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Lecture 1

Quantum Probability

In the Mathematical Congress held at Berlin, Peter Shor presented a new algorithm for
factoring numbers on a quantum computer. In this series of lectures, we shall study the
areas of quantum computation (including Shor’s algorithm) and quantum error correcting
codes. Those who wish to read ahead should consult the book: M.A. Nielsen and I.A.
Chuang, Quantum Computation and Quantum Information, Cambridge University Press,
2000.

1.1 Classical Versus Quantum Probability Theory

We begin by comparing classical probability and quantum probability. In classical prob-
ability theory (since Kolmogorov’s 1933 monograph [8]), we have a sample space, a set
of events, a set of random variables, and distributions. In quantum probability (as for-
mulated in von Neumann’s 1932 book [9]), we have a state space (which is a Hilbert
space) instead of a sample space; events, random variables and distributions are then
represented as operators on this space. We now recall the definitions of these notions in
classical probability and formally define the analogous concepts in quantum probability.
In our discussion we will be concerned only with finite classical probability spaces, and
their quantum analogues—finite dimensional Hilbert spaces.

‘ Spaces

The sample space (2: This is a finite
set, say {1,2,...,N}.

The state space H: It is a complex
Hilbert space of dimension N.

‘ Events

The set of events Fo: This is the set of
all subsets of 2. Fq is a Boolean algebra
with the union (U) operation for ‘or’ and
the intersection (N) operation for ‘and’. In
particular, we have

EN(FLUF)=(ENF)U((ENF).

The set of events P(H): This is the set
of all orthogonal projections in . An el-
ement £ € P(H) is called an event. Here,
instead of ‘U’ we have the maz (V) opera-
tion, and instead of ‘N’ the min (A) oper-
ation. Note, however, that £ A (F} V F})
is not always equal to (EAFy)V (EAFy).
(They are equal if E, F}, F, commute with
each other).




Random variables and observables

The set of random variables Bg:
This is the set of all complex valued func-
tions on 2. The elements of Bq are called
random variables. Bgq is an Abelian C*-
algebra under the operations

(af)w) = af(w)
(f+9)(w) = f(w)+gw);
(f 9)w) = flw)gw);

frw) = flw) = fw)

Here, a € C, f,g € Bg, and the ‘bar’
stands for complex conjugation. The ran-
dom variable 1 (defined by 1(w) 2 1), is
the unit in this algebra.

With each event E € F we associate the
indicator random variable 15 defined by

1p(w) = 1 fwek
E ] 0 otherwise °

For a random variable f, let sp(f) 2 f(82).
Then, f can be written as the following
linear combination of indicator random
variables:

f= Z A1,

Aesp(f)

so that

lf—l({)\}) . lf—l({/\l}) = 0 for A 7é )\,;

Z iy = L

Aesp(f)
Similarly, we have
fr=)0 Ny,
Aesp(f)

and, in general, for a function ¢ : C — C,
we have the random variable

()= Y oMLy

Aesp(f)

Later, we will be mainly interested in real-
valued random variables, that is random
variables f with sp(f) C R (or fT = f).

The set of observables B(#): This is
the (non-Abelian) C*-algebra of all opera-
tors on H, with ‘+” and -’ defined as usual,
and X* defined to be the adjoint of X. We
will use X instead of X*. The identity
projection [ is the unit in this algebra.
We say that an observable is real-valued if
Xt = X, that is, if X is Hermitian. For
such an observable, we define sp(X) to be
the set of eigen values of X. Since X is
Hermitian, sp(X) C R, and by the spec-
tral theorem, we can write X as

X= Y )E,

AEsp(X)

where ), is the projection on the subspace
{u: Xu= \u} and

E)\E/\I = 0, )\, Noe Sp(X), A 7£ )\I,
Z)\Esp(X) E)\ =1

Similarly, we have

X" = N E),
A€Esp(X)

and in general, for a function ¢ : R — R,
we have




Distributions and states

A distribution P: This is a function
from Fq to R, determined by N real num-

bers py, s, ..., PN, satisfying:

pi > 0
N
i=1

The probability of the event E € Fq (un-
der the distribution P) is

P(E) S p;.

