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Leture 1Quantum ProbabilityIn the Mathematial Congress held at Berlin, Peter Shor presented a new algorithm forfatoring numbers on a quantum omputer. In this series of letures, we shall study theareas of quantum omputation (inluding Shor's algorithm) and quantum error orretingodes. Those who wish to read ahead should onsult the book: M.A. Nielsen and I.A.Chuang, Quantum Computation and Quantum Information, Cambridge University Press,2000.1.1 Classial Versus Quantum Probability TheoryWe begin by omparing lassial probability and quantum probability. In lassial prob-ability theory (sine Kolmogorov's 1933 monograph [8℄), we have a sample spae, a setof events, a set of random variables, and distributions. In quantum probability (as for-mulated in von Neumann's 1932 book [9℄), we have a state spae (whih is a Hilbertspae) instead of a sample spae; events, random variables and distributions are thenrepresented as operators on this spae. We now reall the de�nitions of these notions inlassial probability and formally de�ne the analogous onepts in quantum probability.In our disussion we will be onerned only with �nite lassial probability spaes, andtheir quantum analogues|�nite dimensional Hilbert spaes.SpaesThe sample spae 
: This is a �niteset, say f1; 2; : : : ; Ng. The state spae H: It is a omplexHilbert spae of dimension N .EventsThe set of events F
: This is the set ofall subsets of 
. F
 is a Boolean algebrawith the union ([) operation for `or' andthe intersetion (\) operation for `and'. Inpartiular, we haveE \ (F1 [ F2) = (E \ F1) [ (E \ F2):
The set of events P(H): This is the setof all orthogonal projetions in H. An el-ement E 2 P(H) is alled an event. Here,instead of `[' we have the max (_) opera-tion, and instead of `\' the min (^) oper-ation. Note, however, that E ^ (F1 _ F2)is not always equal to (E ^F1)_ (E ^F2).(They are equal if E; F1; F2 ommute witheah other).3



4 LECTURE 1. QUANTUM PROBABILITYRandom variables and observablesThe set of random variables B
:This is the set of all omplex valued fun-tions on 
. The elements of B
 are alledrandom variables. B
 is an Abelian C�-algebra under the operations(�f)(!) = �f(!);(f + g)(!) = f(!) + g(!);(f � g)(!) = f(!)g(!);f �(!) �= f y(!) = �f(!):Here, � 2 C , f; g 2 B
, and the `bar'stands for omplex onjugation. The ran-dom variable 1 (de�ned by 1(!) �= 1), isthe unit in this algebra.With eah event E 2 F
 we assoiate theindiator random variable 1E de�ned by1E(!) = � 1 if ! 2 E0 otherwise :For a random variable f , let sp(f) �= f(
).Then, f an be written as the followinglinear ombination of indiator randomvariables: f = X�2sp(f)�1f�1(f�g);so that1f�1(f�g) � 1f�1(f�0g) = 0 for � 6= �0;X�2sp(f) 1f�1(f�g) = 1:Similarly, we havef r = X�2sp(f)�r1f�1(f�g);and, in general, for a funtion ' : C ! C ,we have the random variable'(f) = X�2sp(f)'(�)1f�1(f�g):Later, we will be mainly interested in real-valued random variables, that is randomvariables f with sp(f) � R (or f y = f).

The set of observables B(H): This isthe (non-Abelian) C�-algebra of all opera-tors onH, with `+' and `�' de�ned as usual,and X� de�ned to be the adjoint ofX. Wewill use Xy instead of X�. The identityprojetion I is the unit in this algebra.We say that an observable is real-valued ifXy = X, that is, if X is Hermitian. Forsuh an observable, we de�ne sp(X) to bethe set of eigen values of X. Sine X isHermitian, sp(X) � R, and by the spe-tral theorem, we an write X asX = X�2sp(X) �E�;where E� is the projetion on the subspaefu : Xu = �ug andE�E�0 = 0; �; �0 2 sp(X); � 6= �0;P�2sp(X) E� = I:Similarly, we haveXr = X�2sp(X) �rE�;and in general, for a funtion ' : R ! R,we have '(X) = X�2sp(X)'(�)E�:



1.1. CLASSICAL VERSUS QUANTUM PROBABILITY THEORY 5Distributions and statesA distribution P : This is a funtionfrom F
 to R, determined by N real num-bers p1; p2; : : : ; pN , satisfying:pi � 0;NXi=1 pi = 1:The probability of the event E 2 F
 (un-der the distribution P ) isP (E) �=Xi2E pi:We will identify P with the sequene(p1; p2; : : : ; pN). The probability that arandom variable f takes the value � 2 Ris P (f = �) �= P (f�1(f�g));thus, a real-valued random variable f hasa distribution on the real line with massP (f�1(f�g)) at � 2 R.

A state �: In quantum probability, wehave a state � instead of the distributionP . A state is a non-negative de�nite op-erator on H with Tr � = 1. The probabil-ity of the event E 2 P(H) in the state �is de�ned to be Tr �E, and the probabil-ity that the real-valued observableX takesthe value � isPr[X = �℄ = � Tr �E� if � 2 sp(X);0 otherwiseThus, a real-valued observable X has adistribution on the real line with massTr �E� at � 2 R.



6 LECTURE 1. QUANTUM PROBABILITYExpetation, moments, varianeThe expetation of a random variable f isEP f �=X!2
 f(!)p!:The r-th moment of f is the expetationof f r, that isEP f r = X!2
(f(!))rp!= X�2sp(f) �rP (f�1(�));and the harateristi funtion of f is theexpetation of the omplex-valued randomvariable eitf , that is,EP eitf = X�2sp(f) eit�P (f�1(�)):The variane of a real-valued random vari-able f isvar(f) �= EP (f � EP f)2 � 0:Note that var(f) = EP f 2� (EP f)2; also,var(f) = 0 i� all the mass in the distribu-tion of f is onentrated at EP f .

The expetation of an observable X in thestate � is E� X �= Tr �X:The map X 7! E�X has the followingproperties:(1) It is linear;(2) E�XyX � 0, for all X 2 B(H).(3) E� I = 1.The r-th moment of X is the expetationof Xr; if X is real-valued, then using thespetral deomposition, we an writeE� Xr = X�2sp(X) �r Tr �E�:The harateristi funtion of the real-valued observable X is the expetation ofthe observable eitX . The variane of a(real-valued) observable X isvar(X) �= Tr �(X � Tr �X)2= Tr �X2 � (Tr �X)2 � 0:The variane of X vanishes i� the distri-bution of X is onentrated at the pointTr �X. This is equivalent to the propertythat the operator range of � is ontainedin the eigensubspae of X with eigenvalueTr �X.



1.1. CLASSICAL VERSUS QUANTUM PROBABILITY THEORY 7Extreme pointsThe set of distributions: The set ofall probability distributions on 
 is aompat onvex set (Choquet simplex)with exatly N extreme points, Æj (j =1; 2; : : : ; N), where Æj is determined byÆj(f!g) �= � 1 if ! = j;0 otherwise.If P = Æj, then every random variable hasa degenerate distribution under P : thedistribution of the random variable f isonentrated on the point f(j).

The set of states: The set of all statesin H is a onvex set. Let � be a state.Sine � is non-negative de�nite, its eigenvalues are non-negative reals, and we anwrite � = X�2Sp(�) �E�;sine Tr � = 1, we haveX�2Sp(�) �� dim(E�) = 1:The projetion E� an, in turn, be writtenas a sum of one-dimensional projetions:E� = dim(E�)Xi=1 E�;i:Then, � =P�2Sp(�)Pdim(E�)i=1 �E�;i:Proposition 1.1.1 A one-dimensionalprojetion annot be written as a non-trivial onvex ombination of states.Thus, the extreme points of the onvex setof states are preisely the one-dimensionalprojetions. Let � be the extreme stateorresponding to the one-dimensional pro-jetion on the ray C u (where kuk = 1).Then, the expetation m of the observableX ism = Tr uuyX = Tr uyXu = hu;Xui ; andvar(X) = Tr uuy(X �m)2= Tr k(X �m)uk2 :Thus, var(X) = 0 i� u is an eigen vetorof X. So, even for this extreme state, notall observables have degenerate distribu-tions: degeneray of the state does not killthe unertainty of the observables!



8 LECTURE 1. QUANTUM PROBABILITYThe produtProdut spaes: If there are two statis-tial systems desribed by lassial proba-bility spaes (
1; P1) and (
2; P2) respe-tively, then the probability spae (
1 �
2; P1 � P2) determined byP1 � P2(f(i; j)g) �= P1(fig)P2(fjg);desribes the two independent systems asa single system.
Produt spaes: If (H1; �1) and(H2; �2) are two quantum systems, thenthe quantum system with state spaeH1 
 H2 and state �1 
 �2 (whih is anon-negative de�nite operator of unittrae on H1 
 H2) desribes the twoindependent quantum systems as a singlesystem.DynamisReversible dynamis in 
: This isdetermined by a bijetive transformationT : 
! 
. Then,f  f Æ T (for random variables)P  P Æ T�1(for distributions)
Reversible dynamis inH: This is de-termined by a unitary operator U : H !H. Then, we have the dynamis ofHeisenberg:X  U yXU for X 2 B(H);Shr�odinger�  U�U y for the state �:1.2 Three Distinguishing Features1. Proposition 1.2.1 Let E and F be projetions in H suh that EF 6= FE. Then,\E _ F � E + F" is false.Proof: Suppose E _ F � E + F . Then, E _ F � E � F . So,F (E _ F � E) = (E _ F � E)F:That is, FE = EF , a ontradition. �Corollary 1.2.2 Suppose E and F are projetions suh that EF 6= FE. Then,for some state �, the inequality \Tr �(E _ F ) � Tr �E + Tr �F" is false.Proof: By the above proposition, \E _ F � E + F" is false; that is, there exists aunit vetor u suh thathu; (E _ F )ui 6� hu;Eui+ hu; Fui :Choose � to be the one dimensional projetion on the ray C u. Then,Tr(E _ F )� = hu; (E _ F )uiTrE� = hu;EuiTrF� = hu; Fui : �



1.3. MEASUREMENTS: VON NEUMANN'S COLLAPSE POSTULATE 92. Proposition 1.2.3 (Heisenberg's inequality) Let X and Y be observables andlet � be a state in H. Assume Tr �X = Tr �Y = 0. Then,var� (X)var� (Y ) � (Tr �12fX; Y g)2 + (Tr �12 i[X; Y ℄)2� 14(Tr �i[X; Y ℄)2;where fX; Y g �= XY + Y X; and[X; Y ℄ �= XY � Y X:Proof: For z 2 C , we have Tr �(X + zY )y(X + zY ) � 0:If z = rei�, r2Tr �Y 2 + 2r<e�i��Y X + Tr �X2 � 0:The left hand side is a degree-two polynomial in the variable r. Sine, it is alwaysnon-negative, it an have at most one root. Thus, for all �,(Tr �X2)(Tr �Y 2) � (<e�i��Y X)2� �os �Tr �XY + Y X2 + sin �Tr �iXY � Y X2 �2= (x os � + y sin �)2;where x �= Tr �12fX; Y g and y �= Tr � i2[X; Y ℄. The proposition follows from this, ifwe take os � = xpx2+y2 and sin � = ypx2+y2 . �3. Extremal states (one-dimensional projetions) are alled pure states. The set of allpure states in an N -dimensional omplex Hilbert spae is a manifold of dimension2N � 2. (The set of all extremal probability distributions on a sample spae of Npoints has ardinality N .)1.3 Measurements: Von Neumann's Collapse Postu-lateSuppose X is an observable (i.e. a Hermitian operator) with spetral deompositionX = X�2Sp(X) �E�:Then, the measurement of X in the quantum state � yields the value � with probabilityTr �E�. If the observed value is �, then the state ollapses to~�� = E��E�Tr �E� :The ollapsed state ~�� has its support in the subspae E�(H).



10 LECTURE 1. QUANTUM PROBABILITY1.4 Dira NotationElements of the Hilbert spae H are alled ket vetors and denoted by jui. Elements ofthe dual spae H� are alled bra vetors and denoted by huj. The bra huj evaluated onthe ket jvi is the braket hu j vi, the salar produt between u; v as elements of H.The operator juihvj is de�ned byjuihvj(jwi) �= hv j wi jui:It is a rank one operator when u and v are non-zero.Tr juihvj = hv j ui(juihvj)y = jvihujju1ihv1jju2ihv2j � � � junihvnj = (hv1 j u2i hv2 j u3i � � � hvn�1 j uni)ju1ihvnj:The salar produt hu j vi is anti-linear (onjugate-linear) in the �rst variable and linearin the seond variable.1.4.1 QubitsThe Hilbert spae h �= C 2 , with salar produt�� ab � ; � d �� = �a+�bd;is alled a 1-qubit Hilbert spae. Letj0i = � 10 � and j1i = � 01 � :Then, � ab � = aj0i+ bj1i;and the ket vetors j0i and j1i form an orthonormal basis for h.The Hilbert spae h
n = (C 2)
n is alled the n-qubit Hilbert spae. If x1x2 : : : xn isan n-length word from the binary alphabet f0; 1g, we letjx1x2 : : : xni �= jx1ijx2i � � � jxni�= jx1i 
 jx2i 
 � � � 
 jxni�= jji;where j = x1 � 2n�1 + x2 � 2n�2 + � � �+ xn�1 � 2 + xn (that is, as x1x2 : : : xn varies overall n-length words, the integer j varies in the range f0; 1; : : : ; 2n � 1g).



Leture 2Quantum Gates and Ciruits
2.1 Gates in n{qubit Hilbert SpaesIn ordinary (lassial) omputers, information is passed through a lassial hannel. Logigates (like AND, OR, NOT) operate on these hannels. Likewise, in a quantum omputer,information is passed through a quantum hannel and it is operated upon by quantumgates. A quantum gate is a unitary operator U in a (�nite dimensional) Hilbert Spae H.Not all the lassial gates are reversible ( for example if a AND b = 0, there arethree possible values for the ordered pair (a; b)). On the ontrary, all quantum gates arereversible.If a gate U ats on an n-qubit Hilbert spae H we depit it as in Figure 2.1. If Uats on a single qubit it is represented pitorially as shown in Figure 2.2.n jui U UjuiFigure 2.1: A quantum iruit.

jui U U juiFigure 2.2: A gate U ating on asingle qubit.If the input is jui and it passes through the gate U , then the output is written asU jui.Any unitary operator U whih ats on a single qubit an be written asU = ei� � a b�b a � ;where jaj2 + jbj2 = 1 in the omputational basis onsisting of j0i and j1i.The ation of the unitary operator U on the basis states an be omputed as shownbelow. U j0i = ei� � a b�b a � � 10 � = ei�faj0i � bj1ig11



12 LECTURE 2. QUANTUM GATES AND CIRCUITSSimilarly, U j1i = ei�fbj0i+aj1ig. By measurement on the n-qubit register of a quantumomputer we usually mean measuring the observableX = �2n�1j=0 jjjihjj;and it is indiated in iruits by the ammeter symbol, as in Figure 2.1. Sine by measuringwe get two quantities, namely a lassial value and a quantum state, pitorially it isindiated by a double line, as in Figure 2.1. The output onsists of a value of X in therange f0; 1; 2; : : : ; 2n � 1g, where the probability of the event fX = jg is jhjjU juij2, anda ollapsed basis state jji, where j is the observed value.As an example, let us simulate a Markov hain using a quantum iruit. Considerthe iruit in Figure 2.3.n jvi U1 U2j1 j2Figure 2.3: A quantum iruit to simulate a Markov Chain.
After eah measurement, the observed lassial parts j1; j2; : : : take values in the spaef0; 1; 2; : : : ; 2n � 1g with the following properties:Pr(fj1g) = jhj1jU1jvij2 0 � j1 � 2n � 1Pr(fj2 j j1g) = jhj2jU2jj1ij2 0 � j2 � 2n � 1... ... ... ...Pr(fjk j jk�1jk�2; : : : ; j1g) = jhjkjU2jjk�1ij2 0 � jk � 2n � 1... ... ... ...Thus, we have simulated a lassial Markov hain with state spae f0; 1; 2; : : :2n�1g.The drawbak here is that we need a separate unitary operator for eah of the 2n possibleoutomes of the measurement.Open Problem: Given a doubly stohasti matrix P of size N�N , does there exist aunitary matrix U suh that, juijj2 = pij for all i; j 2 f0; 1; 2; : : :Ng ? Existene of suh amatrix will result in simpli�ation of the quantum iruit for simulating a Markov hain.2.2 Quantum Gates2.2.1 One Qubit GatesIn lassial omputing, the only interesting one-bit gate is the NOT gate. In the quantumworld, we have many 1-qubit gates. Some of them are given below.1. Pauli Gates: There are three suh gates and they are denoted by X; Y; Z: Theunitary matries of X; Y; Z in the omputational basis are given by



2.2. QUANTUM GATES 13X = � 0 11 0 � ; Y = � 0 �ii 0 � ; Z = � 1 00 �1 � :The unitary matrixX is also alled the not gate beause Xj0i = j1i and Xj1i = j0i.These gates are alled Pauli gates beause the unitary matries orresponding tothese operators are the Pauli matries �1; �2 and �3 of quantum mehanis. Paulimatries are the basi spin observables taking values �1. X; Y; Z are hermitian,X2 = Y 2 = Z2 = 1 and X; Y; Z antiommute with eah other i.e. XY + Y X = 0.2. Hadamard Gate: The unitary matrix orresponding to the Hadamard gate isH = 1p2 � 1 11 -1 �. In this ase, Hj0i = j0i+j1ip2 and Hj1i = j0i�j1ip2 . Its n-fold tensorprodut H
n is the Hadamard gate on n-qubits satisfyingH
nj00 : : : 0i = 12n2 Xx2f0;1gn jxiand more generally H
njxi = 12n2 Xy2f0;1gn(�1)x:yjyi;where x:y = x1y1 + x2y2 + � � �xnyn.3. Phase Gate: The unitary matrix for this gate is S = � 1 00 i �. This gate hangesthe phase of the ket vetor j1i by i so that j1i beomes ij1i, and leaves the ketvetor j0i �xed.4. �8 Gate: The unitary matrix for this gate is T = � 1 00 e i�4 � = ei�8 " e�i�8 00 e i�8 #.This gate hanges the phase of j1i by ei�42.2.2 Two Qubit Gates
Figure 2.4: Two qubit gates. ACNOT gate and a SWAP gate. =Figure 2.5:1. Controlled NOT: This gate (Figure 2.4 ) ats as a NOT gate on the seond qubit(target qubit) if the �rst qubit (ontrol qubit) is in the omputational basis statej1i. So the vetors j01i and j00i are unaltered, while the vetor j10i gets modi�edinto j11i and vie versa.



14 LECTURE 2. QUANTUM GATES AND CIRCUITSThe unitary matrix for this gate is T = 2664 1 0 0 00 1 0 00 0 0 10 0 1 0 3775The gate ould also negate the ontent of the �rst qubit depending on the seondqubit. Suh a gate will have a di�erent unitary matrix. The essential point is that aqubit an get negated depending on a ontrol qubit. The ontrol qubit will alwaysbe denoted by a solid dot in pitures.2. Swap GateThis gate (Figure 2.4) swaps the ontents of the two qubits. Beause the vetorsj00i and j11i are symmetri, they are unaltered, while the vetor j01i gets mappedto j10i and vie versa.The unitary matrix for this gate is P = 2664 1 0 0 00 0 1 00 1 0 00 0 0 1 3775Exerise 2.2.1 Prove that the two iruits given in Figure 2.5 are the same.Solution: To hek the equivalene of the iruits on the L.H.S. and R.H.S. weompute how the iruit on the R.H.S. ats on the basis state ja; bi.ja; bi ! ja; a� bi ! ja� (a� b); a� bi = jb; a� bi ! jb; (a� b)� bi = jb; ai3. Controlled Unitary: This is just like the ontrolled NOT, but instead of negating thetarget qubit, we perform the unitary transform presribed by the matrix U (onlyif the ontrol qubit is in state j1i). It is represented shematially as shown in the�rst diagram of Figure 2.6.2.2.3 Three Qubit Gates
UFigure 2.6: A ontrolled unitary gate, To�oli gate and a Fredkin gate.

1. To�oli Gate: This (as in seond diagram of Figure 2.6) is a double ontrolled NOTgate. The only omputational basis vetors whih get hanged are j110i and j111i.
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The orresponding unitary matrix is U = 266666666664

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 0
3777777777752. Fredkin Gate: This is a ontrolled swap gate (last diagram of Figure 2.6). The

orresponding unitary matrix is U = 266666666664
1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 0 1 00 0 0 0 0 1 0 00 0 0 0 0 0 0 1

3777777777752.2.4 Basi RotationsWe desribe in this part, some basi rotation gates, eah ating on a single qubit.The basi rotation operators, whih indue rotation by an angle � about the x; y andz axis respetively, are denoted by Rx(�); Ry(�) and Rz(�) and they are de�ned by thefollowing equations.Rx(�) = � os �2 �i sin �2�i sin �2 os �2 � = e� i�X2 = os �2I � i sin �2XRy(�) = � os �2 � sin �2sin �2 os �2 � = e� i�Y2 = os �2I � i sin �2YRz(�) = � e�i �2 00 ei �2 � = e� i�Z2 = os �2I � i sin �2ZMore generally Rn̂(�) = (os �2)I � (i sin �2)(n̂xX + n̂yY + n̂zZ) is the matrix orre-sponding to rotation by an angle � about the axis with diretion osines (n̂x; n̂y; n̂z).Theorem 2.2.2 (Euler): Every 2� 2 unitary matrix U an be expressed asU = ei� " e�i(�+Æ2 ) os 2 �e�i(��Æ2 ) sin 2ei(��Æ2 ) sin 2 ei(�+Æ2 ) os 2 # = ei�Rz(�)Ry()Rz(Æ): �Corollary 2.2.3 Every 2� 2 matrix U an be expressed as U = ei�AXBXC, where A,B and C are 2� 2 unitary operators and ABC = I.



