � y = x + y + xy + 1; x > �1; y > �1; theng(x) = log(1 + x);(v) if A = (0;1) and x � y = xy=(x+ y); x > 0; y > 0; then g(x) = 1=x; and(vi) if A = (0;1) and x � y = (x+ y)=(1 + xy); x > 0; y > 0; then g(x) = arth x:A 
hara
terization of the multivariate normal distribution through a binary asso
iative op-eration whi
h is asso
iative was given in Prakasa Rao (1974) and in Prakasa Rao (1977) forgaussian measures on lo
ally 
ompa
t abelian groups. Muliere and S
arsini (1987) 
hara
terizea 
lass of bivariate distributions that generalize the Marshal-Olkin bivariate exponential distri-bution through a fun
tional equation invoving two binary asso
iative operations. Some generalresults on 
hara
terization of probability distributions through binary asso
iative operayionsare studied in Muliere and Prakasa Rao (2003). A 
hara
terization of bivariate probabilitydistributions using the bivariate la
k of memory property under binary asso
iative operationis dis
ussed in Prakasa Rao (2004).We now study an extension of results in Kotz and Stuetel (1968) through binary asso
iativeoperation there by giving 
hara
terizations of Weibull, Pareto and exponential distributions.By 
hoosing the binary asso
iative operation appropriately, we obtain 
hara
terizations fordi�erent 
lasses of distributions. For instan
e, (i) if x�y = x+y, then we obtain the 
hara
ter-ization of exponential distribution; (ii) if xy = x � y, then we obtain the 
hara
terization of thePareto distribution ; and (iii) if x � y = (x� + y�)1=�, then we obtain a 
hara
terization of theWeibull distribution. Inter alia, we derive some properties of the uniform, Beta and Gammadistributions.2 PreliminariesSuppose f(x) is a real-valued fun
tion that is de�ned almost everywhere for x � 0 and is su
hthat Z 10 jf(x)jx
1�1dx <1 and Z 11 jf(x)jx
2�1dx <1for some real numbers 
1 and 
2 with 
1 < 
2: Then the Mellin tranform of f(x) is de�ned byf̂(s) = Z 10 xs�1f(x)dxwhere s = 
+ i� is a 
omplex variable with 
1 < 
 < 
2:2



If the Mellin transform exists and is an analyti
 fun
tion of the 
omplex variable s for
1 � Re(s) � 
2; where 
1 and 
2 are real, then the inversion integral 
onverges to the fun
tionf(x); that is, f(x) = 12�i Z 
+i1
�i1 f̂(s)x�sdswhere 
1 < 
 < 
2 where the integration path is parellel to the imaginary axis of the 
omplexplane s and the integral is iunderstood in the sense of the Cau
hy prin
ipal value (
f. Polyaninand Manzirov (1998), pp. 433-434; Springer (1979), pp.30-31.)3 Main resultLet * be a binary asso
iative operation as des
ribed in Se
tion 1 and g(:) be the asso
iatedfun
tion 
orresponding to the operation *. Suppose that g(X1) and g(X2) are independent andidenti
ally distributed (i.i.d) non-negative random variables whi
h are independent of anotherrandom variable W: Our problem is to determine the distribution of the random variable Wsu
h that g(X) d=W [g (X1 �X2)℄ : (1)For any random variables X and Y; we write X d= Y if X and Y have the same distribution.From (1) we obtain g(X) d=W [g(X1) + g(X2)℄ : (2)Let FX(:) denote the distribution fun
tion of any random variable X and fX(:) denote theprobability density fun
tion of X whenever it exists. For any random variable X, let�g(s) = E �es g(X)� � ZR es g(x)dFX(x)denote the integral tranform of the distribution of g(X): Then (2) is equivalent to�g(s) = ZR �2g(sw)fW (w)dw: (3)Then, in order to �nd fW (:); we need to solve the integral equation (3).We give a solution of (3) using the te
hnique of Mellin transforms (see A. D. Polyamin andA. V. Manzhirov (1998), pp. 495-496). For 
ompletness, we give also the derivation of thesolution. Multiplying on both sides of the equation (3) by st�1 and integrating with respe
t tos from 0 to 1; we obtain thatZ 10 fW (w)dw Z 10 �2g(sw)st�1ds = Z 10 �g(s)st�1ds: (4)In the equation (4), we note that 3