IS

We will identify P with the sequence
(p1,p2,---,pn). The probability that a
random variable f takes the value A € R
is

P(f =) 2 P(f 1 ({\);

thus, a real-valued random variable f has
a distribution on the real line with mass

P(f({A\}) at A € R,

A state p: In quantum probability, we
have a state p instead of the distribution
P. A state is a non-negative definite op-
erator on H with Trp = 1. The probabil-
ity of the event £ € P(H) in the state p
is defined to be Tr pE, and the probabil-
ity that the real-valued observable X takes
the value A is

TrpE, if A € sp(X),

Prix = A = { 0 otherwise

Thus, a real-valued observable X has a
distribution on the real line with mass
TrpE, at A € R.




Expectation, moments, variance

The expectation of a random variable f is

Ef2Y f(wp

weN

The r-th moment of f is the expectation
of f", that is

> (F@)p
= Y NP,

esp(f)

Ef =
P

and the characteristic function of f is the
expectation of the complex-valued random
variable e/ that is,

itf itA 1
Bl = 3 EPP(f ).
esp(f)
The variance of a real-valued random vari-
able f is
var(f) 2E(f —E/)? > 0.
P P

Note that var(f) = Ep f? — (Ep f)?; also,
var(f) = 0 iff all the mass in the distribu-
tion of f is concentrated at Ep f.

The expectation of an observable X in the
state p is

EX 2 TrpX.

p

The map X — E,X has the following
properties:

(1) It is linear;
(2) E, X'X >0, for all X € B(H).
3) E, I =1.

The r-th moment of X is the expectation
of X7; if X is real-valued, then using the
spectral decomposition, we can write

EX" =
p

Z A Tr pE)y.

A€esp(X)

The characteristic function of the real-
valued observable X is the expectation of
the observable eX. The variance of a
(real-valued) observable X is

var(X) 2 Trp(X — Tr pX)?
= TrpX?— (TrpX)*> > 0.

The variance of X vanishes iff the distri-
bution of X is concentrated at the point
Tr pX. This is equivalent to the property
that the operator range of p is contained
in the eigensubspace of X with eigenvalue
TrpX.




Extreme points

The set of distributions: The set of
all probability distributions on 2 is a
compact convex set (Choquet simplex)
with exactly N extreme points, §; (j
1,2,...,N), where ¢, is determined by

A1l fw=j,
% ({wh) = { 0 otherwise.
If P =0;, then every random variable has
a degenerate distribution under P: the
distribution of the random variable f is
concentrated on the point f(j).

The set of states: The set of all states
in H is a convex set. Let p be a state.
Since p is non-negative definite, its eigen
values are non-negative reals, and we can

write
p= Y ABx
AeSp(p)

since Tr p = 1, we have

> Axdim(E,) = L.

AeSp(p)

The projection E) can, in turn, be written
as a sum of one-dimensional projections:

E

dim(E
Then, p = Z/\ESp(p) Zzg( Y AEy.
Proposition 1.1.1 A  one-dimensional
projection cannot be written as a non-
trivial convexr combination of states.

Thus, the extreme points of the convex set
of states are precisely the one-dimensional
projections. Let p be the extreme state
corresponding to the one-dimensional pro-
jection on the ray Cu (where ||ul| = 1).
Then, the expectation m of the observable
X is

m = Truu'X = Tru'Xu = (u, Xu),and

var(X) Truu' (X —m)?

Tr||(X — m)u||2 )

Thus, var(X) = 0 iff u is an eigen vector
of X. So, even for this extreme state, not
all observables have degenerate distribu-
tions: degeneracy of the state does not kill
the uncertainty of the observables!




The product |

Product spaces: If there are two statis-
tical systems described by classical proba-
bility spaces (€, P;) and (Qy, P,) respec-
tively, then the probability space (2; X
Qy, P x P,) determined by

P x P({(i,4)}) & Pi({i}) Po({4}),

describes the two independent systems as
a single system.