16 LECTURE 2. QUANTUM GATES AND CIRCUITSProof: By Theorem 2.2.2 we an write U = ei�Rz(�)Ry()Rz(Æ): Set A = Rz(�)Ry(2 ),B = Ry(�2 )Rz(��+Æ2 ) and C = Rz( Æ��2 ). It is easy to hek that A, B and C satisfy therequired onditions. �
C B A

D
UFigure 2.7: Ciruit implementing the ontrolled-U operation for single qubit U . �, A, Band C satisfy U = ei�AXBXC;ABC = I:Corollary 2.2.4 In Figure 2.7 the iruit on the L.H.S. is equivalent to the iruit onthe R.H.S. if AXBXC = e�i�U , ABC = I and D = � 1 00 ei� � :Proof: The equivalene of the iruits an be veri�ed by heking how the omputationalbasis states evolve.j0ijui ! j0iCjui ! j0iBCjui ! j0iABCjui ! Dj0iABCjui = j0ijui.j1ijui ! j1iCjui ! j1iXCjui ! j1iBXCjui ! j1iXBXCjui ! Dj1iAXBXCjui =ei�j1ie�i�U jui = j1iU jui. �Corollary 2.2.5 In Figure 2.8, the iruit on the L.H.S. is equivalent to the iruit onthe R.H.S. if V 2 = U .

U V V y VFigure 2.8: Ciruit for the C2(U) gate. V is any unitary operator satisfying V 2 = U .The speial ase V = (1� i)(I + iX)=2 orresponds to the To�oli gate.Proof: j00ijui ! j00ijui:j01ijui ! j01iV jui ! j01iV yV jui = j01iIjui = j01ijui.j10ijui ! j11ijui ! j11iV yjui ! j10iV yjui ! j10iV V yjui = j10ijui.j11ijui ! j11iV jui ! j10iV jui ! j11iV jui ! j11iV V jui = j11iU jui: �Corollary 2.2.6 To�oli gate an be expressed as a omposition of ontrolled NOT's and1{qubit gates.



2.3. SOME SIMPLE CIRCUITS 17Proof: Follows from the previous two orollaries. �Exerise 2.2.7 Derive and verify that the iruit on the R.H.S. of Figure 2.9 is a orretrealization of the To�oli gate using ontrolled NOT and single qubit gates.
STT y T yHTT yTT yHFigure 2.9: Implementation of the To�oli gate using Hadamard, phase, ontrolled NOTand �8 gates.

2.3 Some Simple Ciruits2.3.1 Quantum TeleportationIn quantum teleportation, Alie (sender) an send a qubit to Bob (reeiver) without usinga quantum ommuniation hannel. In order to ahieve this, Alie and Bob togethergenerate an EPR pair (i. e. j00i+j11ip2 ) and share one qubit eah.Suppose Alie wants to send an unknown qubit j i = �j0i+ �j1i. Then she annoteven measure it beause she has only one opy of it. Even if Alie knows the state ofthe qubit j i sending it to Bob through lassial hannel will not be possible at all. Butby making use of the EPR pair Alie an send the qubit j i to Bob just by sending twoadditional lassial bits of information.To aomplish the task Alie makes a iruit as shown in Figure 2.10. Alie has aessto the top two qubits. So all operations Alie does involve only the top two qubits.Initial state of the system isj 0i = j i j00i+j11ip2 = 1p2 [�j0i(j00i+ j11i) + �j1i(j00i+ j11i)℄.After the �rst CNOT gate the state of the system isj 1i = 1p2 [�j0i(j00i+ j11i) + �j1i(j10i+ j01i)℄.After she sends the �rst qubit through the Hadamard gate the state of the system isj 2i = 12 [�(j0i+ j1i)(j00i+ j11i) + �(j0i � j1i)(j10i+ j01i)℄.Colleting the �rst two qubits the state j 2i an be re-written asj 2i = 12 [j00i(�j0i+ �j1i) + j01i(�j1i+ �j0i) + j10i(�j0i � �j1i) + j11i(�j1i � �j0i)℄.
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XM2 ZM1
M2

j 0i j 1i j 2iFigure 2.10: Ciruit used by Alie and Bob
When Alie makes a measurement on the two qubits she an ontrol, the state ofBob's qubit is ompletely determined by the results of Alie's measurement on her �rsttwo qubits. Hene if Alie sends the results of her measurement to Bob, he an applyappropriate gates on the qubit he an aess and get the state j i. The ation of Boban be summarized as in the table below.Alie State of Bob's Gates neededmeasures qubit to get j i00 [�j0i+ �j1i℄ I01 [�j1i+ �j0i℄ X10 [�j0i � �j1i℄ Z11 [�j1i � �j0i℄ ZXThus, the state of the �rst qubit j i is transferred to the third qubit whih is withBob. The above algorithm implies that one shared EPR pair and two lassial bits ofommuniation is a resoure at least equal to one qubit of quantum ommuniation.2.3.2 Super Dense Coding: Quantum Communiation throughEPR PairsIf Alie and Bob initially share an EPR pair, Alie an send Bob two bits of lassialinformation by passing a single qubit as follows. Alie makes a iruit as shown in Figure2.11.Alie selets the gate G aording to the bits she wants to send. She selets a gateaording to the table below and applies it to the qubit she possesses before transmittingit to Bob.



2.3. SOME SIMPLE CIRCUITS 19M1Gj'0i = (j00i+j11i)2Figure 2.11: Ciruit used by Alie and BobBits to Gates to Bobbe sent be used reeives00 I j00i+j11ip201 Z j00i�j11ip210 X j10i+j01ip211 iY j01i�j10ip2The four possible states that Bob an reeive are the so-alled Bell states or EPRpairs whih onstitute the Bell basis. Sine the Bell states form an orthogonal basis, theyan be distinguished by measuring in the appropriate basis. Hene when Bob reeivesthe qubit sent by Alie he has both the qubits. Then he does a measurement in theBell basis and �nds out the message she wanted to send. In lassial omputation it isimpossible to send two bits of information by just passing a single bit. So a qubit anarry more than one bit of lassial information.2.3.3 A Genaralisation of \Communiation through EPR States"Let F be a �nite abelian group of order n for example (Z=2Z)k with n = 2k. Let F̂ denoteits harater group. De�ne the Hilbert spae H �= L2(F ) to be the spae of funtionsfrom F to C under the standard inner produt. The harateristi funtions of elementsof the group F , 1fxg where x 2 F , form the standard orthonormal basis for H. De�nejxi �= 1fxg. Let f 2 H and x 2 F . For a 2 F and � 2 F̂ , de�ne unitary operators Uaand V� on H as (Ua f)(x) �= f(x+ a); (V� f)(x) = �(x) f(x):Ua an be thought of as translation by the group element a and V� an be thought ofas multipliation by the harater �. For (a; �) 2 F � F̂ , de�ne the Weyl operatorWa;� �= UaV�. It is a unitary operator.Exerise 2.3.1 Wa;�Wb;� = �(b)Wa+b;��. i.e. the Wa;� form a projetive unitary repre-sentation of the group F � F̂ . The term projetive is used to refer to the fat that theunitary operators Wa;� form a representation of F � F̂ upto multipliation by a omplexsalar (the number �(b)) of modulus unity.Exerise 2.3.2 Show that the only linear operators whih ommute with Wa;� for all(a; �) 2 F � F̂ , are the salars. Hene, the Wa;�'s form an irreduible projetive rep-resentation of the group F � F̂ i.e. the only subspaes of H whih are invariant underevery Wa;� are the zero subspae and H itself.



20 LECTURE 2. QUANTUM GATES AND CIRCUITSExerise 2.3.3 Show that the operators fWa;�g(a;�)2F�F̂ are linearly independent. Thus,they span the spae B(H) of (bounded) linear operators on H.Exerise 2.3.4 Show that W ya;� = �(a)W�a;�. Show also that TrWa;� = n if a = 0and � is the trivial harater, where n = jF j; otherwise TrWa;� = 0. Hene, prove thatTrW ya;�Wb;� = nÆ(a;�);(b;�).Exerise 2.3.5 De�ne j 0i �= 1pnPx2F jxijxi. Also de�ne j(a; �)i �= (Wa;� 
 I)j 0i,where I is the identity operator on H. Then, fj(a; �)ig(a;�)2F�F̂ is an orthonormal basisfor H
H.Enumerate (a; �) as f(a; �) 2 f1; 2; : : : ; n2g, in some order. De�ne the Hermitianmeasurement operator X �= X(a;�)2F�F̂ f(a; �) j(a; �)ih(a; �) jj 0i is the entangled state whih Alie and Bob share. Alie holds the �rst logn qubitsof the state while Bob holds the other logn qubits. To send a message m 2 [n2℄, Alieapplies the unitary transformation Wa;�, where f(a; �) = m, on her qubits. She thensends her qubits to Bob, who then applies the measurement X on the 2 logn qubits whihhe now has. The outome of the measurement is m, whih is exatly what Alie intendedto send. Thus Alie has ommuniated 2 logn lassial bits of information using onlylogn qubits of quantum ommuniation.
Alice

Bob

Bob

Alice Bob

Bob

Bobj 0i log n log n 2 log nX
Wa;�

log nFigure 2.12: Ciruit used by Alie and Bob
Exerise 2.3.6 In the ase where F = Z=2Z, this redues to ommuniating two lassi-al bits at a time using one qubit, by the usual superdense oding tehnique!2.3.4 Deutshe AlgorithmThis algorithm enables us to �nd out whether a funtion f : f0; 1g ! f0; 1g, is a onstantfuntion or not, by omputing the funtion only one. In lassial theory of omputationwe must evaluate the funtion twie before making suh a onlusion.



2.3. SOME SIMPLE CIRCUITS 21Corresponding to the funtion f we onsider the unitary operator Uf , where Uf jxyi =jxijy � f(x)i; x; y 2 f0; 1g. The iruit for implementing the algorithm is shown inFigure 2.13. HH x xUfy y � f(x) Hj0ij1iFigure 2.13: Ciruit for implementing Deutshe Algorithm.We follow the evolution of the iruit in Figure 2.13.j 0i = j01ij 1i = 12 (j0i+ j1i) (j0i � j1i)Observe that Uf jxi� j0i � j1ip2 � = (�1)f(x)jxi� j0i � j1ip2 � :j 2i = � �12(j0i+ j1i)(j0i � j1i) if f(0) = f(1)�12(j0i � j1i)(j0i � j1i) if f(0) 6= f(1)j 3i = ( �j0i (j0i�j1i)p2 if f(0) = f(1)�j1i (j0i�j1i)p2 if f(0) 6= f(1)=) j 3i = �jf(0)� f(1)i(j0i � j1i)p2Thus, by measuring the �rst bit we get nff(0)� f(1)g;�jf(0)� f(1)i (j0i�j1i)p2 o :In this algorithm, both superposition and interferene of quantum states are exploited.2.3.5 Arithmetial Operations on a Quantum ComputerWe now see how addition may be performed on a quantum omputer. Let x; y be twon+ 1 bit integers. Then we havex = an an�1 : : : a0y = bn bn�1 : : : b0x+ y = n sn sn�1 : : : s0andx0 = an�1 an�2 : : : a0y0 = bn�1 an�2 : : : b0x0 + y0 = n�1 sn�1 sn�2 : : : s0



22 LECTURE 2. QUANTUM GATES AND CIRCUITSNote that s0; s1; : : : sn�1 are same in both these additions. Also,(n; sn) = (anbn � n�1(an � bn); an � bn � n�1):Note that the To�oli gate sends jabi ! jabij� abi.Consider a subroutine for adding two single bit numbers with arry. The iruit forthis subroutine is shown in Figure 2.14.jn�1ijanijbnijdi
jn�1ijanijan � bn � n�1ijd� anbn � n�1(an � bn)iFigure 2.14: Ciruit for adding two single bit numbers with arry.If we measure the last two qubits in the iruit in Figure 2.14, we get the outputsfsng; fng and the ollapsed states jsni; jni provided d = 0. Hene, using this subroutinewe an add two n-bit numbers.We would like to ount the number of To�oli and CNOT gates used by the iruitas a measure of omplexity. Suppose �n To�oli and �n CNOT gates are used for addingtwo n-bit numbers. Then�n+1 = �n + 2; �n+1 = �n + 2=) �n = �1 + 2(n� 1); �n = �1 + 2(n� 1)Consider the iruit in Figure 2.15. ja0ija0 � b0i s0jd� a0b0i 0 when d = 0

ja0ijb0ijdiFigure 2.15: Ciruit for adding two single bit numbers without arry.Thus, �1 = 1 and �1 = 1. This implies �n = �n = 2n � 1. So by this method ofadding two n bit numbers we need 2n� 1 To�oli and 2n � 1 CNOT gates. The iruitfor adding two n bit numbers is shown in Figure 2.16.
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ja0ijb0ijd0ija1ijb1ijd1ija2ijb2ijd2ijdn�2ijan�1ijbn�1ijdn�1i

ja0ijs0ij0ija1ijs1ij1i
jn�2ijan�1ijsn�1ijn�1i
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Figure 2.16: Ciruit for adding two n bit numbers without arry.Subtration:To evaluate a� b, where a; b are two n bit numbers, add a and 2n � b to geta + 2n � b = enen�1 : : : e0:Note that 2n � b an be easily omputed using only CNOT gates.If en = 0, then a� b = �(1� en�1)(1� en�2) : : : (1� e0):If en = 1, then a� b = en�1en�2 : : : e0:Exerise 2.3.7 Count the number of gates required in the above subtration algorithm.Exerise 2.3.8 Devie a iruit for addition (mod N), multipliation and division.
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Leture 3Universal Quantum Gates
3.1 CNOT and Single Qubit Gates are UniversalIn lassial omputation the AND, OR and NOT gates are universal whih means thatany boolean funtion an be realized using only these three gates. In this leture, weprove the quantum analogue of this theorem. We show that any unitary transformationin an n-qubit Hilbert spae an be approximated by ompositions of Hadamard, CNOT,phase and �=8 gates to any desired degree of auray. We proeed by proving twopropositions from whih the theorem immediately follows.Lemma 3.1.1 Any n � n unitary matrix U an be expressed as a produt of at mostone phase fator and n(n�1)2 unitary matries, eah of whih ats on a 2-dimensionaloordinate plane.Proof: Let U = 2664 u11 u12 : : : u1nu21 u22 : : : u2n. . : : : .un1 un2 : : : unn 3775If u21 = 0, do nothing. Otherwise, left multiply by a unitary matrixU1 = 24 � ��� � 00 In�2 35suh that ��u11 + �u21 = 0 and j�j2 + j�j2 = 1. Solving we get� = u11pju11j2 + ju21j2 and � = u21pju11j2 + ju21j2 :Now onsider M1 = U1U . The M1(2; 1) entry is 0. If M1(3; 1) is 0, we do nothing.Otherwise we left multiply by U2 in the (1; 3) plane to make the entry (3; 1) in the resultingmatrix 0. Continuing this way we get Un�1Un�2 : : : U1U = 2664 v11 v12 : : : v1n0 v22 : : : v2n: : : : : .0 vn2 : : : vnn 377525



26 LECTURE 3. UNIVERSAL QUANTUM GATESwhere jv11j = 1.Orthogonality between the 1st and any other olumn shows thatv12 = v13 = � � � = v1n = 0. Thus
v�111 Un�1Un�2 : : : U1U = 2666666664

1 0 0 . . . 000...0 W
3777777775where W is an n � 1 � n � 1 unitary matrix. The same proedure is repeated for theredued matrixW . We repeat these operations till we get the identity matrix I. Poolingthe phase fators we get ei�UmUm�1 : : : U1U = I where m � �n2�. It is to be noted thatUj is an element in SU(2) ating in a two dimensional subspae. Transferring the Uj'sto the right we get U = ei�U y1U y2 : : : U ym.Lemma 3.1.2 Any matrix U 2 SU(2) ating in a 2-dimensional subspae an be realisedusing single qubit and r-ontrolled 1-qubit gates.Proof: Consider H = (C 2)
n with omputational basis fjxi; x 2 f0; 1gng. Consider apair x; y whih di�er in exatly one plae, say i.jxi = jaij0ijbi.jyi = jaij1ijbi.with a and b being words of length i� 1 and n� i respetively.A unitary matrix U in the two dimensional plane spanned by jxi and jyi whih leavesthe other kets jzi �xed an be expressed as in Figure 3.1, where ~U = � � ��� � � andj�j2 + j�j2 = 1.Suppose now x and y di�er in r plaes. Then we an onstrut a sequenex = x(0) x(1) x(2) : : : x(r�1) x(r) = yof n length words suh that x(i) and x(i+1) di�er exatly in one position 8i = 0; 1; 2; : : : ; r�1. Let x, x(1) di�er at position j1,x(1), x(2) di�er at position j2,... ... ...and x(r�1), x(r) di�er at position jr.Now a ontrolled not gate (it is not the CNOT gate) is applied on x with the j1 bitas target and the remaining n� 1 bits as ontrol bits. The not gate ats on the j1 bit ifthe �rst bit is x1, the seond bit is x2 and so on. This an be implemented with X (not)and CNOT gates as shown in the Figures 3.2 and 3.3.We follow this by a ontrolled not on x(1) with j2 as the target bit and the remainingn�1 as the ontrol bits. After ontinuing this up to x(r�1), we apply ~U . Then we just dothe reverse of the ontrolled not operations. This implements ~U in the plane generatedby jxi and jyi keeping all jzi �xed where z di�ers from both x and y.



3.1. CNOT AND SINGLE QUBIT GATES ARE UNIVERSAL 27a1a2
ai�1Ub1b2bn�iFigure 3.1: A generalized ontrolledU operation on n-qubits.

X1X2
Xj1�1
Xj1+1XnFigure 3.2: A generalized ontrolledNOT operation on n-qubits.Figure 3.3 shows how a generalized ontrolled 1-qubit gate an be realised using 1-qubit gates and r-ontrolled 1-qubit gate. This ompletes the proof. �Lemma 3.1.3 If n � 2, then an n-ontrolled 1-qubit gate an be realised by (n � 1)-ontrolled 1-qubit gates.Proof: Let U = V 2 where U; V 2 SU(2). Then we see that the two iruits in Figure 3.4are equivalent. �Lemma 3.1.4 A ontrolled 1-qubit gate an be realised using CNOT and single qubitgates.Proof: Let U = ei�AXBXC, ABC = I, D = � 1 00 ei� �. Then from (orollary 2.2.4)we know that the two iruits in Figure 3.5 are equivalent. �Proposition 3.1.5 Any arbitary unitary matrix on an n-dimensional Hilbert spae anbe realised using phase, single qubit and CNOT gates.
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x x

UFigure 3.3: Realizing a generalized ontrolled operation.

U V V y VFigure 3.4:
Proof: The proof follows from Lemma 3.1.1, Lemma 3.1.2, Lemma 3.1.3 and Lemma3.1.4. �Proposition 3.1.6 The group generated by H and e�i�8Z is dense in SU(2).Proof: H2 = I, HZH = X, HYH = �Y , He�i�8ZH = e�i�8X and e�i�8Ze�i�8X =os2 �8 I�(i sin �8 )f(os �8 (X+Z)+(sin �8 )Y g = R~n(�) where os� = os2 �8 , ~n = (os �8 ;sin �8 ;os �8 )p1+os2 �8He�i�8Ze�i�8XH = os2 �8 I � (i sin �8 )f(os �8 (X + Z)� (sin �8 )Y g = R~m(�);where, ~m = (os �8 ;� sin �8 ;os �8 )p1+os2 �8 : Now we need the following lemma.
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U C B ADFigure 3.5:

Lemma 3.1.7 If os� = os2 �8 , then � is an irrational multiple of �.Proof: See Appendix. �Any R~n(�) an be approximated as losely as we want by a suitable power of R~n(�)beause � is an irrational multiple of �. Similarly, any R~m(�) an be approximated by asuitable power of R~m(�).Sine ~n and ~m are two linearly independent unit vetors, any U 2 SU(2) an bewritten as U = ei R~n(�1)R~m(�2)R~n(�3). This is an immediate onsequene of Euler'stheorem. This proves the proposed Lemma. �Now we are ready for the main theorem.Theorem 3.1.8 The subgroup generated by the Hadamard gate H, phase gate, CNOTand the �=8 is dense in the unitary group U(2).Proof: Immediate from Prpposition 3.1.5 and Proposition 3.1.6. �3.2 AppendixIn this setion we �rst give all the de�nitions and results needed to prove Lemma 3.1.7.The proofs whih are routine are left out. The reader may refer to Algebra by Artin([13℄) or Basi Algebra by Jaobson ([14℄) for a omprehensive treatment. We start witha few de�nitions.A nononstant polynomial P 2 F[x℄ is alled irreduible if it is written as a produtof two polynomials P1; P2 2 F[x℄ then either P1 or P2 is a onstant.A polynomial is alled moni if the oeÆient of the leading term is 1.A polynomial a0+a1x+ � � �+anxn in Z[x℄ is alled primitive if g::d(ja0j ; : : : ; janj) = 1and an > 0.Remark 3.2.1 Every nonzero polynomial P 2 Q [x℄ an be written as a produt P =P0, where  is a rational number and P0 is a primitive polynomial in Z[x℄. Note that thisexpression for P is unique and the polynomial P has integer oeÆients i�  is an integer.In that ase jj is the g::d: of the oeÆients of P and  and the leading oeÆient of Phave the same sign.



