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Le
ture 1Quantum ProbabilityIn the Mathemati
al Congress held at Berlin, Peter Shor presented a new algorithm forfa
toring numbers on a quantum 
omputer. In this series of le
tures, we shall study theareas of quantum 
omputation (in
luding Shor's algorithm) and quantum error 
orre
ting
odes. Those who wish to read ahead should 
onsult the book: M.A. Nielsen and I.A.Chuang, Quantum Computation and Quantum Information, Cambridge University Press,2000.1.1 Classi
al Versus Quantum Probability TheoryWe begin by 
omparing 
lassi
al probability and quantum probability. In 
lassi
al prob-ability theory (sin
e Kolmogorov's 1933 monograph [8℄), we have a sample spa
e, a setof events, a set of random variables, and distributions. In quantum probability (as for-mulated in von Neumann's 1932 book [9℄), we have a state spa
e (whi
h is a Hilbertspa
e) instead of a sample spa
e; events, random variables and distributions are thenrepresented as operators on this spa
e. We now re
all the de�nitions of these notions in
lassi
al probability and formally de�ne the analogous 
on
epts in quantum probability.In our dis
ussion we will be 
on
erned only with �nite 
lassi
al probability spa
es, andtheir quantum analogues|�nite dimensional Hilbert spa
es.Spa
esThe sample spa
e 
: This is a �niteset, say f1; 2; : : : ; Ng. The state spa
e H: It is a 
omplexHilbert spa
e of dimension N .EventsThe set of events F
: This is the set ofall subsets of 
. F
 is a Boolean algebrawith the union ([) operation for `or' andthe interse
tion (\) operation for `and'. Inparti
ular, we haveE \ (F1 [ F2) = (E \ F1) [ (E \ F2):
The set of events P(H): This is the setof all orthogonal proje
tions in H. An el-ement E 2 P(H) is 
alled an event. Here,instead of `[' we have the max (_) opera-tion, and instead of `\' the min (^) oper-ation. Note, however, that E ^ (F1 _ F2)is not always equal to (E ^F1)_ (E ^F2).(They are equal if E; F1; F2 
ommute withea
h other).3



4 LECTURE 1. QUANTUM PROBABILITYRandom variables and observablesThe set of random variables B
:This is the set of all 
omplex valued fun
-tions on 
. The elements of B
 are 
alledrandom variables. B
 is an Abelian C�-algebra under the operations(�f)(!) = �f(!);(f + g)(!) = f(!) + g(!);(f � g)(!) = f(!)g(!);f �(!) �= f y(!) = �f(!):Here, � 2 C , f; g 2 B
, and the `bar'stands for 
omplex 
onjugation. The ran-dom variable 1 (de�ned by 1(!) �= 1), isthe unit in this algebra.With ea
h event E 2 F
 we asso
iate theindi
ator random variable 1E de�ned by1E(!) = � 1 if ! 2 E0 otherwise :For a random variable f , let sp(f) �= f(
).Then, f 
an be written as the followinglinear 
ombination of indi
ator randomvariables: f = X�2sp(f)�1f�1(f�g);so that1f�1(f�g) � 1f�1(f�0g) = 0 for � 6= �0;X�2sp(f) 1f�1(f�g) = 1:Similarly, we havef r = X�2sp(f)�r1f�1(f�g);and, in general, for a fun
tion ' : C ! C ,we have the random variable'(f) = X�2sp(f)'(�)1f�1(f�g):Later, we will be mainly interested in real-valued random variables, that is randomvariables f with sp(f) � R (or f y = f).

The set of observables B(H): This isthe (non-Abelian) C�-algebra of all opera-tors onH, with `+' and `�' de�ned as usual,and X� de�ned to be the adjoint ofX. Wewill use Xy instead of X�. The identityproje
tion I is the unit in this algebra.We say that an observable is real-valued ifXy = X, that is, if X is Hermitian. Forsu
h an observable, we de�ne sp(X) to bethe set of eigen values of X. Sin
e X isHermitian, sp(X) � R, and by the spe
-tral theorem, we 
an write X asX = X�2sp(X) �E�;where E� is the proje
tion on the subspa
efu : Xu = �ug andE�E�0 = 0; �; �0 2 sp(X); � 6= �0;P�2sp(X) E� = I:Similarly, we haveXr = X�2sp(X) �rE�;and in general, for a fun
tion ' : R ! R,we have '(X) = X�2sp(X)'(�)E�:



1.1. CLASSICAL VERSUS QUANTUM PROBABILITY THEORY 5Distributions and statesA distribution P : This is a fun
tionfrom F
 to R, determined by N real num-bers p1; p2; : : : ; pN , satisfying:pi � 0;NXi=1 pi = 1:The probability of the event E 2 F
 (un-der the distribution P ) isP (E) �=Xi2E pi:We will identify P with the sequen
e(p1; p2; : : : ; pN). The probability that arandom variable f takes the value � 2 Ris P (f = �) �= P (f�1(f�g));thus, a real-valued random variable f hasa distribution on the real line with massP (f�1(f�g)) at � 2 R.

A state �: In quantum probability, wehave a state � instead of the distributionP . A state is a non-negative de�nite op-erator on H with Tr � = 1. The probabil-ity of the event E 2 P(H) in the state �is de�ned to be Tr �E, and the probabil-ity that the real-valued observableX takesthe value � isPr[X = �℄ = � Tr �E� if � 2 sp(X);0 otherwiseThus, a real-valued observable X has adistribution on the real line with massTr �E� at � 2 R.



6 LECTURE 1. QUANTUM PROBABILITYExpe
tation, moments, varian
eThe expe
tation of a random variable f isEP f �=X!2
 f(!)p!:The r-th moment of f is the expe
tationof f r, that isEP f r = X!2
(f(!))rp!= X�2sp(f) �rP (f�1(�));and the 
hara
teristi
 fun
tion of f is theexpe
tation of the 
omplex-valued randomvariable eitf , that is,EP eitf = X�2sp(f) eit�P (f�1(�)):The varian
e of a real-valued random vari-able f isvar(f) �= EP (f � EP f)2 � 0:Note that var(f) = EP f 2� (EP f)2; also,var(f) = 0 i� all the mass in the distribu-tion of f is 
on
entrated at EP f .

The expe
tation of an observable X in thestate � is E� X �= Tr �X:The map X 7! E�X has the followingproperties:(1) It is linear;(2) E�XyX � 0, for all X 2 B(H).(3) E� I = 1.The r-th moment of X is the expe
tationof Xr; if X is real-valued, then using thespe
tral de
omposition, we 
an writeE� Xr = X�2sp(X) �r Tr �E�:The 
hara
teristi
 fun
tion of the real-valued observable X is the expe
tation ofthe observable eitX . The varian
e of a(real-valued) observable X isvar(X) �= Tr �(X � Tr �X)2= Tr �X2 � (Tr �X)2 � 0:The varian
e of X vanishes i� the distri-bution of X is 
on
entrated at the pointTr �X. This is equivalent to the propertythat the operator range of � is 
ontainedin the eigensubspa
e of X with eigenvalueTr �X.



1.1. CLASSICAL VERSUS QUANTUM PROBABILITY THEORY 7Extreme pointsThe set of distributions: The set ofall probability distributions on 
 is a
ompa
t 
onvex set (Choquet simplex)with exa
tly N extreme points, Æj (j =1; 2; : : : ; N), where Æj is determined byÆj(f!g) �= � 1 if ! = j;0 otherwise.If P = Æj, then every random variable hasa degenerate distribution under P : thedistribution of the random variable f is
on
entrated on the point f(j).

The set of states: The set of all statesin H is a 
onvex set. Let � be a state.Sin
e � is non-negative de�nite, its eigenvalues are non-negative reals, and we 
anwrite � = X�2Sp(�) �E�;sin
e Tr � = 1, we haveX�2Sp(�) �� dim(E�) = 1:The proje
tion E� 
an, in turn, be writtenas a sum of one-dimensional proje
tions:E� = dim(E�)Xi=1 E�;i:Then, � =P�2Sp(�)Pdim(E�)i=1 �E�;i:Proposition 1.1.1 A one-dimensionalproje
tion 
annot be written as a non-trivial 
onvex 
ombination of states.Thus, the extreme points of the 
onvex setof states are pre
isely the one-dimensionalproje
tions. Let � be the extreme state
orresponding to the one-dimensional pro-je
tion on the ray C u (where kuk = 1).Then, the expe
tation m of the observableX ism = Tr uuyX = Tr uyXu = hu;Xui ; andvar(X) = Tr uuy(X �m)2= Tr k(X �m)uk2 :Thus, var(X) = 0 i� u is an eigen ve
torof X. So, even for this extreme state, notall observables have degenerate distribu-tions: degenera
y of the state does not killthe un
ertainty of the observables!



8 LECTURE 1. QUANTUM PROBABILITYThe produ
tProdu
t spa
es: If there are two statis-ti
al systems des
ribed by 
lassi
al proba-bility spa
es (
1; P1) and (
2; P2) respe
-tively, then the probability spa
e (
1 �
2; P1 � P2) determined byP1 � P2(f(i; j)g) �= P1(fig)P2(fjg);des
ribes the two independent systems asa single system.
Produ
t spa
es: If (H1; �1) and(H2; �2) are two quantum systems, thenthe quantum system with state spa
eH1 
 H2 and state �1 
 �2 (whi
h is anon-negative de�nite operator of unittra
e on H1 
 H2) des
ribes the twoindependent quantum systems as a singlesystem.Dynami
sReversible dynami
s in 
: This isdetermined by a bije
tive transformationT : 
! 
. Then,f  f Æ T (for random variables)P  P Æ T�1(for distributions)
Reversible dynami
s inH: This is de-termined by a unitary operator U : H !H. Then, we have the dynami
s ofHeisenberg:X  U yXU for X 2 B(H);S
hr�odinger�  U�U y for the state �:1.2 Three Distinguishing Features1. Proposition 1.2.1 Let E and F be proje
tions in H su
h that EF 6= FE. Then,\E _ F � E + F" is false.Proof: Suppose E _ F � E + F . Then, E _ F � E � F . So,F (E _ F � E) = (E _ F � E)F:That is, FE = EF , a 
ontradi
tion. �Corollary 1.2.2 Suppose E and F are proje
tions su
h that EF 6= FE. Then,for some state �, the inequality \Tr �(E _ F ) � Tr �E + Tr �F" is false.Proof: By the above proposition, \E _ F � E + F" is false; that is, there exists aunit ve
tor u su
h thathu; (E _ F )ui 6� hu;Eui+ hu; Fui :Choose � to be the one dimensional proje
tion on the ray C u. Then,Tr(E _ F )� = hu; (E _ F )uiTrE� = hu;EuiTrF� = hu; Fui : �



1.3. MEASUREMENTS: VON NEUMANN'S COLLAPSE POSTULATE 92. Proposition 1.2.3 (Heisenberg's inequality) Let X and Y be observables andlet � be a state in H. Assume Tr �X = Tr �Y = 0. Then,var� (X)var� (Y ) � (Tr �12fX; Y g)2 + (Tr �12 i[X; Y ℄)2� 14(Tr �i[X; Y ℄)2;where fX; Y g �= XY + Y X; and[X; Y ℄ �= XY � Y X:Proof: For z 2 C , we have Tr �(X + zY )y(X + zY ) � 0:If z = rei�, r2Tr �Y 2 + 2r<e�i��Y X + Tr �X2 � 0:The left hand side is a degree-two polynomial in the variable r. Sin
e, it is alwaysnon-negative, it 
an have at most one root. Thus, for all �,(Tr �X2)(Tr �Y 2) � (<e�i��Y X)2� �
os �Tr �XY + Y X2 + sin �Tr �iXY � Y X2 �2= (x 
os � + y sin �)2;where x �= Tr �12fX; Y g and y �= Tr � i2[X; Y ℄. The proposition follows from this, ifwe take 
os � = xpx2+y2 and sin � = ypx2+y2 . �3. Extremal states (one-dimensional proje
tions) are 
alled pure states. The set of allpure states in an N -dimensional 
omplex Hilbert spa
e is a manifold of dimension2N � 2. (The set of all extremal probability distributions on a sample spa
e of Npoints has 
ardinality N .)1.3 Measurements: Von Neumann's Collapse Postu-lateSuppose X is an observable (i.e. a Hermitian operator) with spe
tral de
ompositionX = X�2Sp(X) �E�:Then, the measurement of X in the quantum state � yields the value � with probabilityTr �E�. If the observed value is �, then the state 
ollapses to~�� = E��E�Tr �E� :The 
ollapsed state ~�� has its support in the subspa
e E�(H).



10 LECTURE 1. QUANTUM PROBABILITY1.4 Dira
 NotationElements of the Hilbert spa
e H are 
alled ket ve
tors and denoted by jui. Elements ofthe dual spa
e H� are 
alled bra ve
tors and denoted by huj. The bra huj evaluated onthe ket jvi is the bra
ket hu j vi, the s
alar produ
t between u; v as elements of H.The operator juihvj is de�ned byjuihvj(jwi) �= hv j wi jui:It is a rank one operator when u and v are non-zero.Tr juihvj = hv j ui(juihvj)y = jvihujju1ihv1jju2ihv2j � � � junihvnj = (hv1 j u2i hv2 j u3i � � � hvn�1 j uni)ju1ihvnj:The s
alar produ
t hu j vi is anti-linear (
onjugate-linear) in the �rst variable and linearin the se
ond variable.1.4.1 QubitsThe Hilbert spa
e h �= C 2 , with s
alar produ
t�� ab � ; � 
d �� = �a
+�bd;is 
alled a 1-qubit Hilbert spa
e. Letj0i = � 10 � and j1i = � 01 � :Then, � ab � = aj0i+ bj1i;and the ket ve
tors j0i and j1i form an orthonormal basis for h.The Hilbert spa
e h
n = (C 2)
n is 
alled the n-qubit Hilbert spa
e. If x1x2 : : : xn isan n-length word from the binary alphabet f0; 1g, we letjx1x2 : : : xni �= jx1ijx2i � � � jxni�= jx1i 
 jx2i 
 � � � 
 jxni�= jji;where j = x1 � 2n�1 + x2 � 2n�2 + � � �+ xn�1 � 2 + xn (that is, as x1x2 : : : xn varies overall n-length words, the integer j varies in the range f0; 1; : : : ; 2n � 1g).



Le
ture 2Quantum Gates and Cir
uits
2.1 Gates in n{qubit Hilbert Spa
esIn ordinary (
lassi
al) 
omputers, information is passed through a 
lassi
al 
hannel. Logi
gates (like AND, OR, NOT) operate on these 
hannels. Likewise, in a quantum 
omputer,information is passed through a quantum 
hannel and it is operated upon by quantumgates. A quantum gate is a unitary operator U in a (�nite dimensional) Hilbert Spa
e H.Not all the 
lassi
al gates are reversible ( for example if a AND b = 0, there arethree possible values for the ordered pair (a; b)). On the 
ontrary, all quantum gates arereversible.If a gate U a
ts on an n-qubit Hilbert spa
e H we depi
t it as in Figure 2.1. If Ua
ts on a single qubit it is represented pi
torially as shown in Figure 2.2.n jui U UjuiFigure 2.1: A quantum 
ir
uit.

jui U U juiFigure 2.2: A gate U a
ting on asingle qubit.If the input is jui and it passes through the gate U , then the output is written asU jui.Any unitary operator U whi
h a
ts on a single qubit 
an be written asU = ei� � a b�b a � ;where jaj2 + jbj2 = 1 in the 
omputational basis 
onsisting of j0i and j1i.The a
tion of the unitary operator U on the basis states 
an be 
omputed as shownbelow. U j0i = ei� � a b�b a � � 10 � = ei�faj0i � bj1ig11



12 LECTURE 2. QUANTUM GATES AND CIRCUITSSimilarly, U j1i = ei�fbj0i+aj1ig. By measurement on the n-qubit register of a quantum
omputer we usually mean measuring the observableX = �2n�1j=0 jjjihjj;and it is indi
ated in 
ir
uits by the ammeter symbol, as in Figure 2.1. Sin
e by measuringwe get two quantities, namely a 
lassi
al value and a quantum state, pi
torially it isindi
ated by a double line, as in Figure 2.1. The output 
onsists of a value of X in therange f0; 1; 2; : : : ; 2n � 1g, where the probability of the event fX = jg is jhjjU juij2, anda 
ollapsed basis state jji, where j is the observed value.As an example, let us simulate a Markov 
hain using a quantum 
ir
uit. Considerthe 
ir
uit in Figure 2.3.n jvi U1 U2j1 j2Figure 2.3: A quantum 
ir
uit to simulate a Markov Chain.
After ea
h measurement, the observed 
lassi
al parts j1; j2; : : : take values in the spa
ef0; 1; 2; : : : ; 2n � 1g with the following properties:Pr(fj1g) = jhj1jU1jvij2 0 � j1 � 2n � 1Pr(fj2 j j1g) = jhj2jU2jj1ij2 0 � j2 � 2n � 1... ... ... ...Pr(fjk j jk�1jk�2; : : : ; j1g) = jhjkjU2jjk�1ij2 0 � jk � 2n � 1... ... ... ...Thus, we have simulated a 
lassi
al Markov 
hain with state spa
e f0; 1; 2; : : :2n�1g.The drawba
k here is that we need a separate unitary operator for ea
h of the 2n possibleout
omes of the measurement.Open Problem: Given a doubly sto
hasti
 matrix P of size N�N , does there exist aunitary matrix U su
h that, juijj2 = pij for all i; j 2 f0; 1; 2; : : :Ng ? Existen
e of su
h amatrix will result in simpli�
ation of the quantum 
ir
uit for simulating a Markov 
hain.2.2 Quantum Gates2.2.1 One Qubit GatesIn 
lassi
al 
omputing, the only interesting one-bit gate is the NOT gate. In the quantumworld, we have many 1-qubit gates. Some of them are given below.1. Pauli Gates: There are three su
h gates and they are denoted by X; Y; Z: Theunitary matri
es of X; Y; Z in the 
omputational basis are given by



2.2. QUANTUM GATES 13X = � 0 11 0 � ; Y = � 0 �ii 0 � ; Z = � 1 00 �1 � :The unitary matrixX is also 
alled the not gate be
ause Xj0i = j1i and Xj1i = j0i.These gates are 
alled Pauli gates be
ause the unitary matri
es 
orresponding tothese operators are the Pauli matri
es �1; �2 and �3 of quantum me
hani
s. Paulimatri
es are the basi
 spin observables taking values �1. X; Y; Z are hermitian,X2 = Y 2 = Z2 = 1 and X; Y; Z anti
ommute with ea
h other i.e. XY + Y X = 0.2. Hadamard Gate: The unitary matrix 
orresponding to the Hadamard gate isH = 1p2 � 1 11 -1 �. In this 
ase, Hj0i = j0i+j1ip2 and Hj1i = j0i�j1ip2 . Its n-fold tensorprodu
t H
n is the Hadamard gate on n-qubits satisfyingH
nj00 : : : 0i = 12n2 Xx2f0;1gn jxiand more generally H
njxi = 12n2 Xy2f0;1gn(�1)x:yjyi;where x:y = x1y1 + x2y2 + � � �xnyn.3. Phase Gate: The unitary matrix for this gate is S = � 1 00 i �. This gate 
hangesthe phase of the ket ve
tor j1i by i so that j1i be
omes ij1i, and leaves the ketve
tor j0i �xed.4. �8 Gate: The unitary matrix for this gate is T = � 1 00 e i�4 � = ei�8 " e�i�8 00 e i�8 #.This gate 
hanges the phase of j1i by ei�42.2.2 Two Qubit Gates
Figure 2.4: Two qubit gates. ACNOT gate and a SWAP gate. =Figure 2.5:1. Controlled NOT: This gate (Figure 2.4 ) a
ts as a NOT gate on the se
ond qubit(target qubit) if the �rst qubit (
ontrol qubit) is in the 
omputational basis statej1i. So the ve
tors j01i and j00i are unaltered, while the ve
tor j10i gets modi�edinto j11i and vi
e versa.



14 LECTURE 2. QUANTUM GATES AND CIRCUITSThe unitary matrix for this gate is T = 2664 1 0 0 00 1 0 00 0 0 10 0 1 0 3775The gate 
ould also negate the 
ontent of the �rst qubit depending on the se
ondqubit. Su
h a gate will have a di�erent unitary matrix. The essential point is that aqubit 
an get negated depending on a 
ontrol qubit. The 
ontrol qubit will alwaysbe denoted by a solid dot in pi
tures.2. Swap GateThis gate (Figure 2.4) swaps the 
ontents of the two qubits. Be
ause the ve
torsj00i and j11i are symmetri
, they are unaltered, while the ve
tor j01i gets mappedto j10i and vi
e versa.The unitary matrix for this gate is P = 2664 1 0 0 00 0 1 00 1 0 00 0 0 1 3775Exer
ise 2.2.1 Prove that the two 
ir
uits given in Figure 2.5 are the same.Solution: To 
he
k the equivalen
e of the 
ir
uits on the L.H.S. and R.H.S. we
ompute how the 
ir
uit on the R.H.S. a
ts on the basis state ja; bi.ja; bi ! ja; a� bi ! ja� (a� b); a� bi = jb; a� bi ! jb; (a� b)� bi = jb; ai3. Controlled Unitary: This is just like the 
ontrolled NOT, but instead of negating thetarget qubit, we perform the unitary transform pres
ribed by the matrix U (onlyif the 
ontrol qubit is in state j1i). It is represented s
hemati
ally as shown in the�rst diagram of Figure 2.6.2.2.3 Three Qubit Gates
UFigure 2.6: A 
ontrolled unitary gate, To�oli gate and a Fredkin gate.

1. To�oli Gate: This (as in se
ond diagram of Figure 2.6) is a double 
ontrolled NOTgate. The only 
omputational basis ve
tors whi
h get 
hanged are j110i and j111i.
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The 
orresponding unitary matrix is U = 266666666664

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 0
3777777777752. Fredkin Gate: This is a 
ontrolled swap gate (last diagram of Figure 2.6). The


orresponding unitary matrix is U = 266666666664
1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1

3777777777752.2.4 Basi
 RotationsWe des
ribe in this part, some basi
 rotation gates, ea
h a
ting on a single qubit.The basi
 rotation operators, whi
h indu
e rotation by an angle � about the x; y andz axis respe
tively, are denoted by Rx(�); Ry(�) and Rz(�) and they are de�ned by thefollowing equations.Rx(�) = � 
os �2 �i sin �2�i sin �2 
os �2 � = e� i�X2 = 
os �2I � i sin �2XRy(�) = � 
os �2 � sin �2sin �2 
os �2 � = e� i�Y2 = 
os �2I � i sin �2YRz(�) = � e�i �2 00 ei �2 � = e� i�Z2 = 
os �2I � i sin �2ZMore generally Rn̂(�) = (
os �2)I � (i sin �2)(n̂xX + n̂yY + n̂zZ) is the matrix 
orre-sponding to rotation by an angle � about the axis with dire
tion 
osines (n̂x; n̂y; n̂z).Theorem 2.2.2 (Euler): Every 2� 2 unitary matrix U 
an be expressed asU = ei� " e�i(�+Æ2 ) 
os 
2 �e�i(��Æ2 ) sin 
2ei(��Æ2 ) sin 
2 ei(�+Æ2 ) 
os 
2 # = ei�Rz(�)Ry(
)Rz(Æ): �Corollary 2.2.3 Every 2� 2 matrix U 
an be expressed as U = ei�AXBXC, where A,B and C are 2� 2 unitary operators and ABC = I.