Product spaces: If (Hy,p1) and
(Ha, p2) are two quantum systems, then
the quantum system with state space
Hi1 ® Ho and state p; @ py (which is a
non-negative definite operator of unit
trace on H; ® H,) describes the two
independent quantum systems as a single
system.

Dynamics ‘

Reversible dynamics in €2: This is
determined by a bijective transformation

T :Q — Q. Then,

[~ foT(for random variables)
P~ P o T !(for distributions)

Reversible dynamics in : Thisis de-
termined by a unitary operator U : H —
‘H. Then, we have the dynamics of

Heisenberg: X ~» UTXU for X € B(H);
Schrédingerp ~» UpU' for the state p.

1.2 Three Distinguishing Features

1. Proposition 1.2.1 Let E and F' be projections in H such that EF # FE. Then,

‘EVF < E+ F7 s false.

Proof: Suppose EVF < E+ F. Then, EVF — E < F. So,

F(EVF—E)=(EVF —E)F.

That is, FE = E'F, a contradiction.

O

Corollary 1.2.2 Suppose E and F are projections such that EF # FFE. Then,
for some state p, the inequality “Trp(EV F) < Tr pE + Tr pF'” is false.

Proof: By the above proposition, “F'V F' < E + F” is false; that is, there exists a

unit vector u such that

(u,(EV F)u) £ (u, Eu) + (u, Fu).

Choose p to be the one dimensional projection on the ray Cu. Then,

Te(EV F)p
TrEp
Tr Fp

(u, (E'V F)u)
(u, Eu)
(u, Fu) .



2. Proposition 1.2.3 (Heisenberg’s inequality) Let X and Y be observables and
let p be a state in H. Assume TrpX = TrpY = 0. Then,

V{;lr(X) vz;r(Y) > (Trp%{X,Y})2+(Trp%i[X, Y))?

> (Tl X, V)

where
(X, v}
(X, Y]

XY +YX; and
XY —-YX.

e e

Proof: For z € C, we have

Trp(X + 2Y)1 (X +2Y) > 0.
If z =re”, .
r2Tr pY? + 2rRe YpY X + Tr pX?2 > 0.
The left hand side is a degree-two polynomial in the variable r. Since, it is always
non-negative, it can have at most one root. Thus, for all @,
(TrpX?)(TrpY?) > (Re "pY X)?
XY +YX XY -vXx\?
> (COS 0Tr p% +sinf Tr mf)
= (zcosf+ysinb)?

1 .

where z = Tr pi{X, Y} and y 2Ty p%[X, Y]. The proposition follows from this, if

T ; — Y

o and sinf = T O

3. Extremal states (one-dimensional projections) are called pure states. The set of all
pure states in an N-dimensional complex Hilbert space is a manifold of dimension
2N — 2. (The set of all extremal probability distributions on a sample space of N
points has cardinality N.)

we take cosf =

1.3 Measurements: Von Neumann’s Collapse Postu-
late

Suppose X is an observable (i.e. a Hermitian operator) with spectral decomposition
X= ) A\E.
AESP(X)

Then, the measurement of X in the quantum state p yields the value A with probability
Tr pE). If the observed value is A, then the state collapses to

- ExpE)y

PAZ Ty pE\

The collapsed state py has its support in the subspace E)(H).




1.4 Dirac Notation

Elements of the Hilbert space #H are called ket vectors and denoted by |u). Elements of
the dual space H* are called bra vectors and denoted by (u|. The bra (u| evaluated on
the ket |v) is the bracket (u | v), the scalar product between u,v as elements of .

The operator |u)(v| is defined by

[u){vl(jw)) = (v ] w) |u).

It is a rank one operator when u and v are non-zero.

Trfu)(v] = (v]w)
(Ju)(w)t = Jv){ul
[ur) (or[[ug)(oa] - -+ lun) (vl = ((or | uz) (v2 [ ug) - - (vns | un))ua)(vnl-

The scalar product (u | v) is anti-linear (conjugate-linear) in the first variable and linear
in the second variable.