30 LECTURE 3. UNIVERSAL QUANTUM GATESThe rational number  whih appears in this remark is alled the ontent of P . If Phas integer oeÆients, then the ontent divides P in Z[x℄. Also, P is primitive i� itsontent is 1.Lemma 3.2.2 Let ' : R �! R0 be a ring homomorphism. Then for any element� 2 R0, there is a unique homomorphism � : R[x℄ �! R0 whih agrees with the map 'on onstant polynomials and sends x �.Let Fp = Z=pZ. The lemma above gives us a homomorphism Z[x℄ �! Fp . Thishomomorphism sends a polynomial P = amxm+� � �+a0 to its residue P = amxm+� � �+a0modulo p.Theorem 3.2.3 (Gauss's Lemma) A produt of primitive polynomials in Z[x℄ is primi-tive.Proof:Let P and Q be two primitive polynomials in Z[x℄ and let R be their produt. Ob-viously the leading oeÆient of R is positive. To show that R is primitive, it is enoughto show that no prime integer p divides all the oeÆients of R. Consider the homo-morphism Z[x℄ �! Fp [x℄ de�ned above. Sine P is primitive, its oeÆients are not alldivisible by p. So P 6= 0. Similarly, Q 6= 0. Sine the polynomial ring Fp [x℄ is an integraldomain, R = PQ 6= 0. Therefore p does not divide one of the oeÆients of R. Thisimplies that R is primitive. �Proposition 3.2.41. Let F , G be polynomials in Q [x℄, and let F0, G0 be the assoiated primitive poly-nomials in Z[x℄. If F divides G in Q [x℄, then F0 divides G0 in Z[x℄.2. Let F;G 2 Z[x℄ suh that F is primitive and G is divisible by F in Q [x℄, sayG = FQ, with Q 2 Q [x℄. Then Q 2 Z[x℄, and hene F divides G in Z[x℄.3. Let F , G be polynomials in Z[x℄. If they have a ommon nononstant fator inQ [x℄, then they have suh a fator in Z[x℄ too.Proof: To prove (1), we may lear denominators so that F and G beome primitive.Then (1) is a onsequene of (2). By Remark 3.2.1 we an write Q = Q0, where Q0 isprimitive and  2 Q . By Gauss's Lemma, FQ0 is primitive, and the equation Gg = FQ0shows that it is the primitive polynomial Q0 assoiated to Q. Therefore Q = Q0 is theexpression for Q referred to in Lemma 3.2.1, and  is the ontent of Q. Sine  is theontent of both G and Q, and G 2 Z[x℄; it follows that  2 Z, hene that Q 2 Z[x℄. Nowlet us prove (3). Suppose that F , G have a ommon fator H in Q [x℄. We may assumethat H is primitive, and then by (2) H divides both F and G in Z[x℄. �Corollary 3.2.5 If a nononstant polynomial F is irreduible in Z[x℄, then it is irre-duible in Q [x℄.



3.2. APPENDIX 31Proposition 3.2.6 Let F be an integer polynomial with positive leading oeÆient.Then F is irreduible in Z[x℄ i� either1. F is a prime integer, or2. F is a primitive polynomial whih is irreduible in Q [x℄.Proof: Suppose that F is irreduible. As in Remark 3.2.1, we may write F = F0, whereF0 is primitive. Sine F is irreduible, this annot be a proper fatorization. So either or F0 is 1. If F0 = 1, then F is onstant, and to be irreduible a onstant polynomialmust be a prime integer. The onverse is trivial. �Lemma 3.2.7 In a prinipal ideal domain, an irreduible element is prime.Theorem 3.2.8 Every irreduible element of Z[x℄ is a prime element.Proof: Let F be irreduible, and suppose F divides GH, where G, H 2 Z[x℄.Case 1: F = p is a prime integer. Write G = G0 and H = dH0 as in Remark 3.2.1.Then G0H0 is primitive, and hene some oeÆient a of G0H0 is not divisible by p. Butsine p divides GH, the orresponding oeÆient, whih is da, is divisible by p. Henep divides  or d, so p divides G or H.Case 2: F is a primitive polynomial whih is irreduible in Q [x℄. By Lemma 3.2.7, Fis a prime element of Q [x℄. Hene F divides G or H in Q [x℄. By Proposition 3.2.4, Fdivides G or H in Z[x℄. �Lemma 3.2.9 Let F = anxn + � � �+ a0 2 Z[x℄ be an integer polynomial, and let p be aprime integer whih does not divide an. If the residue F of F modulo p is irreduible,then F is irreduible in Q [x℄.Proof: This follows from the natural homomorphism Z[x℄ �! Fp [x℄ (see Lemma 3.2.2).We may assume that F is primitive. Sine p does not divide an, the degrees of F and Fare equal. If F fators in Q [x℄, then it also fators in Z[x℄ by Corollary 3.2.5. Let F = GHbe a proper fatorization in Z[x℄. Sine F is primitive, G and H have positive degree.Sine deg F = deg F and F = GH, it follows that deg G = deg G and deg H = deg H,hene that F = GH is a proper fatorization, whih shows that F is reduible. �Theorem 3.2.10 (Eisenstein Criterion) Let F = anxn + � � � + a0 2 Z[x℄ be an integerpolynomial, and let p be a prime integer. Suppose that the oeÆients of F satisfy thefollowing onditions:1. p does not divide an;2. p divides other oeÆients an�1; : : : a0;3. p2 does not divide a0.Then F is irreduible in Q [x℄. If F is primitive, it is irreduible in Z[x℄.



32 LECTURE 3. UNIVERSAL QUANTUM GATESProof: Assume F satis�es the hypothesis. Let F denote the residue modulo p. Theonditions (1) and (2) imply that F = anxn and that an 6= 0. If F is reduible in Q [x℄,then it will fator in Z[x℄ into fators of positive degree, say F = GH. Then G and Hdivide anxn, and hene eah of these polynomials is a monomial. Therefore all oeÆientsof G and of H, exept the highest ones are divisible by p. Let the onstant oeÆientsof G;H be b0; 0. Then the onstant oeÆient of F is a0 = b00. Sine p divides b0 and0, it follows that p2 divides a0, whih ontradits (3). This shows that F is irreduible.The last assertion follows from Proposition 3.2.6. �Corollary 3.2.11 Let p be a prime. Then the polynomial f(x) = xp�1+xp�2+� � �+x+1is irreduible in Q [x℄. (Suh polynomials are alled ylotomi polynomials, and theirroots are the pth roots of unity.)Proof: First note that (x�1)f(x) = xp�1: Now substituting x = y+1 into this produtwe get y f(y + 1) = (y + 1)p � 1 = yp + �p1�yp�1 + � � �+ � pp� 1�y:We have �pi� = p(p� 1) � � � (p� i+1)=i!: If i < p, then the prime p isn't a fator of i!,so i! divides the produt (p� 1) � � � (p� i + 1) of the remaining terms in the numeratorof the integer �pi�. This implies that �pi� is divisible by p. Dividing the expansion ofy f(y + 1) by y shows that f(y + 1) satis�es the Eisenstein Criterion and hene it is anirreduible polynomial. This implies that f(x) is also irreduible. �Theorem 3.2.12 If os� = os2 �8 , then � is an irrational multiple of �.Before proeeding to the proof of this theorem we shall establish a lemma.Lemma 3.2.13 Let � = �=�, where � is as in Theorem 3.2.12. Then � = e2i�� is aroot of the irreduible moni polynomial m� = x4 + x3 + 14x2 + x + 1 (over Q [x℄).Proof: Let m� be the irreduible moni polynomial whih has � as one of its roots. Notethat sin 2�� is not equal to zero. This meansm� has a omplex root. Sine its oeÆientsare rational it must also have the root �. Thus, m� must be divisible by x2�2Ref�g+1.Elementary omputation shows that2Ref�g = �12 +p2:So m� is divisible by p(x) = x2�(p2� 12)x+1. Sine, p(x) has irrational oeÆients andm� has rational oeÆients, m� must have another irrational root, say Æ. This impliesm� has another quadrati fator with real oeÆients. This means that deg(m�) � 4.Consider the polynomial p0(x) = x2 + (p2 + 12)x+ 1. Multiplying p(x) and p0(x) we getx4 + x3 + 14x2 + x + 1. From the onstrution � is a root of the polynomialm� = x4 + x3 + 14x2 + x + 1;whih has no rational roots. �



3.2. APPENDIX 33Proof of Theorem 3.2.12: Note that the polynomial m�(x) is not ylotomi. Let usassume that � is rational. Then � = pq is a root of the ylotomi polymomial�q(x) = xq�1 + xq�2 + � � �+ x + 1.But �q(x) = Qpjq �p(x), where p is prime. By Corollary 3.2.11 and Theorem 3.2.8we know this is a prime fatorization of �q(x). Sine, m�(x) is minimum irreduiblepolynomial and Z[x℄ is a unique fatorization domain (follows from Theorem 3.2.8),m�(x) is prime. Thus, m�(x) must divide �q(x). Hene, m�(x) must be a ylotomipolynomial. A ontradition. �
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Leture 4The Fourier Transform and anAppliation
4.1 Quantum Fourier TransformThe quantum Fourier transform on a �nite dimensional Hilbert spae H of dimension Nis de�ned as a linear operator whose ation on an orthonormal basis j0i; j1i; : : : ; jN � 1iis given by

F jji ! 1pN N�1Xk=0 e 2� i j kN jki:
It an be easily veri�ed that F de�ned as above is a unitary operator and the matrixof the transformation is M(F ) = [ujk℄, where ujk = 1pN e 2� i j kN .

Theorem 4.1.1 Let the dimension of the Hilbert spae H be 2n. Then the quantumFourier transform F also has the following produt representation .
F jji = F jj1j2 : : : jni= 12n2 (j0i+ e2�i0:jn j1i)(j0i+ e2�i0:jn�1jnj1i) : : : (j0i+ e2�i0:j1j2:::jn j1i):35



36 LECTURE 4. THE FOURIER TRANSFORM AND AN APPLICATIONProof: F jji = 12n2 X e 2�ijk2n jki= 12n2 Xk1;k2;:::;kn e2�ij( k121+ k222 +���+ kn2n )jk1k2 : : : kni= 12n2 Xk1;k2;:::;kl
nl=1e 2�ijkl2l jkli= 12n2 
nl=1 (j0i+ e 2�ij2l j1i)wherej = j12n�1 + j22n�2 + � � �+ jn�12 + jn;j2l = integer + jn�(l�1)2 + � � �+ jn�12l�1 + jn2lF jji = 12n2 
nl=1 (j0i+ e2�i0:jn�(l�1)jn�(l�2):::jnj1i)= 12n2 (j0i+ e2�0:jn j1i)(j0i+ e2�0:jn�1jnj1i) : : : (j0i+ e2�0:j1j2:::jnj1i)�The iruit for implementing Fourier Transform on n-qubits is shown in Figure 4.1 .
��
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�

��

H R2 Rn�1 Rn H Rn�2 Rn�1 H R2 HFigure 4.1: EÆient iruit for quantum Fourier transform. The output on the ith qubitfrom top is j0i+e2� i 0:ji:::jnj1i. The orretness of the iruit follows from Theorem 4.1.1.In Figure 4.1, H represents the Hadamard gate and the unitary transform orre-sponding to the gate Rk is � 1 00 e 2�i2k �. From the produt representation it is easy tosee that this iruit does ompute the Fourier transform. To see how the iruit workswe onsider the input state jj1j2 : : : jni and hek how the system evolves. After the �rstHadamard gate the state is(Hjj1i)jj2j3 : : : jni = 1p2(j0i+ e2�i j12 j1i)jj2j3 : : : jniAfter the ontrolled R2 gate ating on the �rst qubit the state is(R2Hjj1i)jj2j3 : : : jni = 1p2(j0i+ e2�i( j12 + j222 )j1i)jj2j3 : : : jni



4.2. PHASE ESTIMATION 37Hene, after the sequene of the ontrolled R0ks on the �rst qubit, the state is(RnRn�1 : : : R2Hjj1i)jj2j3 : : : jni = 1p2(j0i+ e2�i( j12 + j222+::: jn2n )j1i)jj2j3 : : : jni= 1p2(j0i+ e2�i0:j1j2:::jnj1i)jj2j3 : : : jniSimilarly, we an ompute the ation on the other qubits. The �nal state of the systemis 12n2 (j0i+ e2�i0:j1j2:::jnj1i)(j0i+ e2�i0:j2:::jnj1i) : : : (j0i+ e2�i0:jn j1i)Now, if we perform the swap operation i.e. interhange the order of the qubits we get12n2 (j0i+ e2�i0:jn)(j0i+ e2�i0:jn�1jn) : : : (j0i+ e2�i0:j1j2:::jn);whih is exatly the quantum Fourier transform. The number of Hadamard gates usedis n and the number of ontrolled rotation gates used is n(n�1)2 . In the end at most�n2� swap gates are used. Therefore, this iruit uses �(n2) gates. The best lassialalgorithm to ompute Fourier transform on 2n elements takes �(2n(log 2n)) gates. Thusto ompute lassial Fourier transform using lassial gates takes exponentially moretime to aomplish the task ompared to omputing quantum Fourier transform using aquantum omputer.Remark 4.1.2 This fat annot be exploited very well beause it is not possible toget aess to the amplitudes in a quantum omputer by measurements. Moreover, it isvery diÆult to obtain the initial state whose Fourier transform is to be omputed. Butquantum Fourier transform makes phase estimation easy whih enables us to fator aninteger eÆiently in a quantum omputer.4.2 Phase EstimationLet U be a unitary operator with eigen vetor jui and eigen value e2�i'. If jui andontrolled U2j are available then using Fourier transform one an eÆiently estimate thephase '. The iruit for the �rst stage of the phase estimation is shown below :In the seond stage of the phase estimation inverse Fourier transform is applied onsome seleted qubits and a measurement is done on those qubits in the omputationalbasis. It will be shown that this yields a good estimate of the phase.The �rst stage of the phase estimation uses two registers. The �rst register ontainst qubits all in the state j0i and the seond register ontains n qubits in the state jui.The number of qubits t in the �rst register is hosen aording to the auray and theprobability of suess required in the phase estimation proedure.The �nal state after the �rst stage is12 t2 (j0i+ e2�i2t�1'j1i)(j0i+ e2�i2t�2'j1i) : : : (j0i+ e2�i20'j1i)jui = 12 t2 2t�1Xk=0 e2�i'kjkijui:



38 LECTURE 4. THE FOURIER TRANSFORM AND AN APPLICATION
H

j0i
j0ij0ij0ijui

j0i + e2�i(2t�1�)j1i
j0i+ e2�i(22�)j1ij0i + e2�i(21�)j1ij0i+ e2�i(20�)j1iU20 U21 U22 U2t�1 jui

HH
H

Figure 4.2: First stage of the phase estimation iruit. Normalization fators of 1=p2have been omitted, on the right side.In the seond stage inverse Fourier transform is applied on the �rst register (the�rst t qubits). This gives us a good estimate of '. To get a rough idea why this istrue we onsider the ase when ' an be expressed exatly in t bits by the notation' = 0:'1'2 : : : 't. In this ase the �nal state after stage one an be written as12 t2 (j0i+ e2�i0:'tj1i)(j0i+ e2�i0:'t't�1j1i) : : : (j0i+ e2�i0:'1'2:::'tj1i)jui.If we look at the produt representation of the Fourier transform it is immediate that theabove expression is the Fourier transform of the state j'1'2 : : : 'ti. Hene measurementin the omputational basis after the inverse Fourier transform will give the exat valueof '. If ' annot be represented in t bits the observed value after measurement will besome ~'. In the next setion we analyze how good is ~' as an estimate of '.4.3 Analysis of the Phase Estimation CiruitLet b 2 f0; 1; 2 : : :2t � 1g be an integer suh that b2t = 0:b1b2 : : : bt < ' is the the bestapproximation to '. Then Æ = ' � b2t � 2�t. After appliation of the inverse Fouriertransform in the seond stage the state of the system is12t 2t�1Xk;l=0 e�2�ikl2t e2�i'kjli:Let �l be the amplitude of j(b+ l) (mod 2t)i. Then,�l = 12t 2t�1Xk=0 (e2�i('� (b+l)2t ))k:Taking the sum of the geometri series we get



4.3. ANALYSIS OF THE PHASE ESTIMATION CIRCUIT 39�l = 12t (1� e2�i(2t'�(b+l))1� e2�i('� (b+l)2t ) ) (4.3.1)= 12t (1� e2�i(2tÆ�l)1� e2�i(Æ� l2t ) ): (4.3.2)Let e be the desired tolerane of error in the estimation of b. We would like toget a bound on the probability of obtaining an integer m after measurement suh thatjm� bj > e. p(jm� bj > e) = X�2t�1<l��(e�1) j�lj2 + Xe+1�l�2t�1 j�lj2 (4.3.3)Hene j�lj2 � 22tj1� e2�i(Æ� l2t ) : (4.3.4)By elementary alulus we get the inequality j1 � ei�j � 2j�j� whenever � 2 [��; �℄.We observe that if �2t�1 < l � 2t�1 then �� � 2�(Æ � l2t ) � �. Henej�lj2 � 12t+1(Æ � l2t ) : (4.3.5)Substituting, we get p(jm� bj > e) � 14 24 �(e+1)Xl=�2t�1+1 1(l � 2tÆ)2 + 2t�1Xl=e+1 1(l � 2tÆ)235Using the fat 0 � 2tÆ � 1 we see that the R.H.S. is � 14 24 �(e+1)Xl=�2t�1+1 1l2 + 2t�1Xl=e+1 1(l � 1)235� 12 2t�1�1Xl=e 1l2� 12 Z 2t�1�1e�1 1l2dl= 12(e� 2)The above analysis shows how lose m is to b. But we know that j'� bj � 12t . Heneto approximate ' orret up to the �rst r bits in the binary expansion, we have to hoosee = 2t�r�1. If we use t = r+p bits in the �rst register of the phase estimation algorithm,the probability of obtaining an estimate of the phase within the desired error margin is atleast 1� 12(2p�1) . Hene, if the desired auray is r and the required probability of gettingan estimate in this range is 1� �, then we have to hoose t greater than r+ �log 2 + 12��.
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Leture 5Order Finding
5.1 The Order Finding AlgorithmFor any two positive integers x; y denote their greatest ommon divisor (GCD) by (x; y).For any positive integer N let Z�N denote the set fx j x 2 N ; (x; N) = 1g. Undermultipliation modulo N , Z�N is an abelian group. Let '(N) be the order of this group.Then '(:) is alled the Eulers's ' funtion. The order of an element x 2 Z�N is de�nedto be the smallest positive integer r satisfying xr = 1 (mod N). In the lassial model ofomputation �nding the order of an element in Z�N is onsidered to be a hard problem.Using the phase estimation proedure of quantum omputation we shall demonstrate howone an determine the order of an element with high probability using only a polynomialnumber of gates.To solve the problem of order �nding using a quantum omputer we �rst translatethe problem into a problem onerning unitary operators as follows.Let N be an L bit number so thatN = 2j0 + 2j1 + 2j2 + � � �+ 2jk�1 where 0 � j0 < j1 < j2 < � � � < jk�1 < L:Let the Hilbert spae generated by L qubits be denoted by H = (C 2)
L. We de�ne aunitary operator U in H byU jyi = � jx y (mod N)i if y < N; (y = 0; 1; 2; � � � ; N � 1)jyi if N � y � 2L � 1It is to be noted that if jx y1 (mod N)i = jx y2 (mod N)i for 0 � y1 < y2 < N thenwe have x (y2 � y1) � 0 (mod N). But GCD of x and N is 1. So N j(y2 � y1) whih isimpossible. This means U is a permutation matrix and hene unitary.Let jusi = 1pr r�1Xk=0 e�2�i skr jxk (mod N)i (5.1.1)41



42 LECTURE 5. ORDER FINDINGWe observe that U jusi = 1pr r�1Xk=0 e�2�i skr jxk+1 (mod N)i (5.1.2)= e2�i sr 1pr r�1Xk=0 e�2�i skr jxk (mod N)i (5.1.3)Thus jusi is an eigenvetor of the unitary matrix U with orresponding eigenvaluee2�i sr , for all s 2 f0; 1; 2; : : : ; r � 1g.Now if we use the phase estimation algorithm we will get enough information toobtain the order r. But in order to be able to use the phase estimation we must be ableto implement the ontrolled U2j operation eÆiently. The other requirement is that wemust be able to prepare the eigen vetors aurately.The ontrolled U2j operations an be implemented using O(L3) gates as outlined inAppendix 1. But the seond requirement seems impossible beause we need to know rin order to prepare the eigen states. This problem an be solved by observing that1pr r�1Xs=0 jusi = j1i: (5.1.4)Thus in the phase estimation proedure if we set the number of qubits in the �rst registert = 2L + 1 + �2 + 12�� and the L qubits in the seond register in the state j1i, then foreah s 2 f0; 1; : : : ; r � 1g we will get an estimate of the phase ' = sr orret up to the�rst 2L+ 1 bits with probability at least 1��r . The iruit is shown in Figure 5.1.
Register 1

Register 2

H
t FT y
xj mod NL qubitst qubits

Figure 5.1: Quantum iruit for order �nding algorithm. The �rst register is initializedto state j0i and the seond register is initialized to state j1iIt an be heked that if in the phase estimation iruit we feed in the superpositionof eigen states jui = r�1Xs=0 sjusi; where r�1Xs=0 jsj2 = 1then the output state before measurement will be12tXs;k s(1� e2�i('s� k2t )2t1� e2�i('s� k2t ) ) jkijusi: (5.1.5)



5.1. THE ORDER FINDING ALGORITHM 43Hene on measuring the �rst t qubits we will get the value of the phase 's orret up to2L+ 1 bits with probability at least jsj2(1� �).Now our job is to extrat the exat value of r from the estimated phase. We know thephase ' � sr orret up to 2L+ 1 plaes. If this estimate is lose enough to ' we shouldbe able to get r beause we know that ' is the ratio of two bounded integers. This taskis aomplished eÆiently using the following result from number theory.Theorem 5.1.6 If sr is a rational number suh that���sr � ~'��� � 12r2 ; (5.1.7)then sr is a onvergent of the ontinued fration for ' and hene an be eÆiently omputedusing the ontinued fration algorithm.Proof: See appendix. �We know that j sr � ~'j � 2�(2L�1) � 12r2 , sine r � N � 2L. So if we now usethe ontinued fration algorithm we will get the fration s0r0 whih is equal to sr with(r0; s0) = 1. Thus if s and r are relatively prime then we get the order of the elementx. We know that the number of positive integers relatively prime and less than r is atleast 0:1r log log rlog r (see appendix). The order �nding algorithm fails if the phase estimationalgorithm gives a bad estimate or if s divides r. The probability that the �rst ase doesnot our is at least (1 � �) and the seond ase does not our is at least 0:1 log logNlogN .Hene if we repeat the algorithm O(L) times we will get the phase with a very highprobability.The algorithm an be summarized as followsInputs: Relatively prime integers N and x.Output: Order of x.Runtime: O(L4).Proedure:Initialize: Set \urrent smallest" equal to N .



