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Estimation for Translation of a ProessDriven by Frational Brownian MotionB.L.S. PRAKASA RAOINDIAN STATISTICAL INSTITUTE, NEW DELHIAbstratWe investigate the general problem of estimating the translation of a stohasti proessgoverned by a stohasti di�erential equation driven by a frational Brownian motion. Thespeial ase of the Ornstein-Uhlenbek proess is disussed in partiular.Keywords and phrases: Stohasti di�erential equation ; frational Ornstein-Uhlenbektype proess; frational Brownian motion; Estimation for translation ; Maximum likelihoodestimation.AMS Subjet lassi�ation (2000): Primary 62M09, Seondary 60G15.1 IntrodutionStatistial inferene for di�usion type proesses satisfying stohasti di�erential equationsdriven by Wiener proesses has been studied earlier and a omprehensive survey of variousmethods is given in Prakasa Rao (1999a). There has been a reent interest to study similarproblems for stohasti proesses driven by a frational Brownian motion (fBm). Le Breton(1998) studied parameter estimation and �ltering in a simple linear model driven by a frationalBrownian motion. In a reent paper, Kleptsyna and Le Breton (2002) studied parameter esti-mation problems for frational Ornstein-Uhlenbek type proess. Sequential estimation prob-lem for the frational Ornstein-Uhlenbek type proess was disussed in Prakasa Rao (2004).This is a frational analogue of the Ornstein-Uhlenbek proess, that is, a ontinuous time�rst order autoregressive proess X = fXt; t � 0g whih is the solution of a one-dimensionalhomogeneous linear stohasti di�erential equation driven by an fBm WH = fWHt ; t � 0g withHurst parameter H 2 [1=2; 1): Suh a proess is the unique Gaussian proess satisfying thelinear integral equation Xt = � Z t0 Xsds+ �WHt ; t � 0:(1. 1)They investigate the problem of estimation of the parameters � and �2 based on the observationfXs; 0 � s � Tg and prove that the maximum likelihood estimator �̂T is strongly onsistent asT ! 1: We disussed more general lasses of stohasti proesses satisfying linear stohastidi�erential equations driven an fBm and studied the asymptoti properties of the maximumlikelihood and the Bayes estimators for parameters involved in suh proesses in Prakasa Rao1



(2003a,b). Reently Baran and Pap (2003) onsidered the problem of estimation of the meanfor the translation of an Ornstein-Uhlenbek proess. We now onsider similar problems forproesses governed by stohasti di�erential equations driven by a fBm. Interalia we obtainsuÆient onditions for the absolute ontinuity of the measures generated by a stohastiproess fY (t); 0 � t � Tg driven by a fBm with Hurst index H 2 (0; 1) and its translationf ~Y (t); 0 � t � Tg with ~Y (t) = Y (t)+g(t) and g(t) nonrandom and obtain the Radon-Nikodymderivative in ase the measures are absolutely ontinuous . As a onsequene we study themaximum likelihood estimation of the parameter m when the funtion g(t) = mh(t) with aknown funtion h(:) satisfyingh(0) = 0 and unknown parameter m: We onsider the speialase of the frational Ornstein-Uhlenbek type proess with the Hurst index H 2 (12 ; 1) in moredetail. Hu (2001) studied the predition and translation problems for frational Brownianmotion using frational alulus methods. However our approah to the problem is via thetehniques developed by Kleptsyna et al. (2000). Norros et al. (1999) onsidered the aseof onstant drift or equivalently the ase when ~Y (t) = Y (t) +mt and derived the maximumlikelihood estimator of the parameter m when Y is a fBm with Hurst index H 2 [12 ; 1):2 PreliminariesLet (
;F ; (Ft); P ) be a stohasti basis satisfying the usual onditions.The natural �trationof a stohasti proess is understood as the P -ompletion of the �ltration generated by thisproess. Let WH = fWHt ; t � 0g be a normalized frational Brownian motion with Hurstparameter H 2 (0; 1), that is, a Gaussian proess with ontinuous sample paths suh thatWH0 = 0; E(WHt ) = 0 andE(WHs WHt ) = 12 [s2H + t2H � js� tj2H ℄; t � 0; s � 0:(2. 1)Let us onsider a stohasti proess Y = fYt; t � 0g de�ned by the stohasti integral equationYt = Z t0 C(s)ds+ Z t0 B(s)dWHs ; t � 0(2. 2)where C = fC(t); t � 0g is an (Ft)-adapted proess and B(t) is a nonvanishing nonrandomfuntion. For onveniene we write the above integral equation in the form of a stohastidi�erential equation dYt = C(t)dt+B(t)dWHt ; Y (0) = 0; t � 0(2. 3)driven by the frational Brownian motion WH : The integralZ t0 B(s)dWHs(2. 4)is not a stohasti integral in the Ito sense but one an de�ne the integral of a deterministifuntion with respet to the fBM in a natural sense (f. Norros et al. (1999)). Even though theproess Y is not a semimartingale, one an assoiate a semimartingale Z = fZt; t � 0g whih2