1.4.1 Qubits

The Hilbert space h = C2, with scalar product

(i} [5]) oo

is called a 1-qubit Hilbert space. Let

Then,
a
[ b } = al0) + b|1),

and the ket vectors |0) and |1) form an orthonormal basis for h.

The Hilbert space h®" = ((C2)®” is called the n-qubit Hilbert space. If z125...2, is
an n-length word from the binary alphabet {0, 1}, we let

1) 2) - )
[21) ® |22) © -~ @ |zn)
3,

where j=a1 X 2" 140y x 2" 2 -+ 4 1,1 X 2+ 1, (that is, as x17o . .. 1, varies over
all n-length words, the integer j varies in the range {0,1,...,2" — 1}).

|z12o .. xy)

e e e



Lecture 2

Quantum Gates and Circuits

2.1 Gates in n—qubit Hilbert Spaces

In ordinary (classical) computers, information is passed through a classical channel. Logic
gates (like AND, OR, NOT) operate on these channels. Likewise, in a quantum computer,
information is passed through a quantum channel and it is operated upon by quantum
gates. A quantum gate is a unitary operator U in a (finite dimensional) Hilbert Space H.

Not all the classical gates are reversible ( for example if @ AND b = 0, there are
three possible values for the ordered pair (a,b)). On the contrary, all quantum gates are
reversible.

If a gate U acts on an n-qubit Hilbert space H we depict it as in Figure 2.1. If U
acts on a single qubit it is represented pictorially as shown in Figure 2.2.

|u) Ulu)

n/ lu) " Ulw) /7< I - U

Figure 2.2: A gate U acting on a
Figure 2.1: A quantum circuit. single qubit.

If the input is |u) and it passes through the gate U, then the output is written as
Ulu).

Any unitary operator U which acts on a single qubit can be written as

ia a b
U=e [—5 a]’

where |a|? 4 |b]* = 1 in the computational basis consisting of |0) and |1).

The action of the unitary operator U on the basis states can be computed as shown
below.

U0y = e [ . b } [ ; } — ¢ {q)0) — B[1)}



Similarly, U|1) = e¢**{b|0) +a|1)}. By measurement on the n-qubit register of a quantum
computer we usually mean measuring the observable

X =250l

and it is indicated in circuits by the ammeter symbol, as in Figure 2.1. Since by measuring
we get two quantities, namely a classical value and a quantum state, pictorially it is
indicated by a double line, as in Figure 2.1. The output consists of a value of X in the
range {0,1,2,...,2" — 1}, where the probability of the event {X = j} is [(j]U]|u)|?, and
a collapsed basis state |j), where j is the observed value.

As an example, let us simulate a Markov chain using a quantum circuit. Consider
the circuit in Figure 2.3.

J1 o

Figure 2.3: A quantum circuit to simulate a Markov Chain.

After each measurement, the observed classical parts ji, ja, . . . take values in the space
{0,1,2,...,2" — 1} with the following properties:
Pr({7i}) = [(i|U]o)P 0<j<2"-1
Pr({jz | ji}) = [(a|U2l51)? 0<jp<2"—1
Pr({j | Je—1k—2,---,01}) = |GelUa2lie-1)]? 0<jp <27 —1

Thus, we have simulated a classical Markov chain with state space {0,1,2,...2" —1}.
The drawback here is that we need a separate unitary operator for each of the 2™ possible
outcomes of the measurement.

Open Problem: Given a doubly stochastic matrix P of size N x N, does there exist a
unitary matrix U such that, |u;;|* = p;; for all i, j € {0,1,2,... N} ? Existence of such a
matrix will result in simplification of the quantum circuit for simulating a Markov chain.

2.2 Quantum Gates

2.2.1 One Qubit Gates

In classical computing, the only interesting one-bit gate is the NOT gate. In the quantum
world, we have many 1-qubit gates. Some of them are given below.

1. Pauli Gates: There are three such gates and they are denoted by X, Y, Z. The
unitary matrices of X, Y, Z in the computational basis are given by



s [0 4]0 %] o= [6 8]

The unitary matrix X is also called the not gate because X |0) = |1) and X|1) = |0).