16 LECTURE 2. QUANTUM GATES AND CIRCUITSProof: By Theorem 2.2.2 we 
an write U = ei�Rz(�)Ry(
)Rz(Æ): Set A = Rz(�)Ry(
2 ),B = Ry(�
2 )Rz(��+Æ2 ) and C = Rz( Æ��2 ). It is easy to 
he
k that A, B and C satisfy therequired 
onditions. �
C B A

D
UFigure 2.7: Cir
uit implementing the 
ontrolled-U operation for single qubit U . �, A, Band C satisfy U = ei�AXBXC;ABC = I:Corollary 2.2.4 In Figure 2.7 the 
ir
uit on the L.H.S. is equivalent to the 
ir
uit onthe R.H.S. if AXBXC = e�i�U , ABC = I and D = � 1 00 ei� � :Proof: The equivalen
e of the 
ir
uits 
an be veri�ed by 
he
king how the 
omputationalbasis states evolve.j0ijui ! j0iCjui ! j0iBCjui ! j0iABCjui ! Dj0iABCjui = j0ijui.j1ijui ! j1iCjui ! j1iXCjui ! j1iBXCjui ! j1iXBXCjui ! Dj1iAXBXCjui =ei�j1ie�i�U jui = j1iU jui. �Corollary 2.2.5 In Figure 2.8, the 
ir
uit on the L.H.S. is equivalent to the 
ir
uit onthe R.H.S. if V 2 = U .

U V V y VFigure 2.8: Cir
uit for the C2(U) gate. V is any unitary operator satisfying V 2 = U .The spe
ial 
ase V = (1� i)(I + iX)=2 
orresponds to the To�oli gate.Proof: j00ijui ! j00ijui:j01ijui ! j01iV jui ! j01iV yV jui = j01iIjui = j01ijui.j10ijui ! j11ijui ! j11iV yjui ! j10iV yjui ! j10iV V yjui = j10ijui.j11ijui ! j11iV jui ! j10iV jui ! j11iV jui ! j11iV V jui = j11iU jui: �Corollary 2.2.6 To�oli gate 
an be expressed as a 
omposition of 
ontrolled NOT's and1{qubit gates.



2.3. SOME SIMPLE CIRCUITS 17Proof: Follows from the previous two 
orollaries. �Exer
ise 2.2.7 Derive and verify that the 
ir
uit on the R.H.S. of Figure 2.9 is a 
orre
trealization of the To�oli gate using 
ontrolled NOT and single qubit gates.
STT y T yHTT yTT yHFigure 2.9: Implementation of the To�oli gate using Hadamard, phase, 
ontrolled NOTand �8 gates.

2.3 Some Simple Cir
uits2.3.1 Quantum TeleportationIn quantum teleportation, Ali
e (sender) 
an send a qubit to Bob (re
eiver) without usinga quantum 
ommuni
ation 
hannel. In order to a
hieve this, Ali
e and Bob togethergenerate an EPR pair (i. e. j00i+j11ip2 ) and share one qubit ea
h.Suppose Ali
e wants to send an unknown qubit j i = �j0i+ �j1i. Then she 
annoteven measure it be
ause she has only one 
opy of it. Even if Ali
e knows the state ofthe qubit j i sending it to Bob through 
lassi
al 
hannel will not be possible at all. Butby making use of the EPR pair Ali
e 
an send the qubit j i to Bob just by sending twoadditional 
lassi
al bits of information.To a

omplish the task Ali
e makes a 
ir
uit as shown in Figure 2.10. Ali
e has a

essto the top two qubits. So all operations Ali
e does involve only the top two qubits.Initial state of the system isj 0i = j i j00i+j11ip2 = 1p2 [�j0i(j00i+ j11i) + �j1i(j00i+ j11i)℄.After the �rst CNOT gate the state of the system isj 1i = 1p2 [�j0i(j00i+ j11i) + �j1i(j10i+ j01i)℄.After she sends the �rst qubit through the Hadamard gate the state of the system isj 2i = 12 [�(j0i+ j1i)(j00i+ j11i) + �(j0i � j1i)(j10i+ j01i)℄.Colle
ting the �rst two qubits the state j 2i 
an be re-written asj 2i = 12 [j00i(�j0i+ �j1i) + j01i(�j1i+ �j0i) + j10i(�j0i � �j1i) + j11i(�j1i � �j0i)℄.
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XM2 ZM1
M2

j 0i j 1i j 2iFigure 2.10: Cir
uit used by Ali
e and Bob
When Ali
e makes a measurement on the two qubits she 
an 
ontrol, the state ofBob's qubit is 
ompletely determined by the results of Ali
e's measurement on her �rsttwo qubits. Hen
e if Ali
e sends the results of her measurement to Bob, he 
an applyappropriate gates on the qubit he 
an a

ess and get the state j i. The a
tion of Bob
an be summarized as in the table below.Ali
e State of Bob's Gates neededmeasures qubit to get j i00 [�j0i+ �j1i℄ I01 [�j1i+ �j0i℄ X10 [�j0i � �j1i℄ Z11 [�j1i � �j0i℄ ZXThus, the state of the �rst qubit j i is transferred to the third qubit whi
h is withBob. The above algorithm implies that one shared EPR pair and two 
lassi
al bits of
ommuni
ation is a resour
e at least equal to one qubit of quantum 
ommuni
ation.2.3.2 Super Dense Coding: Quantum Communi
ation throughEPR PairsIf Ali
e and Bob initially share an EPR pair, Ali
e 
an send Bob two bits of 
lassi
alinformation by passing a single qubit as follows. Ali
e makes a 
ir
uit as shown in Figure2.11.Ali
e sele
ts the gate G a

ording to the bits she wants to send. She sele
ts a gatea

ording to the table below and applies it to the qubit she possesses before transmittingit to Bob.



2.3. SOME SIMPLE CIRCUITS 19M1Gj'0i = (j00i+j11i)2Figure 2.11: Cir
uit used by Ali
e and BobBits to Gates to Bobbe sent be used re
eives00 I j00i+j11ip201 Z j00i�j11ip210 X j10i+j01ip211 iY j01i�j10ip2The four possible states that Bob 
an re
eive are the so-
alled Bell states or EPRpairs whi
h 
onstitute the Bell basis. Sin
e the Bell states form an orthogonal basis, they
an be distinguished by measuring in the appropriate basis. Hen
e when Bob re
eivesthe qubit sent by Ali
e he has both the qubits. Then he does a measurement in theBell basis and �nds out the message she wanted to send. In 
lassi
al 
omputation it isimpossible to send two bits of information by just passing a single bit. So a qubit 
an
arry more than one bit of 
lassi
al information.2.3.3 A Genaralisation of \Communi
ation through EPR States"Let F be a �nite abelian group of order n for example (Z=2Z)k with n = 2k. Let F̂ denoteits 
hara
ter group. De�ne the Hilbert spa
e H �= L2(F ) to be the spa
e of fun
tionsfrom F to C under the standard inner produ
t. The 
hara
teristi
 fun
tions of elementsof the group F , 1fxg where x 2 F , form the standard orthonormal basis for H. De�nejxi �= 1fxg. Let f 2 H and x 2 F . For a 2 F and � 2 F̂ , de�ne unitary operators Uaand V� on H as (Ua f)(x) �= f(x+ a); (V� f)(x) = �(x) f(x):Ua 
an be thought of as translation by the group element a and V� 
an be thought ofas multipli
ation by the 
hara
ter �. For (a; �) 2 F � F̂ , de�ne the Weyl operatorWa;� �= UaV�. It is a unitary operator.Exer
ise 2.3.1 Wa;�Wb;� = �(b)Wa+b;��. i.e. the Wa;� form a proje
tive unitary repre-sentation of the group F � F̂ . The term proje
tive is used to refer to the fa
t that theunitary operators Wa;� form a representation of F � F̂ upto multipli
ation by a 
omplexs
alar (the number �(b)) of modulus unity.Exer
ise 2.3.2 Show that the only linear operators whi
h 
ommute with Wa;� for all(a; �) 2 F � F̂ , are the s
alars. Hen
e, the Wa;�'s form an irredu
ible proje
tive rep-resentation of the group F � F̂ i.e. the only subspa
es of H whi
h are invariant underevery Wa;� are the zero subspa
e and H itself.



20 LECTURE 2. QUANTUM GATES AND CIRCUITSExer
ise 2.3.3 Show that the operators fWa;�g(a;�)2F�F̂ are linearly independent. Thus,they span the spa
e B(H) of (bounded) linear operators on H.Exer
ise 2.3.4 Show that W ya;� = �(a)W�a;�. Show also that TrWa;� = n if a = 0and � is the trivial 
hara
ter, where n = jF j; otherwise TrWa;� = 0. Hen
e, prove thatTrW ya;�Wb;� = nÆ(a;�);(b;�).Exer
ise 2.3.5 De�ne j 0i �= 1pnPx2F jxijxi. Also de�ne j(a; �)i �= (Wa;� 
 I)j 0i,where I is the identity operator on H. Then, fj(a; �)ig(a;�)2F�F̂ is an orthonormal basisfor H
H.Enumerate (a; �) as f(a; �) 2 f1; 2; : : : ; n2g, in some order. De�ne the Hermitianmeasurement operator X �= X(a;�)2F�F̂ f(a; �) j(a; �)ih(a; �) jj 0i is the entangled state whi
h Ali
e and Bob share. Ali
e holds the �rst logn qubitsof the state while Bob holds the other logn qubits. To send a message m 2 [n2℄, Ali
eapplies the unitary transformation Wa;�, where f(a; �) = m, on her qubits. She thensends her qubits to Bob, who then applies the measurement X on the 2 logn qubits whi
hhe now has. The out
ome of the measurement is m, whi
h is exa
tly what Ali
e intendedto send. Thus Ali
e has 
ommuni
ated 2 logn 
lassi
al bits of information using onlylogn qubits of quantum 
ommuni
ation.
Alice

Bob

Bob

Alice Bob

Bob

Bobj 0i log n log n 2 log nX
Wa;�

log nFigure 2.12: Cir
uit used by Ali
e and Bob
Exer
ise 2.3.6 In the 
ase where F = Z=2Z, this redu
es to 
ommuni
ating two 
lassi-
al bits at a time using one qubit, by the usual superdense 
oding te
hnique!2.3.4 Deuts
he AlgorithmThis algorithm enables us to �nd out whether a fun
tion f : f0; 1g ! f0; 1g, is a 
onstantfun
tion or not, by 
omputing the fun
tion only on
e. In 
lassi
al theory of 
omputationwe must evaluate the fun
tion twi
e before making su
h a 
on
lusion.



2.3. SOME SIMPLE CIRCUITS 21Corresponding to the fun
tion f we 
onsider the unitary operator Uf , where Uf jxyi =jxijy � f(x)i; x; y 2 f0; 1g. The 
ir
uit for implementing the algorithm is shown inFigure 2.13. HH x xUfy y � f(x) Hj0ij1iFigure 2.13: Cir
uit for implementing Deuts
he Algorithm.We follow the evolution of the 
ir
uit in Figure 2.13.j 0i = j01ij 1i = 12 (j0i+ j1i) (j0i � j1i)Observe that Uf jxi� j0i � j1ip2 � = (�1)f(x)jxi� j0i � j1ip2 � :j 2i = � �12(j0i+ j1i)(j0i � j1i) if f(0) = f(1)�12(j0i � j1i)(j0i � j1i) if f(0) 6= f(1)j 3i = ( �j0i (j0i�j1i)p2 if f(0) = f(1)�j1i (j0i�j1i)p2 if f(0) 6= f(1)=) j 3i = �jf(0)� f(1)i(j0i � j1i)p2Thus, by measuring the �rst bit we get nff(0)� f(1)g;�jf(0)� f(1)i (j0i�j1i)p2 o :In this algorithm, both superposition and interferen
e of quantum states are exploited.2.3.5 Arithmeti
al Operations on a Quantum ComputerWe now see how addition may be performed on a quantum 
omputer. Let x; y be twon+ 1 bit integers. Then we havex = an an�1 : : : a0y = bn bn�1 : : : b0x+ y = 
n sn sn�1 : : : s0andx0 = an�1 an�2 : : : a0y0 = bn�1 an�2 : : : b0x0 + y0 = 
n�1 sn�1 sn�2 : : : s0



22 LECTURE 2. QUANTUM GATES AND CIRCUITSNote that s0; s1; : : : sn�1 are same in both these additions. Also,(
n; sn) = (anbn � 
n�1(an � bn); an � bn � 
n�1):Note that the To�oli gate sends jab
i ! jabij
� abi.Consider a subroutine for adding two single bit numbers with 
arry. The 
ir
uit forthis subroutine is shown in Figure 2.14.j
n�1ijanijbnijdi
j
n�1ijanijan � bn � 
n�1ijd� anbn � 
n�1(an � bn)iFigure 2.14: Cir
uit for adding two single bit numbers with 
arry.If we measure the last two qubits in the 
ir
uit in Figure 2.14, we get the outputsfsng; f
ng and the 
ollapsed states jsni; j
ni provided d = 0. Hen
e, using this subroutinewe 
an add two n-bit numbers.We would like to 
ount the number of To�oli and CNOT gates used by the 
ir
uitas a measure of 
omplexity. Suppose �n To�oli and �n CNOT gates are used for addingtwo n-bit numbers. Then�n+1 = �n + 2; �n+1 = �n + 2=) �n = �1 + 2(n� 1); �n = �1 + 2(n� 1)Consider the 
ir
uit in Figure 2.15. ja0ija0 � b0i s0jd� a0b0i 
0 when d = 0

ja0ijb0ijdiFigure 2.15: Cir
uit for adding two single bit numbers without 
arry.Thus, �1 = 1 and �1 = 1. This implies �n = �n = 2n � 1. So by this method ofadding two n bit numbers we need 2n� 1 To�oli and 2n � 1 CNOT gates. The 
ir
uitfor adding two n bit numbers is shown in Figure 2.16.
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1 bit

ADD

1 bit

ADD

1 bit

ADD

��� � � �

ja0ijb0ijd0ija1ijb1ijd1ija2ijb2ijd2ijdn�2ijan�1ijbn�1ijdn�1i

ja0ijs0ij
0ija1ijs1ij
1i
j
n�2ijan�1ijsn�1ij
n�1i
���

Figure 2.16: Cir
uit for adding two n bit numbers without 
arry.Subtra
tion:To evaluate a� b, where a; b are two n bit numbers, add a and 2n � b to geta + 2n � b = enen�1 : : : e0:Note that 2n � b 
an be easily 
omputed using only CNOT gates.If en = 0, then a� b = �(1� en�1)(1� en�2) : : : (1� e0):If en = 1, then a� b = en�1en�2 : : : e0:Exer
ise 2.3.7 Count the number of gates required in the above subtra
tion algorithm.Exer
ise 2.3.8 Devi
e a 
ir
uit for addition (mod N), multipli
ation and division.
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Le
ture 3Universal Quantum Gates
3.1 CNOT and Single Qubit Gates are UniversalIn 
lassi
al 
omputation the AND, OR and NOT gates are universal whi
h means thatany boolean fun
tion 
an be realized using only these three gates. In this le
ture, weprove the quantum analogue of this theorem. We show that any unitary transformationin an n-qubit Hilbert spa
e 
an be approximated by 
ompositions of Hadamard, CNOT,phase and �=8 gates to any desired degree of a

ura
y. We pro
eed by proving twopropositions from whi
h the theorem immediately follows.Lemma 3.1.1 Any n � n unitary matrix U 
an be expressed as a produ
t of at mostone phase fa
tor and n(n�1)2 unitary matri
es, ea
h of whi
h a
ts on a 2-dimensional
oordinate plane.Proof: Let U = 2664 u11 u12 : : : u1nu21 u22 : : : u2n. . : : : .un1 un2 : : : unn 3775If u21 = 0, do nothing. Otherwise, left multiply by a unitary matrixU1 = 24 � ��� � 00 In�2 35su
h that ��u11 + �u21 = 0 and j�j2 + j�j2 = 1. Solving we get� = u11pju11j2 + ju21j2 and � = u21pju11j2 + ju21j2 :Now 
onsider M1 = U1U . The M1(2; 1) entry is 0. If M1(3; 1) is 0, we do nothing.Otherwise we left multiply by U2 in the (1; 3) plane to make the entry (3; 1) in the resultingmatrix 0. Continuing this way we get Un�1Un�2 : : : U1U = 2664 v11 v12 : : : v1n0 v22 : : : v2n: : : : : .0 vn2 : : : vnn 377525



26 LECTURE 3. UNIVERSAL QUANTUM GATESwhere jv11j = 1.Orthogonality between the 1st and any other 
olumn shows thatv12 = v13 = � � � = v1n = 0. Thus
v�111 Un�1Un�2 : : : U1U = 2666666664

1 0 0 . . . 000...0 W
3777777775where W is an n � 1 � n � 1 unitary matrix. The same pro
edure is repeated for theredu
ed matrixW . We repeat these operations till we get the identity matrix I. Poolingthe phase fa
tors we get ei�UmUm�1 : : : U1U = I where m � �n2�. It is to be noted thatUj is an element in SU(2) a
ting in a two dimensional subspa
e. Transferring the Uj'sto the right we get U = ei�U y1U y2 : : : U ym.Lemma 3.1.2 Any matrix U 2 SU(2) a
ting in a 2-dimensional subspa
e 
an be realisedusing single qubit and r-
ontrolled 1-qubit gates.Proof: Consider H = (C 2)
n with 
omputational basis fjxi; x 2 f0; 1gng. Consider apair x; y whi
h di�er in exa
tly one pla
e, say i.jxi = jaij0ijbi.jyi = jaij1ijbi.with a and b being words of length i� 1 and n� i respe
tively.A unitary matrix U in the two dimensional plane spanned by jxi and jyi whi
h leavesthe other kets jzi �xed 
an be expressed as in Figure 3.1, where ~U = � � ��� � � andj�j2 + j�j2 = 1.Suppose now x and y di�er in r pla
es. Then we 
an 
onstru
t a sequen
ex = x(0) x(1) x(2) : : : x(r�1) x(r) = yof n length words su
h that x(i) and x(i+1) di�er exa
tly in one position 8i = 0; 1; 2; : : : ; r�1. Let x, x(1) di�er at position j1,x(1), x(2) di�er at position j2,... ... ...and x(r�1), x(r) di�er at position jr.Now a 
ontrolled not gate (it is not the CNOT gate) is applied on x with the j1 bitas target and the remaining n� 1 bits as 
ontrol bits. The not gate a
ts on the j1 bit ifthe �rst bit is x1, the se
ond bit is x2 and so on. This 
an be implemented with X (not)and CNOT gates as shown in the Figures 3.2 and 3.3.We follow this by a 
ontrolled not on x(1) with j2 as the target bit and the remainingn�1 as the 
ontrol bits. After 
ontinuing this up to x(r�1), we apply ~U . Then we just dothe reverse of the 
ontrolled not operations. This implements ~U in the plane generatedby jxi and jyi keeping all jzi �xed where z di�ers from both x and y.



3.1. CNOT AND SINGLE QUBIT GATES ARE UNIVERSAL 27a1a2
ai�1Ub1b2bn�iFigure 3.1: A generalized 
ontrolledU operation on n-qubits.

X1X2
Xj1�1
Xj1+1XnFigure 3.2: A generalized 
ontrolledNOT operation on n-qubits.Figure 3.3 shows how a generalized 
ontrolled 1-qubit gate 
an be realised using 1-qubit gates and r-
ontrolled 1-qubit gate. This 
ompletes the proof. �Lemma 3.1.3 If n � 2, then an n-
ontrolled 1-qubit gate 
an be realised by (n � 1)-
ontrolled 1-qubit gates.Proof: Let U = V 2 where U; V 2 SU(2). Then we see that the two 
ir
uits in Figure 3.4are equivalent. �Lemma 3.1.4 A 
ontrolled 1-qubit gate 
an be realised using CNOT and single qubitgates.Proof: Let U = ei�AXBXC, ABC = I, D = � 1 00 ei� �. Then from (
orollary 2.2.4)we know that the two 
ir
uits in Figure 3.5 are equivalent. �Proposition 3.1.5 Any arbitary unitary matrix on an n-dimensional Hilbert spa
e 
anbe realised using phase, single qubit and CNOT gates.
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x x

UFigure 3.3: Realizing a generalized 
ontrolled operation.

U V V y VFigure 3.4:
Proof: The proof follows from Lemma 3.1.1, Lemma 3.1.2, Lemma 3.1.3 and Lemma3.1.4. �Proposition 3.1.6 The group generated by H and e�i�8Z is dense in SU(2).Proof: H2 = I, HZH = X, HYH = �Y , He�i�8ZH = e�i�8X and e�i�8Ze�i�8X =
os2 �8 I�(i sin �8 )f(
os �8 (X+Z)+(sin �8 )Y g = R~n(�) where 
os� = 
os2 �8 , ~n = (
os �8 ;sin �8 ;
os �8 )p1+
os2 �8He�i�8Ze�i�8XH = 
os2 �8 I � (i sin �8 )f(
os �8 (X + Z)� (sin �8 )Y g = R~m(�);where, ~m = (
os �8 ;� sin �8 ;
os �8 )p1+
os2 �8 : Now we need the following lemma.
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U C B ADFigure 3.5:

Lemma 3.1.7 If 
os� = 
os2 �8 , then � is an irrational multiple of �.Proof: See Appendix. �Any R~n(�) 
an be approximated as 
losely as we want by a suitable power of R~n(�)be
ause � is an irrational multiple of �. Similarly, any R~m(�) 
an be approximated by asuitable power of R~m(�).Sin
e ~n and ~m are two linearly independent unit ve
tors, any U 2 SU(2) 
an bewritten as U = ei R~n(�1)R~m(�2)R~n(�3). This is an immediate 
onsequen
e of Euler'stheorem. This proves the proposed Lemma. �Now we are ready for the main theorem.Theorem 3.1.8 The subgroup generated by the Hadamard gate H, phase gate, CNOTand the �=8 is dense in the unitary group U(2).Proof: Immediate from Prpposition 3.1.5 and Proposition 3.1.6. �3.2 AppendixIn this se
tion we �rst give all the de�nitions and results needed to prove Lemma 3.1.7.The proofs whi
h are routine are left out. The reader may refer to Algebra by Artin([13℄) or Basi
 Algebra by Ja
obson ([14℄) for a 
omprehensive treatment. We start witha few de�nitions.A non
onstant polynomial P 2 F[x℄ is 
alled irredu
ible if it is written as a produ
tof two polynomials P1; P2 2 F[x℄ then either P1 or P2 is a 
onstant.A polynomial is 
alled moni
 if the 
oeÆ
ient of the leading term is 1.A polynomial a0+a1x+ � � �+anxn in Z[x℄ is 
alled primitive if g:
:d(ja0j ; : : : ; janj) = 1and an > 0.Remark 3.2.1 Every nonzero polynomial P 2 Q [x℄ 
an be written as a produ
t P =
P0, where 
 is a rational number and P0 is a primitive polynomial in Z[x℄. Note that thisexpression for P is unique and the polynomial P has integer 
oeÆ
ients i� 
 is an integer.In that 
ase j
j is the g:
:d: of the 
oeÆ
ients of P and 
 and the leading 
oeÆ
ient of Phave the same sign.
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 whi
h appears in this remark is 
alled the 
ontent of P . If Phas integer 
oeÆ
ients, then the 
ontent divides P in Z[x℄. Also, P is primitive i� its
ontent is 1.Lemma 3.2.2 Let ' : R �! R0 be a ring homomorphism. Then for any element� 2 R0, there is a unique homomorphism � : R[x℄ �! R0 whi
h agrees with the map 'on 
onstant polynomials and sends x �.Let Fp = Z=pZ. The lemma above gives us a homomorphism Z[x℄ �! Fp . Thishomomorphism sends a polynomial P = amxm+� � �+a0 to its residue P = amxm+� � �+a0modulo p.Theorem 3.2.3 (Gauss's Lemma) A produ
t of primitive polynomials in Z[x℄ is primi-tive.Proof:Let P and Q be two primitive polynomials in Z[x℄ and let R be their produ
t. Ob-viously the leading 
oeÆ
ient of R is positive. To show that R is primitive, it is enoughto show that no prime integer p divides all the 
oeÆ
ients of R. Consider the homo-morphism Z[x℄ �! Fp [x℄ de�ned above. Sin
e P is primitive, its 
oeÆ
ients are not alldivisible by p. So P 6= 0. Similarly, Q 6= 0. Sin
e the polynomial ring Fp [x℄ is an integraldomain, R = PQ 6= 0. Therefore p does not divide one of the 
oeÆ
ients of R. Thisimplies that R is primitive. �Proposition 3.2.41. Let F , G be polynomials in Q [x℄, and let F0, G0 be the asso
iated primitive poly-nomials in Z[x℄. If F divides G in Q [x℄, then F0 divides G0 in Z[x℄.2. Let F;G 2 Z[x℄ su
h that F is primitive and G is divisible by F in Q [x℄, sayG = FQ, with Q 2 Q [x℄. Then Q 2 Z[x℄, and hen
e F divides G in Z[x℄.3. Let F , G be polynomials in Z[x℄. If they have a 
ommon non
onstant fa
tor inQ [x℄, then they have su
h a fa
tor in Z[x℄ too.Proof: To prove (1), we may 
lear denominators so that F and G be
ome primitive.Then (1) is a 
onsequen
e of (2). By Remark 3.2.1 we 
an write Q = 
Q0, where Q0 isprimitive and 
 2 Q . By Gauss's Lemma, FQ0 is primitive, and the equation Gg = 
FQ0shows that it is the primitive polynomial Q0 asso
iated to Q. Therefore Q = 
Q0 is theexpression for Q referred to in Lemma 3.2.1, and 
 is the 
ontent of Q. Sin
e 
 is the
ontent of both G and Q, and G 2 Z[x℄; it follows that 
 2 Z, hen
e that Q 2 Z[x℄. Nowlet us prove (3). Suppose that F , G have a 
ommon fa
tor H in Q [x℄. We may assumethat H is primitive, and then by (2) H divides both F and G in Z[x℄. �Corollary 3.2.5 If a non
onstant polynomial F is irredu
ible in Z[x℄, then it is irre-du
ible in Q [x℄.