is alled a fundamental semimartingale suh that the natural �ltration (Zt) of the proess Zoinides with the natural �ltration (Yt) of the proess Y (Kleptsyna et al. (2000)). De�ne,for 0 < s < t; kH = 2H� (32 �H)�(H + 12);(2. 5) kH(t; s) = k�1H s 12�H(t� s) 12�H ;(2. 6) �H = 2H �(3� 2H)�(H + 12)�(32 �H) ;(2. 7) wHt = ��1H t2�2H ;(2. 8)and MHt = Z t0 kH(t; s)dWHs ; t � 0:(2. 9)The proess MH is a Gaussian martingale, alled the fundamental martingale (f. Norros etal. (1999)) and its quadrati variation < MHt >= wHt : Further more the natural �ltration ofthe martingale MH oinides with the natural �tration of the fBM WH : In fat the stohastiintegral Z t0 B(s)dWHs(2. 10)an be represented in terms of the stohasti integral with respet to the martingale MH : Fora measurable funtion f on [0; T ℄; letKfH(t; s) = �2H dds Z ts f(r)rH� 12 (r � s)H� 12 dr; 0 � s � t(2. 11)when the derivative exists in the sense of absolute ontinuity with respet to the Lebesguemeasure (see Samko et al. (1993) for suÆient onditions). The following result is due toKleptsyna et al. (2000).Therorem 2.1: Let MH be the fundamental martingale assoiated with the fBM WH de�nedby (2.9). Then Z t0 f(s)dWHs = Z t0 KfH(t; s)dMHs ; t 2 [0; T ℄(2. 12)a.s [P ℄ whenever both sides are well de�ned.Suppose the sample paths of the proess fC(t)B(t) ; t � 0g are smooth enough (see Samko et al.(1993)) so that QH(t) = ddwHt Z t0 kH(t; s)C(s)B(s)ds; t 2 [0; T ℄(2. 13)is well-de�ned where wH and kH are as de�ned in (2.8) and (2.6) respetively and the derivativeis understood in the sense of absoulute ontinuity. The following theorem due to Kleptsyna etal. (2000) assoiates a fundamental semimartingale Z assoiated with the proess Y suh thatthe natural �ltration (Zt) oinides with the natural �ltration (Yt) of Y:3



