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Abstract
We investigate the general problem of estimating the translation of a stochastic process
governed by a stochastic differential equation driven by a fractional Brownian motion. The

special case of the Ornstein-Uhlenbeck process is discussed in particular.
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1 Introduction

Statistical inference for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes has been studied earlier and a comprehensive survey of various
methods is given in Prakasa Rao (1999a). There has been a recent interest to study similar
problems for stochastic processes driven by a fractional Brownian motion (fBm). Le Breton
(1998) studied parameter estimation and filtering in a simple linear model driven by a fractional
Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied parameter esti-
mation problems for fractional Ornstein-Uhlenbeck type process. Sequential estimation prob-
lem for the fractional Ornstein-Uhlenbeck type process was discussed in Prakasa Rao (2004).
This is a fractional analogue of the Ornstein-Uhlenbeck process, that is, a continuous time
first order autoregressive process X = {X;,¢ > 0} which is the solution of a one-dimensional
homogeneous linear stochastic differential equation driven by an fBm W# = {W/! ¢ > 0} with
Hurst parameter H € [1/2,1). Such a process is the unique Gaussian process satisfying the

linear integral equation

t
(1. 1) Xt:0/ Xds +oWH t >0,
0

They investigate the problem of estimation of the parameters 6 and o2 based on the observation
{X;,0 < s < T} and prove that the maximum likelihood estimator Or is strongly consistent as
T — oo. We discussed more general classes of stochastic processes satisfying linear stochastic
differential equations driven an fBm and studied the asymptotic properties of the maximum

likelihood and the Bayes estimators for parameters involved in such processes in Prakasa Rao



(2003a,b). Recently Baran and Pap (2003) considered the problem of estimation of the mean
for the translation of an Ornstein-Uhlenbeck process. We now consider similar problems for
processes governed by stochastic differential equations driven by a fBm. Interalia we obtain
sufficient conditions for the absolute continuity of the measures generated by a stochastic
process {Y(t),0 < ¢t < T} driven by a fBm with Hurst index H € (0,1) and its translation
{Y(t),0 <t < T} with Y (¢) = Y (t)+¢g(t) and g(t) nonrandom and obtain the Radon-Nikodym
derivative in case the measures are absolutely continuous . As a consequence we study the
maximum likelihood estimation of the parameter m when the function g(t) = mh(t) with a
known function h(.) satisfyingh(0) = 0 and unknown parameter m. We consider the special
case of the fractional Ornstein-Uhlenbeck type process with the Hurst index H € (%, 1) in more
detail. Hu (2001) studied the prediction and translation problems for fractional Brownian
motion using fractional calculus methods. However our approach to the problem is via the
techniques developed by Kleptsyna et al. (2000). Norros et al. (1999) considered the case
of constant drift or equivalently the case when Y (t) = Y (t) + mt and derived the maximum

likelihood estimator of the parameter m when Y is a fBm with Hurst index H € [%, 1).

2 Preliminaries

Let (2, F,(F:),P) be a stochastic basis satisfying the usual conditions.The natural fitration
of a stochastic process is understood as the P-completion of the filtration generated by this
process. Let WH = {WH t > 0} be a normalized fractional Brownian motion with Hurst

parameter H € (0,1), that is, a Gaussian process with continuous sample paths such that
Wi =0, E(WH) =0 and

1
(2. 1) EWHWH) = 5[s”f + 2 s —t|*1],t > 0,5 > 0.

Let us consider a stochastic process Y = {Y;,t > 0} defined by the stochastic integral equation
t t

(2. 2) Y, :/ C(s)ds+/ B(s)dWH t >0
0 0

where C' = {C(t),t > 0} is an (F;)-adapted process and B(t) is a nonvanishing nonrandom
function. For convenience we write the above integral equation in the form of a stochastic
differential equation

(2. 3) dY; = C(t)dt + B(t)dW/, Y (0) =0,t >0

driven by the fractional Brownian motion W¥#. The integral
t
(2. 4) / B(s)dwWH
0

is not a stochastic integral in the Ito sense but one can define the integral of a deterministic
function with respect to the fBM in a natural sense (cf. Norros et al. (1999)). Even though the

process Y is not a semimartingale, one can associate a semimartingale Z = {Z;,t > 0} which



is called a fundamental semimartingale such that the natural filtration (Z;) of the process Z
coincides with the natural filtration ();) of the process Y (Kleptsyna et al. (2000)). Define,
for 0 < s < t,

3 1

(2. 5) ki = 2HT (5 — H)I(H + 5),

(2. 6) ki(t,s) =kytsz H(t —s)z H

2H I'(3 —2H)['(H + 1

(2. 7) A = ( 5 A 2),
I - H)

(2. 8) wil = N2

and ;

(2. 9) M}l :/0 Ey(t,s)dWwhH t>o0.