44 LECTURE 5. ORDER FINDING1. Prepare U(x;N) the equivalent sequene ofontrolled U2j operations2. j0ij1i initial state3. ! 1p2t P2t�1j=0 jjij1i reate superposition4. ! 1p2t P2t�1j=0 jjijxj (mod N)i apply U(x;N)� 1pr2t Pr�1s=0P2t�1j=0 e 2�isjr jjijusi5. ! 1prPr�1s=0 j ~'ijusi apply inverse FT to �rst register6. ~' measure �rst register7. Get denominator of all onvergents of ~' use theorem 5.1.9 of appendix 2.8. For all integers i obtained in Step 7,hek if xi = 1 and keep the smallest of them.9. Update \urrent smallest"10. Repeat steps 1 to 9 O(logN) times11. Return \urrent smallest" with a high probability. Thisis the order
5.1.1 Appendix 0: Classial Reversible ComputationAll quantum gates are reversible (i. e. from the output we an uniquely reover theinput). But the lassial gates like `AND' and `OR' are not reversible. So a quantumiruit annot exist for any suh gate. However, by adding a few extra wires we an obtaina gate whih is reversible and the required funtion appears on spei�ed wires. This isalled a reversible lassial gate. If the `size' of the iruit is measured by the number of`wires' then this proedure uses only a onstant multiple of the number of wires used inthe earlier lassial iruit. The latter gate an be implemented using a quantum gate.Reversible lassial gates an be built using the Fredkin gate (See Figure 5.2). If we setx to 0 then x0 will be y^  whih is the AND gate. If we set x = 0 and y = 1 then we get on x0 and : on y0. Thus we get both NOT and FANOUT gates. CNOT an also beused to opy lassial bits. In the proess of onstruting funtional equivalents of thelassial gates using quantum gates some extra wires have been introdued. The outputsof these wires are alled junk. But if the `junk' is some arbitrary funtion of the inputthen the iruit may not behave as a quantum gate for the funtion f(x). So insteadof some junk output we would like to have some �xed output on the extra wires. Thismodel is alled lean omputation. This an be done as shown in the Figures 5.3, 5.4and 5.5.



5.1. THE ORDER FINDING ALGORITHM 45xy x0y00Figure 5.2: Fredkin gate (ontrolled swap).
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Input Bits
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Figure 5.3: Reversible gate
5.1.2 Appendix 1: EÆient Implementation of Controlled U2jOperationTo ompute the sequene of ontrolled U2j operations we have to ompute the transfor-mation jzijyi ! jziU zt2t�1 : : : U z120 jyi= jzijxzt2t�1 � � � � � xz120y (mod N)i= jzijxzy (mod N)i:Thus the sequene of ontrolled U2j operations is equivalent to multiplying the ontentof the seond register by the modular exponential xz (mod N), where z is the ontent ofthe �rst register. This an be omputed using lean reversible omputation (see Appendix0 ).This is ahieved by �rst reversibly omputing the funtion xz (mod N) in a thirdregister and then multiplying the ontents of the third and the seond register suh thateah qubit in the third register is in the state j0i. The task is aomplished in two stages.In the �rst stage we ompute x2j for all j 2 f1; 2; : : : ; t � 1g by suessively squaringx (mod N), where t = 2L + 1 + �log 2 + 12�� = O(L). Eah multipliation uses at mostO(L2) gates (Indeed an O(L logL log logL) algorithm using FFT is known. See [5℄.) andthere are t� 1 suh multipliations. Hene in this step at most O(L3) gates are used. Inthe seond stage we ompute xz (mod N) using the identityxz (mod N) = (xzt2t�1 (mod N))(xzt2t�2 (mod N)) � � � (xzt20 (mod N)): (5.1.8)



46 LECTURE 5. ORDER FINDING
C C�1x xInputCleanBitsClean0's CleanBitsOutputFigure 5.4: Clean omputation. Computing x 7! hx; f(x)i

Cf C�1f�1x f(x)x f(x)x f(x)BitsClean Clean CleanBitsBits
Figure 5.5: Computing a bijetive funtion fClearly this operation also uses at most O(L3) gates. Hene using O(L3) gates we om-pute the transformation jzijyi ! jzijxzy (mod N)i.5.1.3 Appendix 2: Continued Fration AlgorithmA �nite ontinued fration of n+ 1 variables is de�ned asa0 + 1a1 + 1a2+ 1a3+��� + 1an :

For onveniene it is also written as [a0; a1; : : : ; an℄. The nth onvergent of a ontinuedfration [a0; a1; : : : aN ℄ is de�ned as [a0; a1; : : : ; an℄ for n � N .The nth onvergent is easily omputed by the following theorem.Theorem 5.1.9 If pn and qn are de�ned byp0 = a0; p1 = a1 a0 + 1; pn = an pn�1 + pn�2 for 2 � n � N;q0 = 1; q1 = a1; qn = an qn�1 + qn�2 for 2 � n � Nthen [a0; a1; : : : ; an℄ = pnqn :Proof: We prove by indution. It is easy to hek for the base ases n = 1; 2.Indution Hypothesis: The onlusion holds for 1 � n � m:



5.1. THE ORDER FINDING ALGORITHM 47Indution step.[a0; a1; : : : am; am+1℄ = �a0; a1; : : : ; am�1; am + 1am+1�= �am + 1am+1� pm�1 + pm�2�am + 1am+1� qm�1 + qm�2= am+1(ampm�1 + pm�2) + pm�1am+1(amqm�1 + qm�2) + qm�1= am+1pm + pm�1am+1qm + qm�1= pm+1qm+1 : �Theorem 5.1.10 The funtions pn and qn satisfy the following relationpnqn�1 � pn�1qn = (�1)n:Proof: We use indution. The result is true for the base ases n = 1; 2: Assume the resultis true for any integer less than n.pnqn�1 � pn�1qn = (anpn�1 + pn�2)qn�1 � pn�1(anqn�1 + qn�2)= �1(pn�1qn�2 � pn�2qn�1)= (�1)nThis ompletes the proof. �Let x be a real number. Then the system of equationsx = a0 + �0 with a0 2 Z and �0 2 [0; 1)1�0 = a1 + �1 with a1 2 Z and �1 2 [0; 1)1�1 = a2 + �2 with a2 2 Z and �2 2 [0; 1)...is alled the ontinued fration algorithm. The algorithm ontinues till �n 6= 0.It is easy to see that if the algorithm terminates in N+1 steps then x = [a0; a1; : : : aN ℄and hene rational. But the onverse of this is also true.Theorem 5.1.11 Any rational number an be represented by a �nite ontinued fration.Proof: Let x = hk . Then from the ontinued fration algorithm we get the following setof equations. h = a0k + k1 (0 < k1 < k)k = a1k1 + k2 (0 < k2 < k1)...



48 LECTURE 5. ORDER FINDINGWe observe that k > k1 > k2 � � � . Hene the algorithm must terminate. Also, this isexatly the Eulid's GCD algorithm. Hene its omplexity is O((log(h+ k))3 [2℄. �Theorem 5.1.12 If x is representable by a simple ontinued fration with an odd (even)number of onvergents, it is also representable by one with an even (odd) number ofonvergents.Proof: Let x = [a0; a1; : : : ; an℄. If an � 2, then [a0; a1; : : : ; an℄ = [a0; a1; : : : ; an � 1; 1℄. Ifan = 1, then [a0; a1; : : : ; an�1; 1℄ = [a0; a1; : : : ; an�1 + 1℄. �Theorem 5.1.13 Let x be a rational number and p and q two integers suh that����pq � x���� � 12q2 :Then pq is a onvergent of the ontinued fration for x.Proof: Let [a0; : : : ; an℄ be the ontinued fration expansion of pq . From Theorem 5.1.12it follows that without loss of generality we may assume n to be even. Let pi and qi bede�ned as in Theorem 5.1.9.Let Æ be de�ned by the equation x = pnqn + Æ2q2n :Then jÆj � 1 and pnqn = pq is the nth onvergent. Let� = 2�qnpn�1 � pnqn�1Æ �� qn�1qn :The de�nition of � ensures that the equationx = �pn + pn�1�qn + qn�1is satis�ed. Hene x = [a0; : : : an; �℄. By Theorem 5.1.10 we get� = 2Æ � qn�1qn> 2� 1 sine qi > qi�1= 1:This implies that � is a rational number greater than 1 and it has a �nite ontinuedfration, say [b0; : : : ; bm℄: Hene x = [a0; : : : ; an; b0; : : : ; bm℄. Thus pq is a onvergent of x.�



5.1. THE ORDER FINDING ALGORITHM 495.1.4 Appendix 3: Estimating '(r)rLemma 5.1.14 The ratio '(r)r is at least log log r10 log r for r � 16.Proof: Let r =Qai=1 p�ii Qbj=1 q�jj , where p1 < p2 � � � < pa � 2 log rlog log r < q1 < q2 � � � < qb.Then '(r) = Qai=1(pi � 1)p�i�1i Qbj=1(qi � 1)q�j�1i : Note that qb1 � r. This implies b �logq r � log r: Sine q1 > 2 log rlog log r , we have b � log rlog log r�log log log r+log 2 :Hene,'(r)r = Qai=1(pi � 1)p�i�1i Qbj=1(qj � 1)q�j�1jQai=1 p�ii Qbj=1 q�ji= aYi=1 �pi � 1pi � bYj=1�1� 1qj�> 2 log rlog log rYi=2 � i� 1i � bYj=1�1� 1qj�= log log r2 log r bYj=1�1� 1qj�> log log r2 log r �1� log log r2 log r �b> log log r2 log r �1� log log r2 log r b�= log log r2 log r �1� log log r2 log r � log rlog log r � log log log r + log 2��> log log r2 log r � 1� 2E2(1� E)� where E = log log log r�log 2log log r> log log r2 log r �1� 2E2 �> log log r10 log r for r � 16: �In fat the following theorem is true.Theorem 5.1.15 limn!1'(n) log log nn = e� where  is the Euler's onstant. �The interested reader may look up Hardy and Wright [1℄ for the proof.
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Leture 6Shor's Algorithm
6.1 Fatoring to Order FindingLemma 6.1.1 Let N be an odd number with prime fatorization p�11 p�22 : : : p�mm ; m � 2.Let A �= fx 2 Z�N : (ord(x) is odd) or (ord(x) is even and xord(x)=2 = �1)g;where ord(x) = minfi � 1 : xi = 1g. If x is hosen at ramdom from Z�N, thenPrx2Z�N[x 2 A℄ � 12m�1 :Proof: 1 Let jZ�Nj = '(N) = 2`s, where s is odd (note ` � 2). Let V be the set ofsquare-roots of 1 in Z�N .Claim 6.1.2 (a) If ord(x) is odd, then xs = 1.(b) If ord(x) is even, then x2is 2 V � f1g, for some i 2 f0; 1; : : : ; `� 1g.() If ord(x) is even and xord(x)=2 = �1, then x2is = �1 for some i 2 f0; 1; : : : ; `� 1g.Proof:(a) Sine x 2 Z�N , we have ord(x)j�(N). Sine ord(x) is odd, ord(x)js.(b) and () Let ord(x) = 2`0s0 (where `0 � 1 and s0 is odd). Then, ord(x)j2`0s, butord(x) - 2`0�1s. Hene, x2`0�1s 2 V �f1g. Now, if xord(x)=2 = �1, then x2`0�1s0 = �1.Hene, x2`0�1s = �1. �1Our proof is based on the proof of orretness of Miller's primality test in Kozen's book [6, page 206℄.Nielsen and Chuang [7, Theorem A4.13, page 634℄ give a bound of 2�m. Their bound is not orret: forN = 21 = 3� 7, we have jZ�Nj = 12 and jAj = 6. Then, jAjjZ�Nj 6� 2�2.51



52 LECTURE 6. SHOR'S ALGORITHMFor i = 0; 1; : : : ; `� 1, and v 2 V , let Si;v �= fx 2 Z�N : x2is = vg: By Claim 6.1.2, wehave A � S0;1 [ `�1[i=0 Si;�1; (6.1.3)and Z�N = S0;1 [ `�1[i=0 [v2V �f1gSi;v: (6.1.4)Claim 6.1.5 All the sets appearing on the right hand side of (6.1.4) are disjoint.Proof: Consider two suh sets Si;v and Sj;w appearing above. If i = j then v 6= w andthese sets are disjoint by defnition. Hene, suppose i < j; this implies that w 6= 1. Butfor eah x 2 Si;v, we have x2i+1s = v2 = 1. This implies that x2js = 1 6= w, and thereforex 62 Sj;w. �To prove that jAj � 2�m+1jZ�Nj, we will use the isomorphismZ�N ! Z�p�11 � Z�p�22 � � � � � Z�p�mm ;j 7! (j (mod p�11 ); j (mod p�22 ); : : : ; j (mod p�mm ));whih follows from the Chinese remainder theorem.Sine pi is odd, 1 6= �1 (mod p�ii ), for i = 1; 2; : : : ; m, and the 2m elements inW = f+1;�1gm orrespond to square roots of 1 in Z�N ; of these, the only trivial squareroots are 1 = (1; 1; : : : ; 1) and �1 = (�1;�1; : : : ;�1).Claim 6.1.6 jS0;1j = jS0;�1j; (6.1.7)jSj;�1j = jSj;wj; for w 2 W and j = 0; 1; : : : ; `� 1: (6.1.8)Proof: To see (6.1.7), observe that x 2 S0;1 i� xs = 1, i� (�x)s = �1, i� �x 2 S0;�1.To prove the seond part of (6.1.8), �x j and w. We �rst show that if Sj;�1 6= ;, thenSj;w 6= ;. For, suppose b = (b1; b2; : : : ; bm) 2 Sj;�1. Then, onsider  2 Z�p�1 � Z�p�22 �� � � � Z�p�mm , de�ned by i = � 1 if wi = 1bi if wi = �1 :Clearly, 2js = w, so Sj;w 6= ;. Furthermore, the map x 7! b�1x is a bijetion betweenSj;�1 and Sj;w. Hene, jSj;�1j = jSj;wj. �Sine jW j = 2m, from (6.1.3), (6.1.4) and Claim 6.1.6 we obtain2m�1jS0;1 [ S0;�1j = j [w2W S0;wj;and for i = 0; 1; 2; : : : ; `� 1, (2m � 1)jSi;�1j = j [w2fW�f1ggSi;wj;



6.1. FACTORING TO ORDER FINDING 53whih implies2m�1jAj � 2m�1jS0;1 [ `�1[i=0 Si;�1j � jS0;1 [ `�1[i=0 [w2fW�f1ggSi;wj� jS0;1 [ `�1[i=0 [v2fV �f1ggSi;vj = jZ�N j : �The above Lemma is the main tool for analyzing the Shor's fatoring algorithm. Theruial observation is that, if we an get a nontrivial square root of unity, then we an �nda nontrivial fator of N using Eulid's G.C.D. algorithm. Lemma 6.1.1 tells us that ifwe randomly pik a number x, less than N and look at its order, with probability greaterthan 1� 12m�1 it is even and we an get a nontrivial square root of unity by raising x tothe power ord(x)=2. The lemma holds if N is odd and has at least two distint primefators. But a lassial polynomial time algorithm exists for �nding the prime numberwhih divides N , if N is a prime power. So this gives us a polynomial time fatoringalgorithm. So far it is not known whether lassial omputers an fatorize a number N inpolynomial time, even if randomness is allowed. Below is the Shor's fatoring algorithm.Shor's fatoring algorithm.Input. N1) If N is even, return 2.2) Use quantum order �nding algorithm to �nd the order of 2. If ord(2) = N � 1,onlude N is prime and stop.3) Chek if N is of the form p�; � > 1 by the subroutine Prime-power.4) Pik an element x 2 N .5) If x j N , return x.6) Use quantum order �nding algorithm to �nd the order of x.7) If ord(x) is odd then abort.8) If x ord(x)2 = �1 (mod N) then abort.9) Get a nontrivial square root of 1 (mod N), by setting y  x ord(x)2 .10) Use Eulid's G.C.D. algorithm to �nd the greatest ommon divisor of (y� 1; N)and (y + 1; N). Return the nontrivial numbers.



54 LECTURE 6. SHOR'S ALGORITHMOutput: With high probability it gives a divisor of N or tells if N is prime.Subroutine: Prime-powerInput: Integer N1 Compute y = log2N .2 For all i 2 f2; 3; : : : ; log2Ng ompute xi = yi .3 Find ui < 2xi < ui + 1 for all i 2 f2; 3; : : : ; log2Ng.4 Chek if ui j N or ui+1 j N for all i 2 f2; 3; : : : ; log2Ng. If any one of the numbersdivide N , say u, then return u. Else fail.Output: If N is a prime power of p, the subroutine \prime-power" returns p. If itis not a prime power it fails to produe any output. In O((logN)3) steps it terminates.The most ostly operation in the algorithm is the order �nding algorithm. Sine theorder �nding takes O(logN)4 time, the time taken by this fatoring algorithm is alsoO(logN)4.Remark 6.1.9 Step 1) just heks if the number N is divisible by 2. Step 2) heks ifthe number N is prime and Step 3) if N is a prime power. So after Step 3) Lemma 6.1.1is appliable.Probability of suess in Shor's algorithm is greater than probability of suess inorder �nding multiplied by the probability that the hosen element x is not in the set A,of Lemma 6.1.1. Running time of the algorithm is O((logN)4. Thus, by running thealgorithm only a onstant number of times we an get probability of suess greater than1� � for any � > 0.Exerise 6.1.10 Find a randomized polynomial time algorithm for fatoring an integerN , if '(N) is known.



Leture 7Quantum Error Correting Codes
7.1 Knill Laamme TheoremThe mathematial theory of ommuniation of messages through a quantum informationhannel is based on the following three basi priniples.1) Messages an be enoded as states and transmitted through quantum hannels.2)The output state may not be the same as the input state due to presene of noisein the hannel.3) There is a olletion of \good" states whih when transmitted through the noisyhannel leads to output states from whih the input state an be reovered with no erroror with a small margin of error.The aim is to identify the set of good states for a given model of the noisy hanneland to give the deoding proedure.

CHANNEL
input state output state

noise

� T (�)
Figure 7.1: A model of noisy quantum hannel

Let H be a �nite dimentional omplex Hilbert spae. We assume that there is a linearspae E � B(H), alled the error spae suh that for any input state � on H the output55



56 LECTURE 7. QUANTUM ERROR CORRECTING CODESstate T (�) has always the formT (�) =Xj Lj�Lyj (See Figure 7.1): (7.1.1)where Lj belongs to E for every j. (7.1.2)If the same input state is transmitted again the operators Lj's may be ompletely di�er-ent. But they always ome from the error spae E and satisfy the equationTr( kXj=1 LyjLj)� = 1: (7.1.3)The L0js may or may not depend on the density matrix � whih is transmitted throughthe noisy hannel.De�nition 7.1.4 A state � is said to have its support in a subspae S � H if Tr �ES = 1where ES is the orthogonal projetion on S.This means if we hoose an orthonormal basis (O.N.B.) e1; e2; : : : ek; ek+1; : : : ; eN forH suh that e1; e2; : : : ; ek is a O.N.B. for S then the matrix of � in this basis has theform � ~� 00 0 � where ~� is a k � k matrix. To reover the input state at the output ofthe hannel we apply a reovery operator R of the formR(T (�)) = Xj MjT (�)M yj ; (7.1.5)Xj M yjMj = I: (7.1.6)It would be desirable to have R(T (�)) = � for all �, whenever the L0s are from E andthey at on � as in (7.1.1). Of ourse this is too ambitious. We would like to ahieve thispleasant situation at least for all � with support in some `large' subspae C � H. Thenwe an enode messages in terms of states from C and reover them with the help of adeoding operation R. The idea is formalized in the following de�nition.De�nition 7.1.7 A subspae C � H is alled a E-orreting quantum ode, if there existoperatorsM1;M2; : : :Mk, suh that for every � with support in C and any L1; L2; : : : Ll 2E , with Tr(Pj LyjLj)� = 1, one hasXi;j MiLj�LyjM yi = �: (7.1.8)Remark 7.1.9 Now onsider jui 2 C. Then juihuj has support in C. Consider theequations XMiLjjuihujLyjM yi = juihuj (7.1.10)and huj Xj LyjLj! jui = 1: (7.1.11)



7.1. KNILL LAFLAMME THEOREM 57Choose any jvi 2 H suh that hu j vi = 0. Then we haveXi;j jhvjMiLjjuij2 = 0 (7.1.12), hvjMiLjjui = 0 for all jvi 2 fjuig? and every i; j: (7.1.13)Thus, MiLjjui = (u)jui 8 jui 2 C:MiLj is an operator and C is a subspae. Hene this an happen i�MiL ��C= �i(L)I ��C 8L 2 E :We state this as a proposition.Proposition 7.1.14 A subspae C � H is an E-orreting quantum ode i� there existoperators M1;M2; : : :Mk in H, suh that, PiM yiMi = I andMiL ��C= �i(L)I ��C 8L 2 E :We would like to have a haraterization of the quantum ode C without involving theM 0is. That is, a ondition entirely in terms of C and E . This is ahieved by the followingremarkable riterion due to Knill and Laamme.Theorem 7.1.15 (Knill and Laamme) A subspae C with an orthonormal basis  0; 1; : : : ;  k�1 is an E{orreting quantum ode if and only if1. h ijLy1L2j ji = 0 8 i 6= j; and all L1; L2 2 E;2. h ijLy1L2j ii is independent of i = 0; 1; : : : ; k � 1.Proof:Neessity:By the Proposition 7.1.14 we know that there must exist reovery operators R1; R2; : : : Rlsatisfying the equations PiRyiRi = I and RiL = �i(L) ;  2 C; L 2 E .Let L1; L2 2 E , then h ijLy1L2j ji = h ijLy1(Xr RyrRr)L2j ji= Xr �r(L1)�r(L2)h i j  ji= Xr �r(L1)�r(L2)Æij:SuÆieny:Let the onditions (1) and (2) hold. Consider the subspaes E 0; E 1; : : : ; E k�1. It anbe veri�ed that the orrespondene L i ! L j 8L 2 E is a salar produt preservingmap. So we an write the following table.