Theorem 2.2: Suppose the sample paths of the proess QH de�ned by (2.13) belong P -a.s toL2([0; T ℄; dwH ) where wH is as de�ned by (2.8). Let the proess Z = (Zt; t 2 [0; T ℄) be de�nedby Zt = Z t0 kH(t; s)B�1(s)dYs(2. 14)where the funtion kH(t; s) is as de�ned in (2.6). Then the following results hold:(i) The proess Z is an (Ft) -semimartingale with the deompositionZt = Z t0 QH(s)dwHs +MHt(2. 15)where MH is the fundamental martingale de�ned by (2.9), (ii) the proess Y admits therepresentation Yt = Z t0 KBH(t; s)dZs(2. 16)where the funtion KBH is as de�ned in (2.11), and (iii) the natural �trations of (Zt) and (Yt)oinide.Kleptsyna et al. (2000) derived the following Girsanov type formula as a onsequene ofthe Theorem 2.2.Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. De�ne�H(T ) = expf� Z T0 QH(t)dMHt � 12 Z t0 Q2H(t)dwHt g:(2. 17)Suppose that E(�H(T )) = 1: Then the measure P � = �H(T )P is a probability measure andthe probability measure of the proess Y under P � is the same as that of the proess V de�nedby Vt = Z t0 B(s)dWHs ; 0 � t � T:(2. 18). Consider now the proess ~Y (t) = Y (t) + g(t); t � 0 where g(:) is an absolutely ontinuousfuntion with g(0) = 0: Note that the funtion g(:) is almost everywhere di�erentiable. Letg0(t) denote the derivative of g(t) wherever it exists and de�ne it to be zero elsewhere. Theproess ~Y (t) satis�es the integral equation~Yt = g(t) + Z t0 C(s)ds+ Z t0 B(s)dWHs ; t � 0(2. 19)where C = fC(t); t � 0g is an (Ft)-adapted proess and B(t) is a nonvanishing nonrandomfuntion. For onveniene, we write the above integral equation in the form of a stohastidi�erential equation d ~Yt = (C(t) + g0(t))dt+B(t)dWHt ; ~Y (0) = 0; t � 0(2. 20) 4



driven by the frational Brownian motion WH : Let~C(t) = C(t) + g0(t)(2. 21)and de�ne ~QH(t) = ddwHt Z t0 kH(t; s) ~C(s)B(s)ds; t � 0(2. 22)Observe that ~QH(t) = QH(t) + ddwHt Z t0 kH(t; s)g0(s)B(s)ds= QH(t) + g�H;B(t) (say).(2. 23)Furthermore we have the following analogue of Theorem 2.3.Theorem 2.4: Suppose the funtion g(:) is suh that the sample paths of the proess ~QHde�ned by (2.23) belong P -a.s to L2([0; T ℄; dwH ): De�ne~�H(T ) = expf� Z T0 ~QH(t)dMHt � 12 Z t0 ~Q2H(t)dwHt g:(2. 24)Suppose that E(~�H(T )) = 1: Then the measure ~P � = ~�H(T )P is a probability measure andthe probability measure of the proess ~Y under ~P � is the same as that of the proess V de�nedby Vt = Z t0 B(s)dWHs ; 0 � t � T:(2. 25). As a onsequene of Theorems 2.3 and 2.4, we obtain the following result.Theorem 2.5: Let ~P �T and P �T be the probability measures generated by the proesses ~Y andY respetively on the interval [0; T ℄: Then the measures are absolutely ontinuous with respetto eah other and the Radon-Nikodym derivative of ~P �T with respet to P �T is given byd ~P �TdP �T = expf� Z T0 f ~QH(t)�QH(t)gdMHt � 12 Z t0 f ~Q2H(t)�Q2H(t)gdwHt g:(2. 26)
3 Maximum Likelihood Estimation of translationLet us now suppose that g(t) = m h(t) with h(0) = 0 in the disussion in the previous setionand suppose that the funtions h(:) and B(:) are known and h(:) is di�erentiable everywherebut the onstant m is unknown. The problem is to estimate the parameter m based on theobservation f ~Yt; 0 � t � Tg: Observe that~QH(t) = QH(t) +m( ddwHt Z t0 kH(t; s)h0(s)B(s)ds)= QH(t) +m h�H;B(t)= QH(t) +m h��(t) (say).(3. 1) 5