The process M is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variation < M/ >= wf. Further more the natural filtration of
the martingale M ! coincides with the natural fitration of the fBM W In fact the stochastic

integral
t
(2. 10) / B(s)aw !
0

can be represented in terms of the stochastic integral with respect to the martingale M. For

a measurable function f on [0, 7], let
i d [t oL o1
(2. 11) KH(t,s):—2Hd—/ flr)r"72(r—s)""2dr,0 <s <t
S Js

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure (see Samko et al. (1993) for sufficient conditions). The following result is due to
Kleptsyna et al. (2000).

Therorem 2.1: Let M be the fundamental martingale associated with the fBM W defined
by (2.9). Then

t t

(2. 12) / f(s)awlt :/ KL (t,s)dMH ¢ € 0,T]
0 0

a.s [P] whenever both sides are well defined.

Suppose the sample paths of the process {%, t > 0} are smooth enough (see Samko et al.
(1993)) so that

(2. 13) () =7 [ kit s)

dwl

C(s)
B(S)ds,t €1[0,T]

is well-defined where w! and kp are as defined in (2.8) and (2.6) respectively and the derivative
is understood in the sense of absoulute continuity. The following theorem due to Kleptsyna et
al. (2000) associates a fundamental semimartingale Z associated with the process Y such that
the natural filtration (2;) coincides with the natural filtration ()%) of Y.



Theorem 2.2: Suppose the sample paths of the process Qg defined by (2.13) belong P-a.s to
L%([0,T],dw") where w¥ is as defined by (2.8). Let the process Z = (Z;,t € [0,T]) be defined
by

(2. 14) Zy = /Ot Ex(t,s)B~ 1 (s)dY,

where the function kg (¢, s) is as defined in (2.6). Then the following results hold:

(i) The process Z is an (F;) -semimartingale with the decomposition

t
2. 15) Z :/ Qr(s)dwl + M/
0
where M is the fundamental martingale defined by (2.9), (i) the process Y admits the
representation
t
(2. 16) Y; :/ KE(t,s)dZ,
0

where the function K% is as defined in (2.11), and (iii) the natural fitrations of (2;) and ();)

coincide.

Kleptsyna et al. (2000) derived the following Girsanov type formula as a consequence of
the Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

2. 17) M) = el [ Quinamf ~ 3 [ @iy’

Suppose that E(Ag(T)) = 1. Then the measure P* = Ay (T)P is a probability measure and
the probability measure of the process Y under P* is the same as that of the process V defined
by

(2. 18) Vt:/OtB(s)dWsH,Ogth.

Consider now the process Y (t) = Y (t) + g(t),t > 0 where g(.) is an absolutely continuous
function with g(0) = 0. Note that the function ¢(.) is almost everywhere differentiable. Let
g'(t) denote the derivative of g(t) wherever it exists and define it to be zero elsewhere. The

process Y (t) satisfies the integral equation
~ t t
(2. 19) Yi = g(t) +/ C(s)ds—i—/ B(s)dWH ¢ > 0
0 0

where C' = {C(t),t > 0} is an (F;)-adapted process and B(t) is a nonvanishing nonrandom
function. For convenience, we write the above integral equation in the form of a stochastic

differential equation

(2. 20) dY; = (C(t) + ¢ (t))dt + B{t)dWH,Y(0) =0,t >0



driven by the fractional Brownian motion W*#. Let

(2. 21) Ct)y=Ct)+4(t)
and define . ~
(2. 22) Oult) = dj{ffo K (t, s)ggds,t >0

Observe that

~ _ d t gI(S)
Qu(t) = QH(t)+dwfI/() kH(t’S)B(s)ds
(2. 23) = Qu(t)+gyp(t) (say).

Furthermore we have the following analogue of Theorem 2.3.

Theorem 2.4: Suppose the function g(.) is such that the sample paths of the process QH
defined by (2.23) belong P-a.s to L([0, T],dw!!). Define

2. 20 Au(r) = espl= [ Quinanf’ - [ G avf’y.

Suppose that E(Ay(T)) = 1. Then the measure P* = Ay (T)P is a probability measure and
the probability measure of the process Y under P* is the same as that of the process V defined
by

(2. 25) W:/()tB(s)dWSH,OgtST.

. As a consequence of Theorems 2.3 and 2.4, we obtain the following result.