58 LECTURE 7. QUANTUM ERROR CORRECTING CODES 0  1 � � �  j � � �  k�1E 0 E 1 � � � E j � � � E k�1'00 '01 � � � '0j � � � '0k�1... ... � � � ... � � � ...'l�10 'l�11 � � � 'l�1j � � � 'l�1k�1Here '00; '10; : : : ; 'l�10 is an orthonormal basis for the subspae E 0. The map L 0 ! L j,for any L 2 E , is a unitary isomorphism between the subspaes E 0 and E j. SodimE j = l 8j 2 f0; 1; : : : k�1g and there exists a global unitary operator Uj, satisfyingUj'i0 = 'ij; i = 0; 1; : : : ; l�1. Sine by the �rst ondition hL1 i j L2 ji = 0 for L1; L2 2 Eand i 6= j, the subspaes E j j = 0; 1; : : : k � 1 are mutually orthogonal. Let Ei be theprojetion on the span of the ith row in the array f'ijg. Now we de�ne a unitary operatorV (i) satisfying V (i)'ij =  j for i = 0; 1; : : : ; l � 1.Let Ri = V (i)Ei for i = 0; 1; : : : ; l � 1 and Rl = El; the projetion on f'ij; 0 � i �l � 1; 0 � j � k � 1g?. It an be veri�ed that Pli=0RyiRi = I:Now onsider any  = 0 0 + 1 1 + � � �+ k�1 k�1 in C. ThenL = 0L 0 + 1L 1 + � � �+ k�1L k�1;= 0L 0 + 1U1L 0 + � � �+ k�1Uk�1L 0:Let L 0 = �0(L)'00 + �1(L)'10 + � � �+ �l�1'l�10 :Then we have UjL 0 = �0(L)'0j + �1(L)'1j + � � �+ �l�1'l�1j) EiUjL 0 = �i(L)'ij) V (i)EiUjL 0 = �i(L) j:That is, RiUjL 0 = �i(L) j for i = 0; 1; : : : ; l � 1;ElUjL 0 = 0 = RlUjL 0:Thus we have, RiL = 0�i(L) 0 + 1�i(L) 1 + � � �+ k�1�i(L) k�1= �i(L) for i 2 f0; 1; : : : ; l � 1g;and RlL = 0:i.e. RiL ��C= �i(L)I ��C, where �l(L) = 0. �Example: Let G be a �nite group with identity element e and H = L2(G), the Hilbertspae of funtions on G with hf1; f2i =Px2G f1(x)f2(x): Let E � G be alled the errorset and C � G the ode set. Let E = linfLx j x 2 Eg;



7.1. KNILL LAFLAMME THEOREM 59where (Laf)(x) = f(a�1x), lin denotes linear span andC = linf1fg j  2 Cg:It an be veri�ed that La1fbg = 1fabg.If 1 6= 2, then
1f1g; LyxLy1f2g� = 
1f1g; 1fx�1y2g�= 0 if x�1y2 6= 1 or x�1y 6= 1�12 or E�1E \ CC�1 = feg:Also, 
1fg; LyxLy1fg� = � 1 if x = y,0 otherwise.Thus 
1fg; LyxLy1fg� is independent of . Hene by Knill{Laamme theorem we see thatC is an E-orreting quantum ode if E�1E \ CC�1 = feg.Consider the model of a noisy lassial hannel shown in Figure 7.2.
CHANNEL

input output 2 C
x 2 E

x 2 E
Figure 7.2: A model of noisy lassial hannel.If E�1E \ CC�1 = feg then for all distint 1, 2, E1 \ E2 = ;. So C is an E{orreting lassial ode. If the output falls in the set E the message is deoded as. For example, set G = Z32, where Z2 = f0; 1g with addition mod 2. Let the error set Ebe f100; 010; 001g and the ode set C be f000; 111g. Then E � E = f000; 110; 011; 101gand C � C = C = f000; 111g implying (E � E) \ (C � C) = f000g:In order to formulate our next proposition we introdue some notation. Let A bea �nite abelian group with operation +, null element 0 and harater group Â. Inthe Hilbert spae H = L2(A) of omplex valued funtions on A we de�ne the unitaryoperators Ua; a 2 A; V�; � 2 Â by(Uaf)(x) = f(x+ a); (V�f)(x) = �(x)f(x):Then we have the Weyl ommutation rules:UaUb = Ua+b; V�V� = V��; UaV� = �(a)V�Ua:



60 LECTURE 7. QUANTUM ERROR CORRECTING CODESLet E � A; F � Â and letE(E; F ) = linfUaV� j a 2 E; � 2 F̂g:Our aim is to onstrut a quantum ode whih is E(E; F ){orreting by using subgroupsC1 � C2 � A. To this end, for any subgroup C � A, we de�neC? = f� j � 2 Â; �(x) = 1; 8x 2 Cg:C? is alled the annihilator of C. We have C?1 � C?2 . Clearly C?1 ; C?2 are subgroups ofthe harater group Â under multipliation. Suppose(E � E) \ C2 = f0gF�1F \ C?1 � C?2 ;and let S be the ross setion for C2=C1 in the sense that S � C2 and C2 = [a2SC1 + ais a oset deomposition (or partition) of C2 by C1{osets. Note thatS? �= f� j � 2 Â; �(a) = 1 8 a 2 Sgis a subgroup of Â. One may view C2 as a lassial E-orreting group ode in A. De�ne a(x) = (#C1)� 12 1C1+a(x); a 2 S:Theorem 7.1.16 linf a j a 2 Sg is an E(E; F )-orreting quantum ode of dimension#C2#C1 .Proof: Note that h a1 j  a2i = Æa1a2 ; a1; a2 2 S:It is enough to verify Knill-Laamme onditions forL1 = Ua1V�1 ; L2 = Ua2V�2 ; a1; a2 2 E; �1; �2 2 F:Then by the Weyl ommutation rules we haveLy1L2 = �1(a2 � a1)Ua2�a1V��11 �2 ; a2 � a1 2 E � E; ��11 �2 2 F�1F:Let a1; a2 2 S; a1 6= a2. We have for a 2 E � E; � 2 F�1F;h a1 jUaV�j a2i = (#C1)�1Xx2A 1C1+a1+a(x)�(x)1C1+a2(x): (7.1.17)The x-th term in the summation on R.H.S. of (7.1.17) is not equal to zero only ifx 2 (C1 + a1 + a) \ (C1 + a2);whih implies the existene of x1; x2 2 C1 suh thatx1 + a1 + a = x2 + a2=) a = (x2 � x1) + a2 � a1: (7.1.18)



7.1. KNILL LAFLAMME THEOREM 61In 7.1.18 L.H.S. lies in E � E and R.H.S. in C2. By hypothesis (E � E) \ C2 = f0g.Thus the x-th term vanishes if a 6= 0.Now onsider the ase a = 0. Then for a1; a2 2 S, a1 6= a2, C1 + a1 and C1 + a2are two disjoint osets and therefore the R.H.S. of (7.1.17) vanishes one again. In otherwords h a1 jUaV�j a2i = 0 8a1 6= a2; a 2 E � E; � 2 F�1F:Now let us onsider the ase a1 = a2 = b 2 S. Then L.H.S. of (7.1.17) is equal to(#C1)�1Xx2A 1C1+b+a(x) 1C1+b(x)�(x): (7.1.19)The x-th term is not equal to zero i�x 2 (C1 + b + a) \ (C1 + b) =) (C1 + a) \ C1 = ;=) a 2 C1 \ (E � E)=) a = 0:Thus the expression (7.1.19) vanishes if a 6= 0. If a = 0 then (7.1.19) is equal to(#C1)�1Xx2A 1C1+b(x)�(x) = (#C1)�1�(b)Xx2C1 �(x):If � =2 C?1 then, � is a nontrivial harater for C1 and by Shur orthogonality the R.H.S.vanishes. If � 2 C?1 , then� 2 C?1 \F�1F =) � 2 C?2 =) �(b) = 1. Thus the expression (7.1.19) is independentof b. In other words the Knill-Laamme onditions are ful�lled for the orthonormal setf a j a 2 Sg. �Theorem 7.1.20 Let C1 � C2 � A be subgroups. Consider the subgroups C?2 � C?1 � Âand the oset deomposition C?1 = [�2 ~SC?2 �with respet to the ross setion ~S. De�ne � = (#C2)� 12 1C2�; � 2 ~S:Let E � A; F � Â be suh that (E � E) \ C2 = f0g; F�1F \ C?1 � C?2 . Thenlinf � j � 2 ~Sg is an E(E; F ){orreting quantum ode of dimension (#C2)=(#C1).Proof: Let b 2 E � E; � 2 F�1F; �1; �2 2 ~S. Thenh �1 jUbV�j �2i = (#C2)�1Xx 1C2+b(x)�1(x)�2(x)1C2(x)�(x)�1(b): (7.1.21)If the x-th term in R.H.S. of equation (7.1.21) is not equal to zero, thenC2+ b \C2 6= ; =) b 2 C2 \ (E�E) =) b = 0: Thus the R.H.S. of equation (7.1.21)vanishes whenever b 6= 0 for any �1; �2 in ~S.Let b = 0. Then R.H.S. of equation (7.1.21) is(#C2)�1 Xx2C2 �1(x)�2(x)�(x): (7.1.22)



62 LECTURE 7. QUANTUM ERROR CORRECTING CODESIf �1 = �2 = � 2 ~S this beomes (#C2)�1Px2C2 �(x) whih is independent of � 2 ~S:So we onsider the ase b = 0; �1 6= �2; �1; �2 2 ~S. Then the expression (7.1.22) is notequal to zero only if �1�2� 2 C?2 . This implies � 2 C?1 \ F�1F: So by hypothesis � is inC?2 . This implies �1�2 2 C?2 . i.e., �1 and �2 lie in the same oset of C?2 in C?1 . This isimpossible. So expression (7.1.22) must be equal to zero. In other words Knill-Laammeonditions are ful�lled. �7.2 Some De�nitions7.2.1 InvariantsLet C be an E orreting quantum ode with reovery operators R1; R2; : : : Rl. SupposeU is a unitary operator suh that UEU�1 � E . De�ne, Sj = URjU�1. We haveRjL = �j(L) ; where  2 C and L 2 E .Sine ~L = U�1LU is an element of E we haveSjLU = URjU�1LU = URj ~L = �j(~L)U :In other words, if C is an error orreting quantum ode with reovery operatorsR1; R2; : : : ; Rl then for any unitary U , satisfying UEU� � E , U(C) is also E{orretingwith reovery operators S1; S2; : : : Sk, where Sj = URjU�1 for all j.De�nition 7.2.1 Two E- orreting quantum odes C1; C2, are said to be equivalent i�there exists a unitary operator U , satisfying UEU� � E , suh that U(C1) = C2.Remark 7.2.2 Finding invariants for the equivalene of E{orreting quantum odes isan important problem in the development of the subjet.Let A be a �nite set, alled an alphabet, of ardinality N .An element x inAn is alled a word of length n. A word x is also written as (x1; x2; : : : ; xn).C � An is alled an (n;M; d)A ode if,#C =M and minx;y2C;x6=y d(x;y) = d:Here, d(x;y) = #fi j xi 6= yig. This is also known as the Hamming distane betweenx and y.If A is an abelian group with + as its addition and 0 its null element thenw(x) �= #fi j xi 6= 0g;x = (x1; x2; : : : ; xn)is alled the weight of x. If C � An is a subgroup withd = min w(x); #C =M;x6=0; x2Cthen C is alled an (n;M; d)A group ode, and it is denoted by hn;M; diA. If A is theadditive group of a �nite �eld Fq of q elements (q = pm, for some prime p) and C � Fnq



7.2. SOME DEFINITIONS 63is a linear subspae of the n{dimensional vetor spae Fnq over Fq and d = minx6=0 w(x),then C is alled a linear ode over Fq with minimum distane d and written as [n; k; d℄qode, where k = dimC. When q = 2, it is simply alled an [n; k; d℄ ode (binary ode).An hn;M; diA ode is t{error orreting when t = �d�12 �.7.2.2 What is a t{error Correting Quantum Code ?Let G be a Hilbert spae of �nite dimension and H = G
n its n-fold tensor produt. Atypial example is G = C 2 , so that H is an n-qubit Hilbert spae. Consider all operatorsin H of the form X = X1 
X2 
 � � � 
Xn;where #fi j Xi 6= Ig � t:Denote by Et the linear span of all suh operators. An element X 2 Et is alled anerror operator of strength at most t. An Et-orreting quantum ode C � H is alled at{error orreting quantum ode.Remark 7.2.3 \In an n{qubit quantum omputer, if errors a�et at most t wires amongthe n wires, they an be orreted by a t{error orreting quantum ode".7.2.3 A Good Basis for EtWe shall now onstrut a \good basis" for Et � B(H). Suppose dimG = N . Considerany abelian group A of ardinality N and identify G with L2(A). We de�ne the unitaryoperators Ua, V� and Wa;� as follows(Uaf)(x) = f(x+ a) where a 2 A;(V�f)(x) = �(x)f(x) where f 2 L2(A) and � 2 Â;and Wa;� = UaV�:Then we have W(a;�)W(b;�) = �(b)Wa+b;��and TrW y(a;�)W(b;�) = (Æa;bÆ�;�)N:The family fW(a;�) j (a; �) 2 A� Âg is irreduible and the setf 1pNW(a;�) j (a; �) 2 A � Âg is an orthonormal basis for the Hilbert spae B(G) withsalar produt hX; Y i = TrXyY; X; Y 2 B(G):For (a;�) 2 An � Ân(�= (A� Â)n) de�neW(a;�) =W(a1 ;�) 
W(a2 ;�2) 
 � � � 
W(an;�n);so that W(a;�)W(b;�) = nYi=1 �i(bi)W(a+b;��)



64 LECTURE 7. QUANTUM ERROR CORRECTING CODESand n 1N n2 W(a;�) j (a;�) 2 An � Âno is an orthonormal basis for B(H) = B(G
n):De�new(a;�) = #fi j (ai; �i) 6= (0; 1)gthe weight of (a;�) in the abelian group (A � Â)n. Then fW(a;�) j w(a;�) � tg is alinear basis for the subspae Et.A subspae C � G
n is alled a quantum ode of minimum distane d, if C has anorthonormal basis  1;  2; : : : ;  k satisfying1. h ijW(a;�)j ji = 0; i 6= j; w(a;�) � d;2. h ijW(a;�)j ii is independent of i whenever w(a;�) � d,3. Either ondition (1) or ondition (2) is false, for some (a;�) with w(a;�) = d+1.Suh a quantum ode is �d�12 �-error orreting. We all it an [[n; k; d℄℄A quantum ode.7.3 Examples:7.3.1 A Generalized Shor CodeWe begin with a few de�nitions. Let A be a �nite abelian group with binary operation+ and identity element 0. Let Â denote its harater group. Let H be the Hilbert spaeL2(A)
n. Let Ua and V� denote the Weyl operators. Let Cn � An be a t-error orreting(d(Cn) � 2t+1) group ode of length n with alphabet A. Let Dn;m � (Ĉn)m be a t-errororreting group ode with alphabet Ĉn of length m.An element in Dn;m is denoted by �. Sometimes we also denote by � the m-tuple�1; �2; : : : ; �m, where eah �i is in Ĉn. De�nef�(x) = ( #C� 12n �(x) if x 2 Cn,0 otherwise.Let F� = f�1 
 f�2 
 � � � 
 f�m , where � is in Dn;m.Theorem 7.3.1 fF� j � 2 Dn;mg is a t-error orreting quantum ode inL2(A)
mn �= L2(Amn):Proof: Let (a;�) 2 Amn � Âmn suh that w(a;�) � 2t. We havehF�jUaV�jFi = Xx2Amn mYj=1 f�j(x(j) � a(j))fj (x(j))�(x): (7.3.2)Note that w(a) � 2t in Amn and w(�) � 2t in Âmn.



7.3. EXAMPLES: 65Case 1: Let a 6= 0. Then a(j) 6= 0 for some j = j0,w(a) � 2t =) w(a(j0)) � 2t: Then Cn + a(j0) \ Cn = ;. So every summand in theR.H.S. of equation (7.3.2) vanishes.Case 2: Let a = 0. Then R.H.S. of equation ( 7.3.2) redues toXx2Cmn �(x)(x)�(x):Let � 6= ; �; 2 Dn;m: Then � 2 Dm;n (a group ode), and w(�) � 2t + 1: Sinew(�) � 2t, � ��Cmn has weight � 2t. So �  � ��Cmn is nontrivial. By Shur orthogonalityrelations R.H.S. of equation (7.3.2) is equal to 0.Case 3: Let a = 0, � = . Then R.H.S. of equation (7.3.2) redues to Px2Cmn �(x)whih is independent of �.Thus the Knill-Laamme onditions are ful�lled. �7.3.2 Speialization to A = f0; 1g, m=3,n=3.Design of a 9-qubit, 1 error orreting, 2{dimensional ode.C3 = f000; 111gĈ3 has two elements,�1(000) = �1(111) = 1 (identity harater) and�2(000) = +1; �2(111) = �1:f�1 = 1p2(j000i+ j111i)f�2 = 1p2(j000i � j111i)D3;3 = f(�1; �1; �1); (�2; �2; �2)gF�1�1�1 = f
3�1F�2�2�2 = f
3�2 :Thus, we enode 0 as F�1�1�1 and 1 as F�2�2�2. The iruit for implementing the ode isshown in Figure 7.3.7.3.3 Laamme odeLaamme found the following 5-qubit 1-error orreting quantum ode.0 7! j 0i = 14f(j00000i+ j11000i+ j01100i+ j00110i+ j00011i+ j10001i)�(j01010i+ j00101i+ j10010i+ j01001i+ j10100i)�(j11110i+ j01111i+ j10111i+ j11011i+ j11101i)g
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j ij0ij0i
HHH

j0ij0ij0ij0ij0ij0iFigure 7.3:
1 7! j 1i = 14f(j11111i+ j00111i+ j10011i+ j11001i+ j11100i+ j01110i)�(j10101i+ j11010i+ j01101i+ j10110i+ j01011i)�(j00001i+ j10000i+ j01000i+ j00100i+ j00010i)gThe ode an also be written in the following way. Let a0 = a1+a2+a3+a4+x (mod 2).x 7! j xi = 14 Xa1;a2;a3;a42Z2(�1)(a0a2+a1a3+a2a4+a3a0+a4a1)ja0ija1a2a3a4iThis observation allows us to onstrut a simple iruit for implementing the Laammeode. The iruit for the Laamme ode is shown below.xa1a2a1a4 a0a1a2a3a4C(1)

a0a1a2a3a4
Z Z Z Z ZC(2)

HHHHC(3)



7.3. EXAMPLES: 67j ij0ij0ij0ij0i C(3) C(1) C(2)
Figure 7.4: Ciruit for enoding the Laamme ode.7.3.4 Example 2: Hadamard-Steane Quantum CodeConsider the following table. The ijth entry, for i; j > 1, is the inner produt of the ithentry in the �rst row and jth entry in the �rst olumn, omputed over the �eld F2 .000 001 010 011 100 101 110 111000 0 0 0 0 0 0 0 0001 0 1 0 1 0 1 0 1010 0 0 1 1 0 0 1 1011 0 1 1 0 0 1 1 0100 0 0 0 0 1 1 1 1101 0 1 0 1 1 0 1 0110 0 0 1 1 1 1 0 0111 0 1 1 0 1 0 0 1The portion inside the box is Hadamard [7; 3; 4℄ simplex ode. Let C be the set of allrow vetors.De�ne j 0i = 12p2 Xx2C jxi and j 1i = 12p2 Xx2C+(1;1;1;1;1;1;1;1) jxi:Then, linfj 0i; j 1ig is a 7-qubit single error orreting quantum ode. Note that, C [C + (1; 1; 1; 1; 1; 1; 1; 1) is a group ode of minimum distane 3.Permute the olumns to the order 4 6 7 1 2 3 5 in the table above. Then theenumerated rows an be expressed as(x1 x2 x3 x1 + x2 x1 + x3 x2 + x3 x1 + x2 + x3)where x1, x2, x3 vary in F2 . In other words we have expressed the ode as a parity hekode with the �rst three position for messages and the last four as parity heks. Thenthe Hadamard-Steane ode an be expressed asj ai = Xx1;x2;x3 jx1 + a x2 + a x3 + a x1 + x2 + a x1 + x3 + a x2 + x3 + a x1 + x2 + x3 + aiwhere a 2 f0; 1g. Put y1 = x1 + x3 + a, y2 = x2 + x3 + a, y3 = x1 + x2 + x3 + a: Thenj ai = Xy1;y2;y32f0;1g jy2 + y3 + a y1 + y3 + a y1 + y2 + y3 + a y1 + y2 + a y1 + a y2 + a y3 + ai:This shows that the ode an be implemented by the iruit shown in Figure 7.5.



68 LECTURE 7. QUANTUM ERROR CORRECTING CODESjaij0ij0ij0ij0ij0ij0i HHH j ai
Figure 7.5: Ciruit implementing the Steane-Hadamard ode.Exerise 7.3.3 Verify diretly the Knill-Laamme onditions for fj 0i; j 1ig, for singleerror orretion.7.3.5 Example 3: Codes Based on Bush MatriesLet Fq = fa1; a2; : : : ; aqg be the �eld of q = pm elements, where p is prime.Let P(t; q) = f all polynomials of degree � t with oeÆients from Fqg, a linear spaeof dimension qt+1.We enumerate the elements of P(t�1; q); t�1 � q as '0, '1, : : :, 'N�1 and onstrutthe matrix Bt of order qt � q; qt = N as follows :a1 a2 � � � aj � � � aq'0 = 0 0 0 � � � 0 � � � 0... ... ... � � � ... � � � ...'i 'i(a1) 'i(a2) � � � 'i(aj) � � � 'i(aq)... ... ... � � � ... � � � ...'N�1 'N�1(a1) 'N�1(a2) � � � 'N�1(aj) � � � 'N�1(aq)Denote the linear spae of all the row vetors in Bt also by Bt.Proposition 7.3.4 Bt is a linear ode of minimum distane q � t+ 1.Proof: Consider the i-th row in Bt, i 6= 0. 'i is a nonzero polynomial of degree � t� 1.So 'i has at most t � 1 zeroes. Thus, the weight of this row � q � t + 1. On the otherhand onsider the polynomial'(x) = (x� a1)(x� a2) � � � (x� at�1):Its zeros are exatly a1; a2; : : : at�1. Thus, the weight of the orresponding row is q�t+1.�Corollary 7.3.5 Bt is a � q�t2 �{error orreting group ode.If Et is the Hamming sphere of radius � q�t2 � with (0; : : : ; 0) as enter in Fqtq then(Et � Et) \ Bt = f0g.



