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CHACTERIZATION OF SOME PROBABILITY DISTRIBUTIONSTHROUGH BINARY ASSOCIATIVE OPERATIONPietro Muliere and B.L.S.Prakasa RaoBooni University, Milano and Indian Statistial Institute, New DelhiAbstrat: A binary operation * over real numbers is said to be assoiative if (x�y)�z = x�(y�z)and it is said to be reduible if x � y = x � z or y �w = z �w if and only if z = y: The operation* is said have an identity element ~e if x � ~e = x for all x: We haraterize di�erent probabilitydistributions under binary operations on the random variables.AMS (2000) Subjet Classi�ation: Primary 62E10.Keywords and phrases: Charaterization, Binary assoiative operation, Exponential distribu-tion, Beta distribution, Gamma distribution, Uniform distribution, Weibull distribution, Paretodistribution.1 IntrodutionSuppose U is uniformly distributed on the interval [0; 1℄. Let Y1 and Y2 be independent non-negative random variables independent of a random variable Y and U: Suppose further thatY d= U(Y1 + y2)in the sense that the random variables Y and U(Y1 + Y2) have the same distribution. Kotzand Stuetel (1988) proved that the above equation haraterizes the exponential distribution.We now extend suh results to other distributions suh as Pareto distribution and Weibulldistribution by unifying the results via binary assoiative operation on the random variables.A binary operation * over real numbers is said to be assoiative if (x � y) � z = x � (y � z)and it is said to be reduible if x � y = x � z or y �w = z �w if and only if z = y: The operation* is said have an identity element ~e if x � ~e = x for all x: it is known that the general reduibleontinuous solution of the funtional equation is x � y = g�1(g(x) + g(y)) where g(:) is aontinuous and stritly monotone funtion provided x; y; x�y belong to a �xed possibly in�niteinterval A(f. Azel (1966)). The funtion g is determined up to a multipliative onstant,that is, g�11 (g1(x) + g1(y)) = g�12 (g2(x) + g2(y)) for all x and y in a �xed interval A implesg2(x) = �g1(x) for all x in that interval for some � 6= 0: We assume here after that the binaryoperation is reduible and assoiative with the funtion ontinuous and stritly inreasing.Further asume that there exists an identity element ~e 2 �R suh that x � ~e = x; x 2 A: It is alsoknown that every ontinuous reduible and assoiative operation de�ned on an interval A is1



ommutative (f. Azel (1966), p.267).Examples of suh binary operations are given in Muliere and Sarsini (1987). For instane (i)if A = (�1;1) and x�y = x+y; then g(x) = x; (ii) if A = (0;1) and x�y = xy; x > 0; y > 0;then g(x) = log x; (iii) if A = (0;1) and x � y = (x� + y�)1=�; x > 0; y > 0 for some � > 0;then g(x) = x�; (iv) if A = (�1;1) and x � y = x + y + xy + 1; x > �1; y > �1; theng(x) = log(1 + x);(v) if A = (0;1) and x � y = xy=(x+ y); x > 0; y > 0; then g(x) = 1=x; and(vi) if A = (0;1) and x � y = (x+ y)=(1 + xy); x > 0; y > 0; then g(x) = arth x:A haraterization of the multivariate normal distribution through a binary assoiative op-eration whih is assoiative was given in Prakasa Rao (1974) and in Prakasa Rao (1977) forgaussian measures on loally ompat abelian groups. Muliere and Sarsini (1987) haraterizea lass of bivariate distributions that generalize the Marshal-Olkin bivariate exponential distri-bution through a funtional equation invoving two binary assoiative operations. Some generalresults on haraterization of probability distributions through binary assoiative operayionsare studied in Muliere and Prakasa Rao (2003). A haraterization of bivariate probabilitydistributions using the bivariate lak of memory property under binary assoiative operationis disussed in Prakasa Rao (2004).We now study an extension of results in Kotz and Stuetel (1968) through binary assoiativeoperation there by giving haraterizations of Weibull, Pareto and exponential distributions.By hoosing the binary assoiative operation appropriately, we obtain haraterizations fordi�erent lasses of distributions. For instane, (i) if x�y = x+y, then we obtain the harater-ization of exponential distribution; (ii) if xy = x � y, then we obtain the haraterization of thePareto distribution ; and (iii) if x � y = (x� + y�)1=�, then we obtain a haraterization of theWeibull distribution. Inter alia, we derive some properties of the uniform, Beta and Gammadistributions.2 PreliminariesSuppose f(x) is a real-valued funtion that is de�ned almost everywhere for x � 0 and is suhthat Z 10 jf(x)jx1�1dx <1 and Z 11 jf(x)jx2�1dx <1for some real numbers 1 and 2 with 1 < 2: Then the Mellin tranform of f(x) is de�ned byf̂(s) = Z 10 xs�1f(x)dxwhere s = + i� is a omplex variable with 1 <  < 2:2