3.2. APPENDIX 31Proposition 3.2.6 Let F be an integer polynomial with positive leading 
oeÆ
ient.Then F is irredu
ible in Z[x℄ i� either1. F is a prime integer, or2. F is a primitive polynomial whi
h is irredu
ible in Q [x℄.Proof: Suppose that F is irredu
ible. As in Remark 3.2.1, we may write F = 
F0, whereF0 is primitive. Sin
e F is irredu
ible, this 
annot be a proper fa
torization. So either
 or F0 is 1. If F0 = 1, then F is 
onstant, and to be irredu
ible a 
onstant polynomialmust be a prime integer. The 
onverse is trivial. �Lemma 3.2.7 In a prin
ipal ideal domain, an irredu
ible element is prime.Theorem 3.2.8 Every irredu
ible element of Z[x℄ is a prime element.Proof: Let F be irredu
ible, and suppose F divides GH, where G, H 2 Z[x℄.Case 1: F = p is a prime integer. Write G = 
G0 and H = dH0 as in Remark 3.2.1.Then G0H0 is primitive, and hen
e some 
oeÆ
ient a of G0H0 is not divisible by p. Butsin
e p divides GH, the 
orresponding 
oeÆ
ient, whi
h is 
da, is divisible by p. Hen
ep divides 
 or d, so p divides G or H.Case 2: F is a primitive polynomial whi
h is irredu
ible in Q [x℄. By Lemma 3.2.7, Fis a prime element of Q [x℄. Hen
e F divides G or H in Q [x℄. By Proposition 3.2.4, Fdivides G or H in Z[x℄. �Lemma 3.2.9 Let F = anxn + � � �+ a0 2 Z[x℄ be an integer polynomial, and let p be aprime integer whi
h does not divide an. If the residue F of F modulo p is irredu
ible,then F is irredu
ible in Q [x℄.Proof: This follows from the natural homomorphism Z[x℄ �! Fp [x℄ (see Lemma 3.2.2).We may assume that F is primitive. Sin
e p does not divide an, the degrees of F and Fare equal. If F fa
tors in Q [x℄, then it also fa
tors in Z[x℄ by Corollary 3.2.5. Let F = GHbe a proper fa
torization in Z[x℄. Sin
e F is primitive, G and H have positive degree.Sin
e deg F = deg F and F = GH, it follows that deg G = deg G and deg H = deg H,hen
e that F = GH is a proper fa
torization, whi
h shows that F is redu
ible. �Theorem 3.2.10 (Eisenstein Criterion) Let F = anxn + � � � + a0 2 Z[x℄ be an integerpolynomial, and let p be a prime integer. Suppose that the 
oeÆ
ients of F satisfy thefollowing 
onditions:1. p does not divide an;2. p divides other 
oeÆ
ients an�1; : : : a0;3. p2 does not divide a0.Then F is irredu
ible in Q [x℄. If F is primitive, it is irredu
ible in Z[x℄.



32 LECTURE 3. UNIVERSAL QUANTUM GATESProof: Assume F satis�es the hypothesis. Let F denote the residue modulo p. The
onditions (1) and (2) imply that F = anxn and that an 6= 0. If F is redu
ible in Q [x℄,then it will fa
tor in Z[x℄ into fa
tors of positive degree, say F = GH. Then G and Hdivide anxn, and hen
e ea
h of these polynomials is a monomial. Therefore all 
oeÆ
ientsof G and of H, ex
ept the highest ones are divisible by p. Let the 
onstant 
oeÆ
ientsof G;H be b0; 
0. Then the 
onstant 
oeÆ
ient of F is a0 = b0
0. Sin
e p divides b0 and
0, it follows that p2 divides a0, whi
h 
ontradi
ts (3). This shows that F is irredu
ible.The last assertion follows from Proposition 3.2.6. �Corollary 3.2.11 Let p be a prime. Then the polynomial f(x) = xp�1+xp�2+� � �+x+1is irredu
ible in Q [x℄. (Su
h polynomials are 
alled 
y
lotomi
 polynomials, and theirroots are the pth roots of unity.)Proof: First note that (x�1)f(x) = xp�1: Now substituting x = y+1 into this produ
twe get y f(y + 1) = (y + 1)p � 1 = yp + �p1�yp�1 + � � �+ � pp� 1�y:We have �pi� = p(p� 1) � � � (p� i+1)=i!: If i < p, then the prime p isn't a fa
tor of i!,so i! divides the produ
t (p� 1) � � � (p� i + 1) of the remaining terms in the numeratorof the integer �pi�. This implies that �pi� is divisible by p. Dividing the expansion ofy f(y + 1) by y shows that f(y + 1) satis�es the Eisenstein Criterion and hen
e it is anirredu
ible polynomial. This implies that f(x) is also irredu
ible. �Theorem 3.2.12 If 
os� = 
os2 �8 , then � is an irrational multiple of �.Before pro
eeding to the proof of this theorem we shall establish a lemma.Lemma 3.2.13 Let � = �=�, where � is as in Theorem 3.2.12. Then � = e2i�� is aroot of the irredu
ible moni
 polynomial m� = x4 + x3 + 14x2 + x + 1 (over Q [x℄).Proof: Let m� be the irredu
ible moni
 polynomial whi
h has � as one of its roots. Notethat sin 2�� is not equal to zero. This meansm� has a 
omplex root. Sin
e its 
oeÆ
ientsare rational it must also have the root �. Thus, m� must be divisible by x2�2Ref�g+1.Elementary 
omputation shows that2Ref�g = �12 +p2:So m� is divisible by p(x) = x2�(p2� 12)x+1. Sin
e, p(x) has irrational 
oeÆ
ients andm� has rational 
oeÆ
ients, m� must have another irrational root, say Æ. This impliesm� has another quadrati
 fa
tor with real 
oeÆ
ients. This means that deg(m�) � 4.Consider the polynomial p0(x) = x2 + (p2 + 12)x+ 1. Multiplying p(x) and p0(x) we getx4 + x3 + 14x2 + x + 1. From the 
onstru
tion � is a root of the polynomialm� = x4 + x3 + 14x2 + x + 1;whi
h has no rational roots. �



3.2. APPENDIX 33Proof of Theorem 3.2.12: Note that the polynomial m�(x) is not 
y
lotomi
. Let usassume that � is rational. Then � = pq is a root of the 
y
lotomi
 polymomial�q(x) = xq�1 + xq�2 + � � �+ x + 1.But �q(x) = Qpjq �p(x), where p is prime. By Corollary 3.2.11 and Theorem 3.2.8we know this is a prime fa
torization of �q(x). Sin
e, m�(x) is minimum irredu
iblepolynomial and Z[x℄ is a unique fa
torization domain (follows from Theorem 3.2.8),m�(x) is prime. Thus, m�(x) must divide �q(x). Hen
e, m�(x) must be a 
y
lotomi
polynomial. A 
ontradi
tion. �
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Le
ture 4The Fourier Transform and anAppli
ation
4.1 Quantum Fourier TransformThe quantum Fourier transform on a �nite dimensional Hilbert spa
e H of dimension Nis de�ned as a linear operator whose a
tion on an orthonormal basis j0i; j1i; : : : ; jN � 1iis given by

F jji ! 1pN N�1Xk=0 e 2� i j kN jki:
It 
an be easily veri�ed that F de�ned as above is a unitary operator and the matrixof the transformation is M(F ) = [ujk℄, where ujk = 1pN e 2� i j kN .

Theorem 4.1.1 Let the dimension of the Hilbert spa
e H be 2n. Then the quantumFourier transform F also has the following produ
t representation .
F jji = F jj1j2 : : : jni= 12n2 (j0i+ e2�i0:jn j1i)(j0i+ e2�i0:jn�1jnj1i) : : : (j0i+ e2�i0:j1j2:::jn j1i):35



36 LECTURE 4. THE FOURIER TRANSFORM AND AN APPLICATIONProof: F jji = 12n2 X e 2�ijk2n jki= 12n2 Xk1;k2;:::;kn e2�ij( k121+ k222 +���+ kn2n )jk1k2 : : : kni= 12n2 Xk1;k2;:::;kl
nl=1e 2�ijkl2l jkli= 12n2 
nl=1 (j0i+ e 2�ij2l j1i)wherej = j12n�1 + j22n�2 + � � �+ jn�12 + jn;j2l = integer + jn�(l�1)2 + � � �+ jn�12l�1 + jn2lF jji = 12n2 
nl=1 (j0i+ e2�i0:jn�(l�1)jn�(l�2):::jnj1i)= 12n2 (j0i+ e2�0:jn j1i)(j0i+ e2�0:jn�1jnj1i) : : : (j0i+ e2�0:j1j2:::jnj1i)�The 
ir
uit for implementing Fourier Transform on n-qubits is shown in Figure 4.1 .
��

�
�
�
�

��

H R2 Rn�1 Rn H Rn�2 Rn�1 H R2 HFigure 4.1: EÆ
ient 
ir
uit for quantum Fourier transform. The output on the ith qubitfrom top is j0i+e2� i 0:ji:::jnj1i. The 
orre
tness of the 
ir
uit follows from Theorem 4.1.1.In Figure 4.1, H represents the Hadamard gate and the unitary transform 
orre-sponding to the gate Rk is � 1 00 e 2�i2k �. From the produ
t representation it is easy tosee that this 
ir
uit does 
ompute the Fourier transform. To see how the 
ir
uit workswe 
onsider the input state jj1j2 : : : jni and 
he
k how the system evolves. After the �rstHadamard gate the state is(Hjj1i)jj2j3 : : : jni = 1p2(j0i+ e2�i j12 j1i)jj2j3 : : : jniAfter the 
ontrolled R2 gate a
ting on the �rst qubit the state is(R2Hjj1i)jj2j3 : : : jni = 1p2(j0i+ e2�i( j12 + j222 )j1i)jj2j3 : : : jni
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e, after the sequen
e of the 
ontrolled R0ks on the �rst qubit, the state is(RnRn�1 : : : R2Hjj1i)jj2j3 : : : jni = 1p2(j0i+ e2�i( j12 + j222+::: jn2n )j1i)jj2j3 : : : jni= 1p2(j0i+ e2�i0:j1j2:::jnj1i)jj2j3 : : : jniSimilarly, we 
an 
ompute the a
tion on the other qubits. The �nal state of the systemis 12n2 (j0i+ e2�i0:j1j2:::jnj1i)(j0i+ e2�i0:j2:::jnj1i) : : : (j0i+ e2�i0:jn j1i)Now, if we perform the swap operation i.e. inter
hange the order of the qubits we get12n2 (j0i+ e2�i0:jn)(j0i+ e2�i0:jn�1jn) : : : (j0i+ e2�i0:j1j2:::jn);whi
h is exa
tly the quantum Fourier transform. The number of Hadamard gates usedis n and the number of 
ontrolled rotation gates used is n(n�1)2 . In the end at most�n2� swap gates are used. Therefore, this 
ir
uit uses �(n2) gates. The best 
lassi
alalgorithm to 
ompute Fourier transform on 2n elements takes �(2n(log 2n)) gates. Thusto 
ompute 
lassi
al Fourier transform using 
lassi
al gates takes exponentially moretime to a

omplish the task 
ompared to 
omputing quantum Fourier transform using aquantum 
omputer.Remark 4.1.2 This fa
t 
annot be exploited very well be
ause it is not possible toget a

ess to the amplitudes in a quantum 
omputer by measurements. Moreover, it isvery diÆ
ult to obtain the initial state whose Fourier transform is to be 
omputed. Butquantum Fourier transform makes phase estimation easy whi
h enables us to fa
tor aninteger eÆ
iently in a quantum 
omputer.4.2 Phase EstimationLet U be a unitary operator with eigen ve
tor jui and eigen value e2�i'. If jui and
ontrolled U2j are available then using Fourier transform one 
an eÆ
iently estimate thephase '. The 
ir
uit for the �rst stage of the phase estimation is shown below :In the se
ond stage of the phase estimation inverse Fourier transform is applied onsome sele
ted qubits and a measurement is done on those qubits in the 
omputationalbasis. It will be shown that this yields a good estimate of the phase.The �rst stage of the phase estimation uses two registers. The �rst register 
ontainst qubits all in the state j0i and the se
ond register 
ontains n qubits in the state jui.The number of qubits t in the �rst register is 
hosen a

ording to the a

ura
y and theprobability of su

ess required in the phase estimation pro
edure.The �nal state after the �rst stage is12 t2 (j0i+ e2�i2t�1'j1i)(j0i+ e2�i2t�2'j1i) : : : (j0i+ e2�i20'j1i)jui = 12 t2 2t�1Xk=0 e2�i'kjkijui:
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H

j0i
j0ij0ij0ijui

j0i + e2�i(2t�1�)j1i
j0i+ e2�i(22�)j1ij0i + e2�i(21�)j1ij0i+ e2�i(20�)j1iU20 U21 U22 U2t�1 jui

HH
H

Figure 4.2: First stage of the phase estimation 
ir
uit. Normalization fa
tors of 1=p2have been omitted, on the right side.In the se
ond stage inverse Fourier transform is applied on the �rst register (the�rst t qubits). This gives us a good estimate of '. To get a rough idea why this istrue we 
onsider the 
ase when ' 
an be expressed exa
tly in t bits by the notation' = 0:'1'2 : : : 't. In this 
ase the �nal state after stage one 
an be written as12 t2 (j0i+ e2�i0:'tj1i)(j0i+ e2�i0:'t't�1j1i) : : : (j0i+ e2�i0:'1'2:::'tj1i)jui.If we look at the produ
t representation of the Fourier transform it is immediate that theabove expression is the Fourier transform of the state j'1'2 : : : 'ti. Hen
e measurementin the 
omputational basis after the inverse Fourier transform will give the exa
t valueof '. If ' 
annot be represented in t bits the observed value after measurement will besome ~'. In the next se
tion we analyze how good is ~' as an estimate of '.4.3 Analysis of the Phase Estimation Cir
uitLet b 2 f0; 1; 2 : : :2t � 1g be an integer su
h that b2t = 0:b1b2 : : : bt < ' is the the bestapproximation to '. Then Æ = ' � b2t � 2�t. After appli
ation of the inverse Fouriertransform in the se
ond stage the state of the system is12t 2t�1Xk;l=0 e�2�ikl2t e2�i'kjli:Let �l be the amplitude of j(b+ l) (mod 2t)i. Then,�l = 12t 2t�1Xk=0 (e2�i('� (b+l)2t ))k:Taking the sum of the geometri
 series we get



4.3. ANALYSIS OF THE PHASE ESTIMATION CIRCUIT 39�l = 12t (1� e2�i(2t'�(b+l))1� e2�i('� (b+l)2t ) ) (4.3.1)= 12t (1� e2�i(2tÆ�l)1� e2�i(Æ� l2t ) ): (4.3.2)Let e be the desired toleran
e of error in the estimation of b. We would like toget a bound on the probability of obtaining an integer m after measurement su
h thatjm� bj > e. p(jm� bj > e) = X�2t�1<l��(e�1) j�lj2 + Xe+1�l�2t�1 j�lj2 (4.3.3)Hen
e j�lj2 � 22tj1� e2�i(Æ� l2t ) : (4.3.4)By elementary 
al
ulus we get the inequality j1 � ei�j � 2j�j� whenever � 2 [��; �℄.We observe that if �2t�1 < l � 2t�1 then �� � 2�(Æ � l2t ) � �. Hen
ej�lj2 � 12t+1(Æ � l2t ) : (4.3.5)Substituting, we get p(jm� bj > e) � 14 24 �(e+1)Xl=�2t�1+1 1(l � 2tÆ)2 + 2t�1Xl=e+1 1(l � 2tÆ)235Using the fa
t 0 � 2tÆ � 1 we see that the R.H.S. is � 14 24 �(e+1)Xl=�2t�1+1 1l2 + 2t�1Xl=e+1 1(l � 1)235� 12 2t�1�1Xl=e 1l2� 12 Z 2t�1�1e�1 1l2dl= 12(e� 2)The above analysis shows how 
lose m is to b. But we know that j'� bj � 12t . Hen
eto approximate ' 
orre
t up to the �rst r bits in the binary expansion, we have to 
hoosee = 2t�r�1. If we use t = r+p bits in the �rst register of the phase estimation algorithm,the probability of obtaining an estimate of the phase within the desired error margin is atleast 1� 12(2p�1) . Hen
e, if the desired a

ura
y is r and the required probability of gettingan estimate in this range is 1� �, then we have to 
hoose t greater than r+ �log 2 + 12��.
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Le
ture 5Order Finding
5.1 The Order Finding AlgorithmFor any two positive integers x; y denote their greatest 
ommon divisor (GCD) by (x; y).For any positive integer N let Z�N denote the set fx j x 2 N ; (x; N) = 1g. Undermultipli
ation modulo N , Z�N is an abelian group. Let '(N) be the order of this group.Then '(:) is 
alled the Eulers's ' fun
tion. The order of an element x 2 Z�N is de�nedto be the smallest positive integer r satisfying xr = 1 (mod N). In the 
lassi
al model of
omputation �nding the order of an element in Z�N is 
onsidered to be a hard problem.Using the phase estimation pro
edure of quantum 
omputation we shall demonstrate howone 
an determine the order of an element with high probability using only a polynomialnumber of gates.To solve the problem of order �nding using a quantum 
omputer we �rst translatethe problem into a problem 
on
erning unitary operators as follows.Let N be an L bit number so thatN = 2j0 + 2j1 + 2j2 + � � �+ 2jk�1 where 0 � j0 < j1 < j2 < � � � < jk�1 < L:Let the Hilbert spa
e generated by L qubits be denoted by H = (C 2)
L. We de�ne aunitary operator U in H byU jyi = � jx y (mod N)i if y < N; (y = 0; 1; 2; � � � ; N � 1)jyi if N � y � 2L � 1It is to be noted that if jx y1 (mod N)i = jx y2 (mod N)i for 0 � y1 < y2 < N thenwe have x (y2 � y1) � 0 (mod N). But GCD of x and N is 1. So N j(y2 � y1) whi
h isimpossible. This means U is a permutation matrix and hen
e unitary.Let jusi = 1pr r�1Xk=0 e�2�i skr jxk (mod N)i (5.1.1)41



42 LECTURE 5. ORDER FINDINGWe observe that U jusi = 1pr r�1Xk=0 e�2�i skr jxk+1 (mod N)i (5.1.2)= e2�i sr 1pr r�1Xk=0 e�2�i skr jxk (mod N)i (5.1.3)Thus jusi is an eigenve
tor of the unitary matrix U with 
orresponding eigenvaluee2�i sr , for all s 2 f0; 1; 2; : : : ; r � 1g.Now if we use the phase estimation algorithm we will get enough information toobtain the order r. But in order to be able to use the phase estimation we must be ableto implement the 
ontrolled U2j operation eÆ
iently. The other requirement is that wemust be able to prepare the eigen ve
tors a

urately.The 
ontrolled U2j operations 
an be implemented using O(L3) gates as outlined inAppendix 1. But the se
ond requirement seems impossible be
ause we need to know rin order to prepare the eigen states. This problem 
an be solved by observing that1pr r�1Xs=0 jusi = j1i: (5.1.4)Thus in the phase estimation pro
edure if we set the number of qubits in the �rst registert = 2L + 1 + �2 + 12�� and the L qubits in the se
ond register in the state j1i, then forea
h s 2 f0; 1; : : : ; r � 1g we will get an estimate of the phase ' = sr 
orre
t up to the�rst 2L+ 1 bits with probability at least 1��r . The 
ir
uit is shown in Figure 5.1.
Register 1

Register 2

H
t FT y
xj mod NL qubitst qubits

Figure 5.1: Quantum 
ir
uit for order �nding algorithm. The �rst register is initializedto state j0i and the se
ond register is initialized to state j1iIt 
an be 
he
ked that if in the phase estimation 
ir
uit we feed in the superpositionof eigen states jui = r�1Xs=0 
sjusi; where r�1Xs=0 j
sj2 = 1then the output state before measurement will be12tXs;k 
s(1� e2�i('s� k2t )2t1� e2�i('s� k2t ) ) jkijusi: (5.1.5)
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e on measuring the �rst t qubits we will get the value of the phase 's 
orre
t up to2L+ 1 bits with probability at least j
sj2(1� �).Now our job is to extra
t the exa
t value of r from the estimated phase. We know thephase ' � sr 
orre
t up to 2L+ 1 pla
es. If this estimate is 
lose enough to ' we shouldbe able to get r be
ause we know that ' is the ratio of two bounded integers. This taskis a

omplished eÆ
iently using the following result from number theory.Theorem 5.1.6 If sr is a rational number su
h that���sr � ~'��� � 12r2 ; (5.1.7)then sr is a 
onvergent of the 
ontinued fra
tion for ' and hen
e 
an be eÆ
iently 
omputedusing the 
ontinued fra
tion algorithm.Proof: See appendix. �We know that j sr � ~'j � 2�(2L�1) � 12r2 , sin
e r � N � 2L. So if we now usethe 
ontinued fra
tion algorithm we will get the fra
tion s0r0 whi
h is equal to sr with(r0; s0) = 1. Thus if s and r are relatively prime then we get the order of the elementx. We know that the number of positive integers relatively prime and less than r is atleast 0:1r log log rlog r (see appendix). The order �nding algorithm fails if the phase estimationalgorithm gives a bad estimate or if s divides r. The probability that the �rst 
ase doesnot o

ur is at least (1 � �) and the se
ond 
ase does not o

ur is at least 0:1 log logNlogN .Hen
e if we repeat the algorithm O(L) times we will get the phase with a very highprobability.The algorithm 
an be summarized as followsInputs: Relatively prime integers N and x.Output: Order of x.Runtime: O(L4).Pro
edure:Initialize: Set \
urrent smallest" equal to N .