Following the notation used above, it follows that~Zt = Z t0 ~QH(s)dwHs +MHt ; t � 0:(3. 2)Applying Theorem 2.5, we get that(3. 3)d ~P �TdP �T = expf�m Z T0 h��(t)dMHt � 12 Z T0 (2m ~QH(t)h��(t)�m2(h��(t))2)gdwHt g= expf�m Z T0 h��(t)(d ~Zt � ~QH(t)dwHt )� 12 Z T0 (2m ~QH(t)h��(t)�m2(h��(t))2)dwHt g= expf�m Z T0 h��(t)d ~Zt + 12m2 Z T0 (h��(t))2dwHt g:Suppose that 0 < Z T0 (h��(t))2dwHt <1:Then we obtain that the maximum likelihood estimator of m based on the proess f ~Y (t); 0 �t � Tg is given by m̂T = R T0 h��(t)d ~ZtR T0 (h��(t))2dwHt :(3. 4)Remarks: Observe that the estimator m̂T does not diretly depend on the proess fC(t)g butthrough the observation of the proess f ~Zt; 0 � t � Tg:Suppose m0 is the true value of m: Then it follows thatm̂T �m0 = R T0 h��(t)dZtR T0 (h��(t))2dwHt :(3. 5)Suppose that h(t) � t in the above disussion whih redues to the onstant drift ase. Thenh��(t) = ddwHt Z t0 kH(t; s) 1B(s)ds(3. 6)and the orresponding estimator m̂T for the parameter m an be omputed using the equation(3.4) one the funtion B(:) is known.4 Frational Ornstein-Uhlenbek type proessSuppose the proess fYt; t � 0g satis�es the stohasti integral equationYt = � Z t0 Ysds+ �WHt ; t � 0(4. 1) 6



or equivalently the stohasti di�erential equationdYt = �Ytdt+ �dWHt ; Y0 = 0; t � 0(4. 2)with known Hurst index H 2 [12 ; 1): Suh a proess is alled a frational Ornstein-Uhlenbektype proess. Suppose we observe the proess f ~Yt; 0 � t � Tg where ~Yt = Yt + m h(t) withh(0) = 0: Further suppose that the funtion h(:) is known and everywhere di�erentiable andsatis�es the ondition 0 < Z T0 (h��(t))2dwHt <1:but the parameter m is unknown. The problem is to estimate the parameter m based on theobservation of the proess f ~Yt; 0 � t � Tg: Following the results given in the previous setion,we obtain that m̂T = R T0 h��(t)d ~ZtR T0 (h��(t))2dwHt(4. 3)where d ~Zt = ~QH(t)dwHt + dMHt(4. 4) = (QH(t) +mh��(t))dwHt + dMHt= dZt +mh��(t)dwHt ;~QH(t) = ddwHt Z t0 kH(t; s)�Ys +mh0(s)� ds; QH(t) = ddwHt Z t0 kH(t; s)�Ys� ds(4. 5)and h��(t) = ddwHt Z t0 kH(t; s)h0(s)� ds(4. 6)Suppose m0 is the true value of m: Then it follows thatm̂T �m0 = R T0 h��(t)dZtR T0 (h��(t))2dwHt :(4. 7)It is easy to see that the solution of the stohasti di�erential equation (4.1) is given byYt = � Z t0 e�(t�u)dWHu ; t � 0:(4. 8)Hene the proess Yt; t � 0 with Y0 = 0 is a zero mean gaussian proess with ovariane funtiongiven by Cov(Yt; Ys) = �2EfZ t0 e�(t�u)dWHu Z s0 e�(s�v)dWHv g(4. 9) = �2H(2H � 1)e�(t+s) Z 10 Z 10 f(u)g(v)ju � vj2H�2dudvwhere f(u) = e��u if 0 � u � t(4. 10) = 0 otherwise7



and g(v) = e��v if 0 � v � s(4. 11) = 0 otherwise:This follows by results in Pipiras and Taqqu (2000). From the representation (2.14), we obtainthat fZt; t � 0g is a zero mean gaussian proess. Hene it follows from the representation givenby (4.7) that m̂T �m0 has the gaussian distribution with mean zero and variane given byV ar(m̂T ) = E(R T0 h��(t)dZt)2(R T0 (h��(t))2dwHt )2 :(4. 12)Observe that Z T0 h��(t)dZt = Z T0 h��(t)QH(t)dwHt + Z T0 h��(t)dMHt(4. 13)from (2.15) and hene(4. 14)E(Z T0 h��(t)dZt)2 = V ar(Z T0 h��(t)dZt)= V ar(Z T0 h��(t)QH(t)dwHt ) + V ar(Z T0 h��(t)dMHt )+2 Cov(Z T0 h��(t)QH(t)dwHt ; Z T0 h��(t)dMHt )= V ar(Z T0 h��(t)QH(t)dwHt ) + 2 Cov(Z T0 h��(t)QH(t)dwHt ; Z T0 h��(t)dMHt )+ Z T0 (h��(t))2dwHt :Therefore(4. 15)V ar(m̂T ) = V ar(R T0 h��(t)QH(t)dwHt ) + 2 Cov(R T0 h��(t)QH(t)dwHt ; R T0 h��(t)dMHt )(R T0 (h��(t))2dwHt )2+ 1R T0 (h��(t))2dwHt :Suppose that h(t) � t in the above disussion whih redues to the onstant drift ase.Then h��(t) = 1� ddwHt Z t0 kH(t; s)ds(4. 16) = 1� 8