If the Mellin transform exists and is an analyti funtion of the omplex variable s for1 � Re(s) � 2; where 1 and 2 are real, then the inversion integral onverges to the funtionf(x); that is, f(x) = 12�i Z +i1�i1 f̂(s)x�sdswhere 1 <  < 2 where the integration path is parellel to the imaginary axis of the omplexplane s and the integral is iunderstood in the sense of the Cauhy prinipal value (f. Polyaninand Manzirov (1998), pp. 433-434; Springer (1979), pp.30-31.)3 Main resultLet * be a binary assoiative operation as desribed in Setion 1 and g(:) be the assoiatedfuntion orresponding to the operation *. Suppose that g(X1) and g(X2) are independent andidentially distributed (i.i.d) non-negative random variables whih are independent of anotherrandom variable W: Our problem is to determine the distribution of the random variable Wsuh that g(X) d=W [g (X1 �X2)℄ : (1)For any random variables X and Y; we write X d= Y if X and Y have the same distribution.From (1) we obtain g(X) d=W [g(X1) + g(X2)℄ : (2)Let FX(:) denote the distribution funtion of any random variable X and fX(:) denote theprobability density funtion of X whenever it exists. For any random variable X, let�g(s) = E �es g(X)� � ZR es g(x)dFX(x)denote the integral tranform of the distribution of g(X): Then (2) is equivalent to�g(s) = ZR �2g(sw)fW (w)dw: (3)Then, in order to �nd fW (:); we need to solve the integral equation (3).We give a solution of (3) using the tehnique of Mellin transforms (see A. D. Polyamin andA. V. Manzhirov (1998), pp. 495-496). For ompletness, we give also the derivation of thesolution. Multiplying on both sides of the equation (3) by st�1 and integrating with respet tos from 0 to 1; we obtain thatZ 10 fW (w)dw Z 10 �2g(sw)st�1ds = Z 10 �g(s)st�1ds: (4)In the equation (4), we note that 3



(i) �̂g(t) = R10 �g(s)st�1ds is the Mellin transform of the integral transform �g(s) of thedistribution of g(X); and(ii) �̂2g(t) = R10 �2g(s)st�1ds is the Mellin transform of the integral transform �2g(s) of thedistribution of the random variable g(X1) + g(X2) with X1 and X2 independent.Now we make the hange of variable z = sw in the inner integral of the double integral. Thisimplies the relation �̂2g(s)Z 10 fW (w)w�sdw = �̂g(s): (5)Taking into aount the formulaZ 10 fW (w)w�sdw = ^fW (1� s);we an write the equation (5) in the form�̂2g(s) ^fW (1� s) = �̂g(s): (6)Replaing 1�s by s in the equation (6) and solving the resulting equation for ^fW (s); we obtainthe Mellin transform ^fW (s) = �̂g(1� s)b�2g(1� s) (7)of the required solution fW (w) of the equation (4).Applying now the inversion formula for the Mellin transforms, we obtain the solution of theintegral equation (3) in the formfW (w) = 12�i Z +i1�i1 �̂g(1� s)�̂2g(1� s)w�sds: (8)If (i) fW (w) � 0; and (ii) R10 fW (w)dw = 1; then we have the answer to our question statedby the equation (1).
Remark 3.1: Obviously we an generalize the above disussion to �nd the distribution of arandom variable W independent of n i.i.d. random variables Xi; 1 � i � n satisfyingg(X) d=W [g(X1) + g(X2) + � � �+ g(Xn)℄ :In analogy with (3), we obtain the integral equation�g(s) = Z 10 �ng (sw)fW (w)dw:4