44 LECTURE 5. ORDER FINDING1. Prepare U(x;N) the equivalent sequen
e of
ontrolled U2j operations2. j0ij1i initial state3. ! 1p2t P2t�1j=0 jjij1i 
reate superposition4. ! 1p2t P2t�1j=0 jjijxj (mod N)i apply U(x;N)� 1pr2t Pr�1s=0P2t�1j=0 e 2�isjr jjijusi5. ! 1prPr�1s=0 j ~'ijusi apply inverse FT to �rst register6. ~' measure �rst register7. Get denominator of all 
onvergents of ~' use theorem 5.1.9 of appendix 2.8. For all integers i obtained in Step 7,
he
k if xi = 1 and keep the smallest of them.9. Update \
urrent smallest"10. Repeat steps 1 to 9 O(logN) times11. Return \
urrent smallest" with a high probability. Thisis the order
5.1.1 Appendix 0: Classi
al Reversible ComputationAll quantum gates are reversible (i. e. from the output we 
an uniquely re
over theinput). But the 
lassi
al gates like `AND' and `OR' are not reversible. So a quantum
ir
uit 
annot exist for any su
h gate. However, by adding a few extra wires we 
an obtaina gate whi
h is reversible and the required fun
tion appears on spe
i�ed wires. This is
alled a reversible 
lassi
al gate. If the `size' of the 
ir
uit is measured by the number of`wires' then this pro
edure uses only a 
onstant multiple of the number of wires used inthe earlier 
lassi
al 
ir
uit. The latter gate 
an be implemented using a quantum gate.Reversible 
lassi
al gates 
an be built using the Fredkin gate (See Figure 5.2). If we setx to 0 then x0 will be y^ 
 whi
h is the AND gate. If we set x = 0 and y = 1 then we get
 on x0 and :
 on y0. Thus we get both NOT and FANOUT gates. CNOT 
an also beused to 
opy 
lassi
al bits. In the pro
ess of 
onstru
ting fun
tional equivalents of the
lassi
al gates using quantum gates some extra wires have been introdu
ed. The outputsof these wires are 
alled junk. But if the `junk' is some arbitrary fun
tion of the inputthen the 
ir
uit may not behave as a quantum gate for the fun
tion f(x). So insteadof some junk output we would like to have some �xed output on the extra wires. Thismodel is 
alled 
lean 
omputation. This 
an be done as shown in the Figures 5.3, 5.4and 5.5.
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 x0y0
0Figure 5.2: Fredkin gate (
ontrolled swap).
REVERSIBLE GATE

Input Bits

Clean Bits

Output Bits

Junk Bits

Figure 5.3: Reversible gate
5.1.2 Appendix 1: EÆ
ient Implementation of Controlled U2jOperationTo 
ompute the sequen
e of 
ontrolled U2j operations we have to 
ompute the transfor-mation jzijyi ! jziU zt2t�1 : : : U z120 jyi= jzijxzt2t�1 � � � � � xz120y (mod N)i= jzijxzy (mod N)i:Thus the sequen
e of 
ontrolled U2j operations is equivalent to multiplying the 
ontentof the se
ond register by the modular exponential xz (mod N), where z is the 
ontent ofthe �rst register. This 
an be 
omputed using 
lean reversible 
omputation (see Appendix0 ).This is a
hieved by �rst reversibly 
omputing the fun
tion xz (mod N) in a thirdregister and then multiplying the 
ontents of the third and the se
ond register su
h thatea
h qubit in the third register is in the state j0i. The task is a

omplished in two stages.In the �rst stage we 
ompute x2j for all j 2 f1; 2; : : : ; t � 1g by su

essively squaringx (mod N), where t = 2L + 1 + �log 2 + 12�� = O(L). Ea
h multipli
ation uses at mostO(L2) gates (Indeed an O(L logL log logL) algorithm using FFT is known. See [5℄.) andthere are t� 1 su
h multipli
ations. Hen
e in this step at most O(L3) gates are used. Inthe se
ond stage we 
ompute xz (mod N) using the identityxz (mod N) = (xzt2t�1 (mod N))(xzt2t�2 (mod N)) � � � (xzt20 (mod N)): (5.1.8)
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C C�1x xInputCleanBitsClean0's CleanBitsOutputFigure 5.4: Clean 
omputation. Computing x 7! hx; f(x)i

Cf C�1f�1x f(x)x f(x)x f(x)BitsClean Clean CleanBitsBits
Figure 5.5: Computing a bije
tive fun
tion fClearly this operation also uses at most O(L3) gates. Hen
e using O(L3) gates we 
om-pute the transformation jzijyi ! jzijxzy (mod N)i.5.1.3 Appendix 2: Continued Fra
tion AlgorithmA �nite 
ontinued fra
tion of n+ 1 variables is de�ned asa0 + 1a1 + 1a2+ 1a3+��� + 1an :

For 
onvenien
e it is also written as [a0; a1; : : : ; an℄. The nth 
onvergent of a 
ontinuedfra
tion [a0; a1; : : : aN ℄ is de�ned as [a0; a1; : : : ; an℄ for n � N .The nth 
onvergent is easily 
omputed by the following theorem.Theorem 5.1.9 If pn and qn are de�ned byp0 = a0; p1 = a1 a0 + 1; pn = an pn�1 + pn�2 for 2 � n � N;q0 = 1; q1 = a1; qn = an qn�1 + qn�2 for 2 � n � Nthen [a0; a1; : : : ; an℄ = pnqn :Proof: We prove by indu
tion. It is easy to 
he
k for the base 
ases n = 1; 2.Indu
tion Hypothesis: The 
on
lusion holds for 1 � n � m:
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tion step.[a0; a1; : : : am; am+1℄ = �a0; a1; : : : ; am�1; am + 1am+1�= �am + 1am+1� pm�1 + pm�2�am + 1am+1� qm�1 + qm�2= am+1(ampm�1 + pm�2) + pm�1am+1(amqm�1 + qm�2) + qm�1= am+1pm + pm�1am+1qm + qm�1= pm+1qm+1 : �Theorem 5.1.10 The fun
tions pn and qn satisfy the following relationpnqn�1 � pn�1qn = (�1)n:Proof: We use indu
tion. The result is true for the base 
ases n = 1; 2: Assume the resultis true for any integer less than n.pnqn�1 � pn�1qn = (anpn�1 + pn�2)qn�1 � pn�1(anqn�1 + qn�2)= �1(pn�1qn�2 � pn�2qn�1)= (�1)nThis 
ompletes the proof. �Let x be a real number. Then the system of equationsx = a0 + �0 with a0 2 Z and �0 2 [0; 1)1�0 = a1 + �1 with a1 2 Z and �1 2 [0; 1)1�1 = a2 + �2 with a2 2 Z and �2 2 [0; 1)...is 
alled the 
ontinued fra
tion algorithm. The algorithm 
ontinues till �n 6= 0.It is easy to see that if the algorithm terminates in N+1 steps then x = [a0; a1; : : : aN ℄and hen
e rational. But the 
onverse of this is also true.Theorem 5.1.11 Any rational number 
an be represented by a �nite 
ontinued fra
tion.Proof: Let x = hk . Then from the 
ontinued fra
tion algorithm we get the following setof equations. h = a0k + k1 (0 < k1 < k)k = a1k1 + k2 (0 < k2 < k1)...



48 LECTURE 5. ORDER FINDINGWe observe that k > k1 > k2 � � � . Hen
e the algorithm must terminate. Also, this isexa
tly the Eu
lid's GCD algorithm. Hen
e its 
omplexity is O((log(h+ k))3 [2℄. �Theorem 5.1.12 If x is representable by a simple 
ontinued fra
tion with an odd (even)number of 
onvergents, it is also representable by one with an even (odd) number of
onvergents.Proof: Let x = [a0; a1; : : : ; an℄. If an � 2, then [a0; a1; : : : ; an℄ = [a0; a1; : : : ; an � 1; 1℄. Ifan = 1, then [a0; a1; : : : ; an�1; 1℄ = [a0; a1; : : : ; an�1 + 1℄. �Theorem 5.1.13 Let x be a rational number and p and q two integers su
h that����pq � x���� � 12q2 :Then pq is a 
onvergent of the 
ontinued fra
tion for x.Proof: Let [a0; : : : ; an℄ be the 
ontinued fra
tion expansion of pq . From Theorem 5.1.12it follows that without loss of generality we may assume n to be even. Let pi and qi bede�ned as in Theorem 5.1.9.Let Æ be de�ned by the equation x = pnqn + Æ2q2n :Then jÆj � 1 and pnqn = pq is the nth 
onvergent. Let� = 2�qnpn�1 � pnqn�1Æ �� qn�1qn :The de�nition of � ensures that the equationx = �pn + pn�1�qn + qn�1is satis�ed. Hen
e x = [a0; : : : an; �℄. By Theorem 5.1.10 we get� = 2Æ � qn�1qn> 2� 1 sin
e qi > qi�1= 1:This implies that � is a rational number greater than 1 and it has a �nite 
ontinuedfra
tion, say [b0; : : : ; bm℄: Hen
e x = [a0; : : : ; an; b0; : : : ; bm℄. Thus pq is a 
onvergent of x.�



5.1. THE ORDER FINDING ALGORITHM 495.1.4 Appendix 3: Estimating '(r)rLemma 5.1.14 The ratio '(r)r is at least log log r10 log r for r � 16.Proof: Let r =Qai=1 p�ii Qbj=1 q�jj , where p1 < p2 � � � < pa � 2 log rlog log r < q1 < q2 � � � < qb.Then '(r) = Qai=1(pi � 1)p�i�1i Qbj=1(qi � 1)q�j�1i : Note that qb1 � r. This implies b �logq r � log r: Sin
e q1 > 2 log rlog log r , we have b � log rlog log r�log log log r+log 2 :Hen
e,'(r)r = Qai=1(pi � 1)p�i�1i Qbj=1(qj � 1)q�j�1jQai=1 p�ii Qbj=1 q�ji= aYi=1 �pi � 1pi � bYj=1�1� 1qj�> 2 log rlog log rYi=2 � i� 1i � bYj=1�1� 1qj�= log log r2 log r bYj=1�1� 1qj�> log log r2 log r �1� log log r2 log r �b> log log r2 log r �1� log log r2 log r b�= log log r2 log r �1� log log r2 log r � log rlog log r � log log log r + log 2��> log log r2 log r � 1� 2E2(1� E)� where E = log log log r�log 2log log r> log log r2 log r �1� 2E2 �> log log r10 log r for r � 16: �In fa
t the following theorem is true.Theorem 5.1.15 limn!1'(n) log log nn = e�
 where 
 is the Euler's 
onstant. �The interested reader may look up Hardy and Wright [1℄ for the proof.
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Le
ture 6Shor's Algorithm
6.1 Fa
toring to Order FindingLemma 6.1.1 Let N be an odd number with prime fa
torization p�11 p�22 : : : p�mm ; m � 2.Let A �= fx 2 Z�N : (ord(x) is odd) or (ord(x) is even and xord(x)=2 = �1)g;where ord(x) = minfi � 1 : xi = 1g. If x is 
hosen at ramdom from Z�N, thenPrx2Z�N[x 2 A℄ � 12m�1 :Proof: 1 Let jZ�Nj = '(N) = 2`s, where s is odd (note ` � 2). Let V be the set ofsquare-roots of 1 in Z�N .Claim 6.1.2 (a) If ord(x) is odd, then xs = 1.(b) If ord(x) is even, then x2is 2 V � f1g, for some i 2 f0; 1; : : : ; `� 1g.(
) If ord(x) is even and xord(x)=2 = �1, then x2is = �1 for some i 2 f0; 1; : : : ; `� 1g.Proof:(a) Sin
e x 2 Z�N , we have ord(x)j�(N). Sin
e ord(x) is odd, ord(x)js.(b) and (
) Let ord(x) = 2`0s0 (where `0 � 1 and s0 is odd). Then, ord(x)j2`0s, butord(x) - 2`0�1s. Hen
e, x2`0�1s 2 V �f1g. Now, if xord(x)=2 = �1, then x2`0�1s0 = �1.Hen
e, x2`0�1s = �1. �1Our proof is based on the proof of 
orre
tness of Miller's primality test in Kozen's book [6, page 206℄.Nielsen and Chuang [7, Theorem A4.13, page 634℄ give a bound of 2�m. Their bound is not 
orre
t: forN = 21 = 3� 7, we have jZ�Nj = 12 and jAj = 6. Then, jAjjZ�Nj 6� 2�2.51



52 LECTURE 6. SHOR'S ALGORITHMFor i = 0; 1; : : : ; `� 1, and v 2 V , let Si;v �= fx 2 Z�N : x2is = vg: By Claim 6.1.2, wehave A � S0;1 [ `�1[i=0 Si;�1; (6.1.3)and Z�N = S0;1 [ `�1[i=0 [v2V �f1gSi;v: (6.1.4)Claim 6.1.5 All the sets appearing on the right hand side of (6.1.4) are disjoint.Proof: Consider two su
h sets Si;v and Sj;w appearing above. If i = j then v 6= w andthese sets are disjoint by defnition. Hen
e, suppose i < j; this implies that w 6= 1. Butfor ea
h x 2 Si;v, we have x2i+1s = v2 = 1. This implies that x2js = 1 6= w, and thereforex 62 Sj;w. �To prove that jAj � 2�m+1jZ�Nj, we will use the isomorphismZ�N ! Z�p�11 � Z�p�22 � � � � � Z�p�mm ;j 7! (j (mod p�11 ); j (mod p�22 ); : : : ; j (mod p�mm ));whi
h follows from the Chinese remainder theorem.Sin
e pi is odd, 1 6= �1 (mod p�ii ), for i = 1; 2; : : : ; m, and the 2m elements inW = f+1;�1gm 
orrespond to square roots of 1 in Z�N ; of these, the only trivial squareroots are 1 = (1; 1; : : : ; 1) and �1 = (�1;�1; : : : ;�1).Claim 6.1.6 jS0;1j = jS0;�1j; (6.1.7)jSj;�1j = jSj;wj; for w 2 W and j = 0; 1; : : : ; `� 1: (6.1.8)Proof: To see (6.1.7), observe that x 2 S0;1 i� xs = 1, i� (�x)s = �1, i� �x 2 S0;�1.To prove the se
ond part of (6.1.8), �x j and w. We �rst show that if Sj;�1 6= ;, thenSj;w 6= ;. For, suppose b = (b1; b2; : : : ; bm) 2 Sj;�1. Then, 
onsider 
 2 Z�p�1 � Z�p�22 �� � � � Z�p�mm , de�ned by 
i = � 1 if wi = 1bi if wi = �1 :Clearly, 
2js = w, so Sj;w 6= ;. Furthermore, the map x 7! 
b�1x is a bije
tion betweenSj;�1 and Sj;w. Hen
e, jSj;�1j = jSj;wj. �Sin
e jW j = 2m, from (6.1.3), (6.1.4) and Claim 6.1.6 we obtain2m�1jS0;1 [ S0;�1j = j [w2W S0;wj;and for i = 0; 1; 2; : : : ; `� 1, (2m � 1)jSi;�1j = j [w2fW�f1ggSi;wj;



6.1. FACTORING TO ORDER FINDING 53whi
h implies2m�1jAj � 2m�1jS0;1 [ `�1[i=0 Si;�1j � jS0;1 [ `�1[i=0 [w2fW�f1ggSi;wj� jS0;1 [ `�1[i=0 [v2fV �f1ggSi;vj = jZ�N j : �The above Lemma is the main tool for analyzing the Shor's fa
toring algorithm. The
ru
ial observation is that, if we 
an get a nontrivial square root of unity, then we 
an �nda nontrivial fa
tor of N using Eu
lid's G.C.D. algorithm. Lemma 6.1.1 tells us that ifwe randomly pi
k a number x, less than N and look at its order, with probability greaterthan 1� 12m�1 it is even and we 
an get a nontrivial square root of unity by raising x tothe power ord(x)=2. The lemma holds if N is odd and has at least two distin
t primefa
tors. But a 
lassi
al polynomial time algorithm exists for �nding the prime numberwhi
h divides N , if N is a prime power. So this gives us a polynomial time fa
toringalgorithm. So far it is not known whether 
lassi
al 
omputers 
an fa
torize a number N inpolynomial time, even if randomness is allowed. Below is the Shor's fa
toring algorithm.Shor's fa
toring algorithm.Input. N1) If N is even, return 2.2) Use quantum order �nding algorithm to �nd the order of 2. If ord(2) = N � 1,
on
lude N is prime and stop.3) Che
k if N is of the form p�; � > 1 by the subroutine Prime-power.4) Pi
k an element x 2 N .5) If x j N , return x.6) Use quantum order �nding algorithm to �nd the order of x.7) If ord(x) is odd then abort.8) If x ord(x)2 = �1 (mod N) then abort.9) Get a nontrivial square root of 1 (mod N), by setting y  x ord(x)2 .10) Use Eu
lid's G.C.D. algorithm to �nd the greatest 
ommon divisor of (y� 1; N)and (y + 1; N). Return the nontrivial numbers.



54 LECTURE 6. SHOR'S ALGORITHMOutput: With high probability it gives a divisor of N or tells if N is prime.Subroutine: Prime-powerInput: Integer N1 Compute y = log2N .2 For all i 2 f2; 3; : : : ; log2Ng 
ompute xi = yi .3 Find ui < 2xi < ui + 1 for all i 2 f2; 3; : : : ; log2Ng.4 Che
k if ui j N or ui+1 j N for all i 2 f2; 3; : : : ; log2Ng. If any one of the numbersdivide N , say u, then return u. Else fail.Output: If N is a prime power of p, the subroutine \prime-power" returns p. If itis not a prime power it fails to produ
e any output. In O((logN)3) steps it terminates.The most 
ostly operation in the algorithm is the order �nding algorithm. Sin
e theorder �nding takes O(logN)4 time, the time taken by this fa
toring algorithm is alsoO(logN)4.Remark 6.1.9 Step 1) just 
he
ks if the number N is divisible by 2. Step 2) 
he
ks ifthe number N is prime and Step 3) if N is a prime power. So after Step 3) Lemma 6.1.1is appli
able.Probability of su

ess in Shor's algorithm is greater than probability of su

ess inorder �nding multiplied by the probability that the 
hosen element x is not in the set A,of Lemma 6.1.1. Running time of the algorithm is O((logN)4. Thus, by running thealgorithm only a 
onstant number of times we 
an get probability of su

ess greater than1� � for any � > 0.Exer
ise 6.1.10 Find a randomized polynomial time algorithm for fa
toring an integerN , if '(N) is known.



Le
ture 7Quantum Error Corre
ting Codes
7.1 Knill La
amme TheoremThe mathemati
al theory of 
ommuni
ation of messages through a quantum information
hannel is based on the following three basi
 prin
iples.1) Messages 
an be en
oded as states and transmitted through quantum 
hannels.2)The output state may not be the same as the input state due to presen
e of noisein the 
hannel.3) There is a 
olle
tion of \good" states whi
h when transmitted through the noisy
hannel leads to output states from whi
h the input state 
an be re
overed with no erroror with a small margin of error.The aim is to identify the set of good states for a given model of the noisy 
hanneland to give the de
oding pro
edure.

CHANNEL
input state output state

noise

� T (�)
Figure 7.1: A model of noisy quantum 
hannel

Let H be a �nite dimentional 
omplex Hilbert spa
e. We assume that there is a linearspa
e E � B(H), 
alled the error spa
e su
h that for any input state � on H the output55



56 LECTURE 7. QUANTUM ERROR CORRECTING CODESstate T (�) has always the formT (�) =Xj Lj�Lyj (See Figure 7.1): (7.1.1)where Lj belongs to E for every j. (7.1.2)If the same input state is transmitted again the operators Lj's may be 
ompletely di�er-ent. But they always 
ome from the error spa
e E and satisfy the equationTr( kXj=1 LyjLj)� = 1: (7.1.3)The L0js may or may not depend on the density matrix � whi
h is transmitted throughthe noisy 
hannel.De�nition 7.1.4 A state � is said to have its support in a subspa
e S � H if Tr �ES = 1where ES is the orthogonal proje
tion on S.This means if we 
hoose an orthonormal basis (O.N.B.) e1; e2; : : : ek; ek+1; : : : ; eN forH su
h that e1; e2; : : : ; ek is a O.N.B. for S then the matrix of � in this basis has theform � ~� 00 0 � where ~� is a k � k matrix. To re
over the input state at the output ofthe 
hannel we apply a re
overy operator R of the formR(T (�)) = Xj MjT (�)M yj ; (7.1.5)Xj M yjMj = I: (7.1.6)It would be desirable to have R(T (�)) = � for all �, whenever the L0s are from E andthey a
t on � as in (7.1.1). Of 
ourse this is too ambitious. We would like to a
hieve thispleasant situation at least for all � with support in some `large' subspa
e C � H. Thenwe 
an en
ode messages in terms of states from C and re
over them with the help of ade
oding operation R. The idea is formalized in the following de�nition.De�nition 7.1.7 A subspa
e C � H is 
alled a E-
orre
ting quantum 
ode, if there existoperatorsM1;M2; : : :Mk, su
h that for every � with support in C and any L1; L2; : : : Ll 2E , with Tr(Pj LyjLj)� = 1, one hasXi;j MiLj�LyjM yi = �: (7.1.8)Remark 7.1.9 Now 
onsider jui 2 C. Then juihuj has support in C. Consider theequations XMiLjjuihujLyjM yi = juihuj (7.1.10)and huj Xj LyjLj! jui = 1: (7.1.11)



7.1. KNILL LAFLAMME THEOREM 57Choose any jvi 2 H su
h that hu j vi = 0. Then we haveXi;j jhvjMiLjjuij2 = 0 (7.1.12), hvjMiLjjui = 0 for all jvi 2 fjuig? and every i; j: (7.1.13)Thus, MiLjjui = 
(u)jui 8 jui 2 C:MiLj is an operator and C is a subspa
e. Hen
e this 
an happen i�MiL ��C= �i(L)I ��C 8L 2 E :We state this as a proposition.Proposition 7.1.14 A subspa
e C � H is an E-
orre
ting quantum 
ode i� there existoperators M1;M2; : : :Mk in H, su
h that, PiM yiMi = I andMiL ��C= �i(L)I ��C 8L 2 E :We would like to have a 
hara
terization of the quantum 
ode C without involving theM 0is. That is, a 
ondition entirely in terms of C and E . This is a
hieved by the followingremarkable 
riterion due to Knill and La
amme.Theorem 7.1.15 (Knill and La
amme) A subspa
e C with an orthonormal basis  0; 1; : : : ;  k�1 is an E{
orre
ting quantum 
ode if and only if1. h ijLy1L2j ji = 0 8 i 6= j; and all L1; L2 2 E;2. h ijLy1L2j ii is independent of i = 0; 1; : : : ; k � 1.Proof:Ne
essity:By the Proposition 7.1.14 we know that there must exist re
overy operators R1; R2; : : : Rlsatisfying the equations PiRyiRi = I and RiL = �i(L) ;  2 C; L 2 E .Let L1; L2 2 E , then h ijLy1L2j ji = h ijLy1(Xr RyrRr)L2j ji= Xr �r(L1)�r(L2)h i j  ji= Xr �r(L1)�r(L2)Æij:SuÆ
ien
y:Let the 
onditions (1) and (2) hold. Consider the subspa
es E 0; E 1; : : : ; E k�1. It 
anbe veri�ed that the 
orresponden
e L i ! L j 8L 2 E is a s
alar produ
t preservingmap. So we 
an write the following table.