Theorem 2.5: Let ]57*1 and Pr be the probability measures generated by the processes Y and
Y respectively on the interval [0, 7]. Then the measures are absolutely continuous with respect
to each other and the Radon-Nikodym derivative of ]5} with respect to Py is given by

D*

@ 20) = el= [(Qut) - Quitnant - 5 [1Gh(o) - Qhlo)aul’).

3 Maximum Likelihood Estimation of translation

Let us now suppose that g(t) = m h(t) with ~(0) = 0 in the discussion in the previous section
and suppose that the functions h(.) and B(.) are known and h(.) is differentiable everywhere
but the constant m is unknown. The problem is to estimate the parameter m based on the
observation {f't, 0 <t <T}. Observe that

Oult) = Qut) —I—m(%/gt b (1, s)g ) 4s)
= Qu(t) +mhy p(t)
(3. 1) = Qu(t) +m h™(t) (say).



Following the notation used above, it follows that
- t
3. 2) Z, — / Qu(s)dw! + Mt > 0.
0

Applying Theorem 2.5, we get that

(3. 3)
% T T -
ZJJZ; — exp{-m /0 B (t) M — % /0 (2mQm (t)h™ (t) — m® (K™ (1))?) dw{' }
— exp{-m /OT W (£)(dZy — Qu (t)dw]!) — % OT(2mQH(t)h**(t) —m?(h*())*)dw{'}

T ~ T
— exp{—m /0 h**(t)dZt—i—%mZ /0 (W™ (1)) 2dw}.

Suppose that
T
0 </ (W™ (1)) 2dw! < .
0

Then we obtain that the maximum likelihood estimator of m based on the process {Y (¢),0 <
t < T} is given by )

(3. 4) Ty = TfOT h"(H)dz,
Jo (h*(8))2dwy!

Remarks: Observe that the estimator i does not directly depend on the process {C(t)} but
through the observation of the process {Zt, 0<t<T}.

Suppose myg is the true value of m. Then it follows that

Jo b ()dZ,

. T T e

Suppose that h(t) = ¢ in the above discussion which reduces to the constant drift case. Then

(3. 6) h** (1) = #/ﬂt kn(t, S)Bts)ds

and the corresponding estimator mp for the parameter m can be computed using the equation

(3.4) once the function B(.) is known.

4 Fractional Ornstein-Uhlenbeck type process

Suppose the process {Y;,t > 0} satisfies the stochastic integral equation

t
(4. 1) Yt:9/ Yids +oWH t >0
0



or equivalently the stochastic differential equation
(4. 2) dY; = 0Yidt + odWH, Yy = 0,t > 0

with known Hurst index H € [1 1). Such a process is called a fractional Ornstein-Uhlenbeck
type process. Suppose we observe the process {¥;,0 < t < T} where Y; = Y; + m h(t) with
h(0) = 0. Further suppose that the function h(.) is known and everywhere differentiable and

satisfies the condition T
0 < / (h™ ()2 dwl < oo,
0

but the parameter m is unknown. The problem is to estimate the parameter m based on the
observation of the process {Yt, 0 <t < T}. Following the results given in the previous section,

we obtain that

Jo (== (8))2dwf!
where
(4. 4) dZ; = Qu(t)dw +dM}

= (Qu(t) + mh*™(t))dwl! + dM}
= dZ; + mh**(t)dw],

45 Qo) = g [ (e ™ s, Qi) = 2 [ (e as

and
(4. 6) h*(t) =

dwt

d [t h'(s)
kp(t d
7 [ Rl s) = s

dwj

Suppose my is the true value of m. Then it follows that

Jo B (t)dZ,
Jo (h**(t))2dwf!

It is easy to see that the solution of the stochastic differential equation (4.1) is given by

(4. 7) mT — moy =

(4. 8) Y=o /0 t S aw i ¢ > 0.
Hence the process Y;,t > 0 with Yy = 0 is a zero mean gaussian process with covariance function
given by
(4. 9) Cov(Y;,Y,) = 2E{/ O(t—u dWH/ Ols=v)qw iy
= o?H(2H —1)(t+9) / / f(u — v 2 qudv
where
(4. 10) flu) = e ifo<u<t

= 0 otherwise



and

(4. 11) gv) = e if 0<v<s

= 0 otherwise.