(i) �̂g(t) = R10 �g(s)st�1ds is the Mellin transform of the integral transform �g(s) of thedistribution of g(X); and(ii) �̂2g(t) = R10 �2g(s)st�1ds is the Mellin transform of the integral transform �2g(s) of thedistribution of the random variable g(X1) + g(X2) with X1 and X2 independent.Now we make the 
hange of variable z = sw in the inner integral of the double integral. Thisimplies the relation �̂2g(s)Z 10 fW (w)w�sdw = �̂g(s): (5)Taking into a

ount the formulaZ 10 fW (w)w�sdw = ^fW (1� s);we 
an write the equation (5) in the form�̂2g(s) ^fW (1� s) = �̂g(s): (6)Repla
ing 1�s by s in the equation (6) and solving the resulting equation for ^fW (s); we obtainthe Mellin transform ^fW (s) = �̂g(1� s)b�2g(1� s) (7)of the required solution fW (w) of the equation (4).Applying now the inversion formula for the Mellin transforms, we obtain the solution of theintegral equation (3) in the formfW (w) = 12�i Z 
+i1
�i1 �̂g(1� s)�̂2g(1� s)w�sds: (8)If (i) fW (w) � 0; and (ii) R10 fW (w)dw = 1; then we have the answer to our question statedby the equation (1).
Remark 3.1: Obviously we 
an generalize the above dis
ussion to �nd the distribution of arandom variable W independent of n i.i.d. random variables Xi; 1 � i � n satisfyingg(X) d=W [g(X1) + g(X2) + � � �+ g(Xn)℄ :In analogy with (3), we obtain the integral equation�g(s) = Z 10 �ng (sw)fW (w)dw:4



4 ExamplesWe present some examples in this se
tion and derive some known results.Example 4.1: Kotz and Steutel (1988) presented a new approa
h to 
hara
terize the expo-nential distributions. They have proved that if U; X1 andX2 are independent random variables,U is uniformly distributed in (0; 1) and X1; X2 distributed as X; a nonnegative random vari-able, satisfying X d= U [X1 +X2℄, then X is exponentialy distributed. Following our approa
h,suppose that(i) g(X) has the same distribution as g(X1) and g(X2); whi
h are independent, and(ii) g(X) is exponentially distributed, and(iii) g(X) d=W [g(X1 �X2)℄ with the random variable W independent of X1 and X2:We will now show that there is a unique solution to the above problem and that W has theuniform distribution on (0; 1):Without loss of generality, we assume that E(g(X)) = 1: Suppose that g(X) = Y has theprobability density fun
tion fy(y) given byfy(y) = e�y if y > 0= 0 if y � 0:The Lapla
e transform of Y is LY (s) = 11 + sand the 
orresponding Mellin transform of this Lapla
e transform LY (s) is�̂g(s) = �sin(�s) ; 0 < Re(s) < 1:The Lapla
e transform of g (X1) + g (X2) isLg(X1)+g(X2)(s) = 1(1 + s)2and the 
orresponding Mellin transform of this Lapla
e transform Lg(X1)+g(X2)(s)is�̂2g(s) = (�1)�sin(�s)Cns�15



where Cns�1 = �(s�1+1)�(n)�(s�1�n+1) (
f. Polyanin and Manzhirov (1998), p.757). Observe that, forn = 1; Cns�1 = �(s)�(1)�(s� 1� 1 + 1) = �(s)�(s� 1) = (s� 1)�(s� 1)�(s� 1)= (s� 1):Hen
e �̂2g(s) = � �sin(�s) (s� 1)and ^fW (s) = � �̂g(1� s)�̂2g(1� s)= � �sin(�(1 � s))���sin(�(1 � s))(1� s� 1)� � = 1s :Using the inversion formula for the Mellin transform, we obtain thatfW (w) = ( 1; 0 < w < 10; otherwise:Thus we have the following result.Proposition 4.1: Suppose that g(X1) and g(X2) are independent and identi
ally distributednon-negative random variables whi
h are independent of another random variable W and thatg(X) d=W [g(X1 �X2)℄ :Theni) g(X) has the same distribution as that of g(X1) and g(X2); and thatii) g(X) is exponentially distributed,imply that the random variable W has the uniform distribution on (0; 1):Example 4.2: Suppose that g(X1) and g(X2) are independent identi
ally distributed (abso-lutely 
ontinuous) nonnegative random variables and W is a random variable, independent ofX1 and X2, with bounded support. Suppose thatg(X) d=W [g(X1) + g(X2)℄Then, if 6