58 LECTURE 7. QUANTUM ERROR CORRECTING CODES 0  1 � � �  j � � �  k�1E 0 E 1 � � � E j � � � E k�1'00 '01 � � � '0j � � � '0k�1... ... � � � ... � � � ...'l�10 'l�11 � � � 'l�1j � � � 'l�1k�1Here '00; '10; : : : ; 'l�10 is an orthonormal basis for the subspa
e E 0. The map L 0 ! L j,for any L 2 E , is a unitary isomorphism between the subspa
es E 0 and E j. SodimE j = l 8j 2 f0; 1; : : : k�1g and there exists a global unitary operator Uj, satisfyingUj'i0 = 'ij; i = 0; 1; : : : ; l�1. Sin
e by the �rst 
ondition hL1 i j L2 ji = 0 for L1; L2 2 Eand i 6= j, the subspa
es E j j = 0; 1; : : : k � 1 are mutually orthogonal. Let Ei be theproje
tion on the span of the ith row in the array f'ijg. Now we de�ne a unitary operatorV (i) satisfying V (i)'ij =  j for i = 0; 1; : : : ; l � 1.Let Ri = V (i)Ei for i = 0; 1; : : : ; l � 1 and Rl = El; the proje
tion on f'ij; 0 � i �l � 1; 0 � j � k � 1g?. It 
an be veri�ed that Pli=0RyiRi = I:Now 
onsider any  = 
0 0 + 
1 1 + � � �+ 
k�1 k�1 in C. ThenL = 
0L 0 + 
1L 1 + � � �+ 
k�1L k�1;= 
0L 0 + 
1U1L 0 + � � �+ 
k�1Uk�1L 0:Let L 0 = �0(L)'00 + �1(L)'10 + � � �+ �l�1'l�10 :Then we have UjL 0 = �0(L)'0j + �1(L)'1j + � � �+ �l�1'l�1j) EiUjL 0 = �i(L)'ij) V (i)EiUjL 0 = �i(L) j:That is, RiUjL 0 = �i(L) j for i = 0; 1; : : : ; l � 1;ElUjL 0 = 0 = RlUjL 0:Thus we have, RiL = 
0�i(L) 0 + 
1�i(L) 1 + � � �+ 
k�1�i(L) k�1= �i(L) for i 2 f0; 1; : : : ; l � 1g;and RlL = 0:i.e. RiL ��C= �i(L)I ��C, where �l(L) = 0. �Example: Let G be a �nite group with identity element e and H = L2(G), the Hilbertspa
e of fun
tions on G with hf1; f2i =Px2G f1(x)f2(x): Let E � G be 
alled the errorset and C � G the 
ode set. Let E = linfLx j x 2 Eg;



7.1. KNILL LAFLAMME THEOREM 59where (Laf)(x) = f(a�1x), lin denotes linear span andC = linf1f
g j 
 2 Cg:It 
an be veri�ed that La1fbg = 1fabg.If 
1 6= 
2, then
1f
1g; LyxLy1f
2g� = 
1f
1g; 1fx�1y
2g�= 0 if x�1y
2 6= 
1 or x�1y 6= 
1
�12 or E�1E \ CC�1 = feg:Also, 
1f
g; LyxLy1f
g� = � 1 if x = y,0 otherwise.Thus 
1f
g; LyxLy1f
g� is independent of 
. Hen
e by Knill{La
amme theorem we see thatC is an E-
orre
ting quantum 
ode if E�1E \ CC�1 = feg.Consider the model of a noisy 
lassi
al 
hannel shown in Figure 7.2.
CHANNEL

input output
 2 C
x 2 E

x
 2 E

Figure 7.2: A model of noisy 
lassi
al 
hannel.If E�1E \ CC�1 = feg then for all distin
t 
1, 
2, E
1 \ E
2 = ;. So C is an E{
orre
ting 
lassi
al 
ode. If the output falls in the set E
 the message is de
oded as
. For example, set G = Z32, where Z2 = f0; 1g with addition mod 2. Let the error set Ebe f100; 010; 001g and the 
ode set C be f000; 111g. Then E � E = f000; 110; 011; 101gand C � C = C = f000; 111g implying (E � E) \ (C � C) = f000g:In order to formulate our next proposition we introdu
e some notation. Let A bea �nite abelian group with operation +, null element 0 and 
hara
ter group Â. Inthe Hilbert spa
e H = L2(A) of 
omplex valued fun
tions on A we de�ne the unitaryoperators Ua; a 2 A; V�; � 2 Â by(Uaf)(x) = f(x+ a); (V�f)(x) = �(x)f(x):Then we have the Weyl 
ommutation rules:UaUb = Ua+b; V�V� = V��; UaV� = �(a)V�Ua:



60 LECTURE 7. QUANTUM ERROR CORRECTING CODESLet E � A; F � Â and letE(E; F ) = linfUaV� j a 2 E; � 2 F̂g:Our aim is to 
onstru
t a quantum 
ode whi
h is E(E; F ){
orre
ting by using subgroupsC1 � C2 � A. To this end, for any subgroup C � A, we de�neC? = f� j � 2 Â; �(x) = 1; 8x 2 Cg:C? is 
alled the annihilator of C. We have C?1 � C?2 . Clearly C?1 ; C?2 are subgroups ofthe 
hara
ter group Â under multipli
ation. Suppose(E � E) \ C2 = f0gF�1F \ C?1 � C?2 ;and let S be the 
ross se
tion for C2=C1 in the sense that S � C2 and C2 = [a2SC1 + ais a 
oset de
omposition (or partition) of C2 by C1{
osets. Note thatS? �= f� j � 2 Â; �(a) = 1 8 a 2 Sgis a subgroup of Â. One may view C2 as a 
lassi
al E-
orre
ting group 
ode in A. De�ne a(x) = (#C1)� 12 1C1+a(x); a 2 S:Theorem 7.1.16 linf a j a 2 Sg is an E(E; F )-
orre
ting quantum 
ode of dimension#C2#C1 .Proof: Note that h a1 j  a2i = Æa1a2 ; a1; a2 2 S:It is enough to verify Knill-La
amme 
onditions forL1 = Ua1V�1 ; L2 = Ua2V�2 ; a1; a2 2 E; �1; �2 2 F:Then by the Weyl 
ommutation rules we haveLy1L2 = �1(a2 � a1)Ua2�a1V��11 �2 ; a2 � a1 2 E � E; ��11 �2 2 F�1F:Let a1; a2 2 S; a1 6= a2. We have for a 2 E � E; � 2 F�1F;h a1 jUaV�j a2i = (#C1)�1Xx2A 1C1+a1+a(x)�(x)1C1+a2(x): (7.1.17)The x-th term in the summation on R.H.S. of (7.1.17) is not equal to zero only ifx 2 (C1 + a1 + a) \ (C1 + a2);whi
h implies the existen
e of x1; x2 2 C1 su
h thatx1 + a1 + a = x2 + a2=) a = (x2 � x1) + a2 � a1: (7.1.18)



7.1. KNILL LAFLAMME THEOREM 61In 7.1.18 L.H.S. lies in E � E and R.H.S. in C2. By hypothesis (E � E) \ C2 = f0g.Thus the x-th term vanishes if a 6= 0.Now 
onsider the 
ase a = 0. Then for a1; a2 2 S, a1 6= a2, C1 + a1 and C1 + a2are two disjoint 
osets and therefore the R.H.S. of (7.1.17) vanishes on
e again. In otherwords h a1 jUaV�j a2i = 0 8a1 6= a2; a 2 E � E; � 2 F�1F:Now let us 
onsider the 
ase a1 = a2 = b 2 S. Then L.H.S. of (7.1.17) is equal to(#C1)�1Xx2A 1C1+b+a(x) 1C1+b(x)�(x): (7.1.19)The x-th term is not equal to zero i�x 2 (C1 + b + a) \ (C1 + b) =) (C1 + a) \ C1 = ;=) a 2 C1 \ (E � E)=) a = 0:Thus the expression (7.1.19) vanishes if a 6= 0. If a = 0 then (7.1.19) is equal to(#C1)�1Xx2A 1C1+b(x)�(x) = (#C1)�1�(b)Xx2C1 �(x):If � =2 C?1 then, � is a nontrivial 
hara
ter for C1 and by S
hur orthogonality the R.H.S.vanishes. If � 2 C?1 , then� 2 C?1 \F�1F =) � 2 C?2 =) �(b) = 1. Thus the expression (7.1.19) is independentof b. In other words the Knill-La
amme 
onditions are ful�lled for the orthonormal setf a j a 2 Sg. �Theorem 7.1.20 Let C1 � C2 � A be subgroups. Consider the subgroups C?2 � C?1 � Âand the 
oset de
omposition C?1 = [�2 ~SC?2 �with respe
t to the 
ross se
tion ~S. De�ne � = (#C2)� 12 1C2�; � 2 ~S:Let E � A; F � Â be su
h that (E � E) \ C2 = f0g; F�1F \ C?1 � C?2 . Thenlinf � j � 2 ~Sg is an E(E; F ){
orre
ting quantum 
ode of dimension (#C2)=(#C1).Proof: Let b 2 E � E; � 2 F�1F; �1; �2 2 ~S. Thenh �1 jUbV�j �2i = (#C2)�1Xx 1C2+b(x)�1(x)�2(x)1C2(x)�(x)�1(b): (7.1.21)If the x-th term in R.H.S. of equation (7.1.21) is not equal to zero, thenC2+ b \C2 6= ; =) b 2 C2 \ (E�E) =) b = 0: Thus the R.H.S. of equation (7.1.21)vanishes whenever b 6= 0 for any �1; �2 in ~S.Let b = 0. Then R.H.S. of equation (7.1.21) is(#C2)�1 Xx2C2 �1(x)�2(x)�(x): (7.1.22)



62 LECTURE 7. QUANTUM ERROR CORRECTING CODESIf �1 = �2 = � 2 ~S this be
omes (#C2)�1Px2C2 �(x) whi
h is independent of � 2 ~S:So we 
onsider the 
ase b = 0; �1 6= �2; �1; �2 2 ~S. Then the expression (7.1.22) is notequal to zero only if �1�2� 2 C?2 . This implies � 2 C?1 \ F�1F: So by hypothesis � is inC?2 . This implies �1�2 2 C?2 . i.e., �1 and �2 lie in the same 
oset of C?2 in C?1 . This isimpossible. So expression (7.1.22) must be equal to zero. In other words Knill-La
amme
onditions are ful�lled. �7.2 Some De�nitions7.2.1 InvariantsLet C be an E 
orre
ting quantum 
ode with re
overy operators R1; R2; : : : Rl. SupposeU is a unitary operator su
h that UEU�1 � E . De�ne, Sj = URjU�1. We haveRjL = �j(L) ; where  2 C and L 2 E .Sin
e ~L = U�1LU is an element of E we haveSjLU = URjU�1LU = URj ~L = �j(~L)U :In other words, if C is an error 
orre
ting quantum 
ode with re
overy operatorsR1; R2; : : : ; Rl then for any unitary U , satisfying UEU� � E , U(C) is also E{
orre
tingwith re
overy operators S1; S2; : : : Sk, where Sj = URjU�1 for all j.De�nition 7.2.1 Two E- 
orre
ting quantum 
odes C1; C2, are said to be equivalent i�there exists a unitary operator U , satisfying UEU� � E , su
h that U(C1) = C2.Remark 7.2.2 Finding invariants for the equivalen
e of E{
orre
ting quantum 
odes isan important problem in the development of the subje
t.Let A be a �nite set, 
alled an alphabet, of 
ardinality N .An element x inAn is 
alled a word of length n. A word x is also written as (x1; x2; : : : ; xn).C � An is 
alled an (n;M; d)A 
ode if,#C =M and minx;y2C;x6=y d(x;y) = d:Here, d(x;y) = #fi j xi 6= yig. This is also known as the Hamming distan
e betweenx and y.If A is an abelian group with + as its addition and 0 its null element thenw(x) �= #fi j xi 6= 0g;x = (x1; x2; : : : ; xn)is 
alled the weight of x. If C � An is a subgroup withd = min w(x); #C =M;x6=0; x2Cthen C is 
alled an (n;M; d)A group 
ode, and it is denoted by hn;M; diA. If A is theadditive group of a �nite �eld Fq of q elements (q = pm, for some prime p) and C � Fnq



7.2. SOME DEFINITIONS 63is a linear subspa
e of the n{dimensional ve
tor spa
e Fnq over Fq and d = minx6=0 w(x),then C is 
alled a linear 
ode over Fq with minimum distan
e d and written as [n; k; d℄q
ode, where k = dimC. When q = 2, it is simply 
alled an [n; k; d℄ 
ode (binary 
ode).An hn;M; diA 
ode is t{error 
orre
ting when t = �d�12 �.7.2.2 What is a t{error Corre
ting Quantum Code ?Let G be a Hilbert spa
e of �nite dimension and H = G
n its n-fold tensor produ
t. Atypi
al example is G = C 2 , so that H is an n-qubit Hilbert spa
e. Consider all operatorsin H of the form X = X1 
X2 
 � � � 
Xn;where #fi j Xi 6= Ig � t:Denote by Et the linear span of all su
h operators. An element X 2 Et is 
alled anerror operator of strength at most t. An Et-
orre
ting quantum 
ode C � H is 
alled at{error 
orre
ting quantum 
ode.Remark 7.2.3 \In an n{qubit quantum 
omputer, if errors a�e
t at most t wires amongthe n wires, they 
an be 
orre
ted by a t{error 
orre
ting quantum 
ode".7.2.3 A Good Basis for EtWe shall now 
onstru
t a \good basis" for Et � B(H). Suppose dimG = N . Considerany abelian group A of 
ardinality N and identify G with L2(A). We de�ne the unitaryoperators Ua, V� and Wa;� as follows(Uaf)(x) = f(x+ a) where a 2 A;(V�f)(x) = �(x)f(x) where f 2 L2(A) and � 2 Â;and Wa;� = UaV�:Then we have W(a;�)W(b;�) = �(b)Wa+b;��and TrW y(a;�)W(b;�) = (Æa;bÆ�;�)N:The family fW(a;�) j (a; �) 2 A� Âg is irredu
ible and the setf 1pNW(a;�) j (a; �) 2 A � Âg is an orthonormal basis for the Hilbert spa
e B(G) withs
alar produ
t hX; Y i = TrXyY; X; Y 2 B(G):For (a;�) 2 An � Ân(�= (A� Â)n) de�neW(a;�) =W(a1 ;�) 
W(a2 ;�2) 
 � � � 
W(an;�n);so that W(a;�)W(b;�) = nYi=1 �i(bi)W(a+b;��)



64 LECTURE 7. QUANTUM ERROR CORRECTING CODESand n 1N n2 W(a;�) j (a;�) 2 An � Âno is an orthonormal basis for B(H) = B(G
n):De�new(a;�) = #fi j (ai; �i) 6= (0; 1)gthe weight of (a;�) in the abelian group (A � Â)n. Then fW(a;�) j w(a;�) � tg is alinear basis for the subspa
e Et.A subspa
e C � G
n is 
alled a quantum 
ode of minimum distan
e d, if C has anorthonormal basis  1;  2; : : : ;  k satisfying1. h ijW(a;�)j ji = 0; i 6= j; w(a;�) � d;2. h ijW(a;�)j ii is independent of i whenever w(a;�) � d,3. Either 
ondition (1) or 
ondition (2) is false, for some (a;�) with w(a;�) = d+1.Su
h a quantum 
ode is �d�12 �-error 
orre
ting. We 
all it an [[n; k; d℄℄A quantum 
ode.7.3 Examples:7.3.1 A Generalized Shor CodeWe begin with a few de�nitions. Let A be a �nite abelian group with binary operation+ and identity element 0. Let Â denote its 
hara
ter group. Let H be the Hilbert spa
eL2(A)
n. Let Ua and V� denote the Weyl operators. Let Cn � An be a t-error 
orre
ting(d(Cn) � 2t+1) group 
ode of length n with alphabet A. Let Dn;m � (Ĉn)m be a t-error
orre
ting group 
ode with alphabet Ĉn of length m.An element in Dn;m is denoted by �. Sometimes we also denote by � the m-tuple�1; �2; : : : ; �m, where ea
h �i is in Ĉn. De�nef�(x) = ( #C� 12n �(x) if x 2 Cn,0 otherwise.Let F� = f�1 
 f�2 
 � � � 
 f�m , where � is in Dn;m.Theorem 7.3.1 fF� j � 2 Dn;mg is a t-error 
orre
ting quantum 
ode inL2(A)
mn �= L2(Amn):Proof: Let (a;�) 2 Amn � Âmn su
h that w(a;�) � 2t. We havehF�jUaV�jF
i = Xx2Amn mYj=1 f�j(x(j) � a(j))f
j (x(j))�(x): (7.3.2)Note that w(a) � 2t in Amn and w(�) � 2t in Âmn.



7.3. EXAMPLES: 65Case 1: Let a 6= 0. Then a(j) 6= 0 for some j = j0,w(a) � 2t =) w(a(j0)) � 2t: Then Cn + a(j0) \ Cn = ;. So every summand in theR.H.S. of equation (7.3.2) vanishes.Case 2: Let a = 0. Then R.H.S. of equation ( 7.3.2) redu
es toXx2Cmn �(x)
(x)�(x):Let � 6= 
; �;
 2 Dn;m: Then �
 2 Dm;n (a group 
ode), and w(�
) � 2t + 1: Sin
ew(�) � 2t, � ��Cmn has weight � 2t. So � 
 � ��Cmn is nontrivial. By S
hur orthogonalityrelations R.H.S. of equation (7.3.2) is equal to 0.Case 3: Let a = 0, � = 
. Then R.H.S. of equation (7.3.2) redu
es to Px2Cmn �(x)whi
h is independent of �.Thus the Knill-La
amme 
onditions are ful�lled. �7.3.2 Spe
ialization to A = f0; 1g, m=3,n=3.Design of a 9-qubit, 1 error 
orre
ting, 2{dimensional 
ode.C3 = f000; 111gĈ3 has two elements,�1(000) = �1(111) = 1 (identity 
hara
ter) and�2(000) = +1; �2(111) = �1:f�1 = 1p2(j000i+ j111i)f�2 = 1p2(j000i � j111i)D3;3 = f(�1; �1; �1); (�2; �2; �2)gF�1�1�1 = f
3�1F�2�2�2 = f
3�2 :Thus, we en
ode 0 as F�1�1�1 and 1 as F�2�2�2. The 
ir
uit for implementing the 
ode isshown in Figure 7.3.7.3.3 La
amme 
odeLa
amme found the following 5-qubit 1-error 
orre
ting quantum 
ode.0 7! j 0i = 14f(j00000i+ j11000i+ j01100i+ j00110i+ j00011i+ j10001i)�(j01010i+ j00101i+ j10010i+ j01001i+ j10100i)�(j11110i+ j01111i+ j10111i+ j11011i+ j11101i)g
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��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

j ij0ij0i
HHH

j0ij0ij0ij0ij0ij0iFigure 7.3:
1 7! j 1i = 14f(j11111i+ j00111i+ j10011i+ j11001i+ j11100i+ j01110i)�(j10101i+ j11010i+ j01101i+ j10110i+ j01011i)�(j00001i+ j10000i+ j01000i+ j00100i+ j00010i)gThe 
ode 
an also be written in the following way. Let a0 = a1+a2+a3+a4+x (mod 2).x 7! j xi = 14 Xa1;a2;a3;a42Z2(�1)(a0a2+a1a3+a2a4+a3a0+a4a1)ja0ija1a2a3a4iThis observation allows us to 
onstru
t a simple 
ir
uit for implementing the La
amme
ode. The 
ir
uit for the La
amme 
ode is shown below.xa1a2a1a4 a0a1a2a3a4C(1)

a0a1a2a3a4
Z Z Z Z ZC(2)

HHHHC(3)



7.3. EXAMPLES: 67j ij0ij0ij0ij0i C(3) C(1) C(2)
Figure 7.4: Cir
uit for en
oding the La
amme 
ode.7.3.4 Example 2: Hadamard-Steane Quantum CodeConsider the following table. The ijth entry, for i; j > 1, is the inner produ
t of the ithentry in the �rst row and jth entry in the �rst 
olumn, 
omputed over the �eld F2 .000 001 010 011 100 101 110 111000 0 0 0 0 0 0 0 0001 0 1 0 1 0 1 0 1010 0 0 1 1 0 0 1 1011 0 1 1 0 0 1 1 0100 0 0 0 0 1 1 1 1101 0 1 0 1 1 0 1 0110 0 0 1 1 1 1 0 0111 0 1 1 0 1 0 0 1The portion inside the box is Hadamard [7; 3; 4℄ simplex 
ode. Let C be the set of allrow ve
tors.De�ne j 0i = 12p2 Xx2C jxi and j 1i = 12p2 Xx2C+(1;1;1;1;1;1;1;1) jxi:Then, linfj 0i; j 1ig is a 7-qubit single error 
orre
ting quantum 
ode. Note that, C [C + (1; 1; 1; 1; 1; 1; 1; 1) is a group 
ode of minimum distan
e 3.Permute the 
olumns to the order 4 6 7 1 2 3 5 in the table above. Then theenumerated rows 
an be expressed as(x1 x2 x3 x1 + x2 x1 + x3 x2 + x3 x1 + x2 + x3)where x1, x2, x3 vary in F2 . In other words we have expressed the 
ode as a parity 
he
k
ode with the �rst three position for messages and the last four as parity 
he
ks. Thenthe Hadamard-Steane 
ode 
an be expressed asj ai = Xx1;x2;x3 jx1 + a x2 + a x3 + a x1 + x2 + a x1 + x3 + a x2 + x3 + a x1 + x2 + x3 + aiwhere a 2 f0; 1g. Put y1 = x1 + x3 + a, y2 = x2 + x3 + a, y3 = x1 + x2 + x3 + a: Thenj ai = Xy1;y2;y32f0;1g jy2 + y3 + a y1 + y3 + a y1 + y2 + y3 + a y1 + y2 + a y1 + a y2 + a y3 + ai:This shows that the 
ode 
an be implemented by the 
ir
uit shown in Figure 7.5.
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Figure 7.5: Cir
uit implementing the Steane-Hadamard 
ode.Exer
ise 7.3.3 Verify dire
tly the Knill-La
amme 
onditions for fj 0i; j 1ig, for singleerror 
orre
tion.7.3.5 Example 3: Codes Based on Bush Matri
esLet Fq = fa1; a2; : : : ; aqg be the �eld of q = pm elements, where p is prime.Let P(t; q) = f all polynomials of degree � t with 
oeÆ
ients from Fqg, a linear spa
eof dimension qt+1.We enumerate the elements of P(t�1; q); t�1 � q as '0, '1, : : :, 'N�1 and 
onstru
tthe matrix Bt of order qt � q; qt = N as follows :a1 a2 � � � aj � � � aq'0 = 0 0 0 � � � 0 � � � 0... ... ... � � � ... � � � ...'i 'i(a1) 'i(a2) � � � 'i(aj) � � � 'i(aq)... ... ... � � � ... � � � ...'N�1 'N�1(a1) 'N�1(a2) � � � 'N�1(aj) � � � 'N�1(aq)Denote the linear spa
e of all the row ve
tors in Bt also by Bt.Proposition 7.3.4 Bt is a linear 
ode of minimum distan
e q � t+ 1.Proof: Consider the i-th row in Bt, i 6= 0. 'i is a nonzero polynomial of degree � t� 1.So 'i has at most t � 1 zeroes. Thus, the weight of this row � q � t + 1. On the otherhand 
onsider the polynomial'(x) = (x� a1)(x� a2) � � � (x� at�1):Its zeros are exa
tly a1; a2; : : : at�1. Thus, the weight of the 
orresponding row is q�t+1.�Corollary 7.3.5 Bt is a � q�t2 �{error 
orre
ting group 
ode.If Et is the Hamming sphere of radius � q�t2 � with (0; : : : ; 0) as 
enter in Fqtq then(Et � Et) \ Bt = f0g.