This follows by results in Pipiras and Taqqu (2000). From the representation (2.14), we obtain
that {Z;,t > 0} is a zero mean gaussian process. Hence it follows from the representation given

by (4.7) that i — mg has the gaussian distribution with mean zero and variance given by

oy — Uy b ()dZ)”
o V) = G o @ panf 7

Observe that - - -
(4. 13) / W (1) dZ; = / R () Q (H)dw! + / e () dMH
0 0 0
from (2.15) and hence
(4. 14)
T T
E( / W (1)dZ,)? = Var( / 1 ()dZ,)
0 0

— Var( /0 0 Qu () dwl) + Var( /0 e @y

T T
+2 Cou( /0 W () Qu (1) dw, /0 B () dM)
S (/Th**(t)Q (t)dw!) +2 C (/Th**(t)Q (t)dw! /Th**(t)dMH)
= ar ; H Wy ov A H Wy, 0 t
T
+ /0 (W™ (1)) ?duw!!.
Therefore
(4. 15)
- Var(fy B (0)Qu(t)dw]!) +2 Cov(fy B (H)Qu(H)dwf!, fi W (t)dM)
Var(mr) = T SWTIY
(Jo (h**(t))*dw;")
1
T @)l

Suppose that h(t) = t in the above discussion which reduces to the constant drift case.
Then

(4. 16) W () =

1 d [t
- ku(t,s)d
adth/o i (t, s)ds

1
o



and the corresponding estimator iy for the parameter m can be computed using the equation

(4.3) once the constant o is known. In fact

(4. 17)

(4. 18)
Further more
(4. 19)

Var(mr)

IN

IN

IN

IN

7 s
T—O-w,;[a

Zr

mrT — 1My —U@.

oVar(y Quduf) +2 CovJy Qut)dwl!, Mf!)

(wif)?
+a2—H
wp
2 BUY Qu(t)dwl)? +2 (Var(fy Qu(®)dwf))[Var(Mfh)'?
(wil)?
+02—H
wp
B Q4 0wl yult +2 (B Qu(tdwf! )V ar (Mf))'”
(wil)?
+02—H
wp

2By Qu@)dwwft +2 (E(Jy Q@4®)dwf yw[Var(Mf)])'

1
2
+o @

2By Qi) dwfywll +2 (B(Jy Qf()dwf)wf[wf])*/?

(whh)?
2 1
+0' @
2B Q%) dwlh) + 2 (B(Jf) Q% (t)dwih))/? 1
o T to"—g
wp wr

from the representation (2.9) and an application of the Cauchy-Schwartz inequality and the

Fubini’s theorem. If a bound on the term

B([ @)

can be obtained as a function of 7', then it is posible to obtain an upper bound on the variance

term given above. It is possible to get an explicit expression for

T
Wr(6:0) = Blexp{—a | Q% (du{'}],a >0

9



as given in Proposition 3.2 of Kleptsyna and Le Breton (2002) and hence

T 2 HyY _  1: ! .
E(/0 Q% ()dw) = — lim V(6 a).

a—07t

It is known from the arguments given in Kleptsyna and Le Breton (2002) that

T
/ Q% (t)dwl — 0o asas T — oco.
0
However explicit computation of the expectation defined above seems to be difficult. If
T o H H
B[ Qh(t)duf) = ofwf)
as T — oo, then we obtain that
Var(myp) — 0 as T — o0

and hence i = mg as T — 0o since E(mr) = myg for all T. Hence 77 is a consistent estimator

of mg under the above condition.

An alternate way of viewing the equation (4.18) is by writing it in the form

w?(rhT —my)

1 T
(4. 20) — Ty = / ki (T, )dY,
o o Jo
or equivalently
T
(4. 21) wi (g — myg) :/ ky(T,s)dY,
0

which in turn shows that the distrbution of the estimator 7 is normal with the mean mg and

the variance

T
(w;f)—QE[/O kit (T, )Y, .

Remarks: If the parameter § = 0, then the process {Y;,t > 0} reduces to the fBm and

1
(4' 22) Var(mT) = 0'2—H = 0'2)\HT2H72

W
from (2.8) and the definition of the process {Qp(t),t > 0}. Since the Hurst index H € [5,1),
it follows that

(4. 23) Var(mr) =0 as T — oo.

Combining this observation with the fact that E(rv;) = my, it follows that gy = mg as
T — oo. In other words, the estimator 7 is a consistent estimator for my. A stronger result
also follows from the fact that, in case § = 0,

MH
(4. 24) mp —my = 0—4

H
wp

10



and the last term tends to zero almost surely as T — oo by the Strong law of large numbers
for martingales (cf. Prakasa Rao (1999b), p.61) since the quadratic variation of the martingale
M is wH and wf! — 00 as T' — oo. The strong consistency of the estimator /7, for the case

of the fBm, was earlier proved in Norros et al. (1999).
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