and the orresponding estimator m̂T for the parameter m an be omputed using the equation(4.3) one the onstant � is known. In fat̂mT = � ~ZTwHT ;(4. 17) m̂T �m0 = � ZTwHT :(4. 18)Further more(4. 19)V ar(m̂T ) = �2V ar(R T0 QH(t)dwHt ) + 2 Cov(R T0 QH(t)dwHt ;MHT )(wHT )2+�2 1wHT� �2E(R T0 QH(t)dwHt )2 + 2 ([V ar(R T0 QH(t)dwHt )℄[V ar(MHT )℄)1=2(wHT )2+�2 1wHT� �2E(R T0 Q2H(t)dwHt )wHT + 2 ([E(R T0 QH(t)dwHt )2℄[V ar(MHT )℄)1=2(wHT )2+�2 1wHT� �2E(R T0 Q2H(t)dwHt )wHT + 2 ([E(R T0 Q2H(t)dwHt )wHT ℄[V ar(MHT )℄)1=2(wHT )2+�2 1wHT� �2E(R T0 Q2H(t)dwHt )wHT + 2 ([E(R T0 Q2H(t)dwHt )wHT ℄[[wHT ℄)1=2(wHT )2+�2 1wHT� �2E(R T0 Q2H(t)dwHt ) + 2 (E(R T0 Q2H(t)dwHt ))1=2wHT + �2 1wHTfrom the representation (2.9) and an appliation of the Cauhy-Shwartz inequality and theFubini's theorem. If a bound on the termE(Z T0 Q2H(t)dwHt )an be obtained as a funtion of T; then it is posible to obtain an upper bound on the varianeterm given above. It is possible to get an expliit expression for	T (�; a) = E[expf�a Z T0 Q2H(t)dwHt g℄; a > 09



as given in Proposition 3.2 of Kleptsyna and Le Breton (2002) and heneE(Z T0 Q2H(t)dwHt ) = � lima!0+	0T (� : a):It is known from the arguments given in Kleptsyna and Le Breton (2002) thatZ T0 Q2H(t)dwHt !1 a.s as T !1:However expliit omputation of the expetation de�ned above seems to be diÆult. IfE(Z T0 Q2H(t)dwHt ) = o(wHT )as T !1; then we obtain that V ar(m̂T )! 0 as T !1and hene m̂T p! m0 as T !1 sine E(m̂T ) = m0 for all T: Hene m̂T is a onsistent estimatorof m0 under the above ondition.An alternate way of viewing the equation (4.18) is by writing it in the formwHT (m̂T �m0)� = ZT = 1� Z T0 kH(T; s)dYs(4. 20)or equivalently wHT (m̂T �m0) = Z T0 kH(T; s)dYs(4. 21)whih in turn shows that the distrbution of the estimator m̂T is normal with the mean m0 andthe variane (wHT )�2E[Z T0 kH(T; s)dYs℄2:Remarks: If the parameter � = 0; then the proess fYt; t � 0g redues to the fBm andV ar(m̂T ) = �2 1wHT = �2�HT 2H�2(4. 22)from (2.8) and the de�nition of the proess fQH(t); t � 0g: Sine the Hurst index H 2 [12 ; 1);it follows that V ar(m̂T )! 0 as T !1:(4. 23)Combining this observation with the fat that E(m̂T ) = m0; it follows that m̂T p! m0 asT ! 1: In other words, the estimator m̂T is a onsistent estimator for m0: A stronger resultalso follows from the fat that, in ase � = 0;m̂T �m0 = �MHTwHT(4. 24) 10
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