7.3. EXAMPLES: 69Proposition 7.3.6 Let � 2 B?t � (F̂q )q. If � 6= 1, then w(�) � t + 1. Thus B?tis a � t2� error 
orre
ting group 
ode. If Ft is the Hamming sphere of radius � t2� thenF�1t Ft \B?t = f1g.Proof: Suppose w(�) = r, where 0 < r � t. Let � = (�1; �2; : : : ; �q); �i 2 F̂q , �i 6= 1 i�i 2 fi1 < i2 < � � � < irg. Write bj = aij ; j = 1; 2; : : : ; r: For arbitrary 
1; 
2; : : : ; 
r in Fq
onsider the Lagrange polynomial (for interpolation)'(x) =X 
j (x� b1)(x� b2) � � � (x� bj )̂ � � � (x� br)(bj � b1)(bj � b2) � � � (bj � bj )̂ � � � (bj � br) ;where \̂ " indi
ates ommision of that term. Then ' is a polynomial of degree r�1 (�t�1) and '(bj) = 
j; j = 1; 2; : : : ; r: Corresponding to ' there is a row in Bt. Evaluating� on this row we get �('(a1); '(a2); : : : ; '(aq)) = rYj=1�ij (
j) = 1;sin
e � 2 B?t . Sin
e 
j's are arbitrary, we have �ij = 18j = 1; 2; : : : ; r, a 
ontradi
tion.� We 
an now use Theorem 7.1.16 and Theorem 7.1.20 to the 
ase C1 � C2 � Aq,A = Fq , as an additive group, C1 = Bt0 ; C2 = Bt; 0 < t0 < t < q: Then Bt = Bt0 � S,where S 
onsists of all polynomials of the forms(x) = xt0(a0 + a1x + � � �+ at�t0�1xt�t0�1):For any polynomial ' 
onsider the statej'i = j'(a1)'(a2) : : : '(aq)i:For any s 2 S de�ne  s = q� t02 X'2P(t0�1;q) j'i:Then Ct;t0 = linf s j s 2 Sg is a quantum 
ode with dim Ct;t0 = qt�t0 , whi
h 
an 
orre
t� q�t2 � ^ � t02 � errors.Remark 7.3.7 Choose t = b�q
 ; t0 = b�0q
 ; 0 < �0 < � < 1: Then, as q !1, we havelog dim Ct;t0log dim H = t� t0q = b�q
 � b�0q
q ! (� � �0):Therefore, # errors 
orre
ted# qubits � j (1��)2 k ^ j�0q2 kq ! 1� �2 ^ �02as q !1.Then, for � = 34 , �0 = 14 we get, � � �0 = 12 and 1��2 ^ �02 = 18 . It means 50% of thequbits are used for sending the messages, 50% for error 
he
king and up to 1212% errors
an be 
orre
ted.



70 LECTURE 7. QUANTUM ERROR CORRECTING CODES7.3.6 Quantum Codes from BCH CodesIn this example we use the 
elebrated BCH (Bose Chaudhuri Ho
quenhem) 
odes to
onstru
t a quantum 
ode. We begin with a few fa
ts from 
lassi
al 
oding theory. LetFnq be a ve
tor spa
e over the �nite �eld Fq with q = pm, where p is a prime. Choose and�x a primitive element � of Fqn .Let � be a 
y
li
 permutation de�ned by�(a0; : : : an�1) 7! (an�1; a0; : : : ; an�2):Then a subspa
e C � Fnq invariant under the 
y
li
 permutation � is 
alled a 
y
li
 
odeof length n. For every word w = (w0; : : : ; wn�1) 2 Fnq we asso
iate the word polynomialw(x) = w0 + w1x + � � � + wn�1xn�1. If w is in C it is 
alled the 
ode word polynomial.Let Rn = Fq [x℄=(xn � 1). Then Rn 
an be viewed as a ve
tor spa
e over Fq and it isisomorphi
 to Fnq . Under the identi�
ation w  w(x) the image C� of a 
y
li
 
ode Cin Rn is an ideal with a single generator polynomial gC . Without loss of generality wemay assume gC to be moni
 and therefore unique. It is known that gC is a divisor ofxn � 1. If deg(gC) = k then dim C = n � k. If gC has a string of su

essive powers�a; �a+1; : : : ; �a+b�2 as its roots and 0 � a < a + b � 2 � qn � 2, then d(C) � b (whered(C) is the minimum distan
e of C). For any 
y
li
 
ode denoteC? = fx j xy = x1y1 + � � �+ xnyn = 0; 8y 2 Cg:Then C? is also a 
y
li
 
ode 
alled the dual of C.Conversely if g is a divisor of xn�1 then there exists a unique 
y
li
 
ode Cg generatedby g. Suppose xn � 1 = gh where g(x) = a0 + a1x+ � � �ak�1xk�1 + xk, h(x) = b0 + b1x+� � �+ bn�k�1xn�k�1+xn�k so that a0b0 = �1. De�ne ~h = b�10 (1+ bn�k�1x+ � � �+ b0xn�k).If h has a string of su

essive powers �l; �l+1; : : : ; �l+m+2 as its roots then so does thepolynomial ~h whi
h 
an be written as~h = (�1)n�k(�1 : : : �n�k)�1(1� �1x) � � � (1� �n�kx)where �1; : : : ; �n�k are the roots of h in Fqn . It is known that C? = C~h and therefore itfollows that d(C?) � m. (For 
omplete proofs we refer to [4℄ or [3℄).Let xn � 1 = g1g2g3, d(Cg1) = d1, d(Cg3) = d3. Note that C?g1g2 = C ~g3. By Theorem5.1.10 we get a quantum 
ode C of dimension (#Cg1)=(#Cg1g2) = qdeg(g2). If Cg1 and Cg3are respe
tively t1 and t3 { error 
orre
ting 
odes then C 
an 
orre
t min(t1; t3) errors.



Le
ture 8Classi
al Information Theory
8.1 Entropy as information8.1.1 What is information ?Let us 
onsider a simple statisti
al experiment of observing a random variable X, whi
htakes one of the values x1; x2; : : : xn with respe
tive probabilities p1; p2; : : : pn. Whenwe observe X we gain some information be
ause the un
ertainty regarding its value iseliminated. So the information gained is the un
ertainty eliminated. We wish to havea mathemati
al model whi
h gives us a measure of this information gained. A fun
tionwhi
h measures this information gained or the un
ertainty asso
iated with a statisti
alexperiment must depend only on the probabilities pi and it should be symmetri
. Thisis based on the intuition that 
hanging the names of the out
omes does not 
hange theun
ertainty asso
iated with the random variable X.The desirable properties of a fun
tion H whi
h measures the un
ertainty asso
iatedwith a statisti
al experiment are listed below.1) For ea
h �xed n, H(p1; p2; : : : ; pn;n) is a nonnegative symmetri
 fun
tion of p1, p2,: : :, pn.2)H(12 ; 12 ; 2) = 1: This is to �x the s
ale of the measurement. One 
an look at theinformation obtained by performing one of the simplest statisti
al experiments. i. e.tossing an unbiased 
oin and observing the out
ome. An out
ome of this experiment issaid to give one unit of information.3) H(p1; p2; : : : ; pn;n) = 0 i� one of the pi's is 1. This 
orresponds to the 
ase whenthere is no un
ertainty in the out
ome of the experiment.4) Let X and Y be two independent statisti
al experiments. Let XY denote theexperiment where the experiments X and Y are performed together and the output isthe ordered pair of the out
omes of X and Y . Then H(XY ) = H(X) +H(Y ):5) H(p1; p2; : : : ; pn;n) attains its maximum when pi = 1n ; 8i 2 1; 2; : : : n. i.e. we gainmaximum information when all possible out
omes are equally likely.6) H(p1; p2; : : : ; pn; 0;n+ 1) = H(p1; p2; : : : ; pn;n).7) H(p1; p2; : : : pn;n) is 
ontinuous in p1; : : : pn: This is a natural 
ondition be
ause we71



72 LECTURE 8. CLASSICAL INFORMATION THEORYwould like to say that, if two statisti
al experiments have the same number of possibleout
omes and their asso
iated probabilities are 
lose, then the information 
ontained inea
h of them should also be 
lose.Let H0 = �Pnj=0 pj log2 pj. This fun
tion is also known as the entropy fun
tion. It
an be veri�ed that this fun
tion satis�es all the above desired properties.Let X; Y be two statisti
al experiments in whi
h the out
omes of X and Y arex1; : : : ; xn and y1; : : : ; ym respe
tively. Suppose Pr(X = xi) = pi, Pr(Y = yj j X = xi) =qij, Pr(Y = yj) = qj. Then Pr(X = xi; Y = yj) = piqij. Let H(qi1; : : : ; qim) = Hi(Y ).We de�ne 
onditional entropy as H(Y j X) = Pni=1 piHi(Y ) i.e. the entropy of Y onknowing X.Exer
ise: Verify that H0 de�ned earlier satis�es the following equality.H0(XY ) = H0(X) +H0(Y j X): (8.1.1)This 
an be interpreted as follows: The total information obtained by performing theexperiments X and Y together is equal to the sum of the information obtained by per-forming X and the information left in Y after knowing the out
ome of X.This seems to be a reasonable property that the fun
tion H should have. Notethat Property 4) is a spe
ial 
ase of equation ( 8.1.1). If we repla
e Property 4) bythe hypothesis, H(XY ) = H(X) + H(Y j X) then there is a unique fun
tion whi
hsatis�es all the above properties. Hen
e H0 is the only 
andidate as a measure of entropy.From now onwards we use H to denote the measure of entropy and H(P ) to denoteH(p1; p2; : : : ; pn;n):Note: If Property 4) is not 
hanged then there 
an be other fun
tions whi
h satisfyproperties 1) to 7). See [10℄ for other measures of entropy.The entropy fun
tion H has several important properties. Some of them are listed inthe following exer
ises.Exer
ise 8.1.2 Show that H(XY ) � H(X).Mutual information H(X : Y ) of two statisti
al experiments is de�ned asH(X : Y ) = H(X) +H(Y )�H(XY ) = H(X)�H(X j Y ):It is the information about X gained by observing Y .Exer
ise 8.1.3 Show that H(Y : X) � 0, where X and Y are two statisti
al experi-ments.Exer
ise 8.1.4 Let X; Y; Z be three statisti
al experiments. Then show that the in-equality H(X j Y ) � H(X j Y Z) holds.Exer
ise 8.1.5 (Sub additivity) Show that H(XY ) � H(X) +H(Y ), where X and Yare two statisti
al experiments.Exer
ise 8.1.6 (Strong subadditivity) Show thatH(XYZ) +H(Y ) � H(XY ) +H(Y Z);



8.2. A THEOREM OF SHANNON 73where X; Y and Z are three statisti
al experiments. Equality holds i� fZ; Y;Xg is aMarkov 
hain.The following identity is also very useful.Theorem 8.1.7 (Chain rule for 
onditional entropy)H(X1; : : :Xn j Y ) = H(X1 j Y ) +H(X2 j Y X1) + � � �+H(Xn j Y X1 : : : Xn�1)Proof: We prove by indu
tion.Base 
ase: n=2.H(X1X2 j Y ) = H(X1X2Y )�H(Y )= H(X1X2Y )�H(X1Y ) +H(X1Y )�H(Y )= H(X2 j X1Y ) +H(X1 j Y )= H(X1 j Y ) +H(X2 j X1Y )Indu
tion hypothesis: For all n 2 f2; 3; : : : kgH(X1; : : :Xn j Y ) = H(X1 j Y ) +H(X2 j Y X1) + � � �+H(Xn j Y X1 : : : Xn�1)Indu
tion step:H(X1; : : :Xk+1 j Y ) = H(X1 j Y ) +H(X2 : : :Xk+1 j Y X1) (by base 
ase)= H(X1 j Y ) +H(X2 j Y X1) + � � �+H(Xk+1 j Y X1 : : :Xk)(by indu
tion hypothesis) �Exer
ise: (Data pro
essing inequality) Let X ! Y ! Z be a Markov 
hain. ThenH(X) � H(X : Y ) � H(X : Z):Exer
ise: (Data pipeline inequality) Let X ! Y ! Z be a Markov 
hain. ThenH(Z) � H(Z : Y ) � H(Z : X):8.2 A Theorem of ShannonLet A be an alphabet of size N . Denote by S(A) the free semigroup generated by A.Any element W 2 S(A) 
an be expressed as W = ai1ai2 : : : ain, where aij 2 A for ea
hj. We say that W is a word of length n. Let B be another alphabet, say of size M .Any map C : A ! S(B) is 
alled a 
ode and any word in the image of C is 
alled a
odeword. Extend C to a map ~C : S(A)! S(B) by putting ~C(W ) = ~C(ai1ai2 : : : ain) =C(ai1)C(ai2) : : : C(ain): We say that C is uniquely de
ipherable if ~C is inje
tive (or oneto one). C is 
alled an irredu
ible 
ode if no 
ode word of C is an extension of another
ode word. An irredu
ible 
ode is uniquely de
ipherable. Indeed, in su
h a 
ase we 
anre
over a word W in S(A) from its image ~C(W ) by just reading ~C(W ) left to right.



74 LECTURE 8. CLASSICAL INFORMATION THEORYTheorem 8.2.1 Let A = fa1; : : : ; aNg and B = fb1; : : : ; bMg be two alphabets. Let C :A! S(B) be an irredu
ible 
ode. Let the lengths of the words C(a1); C(a2); : : : ; C(aN),be n1; n2; : : : nN , respe
tively. ThenM�n1 +M�n2 + � � �M�nN � 1: (8.2.2)Conversely, if n1; n2; : : : nN are nonnegative integers satisfying this inequality then thereexists an irredu
ible 
ode C : A ! S(B) su
h that C(ai) has length ni for ea
h i =1; 2; : : : ; N:Proof: Let C : A ! S(B) be an irredu
ible 
ode with L = maxi ni. Denote by wi thenumber of 
ode words of length i.Ne
essity :Sin
e there 
an be at most M words of length 1 we havew1 � MSin
e C is irredu
ible, all words of length 2 whi
h are extensions of the 
ode words oflength 1, 
annot appear in the image of C. This givesw2 �M2 � w1MContinuing this way we getwL � ML � w1ML�1 � � � � � wL�1MThe last inequality 
an be rewritten asw1M�1 + w2M�2 + � � �+ wLM�L � 1: (8.2.3)SuÆ
ien
y :We pi
k any w1 words of length 1. Then we pi
k any w2 words of length 2 whi
h are notextensions of the w1 words of length 1 already pi
ked. This is possible be
ause inequality(8.2.3) is satis�ed. This way we keep pi
king words of required lengths. �Suppose the letters ai; i = 1; 2; : : : ; n of the alphabet A are pi
ked with probabilitiespi, i = 1; 2; : : : ; n respe
tively. Then the expe
ted length of the 
ode is PNi=1 pini, whereni is the length of C(ai).Let qj = M�njPNi=1Mni and l(C) = NXi=1 piniBy using the inequality \arithmeti
 mean is greater than or equal to geometri
 mean"we get Y( qjpj )pj �Xj pj( qjpj ) =Xj qj = 1:Taking logarithm on both sides and using (8.2.3)`(C) � �P pi log pilog2M



8.2. A THEOREM OF SHANNON 75Hen
e the average length of an irredu
ible 
ode must be at least �P pi log pilog2M .Let nj be an integer between � log2 pjlog2M and � log2 pjlog2M + 1 for all j 2 f1; 2; : : : ng. ThenPjM�nj � Pj pj � 1. By the above dis
ussion we know that an irredu
ible 
ode C 0exists with length of C 0(ai) equal to mi. The expe
ted length of this 
ode word is`(C 0) =Xj njpj � �P pj log2 pjlog2M + 1:Theorem 8.2.4 (Sardinas-Patterson,1953) If a 
ode is uniquely de
ipherable thenNXj=1 M�nj � 1:Proof: Let wj = #fi j ni = jg. Then the desired inequality 
an be rewritten asLXj=1 wjM�nj � 1 where L = max(n1; n2; : : : ; nN):Let Q(x) = PLj=1wjxj and let N(k) denote the number of B words of length k. Thenwe have the following re
ursive relation.N(k) = w1N(k � 1) + w2N(k � 2) + � � �+ wLN(k � L); (8.2.5)where N(0) = 1 and N(j) = 0 if j < 0. Consider the formal power seriesF (x) = 1Xk=0 N(k)xk:We know that N(k) � Mk. Hen
e the formal series 
onverges in the 
ase jxj < M�1:From (8.2.5) we have F (x)� 1 = Q(x)F (x)) F (x) = 11�Q(x) :F (x) is analyti
 in the dis
 (jxj < M�1) and 1�Q(x) > 0 when jxj < M�1. Therefore,by 
ontinuity we have, Q(M�1) � 1. This is the required inequality. �Corollary 8.2.6 Let A and B be as in Theorem 8.2.1. Suppose the letters a1; a2; : : : ; aNare pi
ked with probabilities p1; p2; : : : pN respe
tively. Then for any uniquely de
ipherable
ode C from A to S(B) one has l(C) � �P pi log pilog2M :Thus, Theorem 8.2.4 implies that 
orresponding to any uniquely de
ipherable 
odeC : A ! S(B) with length of 
ode words n1; n2; : : : ; nN there exists an irredu
ible 
odeC 0 : A! S(B) with lengths of 
ode words n1; n2; : : : ; nN .



76 LECTURE 8. CLASSICAL INFORMATION THEORYRemark 8.2.7 Suppose an i.i.d. sequen
e X1; X2; : : : of letters from A 
omes from asour
e with Pr(Xj = ai) = pi. Then Pr((X1X2 : : :Xn = ai1ai2 : : : ain) = pi1pi2 : : : pin andH(X1X2 : : :Xn) = nH(p1; p2; : : : ; pN):Now 
onsider blo
ks of length n. The new alphabet is An. En
ode C : a! C(a), wherea = ai1ai2 : : : ain and C(a) 2 S(B), in a uniquely de
ipherable form, so that the followinginequalities hold.nH(p1; p2; : : : ; pN)log2M �Xa p(a)`(C(a)) < nH(p1; p2; : : : ; pN)log2M + 1:This implies ����Pa p(a)`(C(a))n � H(p1; p2; : : : ; pN)log2M ���� < 1n (8.2.8)In this blo
k en
oding pro
edure, the expe
ted length of an en
oded blo
k is`(C) =Xa p(a)`(C(a)):The ratio of expe
ted length of an en
oded blo
k and the size of the a blo
k, namelyPa p(a)`(C(a))n , is 
alled the 
ompression 
oeÆ
ient. Equation (8.2.8) tells us that, as nin
reases the 
ompression 
oeÆ
ient tends to H(p1;p2;:::;pN )log2M .8.3 Stationary Sour
eWe 
onsider a dis
rete information sour
e I whi
h outputs elements xn 2 A, n = 0;�1;�2, : : : where A is a �nite alphabet. Thus a `possible life history' of the output 
an beexpressed as a bilateral sequen
ex = (: : : ; x�1; x0; x1; x2; : : :); xn 2 A: (8.3.1)Any set of the form�x j x 2 AZ; xt1 = a1; : : : ; xtn = an	 = [a1 : : : an℄t1;t2;:::;tnis 
alled 
ylinder with base a1; a2; : : : ; an at times t1 < t2 < � � � < tn. Consider thesmallest �-algebra FA 
ontaining su
h 
ylinders. Any probability measure � on theBorel spa
e (AZ;FA) is uniquely determined by the values of � on the 
ylinders. Theprobability spa
e (AZ;FA; �) is 
alled a dis
rete time random pro
ess.Consider the shift transformation T : AZ! AZ de�ned by Tx = y where yn = xn�1for all n 2 Z. If the probability measure � is invariant under T we say that (AZ;FA; �)is a stationary information sour
e and we denote it by [A; �℄: For su
h a sour
e�([a1a2 : : : an℄t1;t2;:::;tn) = �([a1a2 : : : an℄t1+1;t2+1;:::;tn+1)



8.3. STATIONARY SOURCE 77The information emitted by su
h a sour
e during the time period t, t+1; : : :, t+n�1is also the information emitted during the period 0; 1; : : :, n� 1 and is given byHn(�) = �XC �(C) log�(C):where the summation is over all 
ylinders based on a0; a1, : : : ; an�1 at times 0, 1, 2, : : : ;n � 1; aj varying in A. We 
all Hn(�)n as the rate at whi
h information is generated bythe sour
e during [0; n� 1℄. Our next result shows that this rate 
onverges to a limit asn!1.Theorem 8.3.2 For any stationary sour
e [A; �℄ the sequen
e Hn(�)n monotoni
ally de-
reases to a limit H(�).Proof: For any a0; a1; : : : ; an�1 2 A we write[a0a1 : : : an�1℄ = [a0a1 : : : an�1℄0;1;2;:::;n�1:Consider the output during [0; n� 1℄ as a random variable. Then we 
an expressHn+1(�) = �E (log �[x�n; x�(n�1); : : : ; x0℄)Hn(�) = �E (log �[x�n; x�(n�1); : : : ; x�1℄)where the expe
tation is with respe
t to �. We now show that the sequen
e Hn+1(�)�Hn(�) is monotoni
 de
reasing. Let A, B and C be s
hemes determined by the 
ylinders[x0℄, [x�n; x�(n�1); : : : ; x�1℄ and [x�(n+1)℄ respe
tively. Then the joint s
heme BC is givenby the 
ylinder [x�(n+1); x�n; : : : ; x�1℄. Then we haveH(A j B) = Hn+1(�)�Hn(�) andH(A j BC) = Hn+2(�)�Hn+1(�):By using the fa
t H(A j BC) � H(A j B) we getHn+2(�)�Hn+1(�) � Hn+1(�)�Hn(�):Also H2(�) � 2H1(�): Thus the sequen
e H1(�); H2(�)�H1(�); : : : ; Hn(�)�Hn�1(�); : : :is monotoni
 de
reasing.Sin
e Hn(�)n = H1(�) + (H2(�)�H1(�)) + � � �+ (Hn(�)�Hn�1(�))n ;it follows that Hn(�)n is monotoni
 de
reasing. But Hn(�)n is bounded from below. Hen
elimn!1 Hn(�)n exists. �
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Le
ture 9Quantum Information Theory
9.1 von Neumann EntropyFollowing the exposition of quantum probability in 
hapter 1 we now repla
e the 
lassi
alsample spa
e 
 = f1; 2; : : :Ng by a 
omplex Hilbert spa
e H of dimension N and theprobability distribution p1; p2 : : : pN on 
 by a state �, i.e., a nonnegative de�nite operator� of unit tra
e. Following von Neumann we de�ne the entropy of a quantum state � bythe expression S(�) = �Tr(� log �) (9.1.1)where the logarithm is with respe
t to the base 2 and it is understood that the fun
tionx log x is de�ned to be 0 whenever x = 0. We 
all S(�) the von Neumann entropy of �.If �1; �2; : : : ; �N are the eigenvalues of � (in
lusive of multipli
ity) we haveS(�) = �Xi �i log�i: (9.1.2)If � is the diagonal matrix diag(�1; : : : ; �N) then S(�) = H(P ) = �Pi pi log pi.9.2 Properties of von Neumann entropy1) 0 � S(�) � log2 d, where d is the dimension of the Hilbert spa
e H. S(�) = 0 if andonly if � is pure, i.e., � =j ih j for some unit ve
tor j i in H. S(�) = log2 d if and onlyif � = d�1I.2) For any unitary operator U , S(U�U y) = S(�):3) For any pure state j i, S(j ih j) = 0:Note that property 3) is already 
ontained in property 1).Suppose HA
HB des
ribes the Hilbert spa
e of a 
omposite quantum system whose
onstituents are systems A and B with their states 
oming from the Hilbert spa
es HAand HB respe
tively. For any operator X on H we de�ne two operators XA and XB on79