4 ExamplesWe present some examples in this setion and derive some known results.Example 4.1: Kotz and Steutel (1988) presented a new approah to haraterize the expo-nential distributions. They have proved that if U; X1 andX2 are independent random variables,U is uniformly distributed in (0; 1) and X1; X2 distributed as X; a nonnegative random vari-able, satisfying X d= U [X1 +X2℄, then X is exponentialy distributed. Following our approah,suppose that(i) g(X) has the same distribution as g(X1) and g(X2); whih are independent, and(ii) g(X) is exponentially distributed, and(iii) g(X) d=W [g(X1 �X2)℄ with the random variable W independent of X1 and X2:We will now show that there is a unique solution to the above problem and that W has theuniform distribution on (0; 1):Without loss of generality, we assume that E(g(X)) = 1: Suppose that g(X) = Y has theprobability density funtion fy(y) given byfy(y) = e�y if y > 0= 0 if y � 0:The Laplae transform of Y is LY (s) = 11 + sand the orresponding Mellin transform of this Laplae transform LY (s) is�̂g(s) = �sin(�s) ; 0 < Re(s) < 1:The Laplae transform of g (X1) + g (X2) isLg(X1)+g(X2)(s) = 1(1 + s)2and the orresponding Mellin transform of this Laplae transform Lg(X1)+g(X2)(s)is�̂2g(s) = (�1)�sin(�s)Cns�15



where Cns�1 = �(s�1+1)�(n)�(s�1�n+1) (f. Polyanin and Manzhirov (1998), p.757). Observe that, forn = 1; Cns�1 = �(s)�(1)�(s� 1� 1 + 1) = �(s)�(s� 1) = (s� 1)�(s� 1)�(s� 1)= (s� 1):Hene �̂2g(s) = � �sin(�s) (s� 1)and ^fW (s) = � �̂g(1� s)�̂2g(1� s)= � �sin(�(1 � s))���sin(�(1 � s))(1� s� 1)� � = 1s :Using the inversion formula for the Mellin transform, we obtain thatfW (w) = ( 1; 0 < w < 10; otherwise:Thus we have the following result.Proposition 4.1: Suppose that g(X1) and g(X2) are independent and identially distributednon-negative random variables whih are independent of another random variable W and thatg(X) d=W [g(X1 �X2)℄ :Theni) g(X) has the same distribution as that of g(X1) and g(X2); and thatii) g(X) is exponentially distributed,imply that the random variable W has the uniform distribution on (0; 1):Example 4.2: Suppose that g(X1) and g(X2) are independent identially distributed (abso-lutely ontinuous) nonnegative random variables and W is a random variable, independent ofX1 and X2, with bounded support. Suppose thatg(X) d=W [g(X1) + g(X2)℄Then, if 6