i) g(X) has the same distribution as that of g(X1) and g(X2); andii) g(X) � �(1; a); Gamma distribution with parameters 1 and a;then W � Beta(a; a); Beta distribution with parameters a and a:We write that Z � �(1; a); if the probability density fun
tion of Z is given byfZ(z) = za�1e�z�(a) ; z > 0= 0; z � 0:The Lapla
e transform of Z is LZ(s) = � 11+s�a : The Mellin transform of this Lapla
e transformLZ(s) is �̂g(s) = Z 10 � 11 + x�a xs�1dx:With the 
hange of variable 11+x = y; we obtain that�̂g(s) = Z 10 ya�s�1(1� y)s�1dy= B(a� s; s) = �(s)�(a� s)�(a)where B(:; :) is the Beta-fun
tion.Suppose g(X1) � �(1; a) and g(X2) � �(1; a) and X1 and X2 are independent. Then theLapla
e transform of g(X1) + g(X2) isLg(X1)+g(X2)(s) = � 11 + s�2aand the Mellin transform of this Lapla
e transform isB(2a� s; s) = �(s)�(2a� s)�(2a) :From the result obtained in Se
tion 2, we observe that the Mellin transform of W is^fW (s) = �̂g(1� s)�̂2g(1� s)= B(a� (1� s); (1� s))B(2a� (1� s); (1� s))= �(1� s)�(a+ s� 1)�(a) �(2a)�(2a+ s� 1)�(1 � s)= �(2a)�(a + s� 1)�(s)�(2a+ s� 1) :7



Using the inversion formula for Mellin transforms, we obtain thatfW (w) = 1B(a; a)wa�1(1� w)a�1; 0 � w � 1whi
h in turn proves that the random variable W � Beta(a; a), that is, W has the Betadisribution with parameters a and a:If, in the above example, we assume thati) g(X); g(X1) and g(X2) are independent but not ne
essarily identi
ally distributed su
hthat g(X) � �(1; a); g(X1) � �(1; a) and g(X2) � �(1; b);then , it 
an be shown that W � Beta(a; b):This 
an be seen from the fa
tŝ�g(X1)(s) = �(s)�(a� s)�(a) ;�̂g(X1)+g(X2)(s) = �(s)�(a+ b� s)�(a+ b) ;then ^fW (s) = �̂g(X1)(1� s)b�g(X1)+g(X2)(1� s) = �(1� s)�(a+ s� 1)�(a) �(a+ b)�(1� s)�(a+ b+ s� 1)= �(a+ b)�(a+ s� 1)�(a)�(a+ b+ s� 1) :Using the inversion formula for Mellin transforms, we obtain thatfW (w) = 1B(a; b)wa�1(1� w)b�1; 0 � w � 1:
Chara
terization of exponential distributionWe now 
ombine the results obtained above in the following proposition.Proposition 4.2: Suppose that g(X1) and g(X2) are independent and identi
ally distributednonnegative random variables whi
h are independent of another random variable W and sup-pose that g(X) d=W [g(X1) + g(X2)℄Then any two of the following three 
onditions imply the third 
ondition:8



i) g(X) has the same distribution as that of g(X1) and g(X2);ii) W has a uniform distribution on (0; 1); andiii) g(X) is exponentially distributed.Proof: We have observed that the 
onditions (i) and (iii) imply (ii) from Proposition 4.1. It is
lear that the 
onditions (ii) and (iii) imply (i). This 
an be seen by the following arguments.From the equation (6), we have �̂2g(s) ^fW (1� s) = �̂g(s):(10)Sin
e W is uniform on [0; 1℄, the Mellin tranform of W is ^fW (s) = 1s : Sin
e the randomvariable g(X) is standard exponential, the Mellin transform of the Lapla
e transform of g(X)is �̂g(s) = �sin(�s) :Therefore �̂2g(s) = �(1� s)sin(�s) = ��(s� 1)sin(�s)from the equation (10). Using the inversion formula of Mellin and Lapla
e transforms, weobtain that the random variables g(X1) and g(X2) have standard exponential distributions.We now prove that (i), (ii) imply (iii). From (9) and (i), we have�g(s) = ZR [�g(sw)℄2 fW (w)dw:Condition (ii) implies that �g(s) = Z 10 (�g(sw))2 dw= 1s Z 10 �2g(w)dw:Following Kotz and Steutel (1998) and Alamatsaz (1985), we obtain that�g(s) = 11 + ag(s)with a � 0: Hen
e g(X) has an exponential distribution. It is immediate to verify that1s = �̂g(1� s)�̂2g(1� s) :9
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