80 LECTURE 9. QUANTUM INFORMATION THEORYHA and HB respe
tively byhujXAjvi = Xj hu
 fjjXjv 
 fji (9.2.1)hu0jXBjv0i = Xi hei 
 u0jXjei 
 v0i (9.2.2)for all u; v 2 HA, u0; v0 2 HB, feig, ffjg being orthonormal bases in HA, HB respe
tively.Note that the right side of (9.2.1) and (9.2.2) are sesquilinear forms on HA and HB, andtherefore the operators XA and XB are uniquely de�ned. A simple algebra shows thatXA and XB are independent of the 
hoi
e of orthonormal bases in HA and HB. We writeXA = TrB X, XB = TrAX. TrA and TrB are 
alled the operators of relative tra
e on theoperator variable X. Note that TrXA = TrXB = TrX. If X is nonnegative de�nite soare XA and XB. In parti
ular, for any state � of the 
omposite system �A and �B arestates on HA and HB respe
tively. We 
all them the marginal states of �.Let jiAi, jjBi, i = 1; 2; : : : ;M ; j = 1; 2; : : : ; N be orthonormal bases for HA, HBrespe
tively. Then fjiAijjBi; 1 � i � M; 1 � j � Ng is an orthonormal basis forH = HAB = HA 
HB and hen
e any joint pure state j i 
an be expressed asj i =Xi;j aijjiAijjBi: (9.2.3)The M �N matrix A = [aij℄ 
an be expressed as[aij℄ = U � D 00 0 �Vwhere U is a unitary matrix of order M �M , V is a unitary matrix of order N �N andD = diag(s1; s2; : : : ; sr), s1 � s2 � � � � � sr � 0, r being the rank of [aij℄. It followsthat s1; s2; : : : ; sr are positive eigenvalues of the matri
es pAyA and pAAy, 
alled thesingular values of A.De�ne the ve
tors j�iAi = MXk=1 ukijkAi; 1 � i �Mj�jBi = NXl=1 vjljlBi; 1 � j � Nwhere U = [uki℄, V = [vjl℄. Then (9.2.3) be
omesj i = rXi=1 sij�iAij�iBi: (9.2.4)Here j�1Ai; j�2Ai; : : : ; j�rAi and j�1Bi; j�2Bi; : : : ; j�rBi are orthonormal sets in HA and HB ofsame 
ardinality and s1; s2; : : : ; sr are the singular values of A. The de
omposition of j iin the form (9.2.4) is 
alled the S
hmidt de
omposition of j i.4) Let j
ih
j be a pure state for AB and let �A and �B be its marginal states. ThenS(�A) = S(�B):



9.2. PROPERTIES OF VON NEUMANN ENTROPY 81Proof: By S
hmidt de
omposition we know that if j i is a pure state for the 
ompositesystem, AB; then there exist orthonormal states jiAi for system A and orthonormalstates jiBi for system B su
h that j i = Pi �ijiAijiBi, where �i's are nonnegative realnumbers satisfyingPi �2i = 1. So we 
an write j
ih
j =P�i�jjiAihjAj 
 jiBihjBj: Thus�A = P�2i j iAihiA j and �B = P�2i j iBihiB j Hen
e the eigenvalues of �A and �B aresame. Therefore by ( 9.1.2) we have S(�A) = S(�B): �5) Let �1; �2; : : : ; �n be states with mutually orthogonal support and let p1; p2; : : : ; pn bea probability distribution. ThenS(Xi pi�i) = H(P ) +Xi piS(�i); (9.2.5)where H(P ) = �P pi log pi:Proof: Let �ji and jeji i be the eigenvalues and 
orresponding eigenve
tors of �i. ThenP pi�i has eigenvalues pi�ji with respe
tive eigenve
tors jeji i: Thus,S�Xi pi�i� = �Xi;j pi�ji log pi�ji= �Xi pi log pi �Xi piXj �ji log�ji= H(P ) +Xi piS(�i) �An immediate 
onsequen
e of property 5) is the following.Corollary 9.2.6 (joint entropy theorem) Let (p1; p2; : : : ; pn) be a probability distribution,fjii; i = 1; 2; : : : ; ng an orthonormal set of states in HA and f�i; i = 1; 2; : : : ; ng a set ofdensity operators in HB. ThenS(Xi pijiihij 
 �i) = H(P ) +Xi piS(�i):6) The following theorem shows that the 
orresponden
e �! S(�) is 
ontinuous.Theorem 9.2.7 (Fannes' inequality) Suppose � and � are density matri
es su
h thatthe tra
e distan
e between them satis�es Tr j�� �j < 1e . ThenjS(�)� S(�)j � Tr j�� �j log d+ �(Tr j�� �j);where d is the dimension of the Hilbert spa
e, and �(x) = �x log x:Proof: Let r1 � r2 � � � � � rd and s1 � s2 � � � � � sd be the eigenvalues of � and �respe
tively. By the spe
tral de
omposition we 
an write � � � = Q� R, where Q andR are positive operators with orthogonal support, so T (�; �) = Tr(R) + Tr(Q). De�ningV = R + � = Q + �; we get Tr(� � �) = Tr(R) + Tr(Q) = Tr(2V ) � Tr(�) � Tr(�):Let t1 � t2 � � � � � td be the eigenvalues of V . By the variational prin
iple for the itheigenvalue it follows that ti � max(ri; si). Hen
e 2ti � ri + si + jri � sij andTr j�� �j �Xi jri � sij (9.2.8)



82 LECTURE 9. QUANTUM INFORMATION THEORYWhen jr � sj � 1e , from mean value theorem it follows that j�(r)� �(s)j � �(jr � sj).Sin
e jri � sij � 1e for all i, it follows thatjS(�)� S(�)j = �����Xi (�(ri)� �(si))����� �Xi �(jri � sij):Setting � =Pi jri � sij and observing that�(jri � sij) = ��(jri � sij =�)� jri � sij log(�);we obtain jS(�)� S(�)j � �X �(jri � sij =�) + �(�) � � log d+ �(�):By ( 9.2.8) and monotoni
ity of �(:) on the interval [0; 1=e℄, we getjS(�)� S(�)j � Tr j�� �j log d+ �(Tr j�� �j): �7) For any two quantum states �, � we de�ne the relative entropy S(�jj�) of � withrespe
t to � byS(�jj�) = � Tr � log �� Tr � log � if supp � � supp�,1 otherwise. (9.2.9)Theorem 9.2.10 (Klein's inequality) S(�jj�) � 0, where equality holds i� � = �.Proof: Let the eigen de
ompositions of the states � and � be given by � =Pi pi j iihi j,� =Pj qj jjihj j. Then we haveS(�jj�) = X pi log pi �Xhij� log�jii= X pi log pi �Xi;j pi jhi j jij2 log qjWe may assume S(�jj�) to be �nite. Sin
e � log x is a 
onvex fun
tion in the interval[0; 1℄ and Pj jhi j jij2 = 1, we have�Xj jhi j jij2 log qj � � logXj jhi j jij2 qjPutting ri =Pj jhi j jij2 qj and observing that Pi ri = 1, we haveS(�jj�) � �Xi pi log ripi � 0: �8) Let �AB be a state in HA 
 HB with marginal states �A and �B. We denote byS(A), S(B) and S(AB) the von Neumann entropy of �A, �B and �AB respe
tively. Thequantum mutual information of the systems A and B is de�ned asS(A : B) = S(A) + S(B)� S(AB):



9.2. PROPERTIES OF VON NEUMANN ENTROPY 83Theorem 9.2.11 S(A : B) � 0Proof: Observe that S(A) = �Tr �A log �A = �Tr �AB log(�A 
 IB): Substituting in theexpression for S(A : B) we getS(A : B) = �Tr �AB(log �A 
 IB + log IA 
 �B) + Tr �AB log �AB= S(�ABjj�A 
 �B)� 0 �Let �AB be a state in HA 
 HB with marginal states �A and �B. The 
onditionalentropy of the state �A given the state �B is de�ned asS(A j B) = S(AB)� S(B):Note that the state �AB may be a pure state and the state �B an impure state. SoS(A j B) 
an be less than zero.9) Let A be a quantum system with Hilbert spa
e HA. By a proje
tive measurement wemean a family of proje
tion operators P1; P2; : : : ; Pn in HA satisfying nPi=1Pi = I: Whensu
h a measurement is made in a state � the out
ome of the measurement is j withprobability Tr �Pj. A

ording to 
ollapse postulate 1.3 if the out
ome is j the state
ollapses to Pj�PjTr �Pj , Thus the post measurement state, ignoring the individual out
ome, isequal to Pj (Tr �Pj) Pj�PjTr �Pj =Pj Pj�Pj.Theorem 9.2.12 Let � be the state of a quantum system and let P1; P2; : : : ; Pn be aproje
tive measurement and let �0 =Pj Pj�Pj. Then S(�0) � S(�) and equality holds i��0 = �.Proof: 0 � S(�jj�0)= Tr � log �� Tr � log �0= Tr � log �� Tr(Xi Pi� log �0)= Tr � log �� TrXj Pj�(log �0)Pj= Tr � log �� TrXj Pj�Pj(log �0)= S(�0)� S(�) �By a generalized measurement we mean a set of operators L1; L2; : : : ; Ln satisfyingnPi=1LyiLi = I. If � is a state in whi
h su
h a generalized measurement is made, theprobability of the out
ome i is Tr �LyiLi and the post measurement state is Li�LyiTr �LyiLi . Thus



84 LECTURE 9. QUANTUM INFORMATION THEORYthe post measurement state, ignoring the individual out
ome, isX(Tr �LyiLi) Li�LyiTr �LyiLi =Xi Li�Lyi :Remark 9.2.13 A generalized measurement may de
rease the entropy.Example: Let L1 = j0ih0j and L2 = j0ih1j. Note that Ly1L1 + Ly2L2 = I: Let � =pj0ih0j+(1�p)j1ih1j. Then S(�) = �p log p� (1�p) log(1�p). Let � be measured usingthe measurement operators L1 and L2. The resulting state is �0 = L1�Ly1+L2�Ly2 =j0ih0 j.This implies S(�0) = 0.10)Theorem 9.2.14 Let �AB be a state in HA
HB with marginal states �A and �B. Thenthe following inequalities hold.1) S(AB) � S(A) + S(B),2) S(AB) � jS(A)� S(B)j :The �rst inequality is known as the sub-additivity inequality for the von Neumann en-tropy. The se
ond is known as the triangle inequality or the Araki-Lieb inequality.Proof: The �rst inequality follows from Klein's inequality, S(�) � �Tr � log�: Let � =�AB and � = �A 
 �B. Then�Tr(� log �) = �Tr(�AB(log �A + log �B))= �Tr(�A log �A)� Tr(�B log �B)= S(A) + S(B):Therefore we have S(AB) � S(A)+S(B). From Klein's theorem it follows that equalityholds i� �AB = �A 
 �B.To prove the triangle inequality, we introdu
e a referen
e system R su
h that �ABRis a pure state in HA 
HB 
HR. Then by sub-additivity we haveS(R) + S(A) � S(AR):Sin
e �ABR is a pure state we have S(AR) = S(B) and S(R) = S(AB). Substituting weget S(AB) � S(B)� S(A):By symmetry we get the se
ond inequality. �Exer
ise 9.2.15 Let �AB = Pi �ijiihij be the spe
tral de
omposition for �AB. Then,show that S(AB) = S(B)�S(A) i� the operators �Ai = TrB(jiihij) have a 
ommon eigenbasis, and the operators �Bi = TrA(jiihij) have orthogonal support.11) S(�) is 
on
ave in �.



9.2. PROPERTIES OF VON NEUMANN ENTROPY 85Theorem 9.2.16 Let �1; �2; : : : ; �n be states and let p1; p2; : : : pn be a probability distri-bution. Then S(Xi pi�i) �Xi piS(�i):Proof: Let �i's be the states in HA. Consider an auxiliary Hilbert spa
e HB, whose statespa
e has an orthonormal basis jii 
orresponding to the index i of the density operators�i. Let a joint state on HA 
HB be de�ned by�AB =Xi pi�i 
 jiihij:Note that S(AB) = H(P ) +P piS(�i), by the joint entropy theorem (Corollary 9.2.6).�A =P pi�i ) S(�A) = S(P pi�i):�B =P pijiihij ) S(�B) = H(P ):By sub-additivity we have, S(�A) + S(�B) � S(�AB):Substituting we get S(P pi�i) +H(P ) � H(P ) +P piS(�i): �12)Theorem 9.2.17 P piS(�i) � S(P pi�i) � H(P ) +P piS(�i):Proof: First let us 
onsider the 
ase when �i = j iih ij for all i. Let �i's be the states inHA and let HB be an auxiliary Hilbert spa
e with an orthonormal basis jii 
orrespondingto the index i of the probabilities pi. Let �AB =jABihAB j where jABi =Pppij iijii.In other words �AB = Pi;jppipjj iih jj 
 jiihjj. Sin
e �AB is a pure state we haveS(A) = S(B) = S(Pi pij iih ij): After performing measurement on the state �B in thejii basis, the state of the system will be �B0 =Pi pijiihij: But, proje
tive measurementsnever de
rease entropy and using the fa
t S(�i) = 0 we getS(A) � H(P ) +Xi piS(�i):Note that the equality holds i� �B = �B0 and this o

urs i� j ii0s are orthogonal. Nowwe 
an prove the mixed state 
ase.Let �i = Pi pijjeijiheijj be an orthonormal de
omposition for the state �i. Let � =Pi;j pipijjeijiheijj. Applying the result for the pure state 
ase and observing thatPj pij =1 for all i, we get S(�) � �Xi;j pipij log(pipij)= Xi pi log pi �Xi piXj pij log pij= H(P ) +Xi piS(�i): �



86 LECTURE 9. QUANTUM INFORMATION THEORYThe sub-additivity and the triangle inequality for two quantum systems 
an be ex-tended to three systems. This gives rise to a very important and useful result, known asthe strong sub-additivity. The proof given here depends on a deep mathemati
al resultknown as Lieb's theorem.Let A;B be bounded operator variables on a Hilbert spa
e H. Suppose the pair(A;B) varies in a 
onvex set C. A map f : C ! R is said to be jointly 
onvex iff(�A1 + (1� �)A2; �B1 + (1� �)B2) � �f(A1; B1) + (1� �)f(A2; B2):for all 0 � � � 1, (Ai; Bi) 2 C, i = 1; 2:Now we are ready to state the next property.13)Theorem 9.2.18 Relative entropy is jointly 
onvex in its arguments.Let H1 and H2 be two �nite dimensional Hilbert spa
es. Let � be a map from B(H1) toB(H2) whi
h satis�es �(XyX) � �(X)y�(X):In our 
ase � will be a star homomorphism. Let Ti, Si, i 2 f1; 2g be positive operators inHi, i = 1; 2. The index i 
orresponds to the Hilbert spa
e Hi. To prove Theorem 9.2.18we need the following lemma. This is also known as Lieb's inequality.Lemma 9.2.19 If TrXT1 � Tr�(X)T2 and TrXS1 � Tr�(X)S2 and Ti; i = 1; 2 areinvertible then Tr�(Xy)St2�(X)T 1�t2 � TrXySt1XT 1�t1 (9.2.20)Observe that (9.2.20) is true when the parameter t is equal to 1 or 0. We need toshow that the 
on
lusion of (9.2.20) holds even when t is a real number in the range(0; 1): So Lieb's inequality is an interpolation inequality. To prove Lieb's inequality weneed the following results.Lemma 9.2.21 The following equation is true.xt = 1�(t; 1� t) Z 10 ��t�1 � �t(�+ x)�1� d�: (9.2.22)Proof: We �rst perform the substitution 1 + �x = 1u . Then,1�(t; 1� t) Z 10 ��t�1 � �t(�+ x)�1� d�= 1�(t; 1� t) Z 01 "xt�1 �1� uu �t�1 � xt�1� uu �t �ux�#�� xu2� du= xt�(t; 1� t) Z 10 (1� u)t�1u�tdu= xt: �



9.2. PROPERTIES OF VON NEUMANN ENTROPY 87Lemma 9.2.23 Let 0 < t < 1 and let A, B be two positive operators su
h that A � B.Then At � Bt.Proof: A � B) (�+ A)�1 � (�+B)�1) �t(�+ A)�1 � �t(�+B)�1) �t�1 � �t(�+ A)�1 � �t�1 � �t(�+B)�1Thus by spe
tral theorem and Lemma 9.2.21 we haveAt � Bt: �Lemma 9.2.24 Let A = � A11 A12A21 A22 �be a stri
tly positive de�nite matrix where A11 and A22 are square matri
es. Then A11and A22 are also stri
tly positive de�nite and � A11 A12A21 A22 ��1!11 > A�111 :Proof: Note that� A11 A12A21 A22 ��1 = � (A11 � A12A�122 A21)�1 �(A11 � A12A�122 A21)�1A12A�122�(A22 � A21A�111 A12)�1A21A1111 (A22 � A21A�111 A12)�1 � :Therefore (A�1)11 = (A11 � A12A�122 A21)�1:Sin
e A12A�122 A21 is a positive operator we have (A�1)11 � A�111 . �Lemma 9.2.25 Let X be a positive operator in a �nite dimensional Hilbert spa
e H0and let V be a 
ontra
tion map. Then(V yXV )t � V yX tV:Proof: Observe that the lemma is true when V is unitary. LetU = � V p1� V V y�p1� V yV V y � :Note that, sin
e V is a 
ontra
tion map, p1� V V y and p1� V yV are well de�ned andU is unitary.



88 LECTURE 9. QUANTUM INFORMATION THEORYLet P be the map P : H0 � H0 ! H0 whi
h is proje
tion on the �rst 
o-ordinate.Then V = PUP jH0 . By Lemma 9.2.24 we have(�IH0 + V yXV )�1 = (�IH0 + PU yPXPUP jH0)�1� P (�I + U yPXPU)�1P jH0= PU y(��1P? + P (�+X)�1P )UP jH0= ��1PU y(I � P )UP jH0 +V y(�+X)�1V= ��1(I � V yV ) + V y(�+X)�1V:This implies 1�(1; 1� t) Z 10 �t�1 � �t(�I + V yXV )�1d�� 1�(1; 1� t) Z 10 �t�1 � �t(��1(I � V yV ) + V y(�+X)�1V )d�By applying Lemma 9.2.21 we get(V yXV )t � V yX tV:This 
ompletes the proof. �Remark: Lemma 9.2.25 holds even when the 
ontra
tion V is from one Hilbert spa
e H1to another Hilbert spa
e H2 and X is a positive operator in H2. In this 
ase the operatorU of the proof is from H1 �H2 to H2 �H1.We look upon B(H1) and B(H2) as Hilbert spa
es with the s
alar produ
t betweentwo operators de�ned as hX; Y i = TrXyY: De�ne V : B(H1) ! B(H2) by V : XT 121 =�(X)T 122 .Lemma 9.2.26 V is a 
ontra
tion map.Proof: jj�(X)T 122 jj2 = TrT 122 �(X)y�(X)T 122� Tr�(XyX)T2 � TrXyXT1= TrT 121 XyXT 121 = jjXT 121 jj2Hen
e the 
laim holds. �Assume that T1 and T2 are invertible and put �tX = St1XT�t1 and DtY = St2Y T�t2 .Note that �t�s = �t+s and DtDs = Ds+t for s; t � 0. FurthermorehXT 121 j �t j XT 121 i = TrT 121 XySt1XT 12�t1= Tr(XySt1X)T 1�t1� 0and similarly hY T 122 j Dt j Y T 122 i � 0Hen
e �t and Dt are positive operator semigroups and in parti
ular �t = �t1 andDt = Dt1.