These gates are called Pauli gates because the unitary matrices corresponding to
these operators are the Pauli matrices o1, 09 and o3 of quantum mechanics. Pauli
matrices are the basic spin observables taking values 1. XY, Z are hermitian,
X2=Y%?=7%2=1and X,Y, Z anticommute with each other i.e. XY +Y X = 0.

2. Hadamard Gate: The unitary matrix corresponding to the Hadamard gate is

H = % [ 1 _1 ] In this case, H|0) = ‘0}'1 and H|1) = ﬁm Its n-fold tensor

product H®" is the Hadamard gate on n-qubits satisfying
n 1
H®'[00...0)= = Y |z)

2% oy

and more generally
H®" o7 )
[#) = oz {E ),

where x.y = x1y1 + Toyo + - TpYn.

1
0
the phase of the ket vector |1) by 7 so that |1) becomes i|1), and leaves the ket
vector |0) fixed.

3. Phase Gate: The unitary matrix for this gate is S = 2 ] This gate changes

1 0 -
4. ¢ Gate: The unitary matrix for this gate is T' = [ 0 o } =e's

This gate changes the phase of |1) by e'%

2.2.2 Two Qubit Gates

4‘.7+

- S —

Figure 2.4: Two qubit gates. A
CNOT gate and a SWAP gate. Figure 2.5:

1. Controlled NOT: This gate (Figure 2.4 ) acts as a NOT gate on the second qubit
(target qubit) if the first qubit (control qubit) is in the computational basis state
|1). So the vectors |01) and |00) are unaltered, while the vector |10) gets modified
into |11) and vice versa.



1 0 0 0

: : : : 01 0 0

The unitary matrix for this gate is T' = 00 0 1
00 1 0

The gate could also negate the content of the first qubit depending on the second
qubit. Such a gate will have a different unitary matrix. The essential point is that a
qubit can get negated depending on a control qubit. The control qubit will always
be denoted by a solid dot in pictures.

2. Swap Gate

This gate (Figure 2.4) swaps the contents of the two qubits. Because the vectors
|00) and |11) are symmetric, they are unaltered, while the vector |01) gets mapped
to |10) and vice versa.

The unitary matrix for this gate is P =

o O O
o = O O
o O = O
o O O

Exercise 2.2.1 Prove that the two circuits given in Figure 2.5 are the same.

Solution: To check the equivalence of the circuits on the L.H.S. and R.H.S. we
compute how the circuit on the R.H.S. acts on the basis state |a, b).

a,b) > a,a @ b) = [a® (a @ b),a @ b) = [b,a @ b) = |b, (1@ b) @ b) = |b,a)

3. Controlled Unitary: This is just like the controlled NOT, but instead of negating the
target qubit, we perform the unitary transform prescribed by the matrix U (only
if the control qubit is in state |1)). It is represented schematically as shown in the
first diagram of Figure 2.6.

2.2.3 Three Qubit Gates

- —

T T

v ]

Figure 2.6: A controlled unitary gate, Toffoli gate and a Fredkin gate.

1. Toffoli Gate: This (as in second diagram of Figure 2.6) is a double controlled NOT
gate. The only computational basis vectors which get changed are [110) and |111).



100 0 0 0 0 O
0100 0 0 0 O
001 0 0 0 0O
) ) o 0001 0 000
The corresponding unitary matrix is U = 0000100 0
000 0 01 0O
0000 0 0 01
00 00 0 0 1 0|
2. Fredkin Gate: This is a controlled swap gate (last diagram of Figure 2.6). The
1.0 0 00 0 0 0]
010 0 0 0 0 O
001 0 0 0 0 O
) . o 0001 00 00
corresponding unitary matrix is U = 00007100 0
000 0 0010
000 0 01 0O
000 0 0 0 0 0 1|

2.2.4 Basic Rotations

We describe in this part, some basic rotation gates, each acting on a single qubit.

The basic rotation operators, which induce rotation by an angle # about the z,y and
2z axis respectively, are denoted by R, (), R,(8) and R,(f) and they are defined by the
following equations.