i) g(X) has the same distribution as that of g(X1) and g(X2); andii) g(X) � �(1; a); Gamma distribution with parameters 1 and a;then W � Beta(a; a); Beta distribution with parameters a and a:We write that Z � �(1; a); if the probability density funtion of Z is given byfZ(z) = za�1e�z�(a) ; z > 0= 0; z � 0:The Laplae transform of Z is LZ(s) = � 11+s�a : The Mellin transform of this Laplae transformLZ(s) is �̂g(s) = Z 10 � 11 + x�a xs�1dx:With the hange of variable 11+x = y; we obtain that�̂g(s) = Z 10 ya�s�1(1� y)s�1dy= B(a� s; s) = �(s)�(a� s)�(a)where B(:; :) is the Beta-funtion.Suppose g(X1) � �(1; a) and g(X2) � �(1; a) and X1 and X2 are independent. Then theLaplae transform of g(X1) + g(X2) isLg(X1)+g(X2)(s) = � 11 + s�2aand the Mellin transform of this Laplae transform isB(2a� s; s) = �(s)�(2a� s)�(2a) :From the result obtained in Setion 2, we observe that the Mellin transform of W is^fW (s) = �̂g(1� s)�̂2g(1� s)= B(a� (1� s); (1� s))B(2a� (1� s); (1� s))= �(1� s)�(a+ s� 1)�(a) �(2a)�(2a+ s� 1)�(1 � s)= �(2a)�(a + s� 1)�(s)�(2a+ s� 1) :7



Using the inversion formula for Mellin transforms, we obtain thatfW (w) = 1B(a; a)wa�1(1� w)a�1; 0 � w � 1whih in turn proves that the random variable W � Beta(a; a), that is, W has the Betadisribution with parameters a and a:If, in the above example, we assume thati) g(X); g(X1) and g(X2) are independent but not neessarily identially distributed suhthat g(X) � �(1; a); g(X1) � �(1; a) and g(X2) � �(1; b);then , it an be shown that W � Beta(a; b):This an be seen from the fatŝ�g(X1)(s) = �(s)�(a� s)�(a) ;�̂g(X1)+g(X2)(s) = �(s)�(a+ b� s)�(a+ b) ;then ^fW (s) = �̂g(X1)(1� s)b�g(X1)+g(X2)(1� s) = �(1� s)�(a+ s� 1)�(a) �(a+ b)�(1� s)�(a+ b+ s� 1)= �(a+ b)�(a+ s� 1)�(a)�(a+ b+ s� 1) :Using the inversion formula for Mellin transforms, we obtain thatfW (w) = 1B(a; b)wa�1(1� w)b�1; 0 � w � 1:
Charaterization of exponential distributionWe now ombine the results obtained above in the following proposition.Proposition 4.2: Suppose that g(X1) and g(X2) are independent and identially distributednonnegative random variables whih are independent of another random variable W and sup-pose that g(X) d=W [g(X1) + g(X2)℄Then any two of the following three onditions imply the third ondition:8



i) g(X) has the same distribution as that of g(X1) and g(X2);ii) W has a uniform distribution on (0; 1); andiii) g(X) is exponentially distributed.Proof: We have observed that the onditions (i) and (iii) imply (ii) from Proposition 4.1. It islear that the onditions (ii) and (iii) imply (i). This an be seen by the following arguments.From the equation (6), we have �̂2g(s) ^fW (1� s) = �̂g(s):(10)Sine W is uniform on [0; 1℄, the Mellin tranform of W is ^fW (s) = 1s : Sine the randomvariable g(X) is standard exponential, the Mellin transform of the Laplae transform of g(X)is �̂g(s) = �sin(�s) :Therefore �̂2g(s) = �(1� s)sin(�s) = ��(s� 1)sin(�s)from the equation (10). Using the inversion formula of Mellin and Laplae transforms, weobtain that the random variables g(X1) and g(X2) have standard exponential distributions.We now prove that (i), (ii) imply (iii). From (9) and (i), we have�g(s) = ZR [�g(sw)℄2 fW (w)dw:Condition (ii) implies that �g(s) = Z 10 (�g(sw))2 dw= 1s Z 10 �2g(w)dw:Following Kotz and Steutel (1998) and Alamatsaz (1985), we obtain that�g(s) = 11 + ag(s)with a � 0: Hene g(X) has an exponential distribution. It is immediate to verify that1s = �̂g(1� s)�̂2g(1� s) :9
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