9.2. PROPERTIES OF VON NEUMANN ENTROPY 89Lemma 9.2.27 hXT 121 j �1 j XT 121 i � hXT 121 j V yD1V j XT 121 iProof: hXT 121 j �1 j XT 121 i = TrT 121 XyS1XT� 121= TrXyS1X= TrXXyS1� Tr�(XXy)S2� Tr�(X)�(Xy)S2= TrT 122 �(X)yS2�(X)T� 122= hXT 121 j V yD1V j XT 121 i �From Lemma 9.2.27, Lemma 9.2.23 and Lemma 9.2.25 it follows that�1 � V yD1V) �t � (V yD1V )t� V yDt1V (true sin
e V is a 
ontra
tion map)= V yDtV:By expanding one 
an verify that the inequality hXT 121 j �t j XT 121 i � h�(X)T 121 j Dt j�(X)T 121 i is same as (9.2.20). �Proof of Property 13), Theorem 9.2.18Let H2 = H
H and �(X) = � X 00 X �.For 0 < � < 1 de�ne S1, T1, S2 and T2 as follows. S1 = ��1 + (1 � �)�2, T1 =��1 + (1� �)�2,S2 = � ��1 00 (1� �)�2 � and T2 = � ��1 00 (1� �)�2 � where �1 and �2 are invertible.Then Tr�(X)S2 = �Tr �1X + (1� �) Tr �2X= TrS1Xand Tr�(X)T2 = �Tr�1X + (1� �) Tr�2X= TrT1XApplying (9.2.20) with X = I we get,TrSt2T 1�t2 � TrSt1T 1�t1limt!1 1� TrSt2T 1�t21� t � limt!1 1� TrSt1T 1�t11� tddt TrSt2T 1�t2 jt=1 � ddt TrSt1T 1�t1 jt=1



90 LECTURE 9. QUANTUM INFORMATION THEORYTrS2 logS2 � TrS2 logT2 � TrS1 logS1 � TrS1 logT1; i.e.Tr��1 log��1 + (1� �)�2 log(1� �)�2 � ��1 log��1 � (1� �)�2 log(1� �)�2� S(��1 + (1� �)�2jj��1 + (1� �)�2):Thus �S(�1jj�1) + (1� �)S(�2jj�2) � S(��1 + (1� �)�2jj��1 + (1� �)�2): �14) Let �AB be a state inHA
HB with marginal states �A and �B. Then the 
onditionalentropy is 
on
ave in the state �AB of HA 
HB.Proof: Let d be the dimension of HA. ThenS(�ABjjId 
 �B) = �S(AB)� Tr(�AB log(Id 
 �B))= �S(AB)� Tr(�B log �B) + log d= �S(A j B) + log dTherefore 
on
avity of S(A j B) follows from 
onvexity of the relative entropy. �15)Theorem 9.2.28 (Strong sub-additivity) For any three quantum systems, A, B, C, thefollowing inequalities hold.1) S(A) + S(B) � S(AC) + S(BC)2) S(ABC) + S(B) � S(AB) + S(BC)Proof: To prove 1), we de�ne a fun
tion T (�ABC) as follows:T (�ABC) = S(A) + S(B)� S(AC)� S(BC) = �S(C j A)� S(C j B):Let �ABC = Pi pi j iihi j be a spe
tral de
omposition of �ABC . From the 
on
avity ofthe 
onditional entropy we see that T (�ABC) is a 
onvex fun
tion of �ABC . From the
onvexity of T we have T (�ABC) �Pi piT (jiihij). But T (jiihij) = 0, as for a pure stateS(AC) = S(B) and S(BC) = S(A). This implies T (�ABC) � 0: Thus S(A) + S(B) �S(AC)� S(BC) � 0:To prove 2) we introdu
e an auxiliary system R purifying the system ABC so thatthe joint state �ABCR is pure. Then using 1) we getS(R) + S(B) � S(RC) + S(BC):Sin
e ABCR is a pure state, we have, S(R) = S(ABC) and S(RC) = S(AB). Substi-tuting we getS(ABC) + S(B) � S(AB) + S(BC): �16) S(A : BC) � S(A : B)Proof: Using the se
ond part of property 15) we haveS(A : BC)� S(A : B) = S(A) + S(BC)� S(ABC)� [S(A) + S(B)� S(AB)℄= S(BC) + S(AB)� S(ABC)� S(B)� 0: �



9.2. PROPERTIES OF VON NEUMANN ENTROPY 91Let H be the Hilbert spa
e of a �nite level quantum system. Re
all that by a gener-alized measurement we mean a �nite 
olle
tion of operators fL1; L2; : : : ; Lkg satisfyingthe relation Pi LyiLi = I: The set f1; 2; : : : ; kg is the 
olle
tion of the possible out
omesof the measurement and if the state of the system at the time of measurement is � thenthe probability pi of the out
ome i is given bypi = TrLi�Lyi = Tr �LiLyi :If the out
ome of the measurement is i, then the state of the system 
ollapses to�i = Li�Lyipi :Thus the post measurement state is expe
ted to bePi pi�i =Pi Li�Lyi :The map E de�ned by E(�) =Pi Li�Lyi (9.2.29)on the set of states is 
alled a quantum operation.If we 
hoose and �x an orthonormal basis in H and express the operators Li asmatri
es in this basis the 
ondition that Pi LyiLi = I 
an be interpreted as the propertythat the 
olumns of the matrix 26664 L1L2...Lk
37775
onstitute an orthonormal set of ve
tors. The length of the 
olumn ve
tor is kd whered is the dimension of the Hilbert spa
e H. Extend this set of orthonormal ve
tors intoan orthonormal basis for H
 C k and 
onstru
t a unitary matrix of order kd� kd of theform U = 26664 L1 � � �L2 � � �... ...Lk � � �

37775 :We 
an view this as a blo
k matrix where ea
h blo
k is a d� d matrix. De�nej0i = 26664 10...0 37775 ;so that for any state � in H we haveM = � 
 j0ih0 j= 26664 � 0 � � � 00 0 � � � 0... ... ... ...0 0 � � � 0 37775



92 LECTURE 9. QUANTUM INFORMATION THEORYas states in H
 C k . ThenUMU y = 26664 L1�Ly1 L1�Ly2 � � � L1�LykL2�Ly1 L2�Ly2 � � � L2�Lyk... ... ... ...Lk�Ly1 Lk�Ly2 � � � Lk�Lyk
37775 :Thus we have TrCk U(�
 j0ih0 j)U y = kPi=1Li�Lyi = E(�);where E(�) is de�ned as in (9.2.29). We summarize our dis
ussion in the form of a lemma.Lemma 9.2.30 Let E be a quantum operation on the states of a quantum system withHilbert spa
e H determined by a generalized measurement fLi; 1 � i � kg. Then thereexists a pure state j0i of an auxiliary system with a Hilbert spa
e K of dimension k anda unitary operator U on H
K satisfying the propertyE(�) = TrK U(�
 j0ih0 j)U yfor every state � in H.17) Let AB be a 
omposite system with Hilbert spa
e HAB = HA 
 HB and let E bea quantum operation on B determined by the generalized measurement fLi; 1 � i �kg in HB: Then id 
 E is a quantum operation on AB determined by the generalizedmeasurement fIA 
 Li; 1 � i � kg. If �AB is any state in HAB = HA 
HB and�A0B0 = id
 E(�AB)then, S(A0 : B0) � S(A : B):Proof: Following Lemma 9.2.30, we 
onstru
t an auxiliary system C with Hilbert spa
eHC , a pure state j0i in HC and a unitary operator U on HB 
HC so thatE(�B) = Pi Li�BLyi= TrC U(�B
 j0ih0 j)U yDe�ne ~U = IA 
 U:Let �ABC = �
 j0ih0 jand �A0B0C0 = ~U�ABC ~U y:Then for the marginal states we have�A0 = �A; �B0C0 = U�BCU yand therefore S(A0) = S(A); S(B0C 0) = S(BC):



9.2. PROPERTIES OF VON NEUMANN ENTROPY 93Thus using 16), we getS(A : B) = S(A) + S(B)� S(AB)= S(A) + S(BC)� S(ABC)= S(A0) + S(B0C 0)� S(A0B0C 0)= S(A0 : B0C 0) � S(A0 : B0): �18) Holevo BoundConsider an information sour
e in whi
h messages x from a �nite set X 
ome withprobability p(x). The information obtained from su
h a sour
e is given byH(X) = �Xx2X p(x) log2 p(x):Now suppose the message x is en
oded as a quantum state �x in a Hilbert spa
e H.In order to de
ode the message make a generalized measurement fLy; Y 2 Y g wherePy2Y LyyLy = I: Given that the message x 
ame from the sour
e, or equivalently, the stateof the quantum system is the en
oded state �x the probability for the measurement valuey is given by p(y j x) = TrLy�xLyy:Thus the joint probability Pr(x; y), that x is the message and y is the measurementout
ome, is given by Pr(x; y) = p(x)p(y j x) = p(x) Tr �xLyyLy:Thus we obtain a 
lassi
al joint system XY des
ribed by this probability distribution inthe spa
e X � Y . The information gained from the generalized measurement about thesour
e X is measured by the quantity H(X)+H(Y )�H(XY ). (See referen
e [12℄.) Ournext result puts an upper bound on the information thus gained.Theorem 9.2.31 (Holevo, 1973)H(X) +H(Y )�H(XY ) � S(Px p(x)�x)�Px p(x)S(�x):Proof: Let fjxi; x 2 Xg; fjyi; y 2 Y g be orthonormal bases in Hilbert spa
es HX , HY ofdimension #X, #Y respe
tively. Denote by HZ the Hilbert spa
e of the en
oded statesf�x; x 2 Xg. Consider the Hilbert spa
e HXZY = HX 
HZ 
HY . Choose and �x anelement 0 in Y and de�ne the joint state�XY Z =Xx p(x) jxihx j 
�x
 j0ih0 j :In the Hilbert spa
e HZY 
onsider the generalized measurement determined by fpEy 
Uy; y 2 Y g where Ey = LyyLy and Uy is any unitary operator inHY satisfying Uyj0i = jyi:



94 LECTURE 9. QUANTUM INFORMATION THEORYSu
h a measurement gives an operation E on the states of the system ZY and theoperation id
 E satis�es(id
 E)(�XZY ) = Px2X; y2Y p(x) jxihx j 
pEy�xpEy
 jyihy j= �X0Z0Y 0; say:By property 17) we haveS(X : Z) = S(X : ZY ) � S(X 0 : Z 0Y 0):By property 16) S(X : Z) � S(X 0 : Y 0): (9.2.32)Sin
e �XZ =X p(x) jxihx j 
�xwe have from the joint entropy theoremS(XZ) = H(P ) +X p(x)S(�x):Furthermore �X = X p(x) jxihx j; S(X) = H(P ) = H(X)�Z = X p(x)�x; S(Z) = S(�Z)S(X : Z) = S(P p(x)�x)�P p(x)S(�x) (9.2.33)On the other hand�X0Z0Y 0 = Xx;y p(x) jxihx j 
pEy�xpEy
 jyihy j�X0 = Xx p(x) jxihx j�Y 0 = Xx;y p(x) Tr �xEy jyihy j�X0Y 0 = Xx;y p(x) Tr �xEy jxihx j 
 jyihy jThus, S(X 0 : Y 0) = H(X) +H(Y )�H(XY ) (9.2.34)Combining (9.2.32), (9.2.33) and (9.2.34) we get the required result. �19) S
huma
her's theorem:Let P be a probability distribution on a �nite set X. For � > 0 de�ne�(P; �) = minf#E j E � X; P (E) � 1� �g:



9.2. PROPERTIES OF VON NEUMANN ENTROPY 95It is quite possible that #X is large in 
omparison with �(P; �). In other words, byomitting a set of probability at most � we may have most of the statisti
al informationpa
ked in a set E of size mu
h smaller than #X: In the 
ontext of information theory itis natural to 
onsider the ratio log2 �(P;�)log2#X as the information 
ontent of P upto a negligibleset of probability at most �: If now we repla
e the probability spa
e (X;P ) by (Xn; P
n)and allow n to in
rease to in�nity then an appli
ation of the law of large numbers leadsto the following result. limn!1 log �(P
n; �)log#Xn = H(P )logXor equivalently, limn!1 log �(P
n; �)n = H(P ) 8� > 0 (9.2.35)where H(P ) is the Shannon entropy of P . This is a spe
ial 
ase of Ma
millan's theoremin 
lassi
al information theory. Our next result is a quantum analogue of (9.2.35), whi
halso implies (9.2.35). Let (H; �) be a quantum probability spa
e where H is a �nitedimensional Hilbert spa
e and � is a state. For any proje
tion operator E on H denoteby dimE the dimension of the range of E. For any � > 0 de�ne�(�; �) = minfdimE j E is a proje
tion in H;Tr �E � 1� �g (9.2.36)Theorem 9.2.37 For any � > 0limn!1 log �(�
n; �)n = S(�) (9.2.38)where S(�) is the von Neumann entropy of �.Proof: By the spe
tral theorem � 
an be expressed as� =Px p(x) jxihx jwhere x varies in a �nite set X of labels, P = fp(x); x 2 Xg is a probability distributionwith p(x) > 0 for every x and fjxi; x 2 Xg is an orthonormal set in H. Then�
n = Xx=(x1;x2;:::;xn) p(x1)p(x2) : : : p(xn) jxihx jwhere x0s vary in X and jxi denotes the produ
t ve
tor jx1ijx2i : : : jxni. Write pn(x) =p(x1)p(x2) : : : p(xn) and observe that P
n = fpn(x); x 2 X
ng is the probability distri-bution of n i. i. d. 
opies of P . We haveS(�) = �Xx p(x) log p(x) = H(P ):From the strong law of large numbers for i. i. d. random variables it follows thatlimn!1� 1n log p(x1)p(x2) : : : p(xn) = limn!1� 1n nXi=1 log p(xi)= S(�)



96 LECTURE 9. QUANTUM INFORMATION THEORYin the sense of almost sure 
onvergen
e in the probability spa
e (X1; P
1): This suggeststhat, in the sear
h for a small set of high probability, we 
onsider the setT (n; �) = fx : ����� 1n log p(x1)p(x2) : : : p(xn)� S(�)���� � �g (9.2.39)Any element of T (n; �) is 
alled an �-typi
al sequen
e of length n. It is a 
onsequen
e ofthe large deviation prin
iple that there exist 
onstants A > 0, 0 < 
 < 1 su
h thatPr(T (n; �)) � 1� A
n; (9.2.40)Pr denoting probability but a

ording to the distribution P
n. This says but for a set ofsequen
es of total probability < A
n every sequen
e is �-typi
al. It follows from (9.2.39)that for any �-typi
al sequen
e x2�n(S(�)+�) � pn(x) � 2�n(S(�)��): (9.2.41)De�ne the proje
tion E(n; �) = Xx2T (n;�) jxihx j (9.2.42)and note that dimE(n; �) = #T (n; �): (9.2.43)Summing over x 2 T (n; �) in (9.2.41) we 
on
lude that2�n(S(�)+�)) dimE(n; �) � Pr(T (n; �)) � 2�n(S(�)��)) dimE(n; �)and therefore by (9.2.40) and the fa
t that probabilities never ex
eed 1, we get2n(S(�)��))(1� A
n) � dimE(n; �) � 2n(S(�)+�)) 8� > 0; n = 1; 2; : : : (9.2.44)In parti
ular log dimE(n; �)n � S(�) + �: (9.2.45)Fix � and let Æ > 0 be arbitrary. Choose n0 so that A
n0 < Æ:Note that Tr �
nE(n; �) = Pr(T (n; �)) � 1� Æ for n � n0:By the de�nition of �(�
n; Æ) we havelog �(�
n; Æ)n � log dimE(n; �)n � S(�) + �; for n � n0:Letting n!1 we get limn!1 log �(�
n; Æ)n � S(�) + �:
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e � is arbitrary we get limn!1 log �(�
n; Æ)n � S(�):Now we shall arrive at a 
ontradi
tion by assuming thatlimn!1 log �(�
n; Æ)n < S(�):Under su
h a hypothesis there would exist an � > 0 su
h thatlog �(�
n; Æ)n � S(�)� �for in�nitely many n, say n = n1; n2; : : : where n1 < n2 < � � � . In su
h a 
ase there existsa proje
tion Fnj in H
nj su
h thatdimFnj � 2n(S(�)��)) (9.2.46)Tr �
njFnj � 1� Æ (9.2.47)for j = 1; 2; : : :. Choosing � < � and �xing it we have1� Æ � Tr �
njFnj (9.2.48)= Tr �
njE(nj; �)Fnj + Tr �
nj (I � E(nj; �))Fnj (9.2.49)From (9.2.40) and the fa
t that �
n and E(n; �) 
ommute with ea
h other we haveTr �
nj (I � E(nj; �))Fnj � Tr �
nj (I � E(nj; �)) (9.2.50)= 1� Pr(T (nj; �)) (9.2.51)< A
nj (9.2.52)Furthermore from (9.2.41) we have�
njE(nj; �) = Xx2T (nj ;�) pnj (x) jxihx j� 2�nj(S(�)��))I:Thus by (9.2.47) we getTr �
njE(nj; �)Fnj � 2�nj(S(�)��)) dimFnj (9.2.53)� 2�nj(S(�)��))+nj (S(�)��)) (9.2.54)= 2�nj(���): (9.2.55)Now 
ombining (9.2.49), (9.2.52) and (9.2.55) we get1� Æ � 2�nj(���) + A
njwhere the right side tends to 0 as j !1, a 
ontradi
tion. �20) Feinstein's fundamental lemma



98 LECTURE 9. QUANTUM INFORMATION THEORYConsider a 
lassi
al information 
hannel C equipped with an input alphabet A, anoutput alphabet B and a transition probability fpx(V ); x 2 A; V � Bg. We assume thatboth A and B are �nite sets. If a letter x 2 A is transmitted through the 
hannel C thenany output y 2 B is possible and px(V ) denotes the probability that the output letterbelongs to V under the 
ondition that x is transmitted. For su
h a 
hannel we de�ne a
ode of size N and error probability � � to be a set C = f
1; 
2; : : : ; 
Ng � A togetherwith a family fV1; V2; : : : ; VNg of disjoint subsets of B satisfying the 
onditionp
i(Vi) � 1� � 8i = 1; 2; : : : ; N: (9.2.56)Let �(C; �) = max fN j there exists a 
ode of size N and error probability � �gOur aim is to estimate �(C; �) in terms of information theoreti
 parameters 
on
erningthe 
onditional distributions px(:); x 2 A. To this end 
onsider an input probabilitydistribution p(x); x 2 A and de�ne the joint input-output distributionPr(x; y) = p(x)px(fyg): (9.2.57)Denote by Hp(A : B) the mutual information between the input and the output a

ordingto this joint distribution. Put C = supp Hp(A : B) (9.2.58)where the supremum is taken over all input distributions p. For a �xed input distributionp, put �2p = Xx2A;y2BPr(x; y)�log Pr(x; y)p(x)q(y) �Hp(A : B)�2 (9.2.59)where q is the B-marginal distribution determined by P . Thus q(y) =Px Pr(x; y). Withthese notations we have the following lemma.Lemma 9.2.60 Let � > 0, Æ > 0 be positive 
onstants and let p be any input distributionon A. Then there exists a 
ode of size N and error probability � � whereN � �� � �2pÆ2� 2Hp(A:B)�Æ: (9.2.61)Proof: Put R = Hp(A : B):De�ne the random variable � on the probability spa
e (A�B;P ) by�(x; y) = log Pr(x; y)p(x)q(y) :Then � has expe
tation R and varian
e �2p de�ned by (9.2.59).Let V = �(x; y) : ����log Pr(x; y)p(x)q(y) � R���� � Æ� : (9.2.62)



9.2. PROPERTIES OF VON NEUMANN ENTROPY 99Then by Chebyshev's inequality for the random variable � we havePr(V ) � 1� �2pÆ2 : (9.2.63)De�ne Vx = fy j (x; y) 2 V g:Then (9.2.63) 
an be expressed asXx2A p(x)px(Vx) � 1� �2pÆ2 : (9.2.64)This shows that for a p-large set of x's the 
onditional probabilities px(Vx) must be large.When (x; y) 2 V we have from (9.2.62)R� Æ � log Pr(x; y)p(x)q(y) � R + Æ (9.2.65)or equivalently q(y)2R�Æ � px(y) � q(y)2R+Æ:Summing over y 2 Vx we getq(Vx)2R�Æ � px(Vx) � q(Vx)2R+Æ:In parti
ular, q(Vx) � px(Vx)2�(R�Æ) � 2�(R�Æ): (9.2.66)In other words Vx's are q-small. Now 
hoose x1 in A su
h that px1(Vx1) � 1� � and setV1 = Vx1. Then 
hoose x2 su
h that px2(Vx2 \ V 01) > 1 � � where the prime 0 denotes
omplement in B. Put V2 = Vx2 \ V 01 . Continue this pro
edure till we have an xN su
hthat pxN (VxN \ V 01 \ V 02 \ � � � \ V 0N�1) > 1� �and for any x =2 fx1; x2; : : : ; xNgpx(Vx \ ([Nj=1Vj)0) � 1� �where VN = VxN \ V 01 \ V 02 \ � � � \ V 0N�1. By 
hoi
e the sets V1; V2; : : : ; VN are disjoint,N[i=1Vi = N[i=1Vxi and thereforepx(Vx \ ([Nj=1Vj)0) � 1� � 8x 2 A (9.2.67)



100 LECTURE 9. QUANTUM INFORMATION THEORYFrom (9.2.64), (9.2.66) and (9.2.67) we have1� �2pÆ2 � Xx p(x)px(Vx)= Xx p(x)px(Vx \ ([Ni=1Vi)0) +Xx p(x)px(Vx \ ([Ni=1Vi))� 1� � +Xx p(x)px(Vx \ ([Ni=1Vi))= 1� � + q([Ni=1Vi)� 1� � + NXi=1 q(Vi)� 1� � + NXi=1 q(Vxi)� 1� � +N2�(R�Æ):Thus N � �� � �2pÆ2� 2(R�Æ): �Now we 
onsider the n-fold produ
t C(n) of the 
hannel C with input alphabet An,output alphabet Bn and transition probability fp(n)x (V );x 2 An; V � Bng where forx = (x1; x2; : : : ; xn); y = (y1; y2; : : : ; yn)p(n)x (fyg) = nYi=1 pxi(fyig):We now 
hoose and �x an input distribution p on A and de�ne the produ
t probabilitydistribution P (n) on An � Bn byP (n)(x;y) = nYi=1 p(xi)pxi(fyig):Then the An marginal of P (n) is given byP (n)(x) = nYi=1 p(xi)and Hp(n)(An : Bn) = nHp(A : B);�2p(n) = n�2pwhere �2p is given by (9.2.59). Choose � > 0; Æ = n� and apply the Lemma to the produ
t
hannel. Then it follows that there exists a 
ode of size N and error probability � � withN � �� � n�2pn2�2� 2n(Hp(A:B)��)= �� � �2pn�2� 2n(Hp(A:B)��)



9.2. PROPERTIES OF VON NEUMANN ENTROPY 101Thus 1n log �(C(n); �) � 1n log�� � �2pn�2� +Hp(A : B)� �:In other words limn!1 1n log �(C(n); �) � Hp(A : B)� �:Here the positive 
onstant � and the initial distribution p on the input alphabet A arearbitrary. Hen
e we 
on
lude thatlimn!1 1n log �(C(n); �) � C:It has been shown by J. Wolfowitz ([11℄)thatlimn!1 1n log �(C(n); �) � C:The proof of this assertion is long and deli
ate and we refer the reader to [11℄. Wesummarize our dis
ussions in the form of a theorem.Theorem 9.2.68 (Shannon-Wolfowitz) Let C be a 
hannel with �nite input and outputalphabets A and B respe
tively and transition probability fpx(V ); x 2 A; V � Bg: De�nethe 
onstant C by (9.2.58). Thenlimn!1 1n log �(C(n); �) = C 80 < � < 1:Remark: The 
onstant C deserves to be and is 
alled the 
apa
ity of the dis
rete memo-ryless 
hannel determined by the produ
t of 
opies of C.A quantum information 
hannel is 
hara
terized by an input Hilbert spa
e HA, anoutput Hilbert spa
e HB and a quantum operation E whi
h maps states on HA to stateson HB. We assume that HA and HB are �nite dimensional. The operation E has theform E(�) = kXi=1 Li�Lyi (9.2.69)where L1; L2; : : : ; Lk are operators from HA to HB obeying the 
onditionPi LyiLi = IA.A message en
oded as the state � on HA is transmitted through the 
hannel and re
eivedas a state E(�) in HB and the aim is to re
over � as a

urately as possible from E(�).Thus E plays the role of transition probability in the 
lassi
al 
hannel. The re
overyis implemented by a re
overy operation whi
h maps states on HB to states on HA. Aquantum 
ode C of error not ex
eeding � 
an be de�ned as a subspa
e C � HA with theproperty that there exists a re
overy operation R of the formR(�0) = X̀j=1 Mj�0M yj for any state �0 on HBwhere the following 
onditions hold:



102 LECTURE 9. QUANTUM INFORMATION THEORY1. M1;M2; : : : ;M` are operators from HA to HB satisfying Pj̀=1M yjMj = IB;2. for any  2 C h jR Æ E(j ih j)j i � 1� �:Now de�ne�(E ; �) = maxfdimC j C is a quantum 
ode of error not ex
eeding �g:We may 
all �(E ; �) the maximal size possible for a quantum 
ode of error not ex
eeding�. As in the 
ase of 
lassi
al 
hannels one would like to estimate �(E ; �).If n > 1 is any integer de�ne the n-fold produ
t E
n of the operation E byE
n = Xi1;i2;:::;in Li1 
 Li2 
 � � � 
 Lin�Lyi1 
 Lyi2 
 � � � 
 Lyin (9.2.70)for any state � on H
nA , where the Li's are as in (9.2.69). It is an interesting problem toanalyze the asymptoti
 behavior of the sequen
e� 1n log �(E
n; �)�as n!1.
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