9]

R,(0) = [ COS; _sz } —e T :cosgl—isingY

)
i3 i 0 0
R,(0) = [ 8 eig ] =7 :cosif—isiniZ

More generally R;(0) = (cos £)I — (isin2)(7, X + nyY + 7.Z) is the matrix corre-
sponding to rotation by an angle 6 about the axis with direction cosines (7, 71y, ;).

Theorem 2.2.2 (Euler): Every 2 x 2 unitary matriz U can be expressed as

o | e 302 —emiFgin 2 ia
U=e TC= ? i(BE9) ~2, "R, (8) Ry () R:(0)
e'"z ) sin 7 e cos T

Corollary 2.2.3 Every 2 x 2 matriz U can be expressed as U = ¢/ *AX BXC, where A,
B and C' are 2 x 2 unitary operators and ABC = 1.



Proof: By Theorem 2.2.2 we can write U = e’ R, (8)R,(7)R.(0). Set A = R,(8)R,(2),

2
B = Ry(—%)RZ(—¥) and C' = RZ(¥). It is easy to check that A, B and C satisfy the

required conditions. O

U — C B —&— 4 |—

Figure 2.7: Circuit implementing the controlled-U operation for single qubit U. o, A, B
and C satisfy U = ¢ *AXBXC,ABC = 1I.

Corollary 2.2.4 In Figure 2.7 the circuit on the L.H.S. is equivalent to the circuit on

the R.H.S. if AXBXC =e¢ U, ABC =1 and D = [ é eig ] .

Proof: The equivalence of the circuits can be verified by checking how the computational
basis states evolve.

|0)|u) — 0)Clu)y — [0)BC|u) — |0)ABC|u) — D|0)ABC|u) = |0)]u).

1) |u)y — |[1)Clu) — |[1)XClu)y — [1)BXC|u) — |1)XBXClu) — D|1)AXBXClu) =
el ye Uu) = [1)U|u). O

Corollary 2.2.5 In Figure 2.8, the circuit on the L.H.S. is equivalent to the circuit on

the R.H.S. if V?=1U.
I I I
N

[ ]

U Vv vt V —

Figure 2.8: Circuit for the C*(U) gate. V is any unitary operator satisfying V* = U.
The special case V- = (1 —i)(I +iX)/2 corresponds to the Toffoli gate.

Proof: [00)|u) — |00)|u).

01)|u) — [01)V |u) — |01 VIV ]u) = |01)I|u) = |01)|u).

110)|u)y — [11)]u) — [11)VT|u) — [10)VT|u) — [10)VV T |u) = [10)]u).

1) |u) — [11)V]u) — [10)V]u) — 1)V |u) — 1)V V|u) = [11)U|u). O

Corollary 2.2.6 Toffoli gate can be expressed as a composition of controlled NOT’s and
1—qubit gates.



Proof: Follows from the previous two corollaries. O

Exercise 2.2.7 Derive and verify that the circuit on the R.H.S. of Figure 2.9 is a correct
realization of the Toffoli gate using controlled NOT and single qubit gates.

D
N
T

Tt T Tt

|
|
T
S

S

Figure 2.9: Implementation of the Toffoli gate using Hadamard, phase, controlled NOT
and 5 gates.

2.3 Some Simple Circuits

2.3.1 Quantum Teleportation

In quantum teleportation, Alice (sender) can send a qubit to Bob (receiver) without using
a quantum communication channel. In order to achieve this, Alice and Bob together

generate an EPR pair (i. e. %) and share one qubit each.

Suppose Alice wants to send an unknown qubit |¢)) = «|0) + 3]1). Then she cannot
even measure it because she has only one copy of it. Even if Alice knows the state of
the qubit |¢) sending it to Bob through classical channel will not be possible at all. But
by making use of the EPR pair Alice can send the qubit |1/) to Bob just by sending two
additional classical bits of information.

To accomplish the task Alice makes a circuit as shown in Figure 2.10. Alice has access
to the top two qubits. So all operations Alice does involve only the top two qubits.