7.3. EXAMPLES: 69Proposition 7.3.6 Let � 2 B?t � (F̂q )q. If � 6= 1, then w(�) � t + 1. Thus B?tis a � t2� error orreting group ode. If Ft is the Hamming sphere of radius � t2� thenF�1t Ft \B?t = f1g.Proof: Suppose w(�) = r, where 0 < r � t. Let � = (�1; �2; : : : ; �q); �i 2 F̂q , �i 6= 1 i�i 2 fi1 < i2 < � � � < irg. Write bj = aij ; j = 1; 2; : : : ; r: For arbitrary 1; 2; : : : ; r in Fqonsider the Lagrange polynomial (for interpolation)'(x) =X j (x� b1)(x� b2) � � � (x� bj )̂ � � � (x� br)(bj � b1)(bj � b2) � � � (bj � bj )̂ � � � (bj � br) ;where \̂ " indiates ommision of that term. Then ' is a polynomial of degree r�1 (�t�1) and '(bj) = j; j = 1; 2; : : : ; r: Corresponding to ' there is a row in Bt. Evaluating� on this row we get �('(a1); '(a2); : : : ; '(aq)) = rYj=1�ij (j) = 1;sine � 2 B?t . Sine j's are arbitrary, we have �ij = 18j = 1; 2; : : : ; r, a ontradition.� We an now use Theorem 7.1.16 and Theorem 7.1.20 to the ase C1 � C2 � Aq,A = Fq , as an additive group, C1 = Bt0 ; C2 = Bt; 0 < t0 < t < q: Then Bt = Bt0 � S,where S onsists of all polynomials of the forms(x) = xt0(a0 + a1x + � � �+ at�t0�1xt�t0�1):For any polynomial ' onsider the statej'i = j'(a1)'(a2) : : : '(aq)i:For any s 2 S de�ne  s = q� t02 X'2P(t0�1;q) j'i:Then Ct;t0 = linf s j s 2 Sg is a quantum ode with dim Ct;t0 = qt�t0 , whih an orret� q�t2 � ^ � t02 � errors.Remark 7.3.7 Choose t = b�q ; t0 = b�0q ; 0 < �0 < � < 1: Then, as q !1, we havelog dim Ct;t0log dim H = t� t0q = b�q � b�0qq ! (� � �0):Therefore, # errors orreted# qubits � j (1��)2 k ^ j�0q2 kq ! 1� �2 ^ �02as q !1.Then, for � = 34 , �0 = 14 we get, � � �0 = 12 and 1��2 ^ �02 = 18 . It means 50% of thequbits are used for sending the messages, 50% for error heking and up to 1212% errorsan be orreted.



70 LECTURE 7. QUANTUM ERROR CORRECTING CODES7.3.6 Quantum Codes from BCH CodesIn this example we use the elebrated BCH (Bose Chaudhuri Hoquenhem) odes toonstrut a quantum ode. We begin with a few fats from lassial oding theory. LetFnq be a vetor spae over the �nite �eld Fq with q = pm, where p is a prime. Choose and�x a primitive element � of Fqn .Let � be a yli permutation de�ned by�(a0; : : : an�1) 7! (an�1; a0; : : : ; an�2):Then a subspae C � Fnq invariant under the yli permutation � is alled a yli odeof length n. For every word w = (w0; : : : ; wn�1) 2 Fnq we assoiate the word polynomialw(x) = w0 + w1x + � � � + wn�1xn�1. If w is in C it is alled the ode word polynomial.Let Rn = Fq [x℄=(xn � 1). Then Rn an be viewed as a vetor spae over Fq and it isisomorphi to Fnq . Under the identi�ation w  w(x) the image C� of a yli ode Cin Rn is an ideal with a single generator polynomial gC . Without loss of generality wemay assume gC to be moni and therefore unique. It is known that gC is a divisor ofxn � 1. If deg(gC) = k then dim C = n � k. If gC has a string of suessive powers�a; �a+1; : : : ; �a+b�2 as its roots and 0 � a < a + b � 2 � qn � 2, then d(C) � b (whered(C) is the minimum distane of C). For any yli ode denoteC? = fx j xy = x1y1 + � � �+ xnyn = 0; 8y 2 Cg:Then C? is also a yli ode alled the dual of C.Conversely if g is a divisor of xn�1 then there exists a unique yli ode Cg generatedby g. Suppose xn � 1 = gh where g(x) = a0 + a1x+ � � �ak�1xk�1 + xk, h(x) = b0 + b1x+� � �+ bn�k�1xn�k�1+xn�k so that a0b0 = �1. De�ne ~h = b�10 (1+ bn�k�1x+ � � �+ b0xn�k).If h has a string of suessive powers �l; �l+1; : : : ; �l+m+2 as its roots then so does thepolynomial ~h whih an be written as~h = (�1)n�k(�1 : : : �n�k)�1(1� �1x) � � � (1� �n�kx)where �1; : : : ; �n�k are the roots of h in Fqn . It is known that C? = C~h and therefore itfollows that d(C?) � m. (For omplete proofs we refer to [4℄ or [3℄).Let xn � 1 = g1g2g3, d(Cg1) = d1, d(Cg3) = d3. Note that C?g1g2 = C ~g3. By Theorem5.1.10 we get a quantum ode C of dimension (#Cg1)=(#Cg1g2) = qdeg(g2). If Cg1 and Cg3are respetively t1 and t3 { error orreting odes then C an orret min(t1; t3) errors.



Leture 8Classial Information Theory
8.1 Entropy as information8.1.1 What is information ?Let us onsider a simple statistial experiment of observing a random variable X, whihtakes one of the values x1; x2; : : : xn with respetive probabilities p1; p2; : : : pn. Whenwe observe X we gain some information beause the unertainty regarding its value iseliminated. So the information gained is the unertainty eliminated. We wish to havea mathematial model whih gives us a measure of this information gained. A funtionwhih measures this information gained or the unertainty assoiated with a statistialexperiment must depend only on the probabilities pi and it should be symmetri. Thisis based on the intuition that hanging the names of the outomes does not hange theunertainty assoiated with the random variable X.The desirable properties of a funtion H whih measures the unertainty assoiatedwith a statistial experiment are listed below.1) For eah �xed n, H(p1; p2; : : : ; pn;n) is a nonnegative symmetri funtion of p1, p2,: : :, pn.2)H(12 ; 12 ; 2) = 1: This is to �x the sale of the measurement. One an look at theinformation obtained by performing one of the simplest statistial experiments. i. e.tossing an unbiased oin and observing the outome. An outome of this experiment issaid to give one unit of information.3) H(p1; p2; : : : ; pn;n) = 0 i� one of the pi's is 1. This orresponds to the ase whenthere is no unertainty in the outome of the experiment.4) Let X and Y be two independent statistial experiments. Let XY denote theexperiment where the experiments X and Y are performed together and the output isthe ordered pair of the outomes of X and Y . Then H(XY ) = H(X) +H(Y ):5) H(p1; p2; : : : ; pn;n) attains its maximum when pi = 1n ; 8i 2 1; 2; : : : n. i.e. we gainmaximum information when all possible outomes are equally likely.6) H(p1; p2; : : : ; pn; 0;n+ 1) = H(p1; p2; : : : ; pn;n).7) H(p1; p2; : : : pn;n) is ontinuous in p1; : : : pn: This is a natural ondition beause we71



72 LECTURE 8. CLASSICAL INFORMATION THEORYwould like to say that, if two statistial experiments have the same number of possibleoutomes and their assoiated probabilities are lose, then the information ontained ineah of them should also be lose.Let H0 = �Pnj=0 pj log2 pj. This funtion is also known as the entropy funtion. Itan be veri�ed that this funtion satis�es all the above desired properties.Let X; Y be two statistial experiments in whih the outomes of X and Y arex1; : : : ; xn and y1; : : : ; ym respetively. Suppose Pr(X = xi) = pi, Pr(Y = yj j X = xi) =qij, Pr(Y = yj) = qj. Then Pr(X = xi; Y = yj) = piqij. Let H(qi1; : : : ; qim) = Hi(Y ).We de�ne onditional entropy as H(Y j X) = Pni=1 piHi(Y ) i.e. the entropy of Y onknowing X.Exerise: Verify that H0 de�ned earlier satis�es the following equality.H0(XY ) = H0(X) +H0(Y j X): (8.1.1)This an be interpreted as follows: The total information obtained by performing theexperiments X and Y together is equal to the sum of the information obtained by per-forming X and the information left in Y after knowing the outome of X.This seems to be a reasonable property that the funtion H should have. Notethat Property 4) is a speial ase of equation ( 8.1.1). If we replae Property 4) bythe hypothesis, H(XY ) = H(X) + H(Y j X) then there is a unique funtion whihsatis�es all the above properties. Hene H0 is the only andidate as a measure of entropy.From now onwards we use H to denote the measure of entropy and H(P ) to denoteH(p1; p2; : : : ; pn;n):Note: If Property 4) is not hanged then there an be other funtions whih satisfyproperties 1) to 7). See [10℄ for other measures of entropy.The entropy funtion H has several important properties. Some of them are listed inthe following exerises.Exerise 8.1.2 Show that H(XY ) � H(X).Mutual information H(X : Y ) of two statistial experiments is de�ned asH(X : Y ) = H(X) +H(Y )�H(XY ) = H(X)�H(X j Y ):It is the information about X gained by observing Y .Exerise 8.1.3 Show that H(Y : X) � 0, where X and Y are two statistial experi-ments.Exerise 8.1.4 Let X; Y; Z be three statistial experiments. Then show that the in-equality H(X j Y ) � H(X j Y Z) holds.Exerise 8.1.5 (Sub additivity) Show that H(XY ) � H(X) +H(Y ), where X and Yare two statistial experiments.Exerise 8.1.6 (Strong subadditivity) Show thatH(XYZ) +H(Y ) � H(XY ) +H(Y Z);



8.2. A THEOREM OF SHANNON 73where X; Y and Z are three statistial experiments. Equality holds i� fZ; Y;Xg is aMarkov hain.The following identity is also very useful.Theorem 8.1.7 (Chain rule for onditional entropy)H(X1; : : :Xn j Y ) = H(X1 j Y ) +H(X2 j Y X1) + � � �+H(Xn j Y X1 : : : Xn�1)Proof: We prove by indution.Base ase: n=2.H(X1X2 j Y ) = H(X1X2Y )�H(Y )= H(X1X2Y )�H(X1Y ) +H(X1Y )�H(Y )= H(X2 j X1Y ) +H(X1 j Y )= H(X1 j Y ) +H(X2 j X1Y )Indution hypothesis: For all n 2 f2; 3; : : : kgH(X1; : : :Xn j Y ) = H(X1 j Y ) +H(X2 j Y X1) + � � �+H(Xn j Y X1 : : : Xn�1)Indution step:H(X1; : : :Xk+1 j Y ) = H(X1 j Y ) +H(X2 : : :Xk+1 j Y X1) (by base ase)= H(X1 j Y ) +H(X2 j Y X1) + � � �+H(Xk+1 j Y X1 : : :Xk)(by indution hypothesis) �Exerise: (Data proessing inequality) Let X ! Y ! Z be a Markov hain. ThenH(X) � H(X : Y ) � H(X : Z):Exerise: (Data pipeline inequality) Let X ! Y ! Z be a Markov hain. ThenH(Z) � H(Z : Y ) � H(Z : X):8.2 A Theorem of ShannonLet A be an alphabet of size N . Denote by S(A) the free semigroup generated by A.Any element W 2 S(A) an be expressed as W = ai1ai2 : : : ain, where aij 2 A for eahj. We say that W is a word of length n. Let B be another alphabet, say of size M .Any map C : A ! S(B) is alled a ode and any word in the image of C is alled aodeword. Extend C to a map ~C : S(A)! S(B) by putting ~C(W ) = ~C(ai1ai2 : : : ain) =C(ai1)C(ai2) : : : C(ain): We say that C is uniquely deipherable if ~C is injetive (or oneto one). C is alled an irreduible ode if no ode word of C is an extension of anotherode word. An irreduible ode is uniquely deipherable. Indeed, in suh a ase we anreover a word W in S(A) from its image ~C(W ) by just reading ~C(W ) left to right.



74 LECTURE 8. CLASSICAL INFORMATION THEORYTheorem 8.2.1 Let A = fa1; : : : ; aNg and B = fb1; : : : ; bMg be two alphabets. Let C :A! S(B) be an irreduible ode. Let the lengths of the words C(a1); C(a2); : : : ; C(aN),be n1; n2; : : : nN , respetively. ThenM�n1 +M�n2 + � � �M�nN � 1: (8.2.2)Conversely, if n1; n2; : : : nN are nonnegative integers satisfying this inequality then thereexists an irreduible ode C : A ! S(B) suh that C(ai) has length ni for eah i =1; 2; : : : ; N:Proof: Let C : A ! S(B) be an irreduible ode with L = maxi ni. Denote by wi thenumber of ode words of length i.Neessity :Sine there an be at most M words of length 1 we havew1 � MSine C is irreduible, all words of length 2 whih are extensions of the ode words oflength 1, annot appear in the image of C. This givesw2 �M2 � w1MContinuing this way we getwL � ML � w1ML�1 � � � � � wL�1MThe last inequality an be rewritten asw1M�1 + w2M�2 + � � �+ wLM�L � 1: (8.2.3)SuÆieny :We pik any w1 words of length 1. Then we pik any w2 words of length 2 whih are notextensions of the w1 words of length 1 already piked. This is possible beause inequality(8.2.3) is satis�ed. This way we keep piking words of required lengths. �Suppose the letters ai; i = 1; 2; : : : ; n of the alphabet A are piked with probabilitiespi, i = 1; 2; : : : ; n respetively. Then the expeted length of the ode is PNi=1 pini, whereni is the length of C(ai).Let qj = M�njPNi=1Mni and l(C) = NXi=1 piniBy using the inequality \arithmeti mean is greater than or equal to geometri mean"we get Y( qjpj )pj �Xj pj( qjpj ) =Xj qj = 1:Taking logarithm on both sides and using (8.2.3)`(C) � �P pi log pilog2M



8.2. A THEOREM OF SHANNON 75Hene the average length of an irreduible ode must be at least �P pi log pilog2M .Let nj be an integer between � log2 pjlog2M and � log2 pjlog2M + 1 for all j 2 f1; 2; : : : ng. ThenPjM�nj � Pj pj � 1. By the above disussion we know that an irreduible ode C 0exists with length of C 0(ai) equal to mi. The expeted length of this ode word is`(C 0) =Xj njpj � �P pj log2 pjlog2M + 1:Theorem 8.2.4 (Sardinas-Patterson,1953) If a ode is uniquely deipherable thenNXj=1 M�nj � 1:Proof: Let wj = #fi j ni = jg. Then the desired inequality an be rewritten asLXj=1 wjM�nj � 1 where L = max(n1; n2; : : : ; nN):Let Q(x) = PLj=1wjxj and let N(k) denote the number of B words of length k. Thenwe have the following reursive relation.N(k) = w1N(k � 1) + w2N(k � 2) + � � �+ wLN(k � L); (8.2.5)where N(0) = 1 and N(j) = 0 if j < 0. Consider the formal power seriesF (x) = 1Xk=0 N(k)xk:We know that N(k) � Mk. Hene the formal series onverges in the ase jxj < M�1:From (8.2.5) we have F (x)� 1 = Q(x)F (x)) F (x) = 11�Q(x) :F (x) is analyti in the dis (jxj < M�1) and 1�Q(x) > 0 when jxj < M�1. Therefore,by ontinuity we have, Q(M�1) � 1. This is the required inequality. �Corollary 8.2.6 Let A and B be as in Theorem 8.2.1. Suppose the letters a1; a2; : : : ; aNare piked with probabilities p1; p2; : : : pN respetively. Then for any uniquely deipherableode C from A to S(B) one has l(C) � �P pi log pilog2M :Thus, Theorem 8.2.4 implies that orresponding to any uniquely deipherable odeC : A ! S(B) with length of ode words n1; n2; : : : ; nN there exists an irreduible odeC 0 : A! S(B) with lengths of ode words n1; n2; : : : ; nN .



76 LECTURE 8. CLASSICAL INFORMATION THEORYRemark 8.2.7 Suppose an i.i.d. sequene X1; X2; : : : of letters from A omes from asoure with Pr(Xj = ai) = pi. Then Pr((X1X2 : : :Xn = ai1ai2 : : : ain) = pi1pi2 : : : pin andH(X1X2 : : :Xn) = nH(p1; p2; : : : ; pN):Now onsider bloks of length n. The new alphabet is An. Enode C : a! C(a), wherea = ai1ai2 : : : ain and C(a) 2 S(B), in a uniquely deipherable form, so that the followinginequalities hold.nH(p1; p2; : : : ; pN)log2M �Xa p(a)`(C(a)) < nH(p1; p2; : : : ; pN)log2M + 1:This implies ����Pa p(a)`(C(a))n � H(p1; p2; : : : ; pN)log2M ���� < 1n (8.2.8)In this blok enoding proedure, the expeted length of an enoded blok is`(C) =Xa p(a)`(C(a)):The ratio of expeted length of an enoded blok and the size of the a blok, namelyPa p(a)`(C(a))n , is alled the ompression oeÆient. Equation (8.2.8) tells us that, as ninreases the ompression oeÆient tends to H(p1;p2;:::;pN )log2M .8.3 Stationary SoureWe onsider a disrete information soure I whih outputs elements xn 2 A, n = 0;�1;�2, : : : where A is a �nite alphabet. Thus a `possible life history' of the output an beexpressed as a bilateral sequenex = (: : : ; x�1; x0; x1; x2; : : :); xn 2 A: (8.3.1)Any set of the form�x j x 2 AZ; xt1 = a1; : : : ; xtn = an	 = [a1 : : : an℄t1;t2;:::;tnis alled ylinder with base a1; a2; : : : ; an at times t1 < t2 < � � � < tn. Consider thesmallest �-algebra FA ontaining suh ylinders. Any probability measure � on theBorel spae (AZ;FA) is uniquely determined by the values of � on the ylinders. Theprobability spae (AZ;FA; �) is alled a disrete time random proess.Consider the shift transformation T : AZ! AZ de�ned by Tx = y where yn = xn�1for all n 2 Z. If the probability measure � is invariant under T we say that (AZ;FA; �)is a stationary information soure and we denote it by [A; �℄: For suh a soure�([a1a2 : : : an℄t1;t2;:::;tn) = �([a1a2 : : : an℄t1+1;t2+1;:::;tn+1)



8.3. STATIONARY SOURCE 77The information emitted by suh a soure during the time period t, t+1; : : :, t+n�1is also the information emitted during the period 0; 1; : : :, n� 1 and is given byHn(�) = �XC �(C) log�(C):where the summation is over all ylinders based on a0; a1, : : : ; an�1 at times 0, 1, 2, : : : ;n � 1; aj varying in A. We all Hn(�)n as the rate at whih information is generated bythe soure during [0; n� 1℄. Our next result shows that this rate onverges to a limit asn!1.Theorem 8.3.2 For any stationary soure [A; �℄ the sequene Hn(�)n monotonially de-reases to a limit H(�).Proof: For any a0; a1; : : : ; an�1 2 A we write[a0a1 : : : an�1℄ = [a0a1 : : : an�1℄0;1;2;:::;n�1:Consider the output during [0; n� 1℄ as a random variable. Then we an expressHn+1(�) = �E (log �[x�n; x�(n�1); : : : ; x0℄)Hn(�) = �E (log �[x�n; x�(n�1); : : : ; x�1℄)where the expetation is with respet to �. We now show that the sequene Hn+1(�)�Hn(�) is monotoni dereasing. Let A, B and C be shemes determined by the ylinders[x0℄, [x�n; x�(n�1); : : : ; x�1℄ and [x�(n+1)℄ respetively. Then the joint sheme BC is givenby the ylinder [x�(n+1); x�n; : : : ; x�1℄. Then we haveH(A j B) = Hn+1(�)�Hn(�) andH(A j BC) = Hn+2(�)�Hn+1(�):By using the fat H(A j BC) � H(A j B) we getHn+2(�)�Hn+1(�) � Hn+1(�)�Hn(�):Also H2(�) � 2H1(�): Thus the sequene H1(�); H2(�)�H1(�); : : : ; Hn(�)�Hn�1(�); : : :is monotoni dereasing.Sine Hn(�)n = H1(�) + (H2(�)�H1(�)) + � � �+ (Hn(�)�Hn�1(�))n ;it follows that Hn(�)n is monotoni dereasing. But Hn(�)n is bounded from below. Henelimn!1 Hn(�)n exists. �
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Leture 9Quantum Information Theory
9.1 von Neumann EntropyFollowing the exposition of quantum probability in hapter 1 we now replae the lassialsample spae 
 = f1; 2; : : :Ng by a omplex Hilbert spae H of dimension N and theprobability distribution p1; p2 : : : pN on 
 by a state �, i.e., a nonnegative de�nite operator� of unit trae. Following von Neumann we de�ne the entropy of a quantum state � bythe expression S(�) = �Tr(� log �) (9.1.1)where the logarithm is with respet to the base 2 and it is understood that the funtionx log x is de�ned to be 0 whenever x = 0. We all S(�) the von Neumann entropy of �.If �1; �2; : : : ; �N are the eigenvalues of � (inlusive of multipliity) we haveS(�) = �Xi �i log�i: (9.1.2)If � is the diagonal matrix diag(�1; : : : ; �N) then S(�) = H(P ) = �Pi pi log pi.9.2 Properties of von Neumann entropy1) 0 � S(�) � log2 d, where d is the dimension of the Hilbert spae H. S(�) = 0 if andonly if � is pure, i.e., � =j ih j for some unit vetor j i in H. S(�) = log2 d if and onlyif � = d�1I.2) For any unitary operator U , S(U�U y) = S(�):3) For any pure state j i, S(j ih j) = 0:Note that property 3) is already ontained in property 1).Suppose HA
HB desribes the Hilbert spae of a omposite quantum system whoseonstituents are systems A and B with their states oming from the Hilbert spaes HAand HB respetively. For any operator X on H we de�ne two operators XA and XB on79