Initial state of the system is
o) = |) S = S[a[0)(J00) + [11)) + B[1)(|00) + [ 11))].
After the first CNOT gate the state of the system is
|9h1) = J5[]0)(00) + [11)) + B[1)(|10) + |01))].
After she sends the first qubit through the Hadamard gate the state of the system is
[9h2) = 3[(]0) + [1))(|00) + [11)) + B(|0) — [1))(]10) + |01))].
Collecting the first two qubits the state |1)9) can be re-written as
|9h2) = 3[100)(]0) + BI1)) + [01)(ex[1) + B10)) + [10)(ex[0) — BI1)) + [11)(ex]1) — BJ0))].
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Figure 2.10: Circuit used by Alice and Bob

When Alice makes a measurement on the two qubits she can control, the state of
Bob’s qubit is completely determined by the results of Alice’s measurement on her first
two qubits. Hence if Alice sends the results of her measurement to Bob, he can apply
appropriate gates on the qubit he can access and get the state [¢)). The action of Bob
can be summarized as in the table below.

Alice State of Bob’s | Gates needed
measures qubit to get [¢)
00 [a]0) + S|1)] 1
01 [a|1) + £0)] X
10 [a]0) — B[1)] Z
0 [ D=0 | 2%

Thus, the state of the first qubit |¢) is transferred to the third qubit which is with
Bob. The above algorithm implies that one shared EPR pair and two classical bits of
communication is a resource at least equal to one qubit of quantum communication.

2.3.2 Super Dense Coding: Quantum Communication through
EPR Pairs

If Alice and Bob initially share an EPR pair, Alice can send Bob two bits of classical
information by passing a single qubit as follows. Alice makes a circuit as shown in Figure
2.11.

Alice selects the gate G according to the bits she wants to send. She selects a gate
according to the table below and applies it to the qubit she possesses before transmitting
it to Bob.
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Figure 2.11: Cuircuit used by Alice and Bob

Bits to | Gates to Bob
be sent | be used | receives
N T e
(1)(1) )Z( |10)\J/E|01)
V2
11 iy | PO

The four possible states that Bob can receive are the so-called Bell states or EPR
pairs which constitute the Bell basis. Since the Bell states form an orthogonal basis, they
can be distinguished by measuring in the appropriate basis. Hence when Bob receives
the qubit sent by Alice he has both the qubits. Then he does a measurement in the
Bell basis and finds out the message she wanted to send. In classical computation it is
impossible to send two bits of information by just passing a single bit. So a qubit can
carry more than one bit of classical information.

2.3.3 A Genaralisation of “Communication through EPR States”

Let F be a finite abelian group of order n for example (Z/2Z)* with n = 2. Let F' denote

its character group. Define the Hilbert space H 2 L?(F) to be the space of functions
from F' to C under the standard inner product. The characteristic functions of elements
of the group F, 1y,3 where v € F', form the standard orthonormal basis for H. Define
|z) 2 lizy. Let f € Hand x € F. Fora € F and o € F', define unitary operators U,
and V,, on H as

(Ua F(@) 2 f(z+a), (Vo f)(@) = a(z) f(2).

U, can be thought of as translation by the group element a and V, can be thought of
as multiplication by the character a. For (a,a) € F x F, define the Weyl operator

Wa.a 2 U,V,. It is a unitary operator.

Exercise 2.3.1 W, W), 3 = a(b)Wyipap. i.e. the W, , form a projective unitary repre-
sentation of the group F' X F. The term projective is used to refer to the fact that the
unitary operators W, , form a representation of F' x F upto multiplication by a complex
scalar (the number «(b)) of modulus unity.

Exercise 2.3.2 Show that the only linear operators which commute with W, , for all
(a,a) € F % F, are the scalars. Hence, the W, ,’s form an irreducible projective rep-
resentation of the group F' x F i.e. the only subspaces of H which are invariant under
every W, o are the zero subspace and H itself.



Exercise 2.3.3 Show that the operators {Wa,a}(a,a)eFxF are linearly independent. Thus,
they span the space B(#) of (bounded) linear operators on .