80 LECTURE 9. QUANTUM INFORMATION THEORYHA and HB respetively byhujXAjvi = Xj hu
 fjjXjv 
 fji (9.2.1)hu0jXBjv0i = Xi hei 
 u0jXjei 
 v0i (9.2.2)for all u; v 2 HA, u0; v0 2 HB, feig, ffjg being orthonormal bases in HA, HB respetively.Note that the right side of (9.2.1) and (9.2.2) are sesquilinear forms on HA and HB, andtherefore the operators XA and XB are uniquely de�ned. A simple algebra shows thatXA and XB are independent of the hoie of orthonormal bases in HA and HB. We writeXA = TrB X, XB = TrAX. TrA and TrB are alled the operators of relative trae on theoperator variable X. Note that TrXA = TrXB = TrX. If X is nonnegative de�nite soare XA and XB. In partiular, for any state � of the omposite system �A and �B arestates on HA and HB respetively. We all them the marginal states of �.Let jiAi, jjBi, i = 1; 2; : : : ;M ; j = 1; 2; : : : ; N be orthonormal bases for HA, HBrespetively. Then fjiAijjBi; 1 � i � M; 1 � j � Ng is an orthonormal basis forH = HAB = HA 
HB and hene any joint pure state j i an be expressed asj i =Xi;j aijjiAijjBi: (9.2.3)The M �N matrix A = [aij℄ an be expressed as[aij℄ = U � D 00 0 �Vwhere U is a unitary matrix of order M �M , V is a unitary matrix of order N �N andD = diag(s1; s2; : : : ; sr), s1 � s2 � � � � � sr � 0, r being the rank of [aij℄. It followsthat s1; s2; : : : ; sr are positive eigenvalues of the matries pAyA and pAAy, alled thesingular values of A.De�ne the vetors j�iAi = MXk=1 ukijkAi; 1 � i �Mj�jBi = NXl=1 vjljlBi; 1 � j � Nwhere U = [uki℄, V = [vjl℄. Then (9.2.3) beomesj i = rXi=1 sij�iAij�iBi: (9.2.4)Here j�1Ai; j�2Ai; : : : ; j�rAi and j�1Bi; j�2Bi; : : : ; j�rBi are orthonormal sets in HA and HB ofsame ardinality and s1; s2; : : : ; sr are the singular values of A. The deomposition of j iin the form (9.2.4) is alled the Shmidt deomposition of j i.4) Let j
ih
j be a pure state for AB and let �A and �B be its marginal states. ThenS(�A) = S(�B):



9.2. PROPERTIES OF VON NEUMANN ENTROPY 81Proof: By Shmidt deomposition we know that if j i is a pure state for the ompositesystem, AB; then there exist orthonormal states jiAi for system A and orthonormalstates jiBi for system B suh that j i = Pi �ijiAijiBi, where �i's are nonnegative realnumbers satisfyingPi �2i = 1. So we an write j
ih
j =P�i�jjiAihjAj 
 jiBihjBj: Thus�A = P�2i j iAihiA j and �B = P�2i j iBihiB j Hene the eigenvalues of �A and �B aresame. Therefore by ( 9.1.2) we have S(�A) = S(�B): �5) Let �1; �2; : : : ; �n be states with mutually orthogonal support and let p1; p2; : : : ; pn bea probability distribution. ThenS(Xi pi�i) = H(P ) +Xi piS(�i); (9.2.5)where H(P ) = �P pi log pi:Proof: Let �ji and jeji i be the eigenvalues and orresponding eigenvetors of �i. ThenP pi�i has eigenvalues pi�ji with respetive eigenvetors jeji i: Thus,S�Xi pi�i� = �Xi;j pi�ji log pi�ji= �Xi pi log pi �Xi piXj �ji log�ji= H(P ) +Xi piS(�i) �An immediate onsequene of property 5) is the following.Corollary 9.2.6 (joint entropy theorem) Let (p1; p2; : : : ; pn) be a probability distribution,fjii; i = 1; 2; : : : ; ng an orthonormal set of states in HA and f�i; i = 1; 2; : : : ; ng a set ofdensity operators in HB. ThenS(Xi pijiihij 
 �i) = H(P ) +Xi piS(�i):6) The following theorem shows that the orrespondene �! S(�) is ontinuous.Theorem 9.2.7 (Fannes' inequality) Suppose � and � are density matries suh thatthe trae distane between them satis�es Tr j�� �j < 1e . ThenjS(�)� S(�)j � Tr j�� �j log d+ �(Tr j�� �j);where d is the dimension of the Hilbert spae, and �(x) = �x log x:Proof: Let r1 � r2 � � � � � rd and s1 � s2 � � � � � sd be the eigenvalues of � and �respetively. By the spetral deomposition we an write � � � = Q� R, where Q andR are positive operators with orthogonal support, so T (�; �) = Tr(R) + Tr(Q). De�ningV = R + � = Q + �; we get Tr(� � �) = Tr(R) + Tr(Q) = Tr(2V ) � Tr(�) � Tr(�):Let t1 � t2 � � � � � td be the eigenvalues of V . By the variational priniple for the itheigenvalue it follows that ti � max(ri; si). Hene 2ti � ri + si + jri � sij andTr j�� �j �Xi jri � sij (9.2.8)



82 LECTURE 9. QUANTUM INFORMATION THEORYWhen jr � sj � 1e , from mean value theorem it follows that j�(r)� �(s)j � �(jr � sj).Sine jri � sij � 1e for all i, it follows thatjS(�)� S(�)j = �����Xi (�(ri)� �(si))����� �Xi �(jri � sij):Setting � =Pi jri � sij and observing that�(jri � sij) = ��(jri � sij =�)� jri � sij log(�);we obtain jS(�)� S(�)j � �X �(jri � sij =�) + �(�) � � log d+ �(�):By ( 9.2.8) and monotoniity of �(:) on the interval [0; 1=e℄, we getjS(�)� S(�)j � Tr j�� �j log d+ �(Tr j�� �j): �7) For any two quantum states �, � we de�ne the relative entropy S(�jj�) of � withrespet to � byS(�jj�) = � Tr � log �� Tr � log � if supp � � supp�,1 otherwise. (9.2.9)Theorem 9.2.10 (Klein's inequality) S(�jj�) � 0, where equality holds i� � = �.Proof: Let the eigen deompositions of the states � and � be given by � =Pi pi j iihi j,� =Pj qj jjihj j. Then we haveS(�jj�) = X pi log pi �Xhij� log�jii= X pi log pi �Xi;j pi jhi j jij2 log qjWe may assume S(�jj�) to be �nite. Sine � log x is a onvex funtion in the interval[0; 1℄ and Pj jhi j jij2 = 1, we have�Xj jhi j jij2 log qj � � logXj jhi j jij2 qjPutting ri =Pj jhi j jij2 qj and observing that Pi ri = 1, we haveS(�jj�) � �Xi pi log ripi � 0: �8) Let �AB be a state in HA 
 HB with marginal states �A and �B. We denote byS(A), S(B) and S(AB) the von Neumann entropy of �A, �B and �AB respetively. Thequantum mutual information of the systems A and B is de�ned asS(A : B) = S(A) + S(B)� S(AB):



9.2. PROPERTIES OF VON NEUMANN ENTROPY 83Theorem 9.2.11 S(A : B) � 0Proof: Observe that S(A) = �Tr �A log �A = �Tr �AB log(�A 
 IB): Substituting in theexpression for S(A : B) we getS(A : B) = �Tr �AB(log �A 
 IB + log IA 
 �B) + Tr �AB log �AB= S(�ABjj�A 
 �B)� 0 �Let �AB be a state in HA 
 HB with marginal states �A and �B. The onditionalentropy of the state �A given the state �B is de�ned asS(A j B) = S(AB)� S(B):Note that the state �AB may be a pure state and the state �B an impure state. SoS(A j B) an be less than zero.9) Let A be a quantum system with Hilbert spae HA. By a projetive measurement wemean a family of projetion operators P1; P2; : : : ; Pn in HA satisfying nPi=1Pi = I: Whensuh a measurement is made in a state � the outome of the measurement is j withprobability Tr �Pj. Aording to ollapse postulate 1.3 if the outome is j the stateollapses to Pj�PjTr �Pj , Thus the post measurement state, ignoring the individual outome, isequal to Pj (Tr �Pj) Pj�PjTr �Pj =Pj Pj�Pj.Theorem 9.2.12 Let � be the state of a quantum system and let P1; P2; : : : ; Pn be aprojetive measurement and let �0 =Pj Pj�Pj. Then S(�0) � S(�) and equality holds i��0 = �.Proof: 0 � S(�jj�0)= Tr � log �� Tr � log �0= Tr � log �� Tr(Xi Pi� log �0)= Tr � log �� TrXj Pj�(log �0)Pj= Tr � log �� TrXj Pj�Pj(log �0)= S(�0)� S(�) �By a generalized measurement we mean a set of operators L1; L2; : : : ; Ln satisfyingnPi=1LyiLi = I. If � is a state in whih suh a generalized measurement is made, theprobability of the outome i is Tr �LyiLi and the post measurement state is Li�LyiTr �LyiLi . Thus



84 LECTURE 9. QUANTUM INFORMATION THEORYthe post measurement state, ignoring the individual outome, isX(Tr �LyiLi) Li�LyiTr �LyiLi =Xi Li�Lyi :Remark 9.2.13 A generalized measurement may derease the entropy.Example: Let L1 = j0ih0j and L2 = j0ih1j. Note that Ly1L1 + Ly2L2 = I: Let � =pj0ih0j+(1�p)j1ih1j. Then S(�) = �p log p� (1�p) log(1�p). Let � be measured usingthe measurement operators L1 and L2. The resulting state is �0 = L1�Ly1+L2�Ly2 =j0ih0 j.This implies S(�0) = 0.10)Theorem 9.2.14 Let �AB be a state in HA
HB with marginal states �A and �B. Thenthe following inequalities hold.1) S(AB) � S(A) + S(B),2) S(AB) � jS(A)� S(B)j :The �rst inequality is known as the sub-additivity inequality for the von Neumann en-tropy. The seond is known as the triangle inequality or the Araki-Lieb inequality.Proof: The �rst inequality follows from Klein's inequality, S(�) � �Tr � log�: Let � =�AB and � = �A 
 �B. Then�Tr(� log �) = �Tr(�AB(log �A + log �B))= �Tr(�A log �A)� Tr(�B log �B)= S(A) + S(B):Therefore we have S(AB) � S(A)+S(B). From Klein's theorem it follows that equalityholds i� �AB = �A 
 �B.To prove the triangle inequality, we introdue a referene system R suh that �ABRis a pure state in HA 
HB 
HR. Then by sub-additivity we haveS(R) + S(A) � S(AR):Sine �ABR is a pure state we have S(AR) = S(B) and S(R) = S(AB). Substituting weget S(AB) � S(B)� S(A):By symmetry we get the seond inequality. �Exerise 9.2.15 Let �AB = Pi �ijiihij be the spetral deomposition for �AB. Then,show that S(AB) = S(B)�S(A) i� the operators �Ai = TrB(jiihij) have a ommon eigenbasis, and the operators �Bi = TrA(jiihij) have orthogonal support.11) S(�) is onave in �.



9.2. PROPERTIES OF VON NEUMANN ENTROPY 85Theorem 9.2.16 Let �1; �2; : : : ; �n be states and let p1; p2; : : : pn be a probability distri-bution. Then S(Xi pi�i) �Xi piS(�i):Proof: Let �i's be the states in HA. Consider an auxiliary Hilbert spae HB, whose statespae has an orthonormal basis jii orresponding to the index i of the density operators�i. Let a joint state on HA 
HB be de�ned by�AB =Xi pi�i 
 jiihij:Note that S(AB) = H(P ) +P piS(�i), by the joint entropy theorem (Corollary 9.2.6).�A =P pi�i ) S(�A) = S(P pi�i):�B =P pijiihij ) S(�B) = H(P ):By sub-additivity we have, S(�A) + S(�B) � S(�AB):Substituting we get S(P pi�i) +H(P ) � H(P ) +P piS(�i): �12)Theorem 9.2.17 P piS(�i) � S(P pi�i) � H(P ) +P piS(�i):Proof: First let us onsider the ase when �i = j iih ij for all i. Let �i's be the states inHA and let HB be an auxiliary Hilbert spae with an orthonormal basis jii orrespondingto the index i of the probabilities pi. Let �AB =jABihAB j where jABi =Pppij iijii.In other words �AB = Pi;jppipjj iih jj 
 jiihjj. Sine �AB is a pure state we haveS(A) = S(B) = S(Pi pij iih ij): After performing measurement on the state �B in thejii basis, the state of the system will be �B0 =Pi pijiihij: But, projetive measurementsnever derease entropy and using the fat S(�i) = 0 we getS(A) � H(P ) +Xi piS(�i):Note that the equality holds i� �B = �B0 and this ours i� j ii0s are orthogonal. Nowwe an prove the mixed state ase.Let �i = Pi pijjeijiheijj be an orthonormal deomposition for the state �i. Let � =Pi;j pipijjeijiheijj. Applying the result for the pure state ase and observing thatPj pij =1 for all i, we get S(�) � �Xi;j pipij log(pipij)= Xi pi log pi �Xi piXj pij log pij= H(P ) +Xi piS(�i): �



86 LECTURE 9. QUANTUM INFORMATION THEORYThe sub-additivity and the triangle inequality for two quantum systems an be ex-tended to three systems. This gives rise to a very important and useful result, known asthe strong sub-additivity. The proof given here depends on a deep mathematial resultknown as Lieb's theorem.Let A;B be bounded operator variables on a Hilbert spae H. Suppose the pair(A;B) varies in a onvex set C. A map f : C ! R is said to be jointly onvex iff(�A1 + (1� �)A2; �B1 + (1� �)B2) � �f(A1; B1) + (1� �)f(A2; B2):for all 0 � � � 1, (Ai; Bi) 2 C, i = 1; 2:Now we are ready to state the next property.13)Theorem 9.2.18 Relative entropy is jointly onvex in its arguments.Let H1 and H2 be two �nite dimensional Hilbert spaes. Let � be a map from B(H1) toB(H2) whih satis�es �(XyX) � �(X)y�(X):In our ase � will be a star homomorphism. Let Ti, Si, i 2 f1; 2g be positive operators inHi, i = 1; 2. The index i orresponds to the Hilbert spae Hi. To prove Theorem 9.2.18we need the following lemma. This is also known as Lieb's inequality.Lemma 9.2.19 If TrXT1 � Tr�(X)T2 and TrXS1 � Tr�(X)S2 and Ti; i = 1; 2 areinvertible then Tr�(Xy)St2�(X)T 1�t2 � TrXySt1XT 1�t1 (9.2.20)Observe that (9.2.20) is true when the parameter t is equal to 1 or 0. We need toshow that the onlusion of (9.2.20) holds even when t is a real number in the range(0; 1): So Lieb's inequality is an interpolation inequality. To prove Lieb's inequality weneed the following results.Lemma 9.2.21 The following equation is true.xt = 1�(t; 1� t) Z 10 ��t�1 � �t(�+ x)�1� d�: (9.2.22)Proof: We �rst perform the substitution 1 + �x = 1u . Then,1�(t; 1� t) Z 10 ��t�1 � �t(�+ x)�1� d�= 1�(t; 1� t) Z 01 "xt�1 �1� uu �t�1 � xt�1� uu �t �ux�#�� xu2� du= xt�(t; 1� t) Z 10 (1� u)t�1u�tdu= xt: �



9.2. PROPERTIES OF VON NEUMANN ENTROPY 87Lemma 9.2.23 Let 0 < t < 1 and let A, B be two positive operators suh that A � B.Then At � Bt.Proof: A � B) (�+ A)�1 � (�+B)�1) �t(�+ A)�1 � �t(�+B)�1) �t�1 � �t(�+ A)�1 � �t�1 � �t(�+B)�1Thus by spetral theorem and Lemma 9.2.21 we haveAt � Bt: �Lemma 9.2.24 Let A = � A11 A12A21 A22 �be a stritly positive de�nite matrix where A11 and A22 are square matries. Then A11and A22 are also stritly positive de�nite and � A11 A12A21 A22 ��1!11 > A�111 :Proof: Note that� A11 A12A21 A22 ��1 = � (A11 � A12A�122 A21)�1 �(A11 � A12A�122 A21)�1A12A�122�(A22 � A21A�111 A12)�1A21A1111 (A22 � A21A�111 A12)�1 � :Therefore (A�1)11 = (A11 � A12A�122 A21)�1:Sine A12A�122 A21 is a positive operator we have (A�1)11 � A�111 . �Lemma 9.2.25 Let X be a positive operator in a �nite dimensional Hilbert spae H0and let V be a ontration map. Then(V yXV )t � V yX tV:Proof: Observe that the lemma is true when V is unitary. LetU = � V p1� V V y�p1� V yV V y � :Note that, sine V is a ontration map, p1� V V y and p1� V yV are well de�ned andU is unitary.



88 LECTURE 9. QUANTUM INFORMATION THEORYLet P be the map P : H0 � H0 ! H0 whih is projetion on the �rst o-ordinate.Then V = PUP jH0 . By Lemma 9.2.24 we have(�IH0 + V yXV )�1 = (�IH0 + PU yPXPUP jH0)�1� P (�I + U yPXPU)�1P jH0= PU y(��1P? + P (�+X)�1P )UP jH0= ��1PU y(I � P )UP jH0 +V y(�+X)�1V= ��1(I � V yV ) + V y(�+X)�1V:This implies 1�(1; 1� t) Z 10 �t�1 � �t(�I + V yXV )�1d�� 1�(1; 1� t) Z 10 �t�1 � �t(��1(I � V yV ) + V y(�+X)�1V )d�By applying Lemma 9.2.21 we get(V yXV )t � V yX tV:This ompletes the proof. �Remark: Lemma 9.2.25 holds even when the ontration V is from one Hilbert spae H1to another Hilbert spae H2 and X is a positive operator in H2. In this ase the operatorU of the proof is from H1 �H2 to H2 �H1.We look upon B(H1) and B(H2) as Hilbert spaes with the salar produt betweentwo operators de�ned as hX; Y i = TrXyY: De�ne V : B(H1) ! B(H2) by V : XT 121 =�(X)T 122 .Lemma 9.2.26 V is a ontration map.Proof: jj�(X)T 122 jj2 = TrT 122 �(X)y�(X)T 122� Tr�(XyX)T2 � TrXyXT1= TrT 121 XyXT 121 = jjXT 121 jj2Hene the laim holds. �Assume that T1 and T2 are invertible and put �tX = St1XT�t1 and DtY = St2Y T�t2 .Note that �t�s = �t+s and DtDs = Ds+t for s; t � 0. FurthermorehXT 121 j �t j XT 121 i = TrT 121 XySt1XT 12�t1= Tr(XySt1X)T 1�t1� 0and similarly hY T 122 j Dt j Y T 122 i � 0Hene �t and Dt are positive operator semigroups and in partiular �t = �t1 andDt = Dt1.



9.2. PROPERTIES OF VON NEUMANN ENTROPY 89Lemma 9.2.27 hXT 121 j �1 j XT 121 i � hXT 121 j V yD1V j XT 121 iProof: hXT 121 j �1 j XT 121 i = TrT 121 XyS1XT� 121= TrXyS1X= TrXXyS1� Tr�(XXy)S2� Tr�(X)�(Xy)S2= TrT 122 �(X)yS2�(X)T� 122= hXT 121 j V yD1V j XT 121 i �From Lemma 9.2.27, Lemma 9.2.23 and Lemma 9.2.25 it follows that�1 � V yD1V) �t � (V yD1V )t� V yDt1V (true sine V is a ontration map)= V yDtV:By expanding one an verify that the inequality hXT 121 j �t j XT 121 i � h�(X)T 121 j Dt j�(X)T 121 i is same as (9.2.20). �Proof of Property 13), Theorem 9.2.18Let H2 = H
H and �(X) = � X 00 X �.For 0 < � < 1 de�ne S1, T1, S2 and T2 as follows. S1 = ��1 + (1 � �)�2, T1 =��1 + (1� �)�2,S2 = � ��1 00 (1� �)�2 � and T2 = � ��1 00 (1� �)�2 � where �1 and �2 are invertible.Then Tr�(X)S2 = �Tr �1X + (1� �) Tr �2X= TrS1Xand Tr�(X)T2 = �Tr�1X + (1� �) Tr�2X= TrT1XApplying (9.2.20) with X = I we get,TrSt2T 1�t2 � TrSt1T 1�t1limt!1 1� TrSt2T 1�t21� t � limt!1 1� TrSt1T 1�t11� tddt TrSt2T 1�t2 jt=1 � ddt TrSt1T 1�t1 jt=1



90 LECTURE 9. QUANTUM INFORMATION THEORYTrS2 logS2 � TrS2 logT2 � TrS1 logS1 � TrS1 logT1; i.e.Tr��1 log��1 + (1� �)�2 log(1� �)�2 � ��1 log��1 � (1� �)�2 log(1� �)�2� S(��1 + (1� �)�2jj��1 + (1� �)�2):Thus �S(�1jj�1) + (1� �)S(�2jj�2) � S(��1 + (1� �)�2jj��1 + (1� �)�2): �14) Let �AB be a state inHA
HB with marginal states �A and �B. Then the onditionalentropy is onave in the state �AB of HA 
HB.Proof: Let d be the dimension of HA. ThenS(�ABjjId 
 �B) = �S(AB)� Tr(�AB log(Id 
 �B))= �S(AB)� Tr(�B log �B) + log d= �S(A j B) + log dTherefore onavity of S(A j B) follows from onvexity of the relative entropy. �15)Theorem 9.2.28 (Strong sub-additivity) For any three quantum systems, A, B, C, thefollowing inequalities hold.1) S(A) + S(B) � S(AC) + S(BC)2) S(ABC) + S(B) � S(AB) + S(BC)Proof: To prove 1), we de�ne a funtion T (�ABC) as follows:T (�ABC) = S(A) + S(B)� S(AC)� S(BC) = �S(C j A)� S(C j B):Let �ABC = Pi pi j iihi j be a spetral deomposition of �ABC . From the onavity ofthe onditional entropy we see that T (�ABC) is a onvex funtion of �ABC . From theonvexity of T we have T (�ABC) �Pi piT (jiihij). But T (jiihij) = 0, as for a pure stateS(AC) = S(B) and S(BC) = S(A). This implies T (�ABC) � 0: Thus S(A) + S(B) �S(AC)� S(BC) � 0:To prove 2) we introdue an auxiliary system R purifying the system ABC so thatthe joint state �ABCR is pure. Then using 1) we getS(R) + S(B) � S(RC) + S(BC):Sine ABCR is a pure state, we have, S(R) = S(ABC) and S(RC) = S(AB). Substi-tuting we getS(ABC) + S(B) � S(AB) + S(BC): �16) S(A : BC) � S(A : B)Proof: Using the seond part of property 15) we haveS(A : BC)� S(A : B) = S(A) + S(BC)� S(ABC)� [S(A) + S(B)� S(AB)℄= S(BC) + S(AB)� S(ABC)� S(B)� 0: �



9.2. PROPERTIES OF VON NEUMANN ENTROPY 91Let H be the Hilbert spae of a �nite level quantum system. Reall that by a gener-alized measurement we mean a �nite olletion of operators fL1; L2; : : : ; Lkg satisfyingthe relation Pi LyiLi = I: The set f1; 2; : : : ; kg is the olletion of the possible outomesof the measurement and if the state of the system at the time of measurement is � thenthe probability pi of the outome i is given bypi = TrLi�Lyi = Tr �LiLyi :If the outome of the measurement is i, then the state of the system ollapses to�i = Li�Lyipi :Thus the post measurement state is expeted to bePi pi�i =Pi Li�Lyi :The map E de�ned by E(�) =Pi Li�Lyi (9.2.29)on the set of states is alled a quantum operation.If we hoose and �x an orthonormal basis in H and express the operators Li asmatries in this basis the ondition that Pi LyiLi = I an be interpreted as the propertythat the olumns of the matrix 26664 L1L2...Lk
37775onstitute an orthonormal set of vetors. The length of the olumn vetor is kd whered is the dimension of the Hilbert spae H. Extend this set of orthonormal vetors intoan orthonormal basis for H
 C k and onstrut a unitary matrix of order kd� kd of theform U = 26664 L1 � � �L2 � � �... ...Lk � � �

37775 :We an view this as a blok matrix where eah blok is a d� d matrix. De�nej0i = 26664 10...0 37775 ;so that for any state � in H we haveM = � 
 j0ih0 j= 26664 � 0 � � � 00 0 � � � 0... ... ... ...0 0 � � � 0 37775



92 LECTURE 9. QUANTUM INFORMATION THEORYas states in H
 C k . ThenUMU y = 26664 L1�Ly1 L1�Ly2 � � � L1�LykL2�Ly1 L2�Ly2 � � � L2�Lyk... ... ... ...Lk�Ly1 Lk�Ly2 � � � Lk�Lyk
37775 :Thus we have TrCk U(�
 j0ih0 j)U y = kPi=1Li�Lyi = E(�);where E(�) is de�ned as in (9.2.29). We summarize our disussion in the form of a lemma.Lemma 9.2.30 Let E be a quantum operation on the states of a quantum system withHilbert spae H determined by a generalized measurement fLi; 1 � i � kg. Then thereexists a pure state j0i of an auxiliary system with a Hilbert spae K of dimension k anda unitary operator U on H
K satisfying the propertyE(�) = TrK U(�
 j0ih0 j)U yfor every state � in H.17) Let AB be a omposite system with Hilbert spae HAB = HA 
 HB and let E bea quantum operation on B determined by the generalized measurement fLi; 1 � i �kg in HB: Then id 
 E is a quantum operation on AB determined by the generalizedmeasurement fIA 
 Li; 1 � i � kg. If �AB is any state in HAB = HA 
HB and�A0B0 = id
 E(�AB)then, S(A0 : B0) � S(A : B):Proof: Following Lemma 9.2.30, we onstrut an auxiliary system C with Hilbert spaeHC , a pure state j0i in HC and a unitary operator U on HB 
HC so thatE(�B) = Pi Li�BLyi= TrC U(�B
 j0ih0 j)U yDe�ne ~U = IA 
 U:Let �ABC = �
 j0ih0 jand �A0B0C0 = ~U�ABC ~U y:Then for the marginal states we have�A0 = �A; �B0C0 = U�BCU yand therefore S(A0) = S(A); S(B0C 0) = S(BC):



9.2. PROPERTIES OF VON NEUMANN ENTROPY 93Thus using 16), we getS(A : B) = S(A) + S(B)� S(AB)= S(A) + S(BC)� S(ABC)= S(A0) + S(B0C 0)� S(A0B0C 0)= S(A0 : B0C 0) � S(A0 : B0): �18) Holevo BoundConsider an information soure in whih messages x from a �nite set X ome withprobability p(x). The information obtained from suh a soure is given byH(X) = �Xx2X p(x) log2 p(x):Now suppose the message x is enoded as a quantum state �x in a Hilbert spae H.In order to deode the message make a generalized measurement fLy; Y 2 Y g wherePy2Y LyyLy = I: Given that the message x ame from the soure, or equivalently, the stateof the quantum system is the enoded state �x the probability for the measurement valuey is given by p(y j x) = TrLy�xLyy:Thus the joint probability Pr(x; y), that x is the message and y is the measurementoutome, is given by Pr(x; y) = p(x)p(y j x) = p(x) Tr �xLyyLy:Thus we obtain a lassial joint system XY desribed by this probability distribution inthe spae X � Y . The information gained from the generalized measurement about thesoure X is measured by the quantity H(X)+H(Y )�H(XY ). (See referene [12℄.) Ournext result puts an upper bound on the information thus gained.Theorem 9.2.31 (Holevo, 1973)H(X) +H(Y )�H(XY ) � S(Px p(x)�x)�Px p(x)S(�x):Proof: Let fjxi; x 2 Xg; fjyi; y 2 Y g be orthonormal bases in Hilbert spaes HX , HY ofdimension #X, #Y respetively. Denote by HZ the Hilbert spae of the enoded statesf�x; x 2 Xg. Consider the Hilbert spae HXZY = HX 
HZ 
HY . Choose and �x anelement 0 in Y and de�ne the joint state�XY Z =Xx p(x) jxihx j 
�x
 j0ih0 j :In the Hilbert spae HZY onsider the generalized measurement determined by fpEy 
Uy; y 2 Y g where Ey = LyyLy and Uy is any unitary operator inHY satisfying Uyj0i = jyi:



94 LECTURE 9. QUANTUM INFORMATION THEORYSuh a measurement gives an operation E on the states of the system ZY and theoperation id
 E satis�es(id
 E)(�XZY ) = Px2X; y2Y p(x) jxihx j 
pEy�xpEy
 jyihy j= �X0Z0Y 0; say:By property 17) we haveS(X : Z) = S(X : ZY ) � S(X 0 : Z 0Y 0):By property 16) S(X : Z) � S(X 0 : Y 0): (9.2.32)Sine �XZ =X p(x) jxihx j 
�xwe have from the joint entropy theoremS(XZ) = H(P ) +X p(x)S(�x):Furthermore �X = X p(x) jxihx j; S(X) = H(P ) = H(X)�Z = X p(x)�x; S(Z) = S(�Z)S(X : Z) = S(P p(x)�x)�P p(x)S(�x) (9.2.33)On the other hand�X0Z0Y 0 = Xx;y p(x) jxihx j 
pEy�xpEy
 jyihy j�X0 = Xx p(x) jxihx j�Y 0 = Xx;y p(x) Tr �xEy jyihy j�X0Y 0 = Xx;y p(x) Tr �xEy jxihx j 
 jyihy jThus, S(X 0 : Y 0) = H(X) +H(Y )�H(XY ) (9.2.34)Combining (9.2.32), (9.2.33) and (9.2.34) we get the required result. �19) Shumaher's theorem:Let P be a probability distribution on a �nite set X. For � > 0 de�ne�(P; �) = minf#E j E � X; P (E) � 1� �g:



9.2. PROPERTIES OF VON NEUMANN ENTROPY 95It is quite possible that #X is large in omparison with �(P; �). In other words, byomitting a set of probability at most � we may have most of the statistial informationpaked in a set E of size muh smaller than #X: In the ontext of information theory itis natural to onsider the ratio log2 �(P;�)log2#X as the information ontent of P upto a negligibleset of probability at most �: If now we replae the probability spae (X;P ) by (Xn; P
n)and allow n to inrease to in�nity then an appliation of the law of large numbers leadsto the following result. limn!1 log �(P
n; �)log#Xn = H(P )logXor equivalently, limn!1 log �(P
n; �)n = H(P ) 8� > 0 (9.2.35)where H(P ) is the Shannon entropy of P . This is a speial ase of Mamillan's theoremin lassial information theory. Our next result is a quantum analogue of (9.2.35), whihalso implies (9.2.35). Let (H; �) be a quantum probability spae where H is a �nitedimensional Hilbert spae and � is a state. For any projetion operator E on H denoteby dimE the dimension of the range of E. For any � > 0 de�ne�(�; �) = minfdimE j E is a projetion in H;Tr �E � 1� �g (9.2.36)Theorem 9.2.37 For any � > 0limn!1 log �(�
n; �)n = S(�) (9.2.38)where S(�) is the von Neumann entropy of �.Proof: By the spetral theorem � an be expressed as� =Px p(x) jxihx jwhere x varies in a �nite set X of labels, P = fp(x); x 2 Xg is a probability distributionwith p(x) > 0 for every x and fjxi; x 2 Xg is an orthonormal set in H. Then�
n = Xx=(x1;x2;:::;xn) p(x1)p(x2) : : : p(xn) jxihx jwhere x0s vary in X and jxi denotes the produt vetor jx1ijx2i : : : jxni. Write pn(x) =p(x1)p(x2) : : : p(xn) and observe that P
n = fpn(x); x 2 X
ng is the probability distri-bution of n i. i. d. opies of P . We haveS(�) = �Xx p(x) log p(x) = H(P ):From the strong law of large numbers for i. i. d. random variables it follows thatlimn!1� 1n log p(x1)p(x2) : : : p(xn) = limn!1� 1n nXi=1 log p(xi)= S(�)



96 LECTURE 9. QUANTUM INFORMATION THEORYin the sense of almost sure onvergene in the probability spae (X1; P
1): This suggeststhat, in the searh for a small set of high probability, we onsider the setT (n; �) = fx : ����� 1n log p(x1)p(x2) : : : p(xn)� S(�)���� � �g (9.2.39)Any element of T (n; �) is alled an �-typial sequene of length n. It is a onsequene ofthe large deviation priniple that there exist onstants A > 0, 0 <  < 1 suh thatPr(T (n; �)) � 1� An; (9.2.40)Pr denoting probability but aording to the distribution P
n. This says but for a set ofsequenes of total probability < An every sequene is �-typial. It follows from (9.2.39)that for any �-typial sequene x2�n(S(�)+�) � pn(x) � 2�n(S(�)��): (9.2.41)De�ne the projetion E(n; �) = Xx2T (n;�) jxihx j (9.2.42)and note that dimE(n; �) = #T (n; �): (9.2.43)Summing over x 2 T (n; �) in (9.2.41) we onlude that2�n(S(�)+�)) dimE(n; �) � Pr(T (n; �)) � 2�n(S(�)��)) dimE(n; �)and therefore by (9.2.40) and the fat that probabilities never exeed 1, we get2n(S(�)��))(1� An) � dimE(n; �) � 2n(S(�)+�)) 8� > 0; n = 1; 2; : : : (9.2.44)In partiular log dimE(n; �)n � S(�) + �: (9.2.45)Fix � and let Æ > 0 be arbitrary. Choose n0 so that An0 < Æ:Note that Tr �
nE(n; �) = Pr(T (n; �)) � 1� Æ for n � n0:By the de�nition of �(�
n; Æ) we havelog �(�
n; Æ)n � log dimE(n; �)n � S(�) + �; for n � n0:Letting n!1 we get limn!1 log �(�
n; Æ)n � S(�) + �:



9.2. PROPERTIES OF VON NEUMANN ENTROPY 97Sine � is arbitrary we get limn!1 log �(�
n; Æ)n � S(�):Now we shall arrive at a ontradition by assuming thatlimn!1 log �(�
n; Æ)n < S(�):Under suh a hypothesis there would exist an � > 0 suh thatlog �(�
n; Æ)n � S(�)� �for in�nitely many n, say n = n1; n2; : : : where n1 < n2 < � � � . In suh a ase there existsa projetion Fnj in H
nj suh thatdimFnj � 2n(S(�)��)) (9.2.46)Tr �
njFnj � 1� Æ (9.2.47)for j = 1; 2; : : :. Choosing � < � and �xing it we have1� Æ � Tr �
njFnj (9.2.48)= Tr �
njE(nj; �)Fnj + Tr �
nj (I � E(nj; �))Fnj (9.2.49)From (9.2.40) and the fat that �
n and E(n; �) ommute with eah other we haveTr �
nj (I � E(nj; �))Fnj � Tr �
nj (I � E(nj; �)) (9.2.50)= 1� Pr(T (nj; �)) (9.2.51)< Anj (9.2.52)Furthermore from (9.2.41) we have�
njE(nj; �) = Xx2T (nj ;�) pnj (x) jxihx j� 2�nj(S(�)��))I:Thus by (9.2.47) we getTr �
njE(nj; �)Fnj � 2�nj(S(�)��)) dimFnj (9.2.53)� 2�nj(S(�)��))+nj (S(�)��)) (9.2.54)= 2�nj(���): (9.2.55)Now ombining (9.2.49), (9.2.52) and (9.2.55) we get1� Æ � 2�nj(���) + Anjwhere the right side tends to 0 as j !1, a ontradition. �20) Feinstein's fundamental lemma



98 LECTURE 9. QUANTUM INFORMATION THEORYConsider a lassial information hannel C equipped with an input alphabet A, anoutput alphabet B and a transition probability fpx(V ); x 2 A; V � Bg. We assume thatboth A and B are �nite sets. If a letter x 2 A is transmitted through the hannel C thenany output y 2 B is possible and px(V ) denotes the probability that the output letterbelongs to V under the ondition that x is transmitted. For suh a hannel we de�ne aode of size N and error probability � � to be a set C = f1; 2; : : : ; Ng � A togetherwith a family fV1; V2; : : : ; VNg of disjoint subsets of B satisfying the onditionpi(Vi) � 1� � 8i = 1; 2; : : : ; N: (9.2.56)Let �(C; �) = max fN j there exists a ode of size N and error probability � �gOur aim is to estimate �(C; �) in terms of information theoreti parameters onerningthe onditional distributions px(:); x 2 A. To this end onsider an input probabilitydistribution p(x); x 2 A and de�ne the joint input-output distributionPr(x; y) = p(x)px(fyg): (9.2.57)Denote by Hp(A : B) the mutual information between the input and the output aordingto this joint distribution. Put C = supp Hp(A : B) (9.2.58)where the supremum is taken over all input distributions p. For a �xed input distributionp, put �2p = Xx2A;y2BPr(x; y)�log Pr(x; y)p(x)q(y) �Hp(A : B)�2 (9.2.59)where q is the B-marginal distribution determined by P . Thus q(y) =Px Pr(x; y). Withthese notations we have the following lemma.Lemma 9.2.60 Let � > 0, Æ > 0 be positive onstants and let p be any input distributionon A. Then there exists a ode of size N and error probability � � whereN � �� � �2pÆ2� 2Hp(A:B)�Æ: (9.2.61)Proof: Put R = Hp(A : B):De�ne the random variable � on the probability spae (A�B;P ) by�(x; y) = log Pr(x; y)p(x)q(y) :Then � has expetation R and variane �2p de�ned by (9.2.59).Let V = �(x; y) : ����log Pr(x; y)p(x)q(y) � R���� � Æ� : (9.2.62)



9.2. PROPERTIES OF VON NEUMANN ENTROPY 99Then by Chebyshev's inequality for the random variable � we havePr(V ) � 1� �2pÆ2 : (9.2.63)De�ne Vx = fy j (x; y) 2 V g:Then (9.2.63) an be expressed asXx2A p(x)px(Vx) � 1� �2pÆ2 : (9.2.64)This shows that for a p-large set of x's the onditional probabilities px(Vx) must be large.When (x; y) 2 V we have from (9.2.62)R� Æ � log Pr(x; y)p(x)q(y) � R + Æ (9.2.65)or equivalently q(y)2R�Æ � px(y) � q(y)2R+Æ:Summing over y 2 Vx we getq(Vx)2R�Æ � px(Vx) � q(Vx)2R+Æ:In partiular, q(Vx) � px(Vx)2�(R�Æ) � 2�(R�Æ): (9.2.66)In other words Vx's are q-small. Now hoose x1 in A suh that px1(Vx1) � 1� � and setV1 = Vx1. Then hoose x2 suh that px2(Vx2 \ V 01) > 1 � � where the prime 0 denotesomplement in B. Put V2 = Vx2 \ V 01 . Continue this proedure till we have an xN suhthat pxN (VxN \ V 01 \ V 02 \ � � � \ V 0N�1) > 1� �and for any x =2 fx1; x2; : : : ; xNgpx(Vx \ ([Nj=1Vj)0) � 1� �where VN = VxN \ V 01 \ V 02 \ � � � \ V 0N�1. By hoie the sets V1; V2; : : : ; VN are disjoint,N[i=1Vi = N[i=1Vxi and thereforepx(Vx \ ([Nj=1Vj)0) � 1� � 8x 2 A (9.2.67)



100 LECTURE 9. QUANTUM INFORMATION THEORYFrom (9.2.64), (9.2.66) and (9.2.67) we have1� �2pÆ2 � Xx p(x)px(Vx)= Xx p(x)px(Vx \ ([Ni=1Vi)0) +Xx p(x)px(Vx \ ([Ni=1Vi))� 1� � +Xx p(x)px(Vx \ ([Ni=1Vi))= 1� � + q([Ni=1Vi)� 1� � + NXi=1 q(Vi)� 1� � + NXi=1 q(Vxi)� 1� � +N2�(R�Æ):Thus N � �� � �2pÆ2� 2(R�Æ): �Now we onsider the n-fold produt C(n) of the hannel C with input alphabet An,output alphabet Bn and transition probability fp(n)x (V );x 2 An; V � Bng where forx = (x1; x2; : : : ; xn); y = (y1; y2; : : : ; yn)p(n)x (fyg) = nYi=1 pxi(fyig):We now hoose and �x an input distribution p on A and de�ne the produt probabilitydistribution P (n) on An � Bn byP (n)(x;y) = nYi=1 p(xi)pxi(fyig):Then the An marginal of P (n) is given byP (n)(x) = nYi=1 p(xi)and Hp(n)(An : Bn) = nHp(A : B);�2p(n) = n�2pwhere �2p is given by (9.2.59). Choose � > 0; Æ = n� and apply the Lemma to the produthannel. Then it follows that there exists a ode of size N and error probability � � withN � �� � n�2pn2�2� 2n(Hp(A:B)��)= �� � �2pn�2� 2n(Hp(A:B)��)



9.2. PROPERTIES OF VON NEUMANN ENTROPY 101Thus 1n log �(C(n); �) � 1n log�� � �2pn�2� +Hp(A : B)� �:In other words limn!1 1n log �(C(n); �) � Hp(A : B)� �:Here the positive onstant � and the initial distribution p on the input alphabet A arearbitrary. Hene we onlude thatlimn!1 1n log �(C(n); �) � C:It has been shown by J. Wolfowitz ([11℄)thatlimn!1 1n log �(C(n); �) � C:The proof of this assertion is long and deliate and we refer the reader to [11℄. Wesummarize our disussions in the form of a theorem.Theorem 9.2.68 (Shannon-Wolfowitz) Let C be a hannel with �nite input and outputalphabets A and B respetively and transition probability fpx(V ); x 2 A; V � Bg: De�nethe onstant C by (9.2.58). Thenlimn!1 1n log �(C(n); �) = C 80 < � < 1:Remark: The onstant C deserves to be and is alled the apaity of the disrete memo-ryless hannel determined by the produt of opies of C.A quantum information hannel is haraterized by an input Hilbert spae HA, anoutput Hilbert spae HB and a quantum operation E whih maps states on HA to stateson HB. We assume that HA and HB are �nite dimensional. The operation E has theform E(�) = kXi=1 Li�Lyi (9.2.69)where L1; L2; : : : ; Lk are operators from HA to HB obeying the onditionPi LyiLi = IA.A message enoded as the state � on HA is transmitted through the hannel and reeivedas a state E(�) in HB and the aim is to reover � as aurately as possible from E(�).Thus E plays the role of transition probability in the lassial hannel. The reoveryis implemented by a reovery operation whih maps states on HB to states on HA. Aquantum ode C of error not exeeding � an be de�ned as a subspae C � HA with theproperty that there exists a reovery operation R of the formR(�0) = X̀j=1 Mj�0M yj for any state �0 on HBwhere the following onditions hold:



102 LECTURE 9. QUANTUM INFORMATION THEORY1. M1;M2; : : : ;M` are operators from HA to HB satisfying Pj̀=1M yjMj = IB;2. for any  2 C h jR Æ E(j ih j)j i � 1� �:Now de�ne�(E ; �) = maxfdimC j C is a quantum ode of error not exeeding �g:We may all �(E ; �) the maximal size possible for a quantum ode of error not exeeding�. As in the ase of lassial hannels one would like to estimate �(E ; �).If n > 1 is any integer de�ne the n-fold produt E
n of the operation E byE
n = Xi1;i2;:::;in Li1 
 Li2 
 � � � 
 Lin�Lyi1 
 Lyi2 
 � � � 
 Lyin (9.2.70)for any state � on H
nA , where the Li's are as in (9.2.69). It is an interesting problem toanalyze the asymptoti behavior of the sequene� 1n log �(E
n; �)�as n!1.
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