Exercise 2.3.4 Show that W}, = a(a)W_,z. Show also that TeW,, = n if a = 0
and « is the trivial character, where n = |F|; otherwise TrW, , = 0. Hence, prove that
Tng,aWbyﬁ = né(aaa):(bvﬁ)'

Exercise 2.3.5 Define |1)) = = . [2)|z). Also define |(a,@)) = (Waa ® I)]th),
where I is the identity operator on . Then, {|(a,@))}, ,)cpxp is an orthonormal basis

for H® H.

Enumerate (a,«) as f(a,a) € {1,2,...,n*}, in some order. Define the Hermitian
measurement operator

X2 3 faa)|(a,0))(a,0)]

(a,0)EF X F

|t) is the entangled state which Alice and Bob share. Alice holds the first logn qubits
of the state while Bob holds the other logn qubits. To send a message m € [n?], Alice
applies the unitary transformation W, ., where f(a,a) = m, on her qubits. She then
sends her qubits to Bob, who then applies the measurement X on the 2logn qubits which
he now has. The outcome of the measurement is m, which is exactly what Alice intended
to send. Thus Alice has communicated 2logn classical bits of information using only
log n qubits of quantum communication.

Alice Bob
Alice Bob
Wa,a
logn logn
Bob
[¥0) i
2logn
Bob Bob
X
logn

Figure 2.12: Circuit used by Alice and Bob

Exercise 2.3.6 In the case where F' = Z/2Z, this reduces to communicating two classi-
cal bits at a time using one qubit, by the usual superdense coding technique!

2.3.4 Deutsche Algorithm

This algorithm enables us to find out whether a function f : {0,1} — {0, 1}, is a constant
function or not, by computing the function only once. In classical theory of computation
we must evaluate the function twice before making such a conclusion.



Corresponding to the function f we consider the unitary operator Uy, where Uf|zy) =
|z)|y @ f(x)), x,y € {0,1}. The circuit for implementing the algorithm is shown in
Figure 2.13.

0) H @ @ 7H7/7<:

Uy

LY H Yy y© f(z)

Figure 2.13: Circuit for implementing Deutsche Algorithm.

We follow the evolution of the circuit in Figure 2.13.

[Yo) = |01>
) = 2 (0)+11)(10) ~ )

)
2
Observe that Ur|x) (%) — (_l)f(x)|x> <|0>\;§|1>>
) = { £5(10) 4+ [1))(J0)y — [1)) if f(0) = f(1)
’ +1(10) — [1))(J0) — [1)) if £(0) # f(1)
2 i f(0) = £(1)
V) = { j:|1>‘°>é1>’ if £(0) # f(1)
_ (19 =11
= |h5) = =£[f(0)® f(1)) 7
Thus, by measuring the first bit we get {{f(()) @ f(1)}, £[£(0) @ f(1)) (|0>\;§\1>)} _

In this algorithm, both superposition and interference of quantum states are exploited.

2.3.5 Arithmetical Operations on a Quantum Computer

We now see how addition may be performed on a quantum computer. Let x, y be two
n + 1 bit integers. Then we have

T - Qn Qp—1 ap
) = bn bn—l bO
T+y = Cn Sn Sn—1 S0
and
[
r = Ap—1  Qp—2 c. Ao
[
Yy = bn—l Up—2 s bO

/ _
T4y = C1 Spn-1 Sn-2 So



Note that sg, s1,...s, 1 are same in both these additions. Also,
(Cn7 Sn) - (anbn ©® Cnfl(an @ bn)a Gy, D bn @ Cnfl)-

Note that the Toffoli gate sends |abc) — |ab)|c & ab).

Consider a subroutine for adding two single bit numbers with carry. The circuit for
this subroutine is shown in Figure 2.14.

——————————————————————————————————————

[en—1) ® ® [en—1)

lan) ® J lan)

b2 ) ® 4 | 5 |G @ by @ cn1)

|d) ) () |d® anbn ® cno1(an ® bn))

Figure 2.14: Circuit for adding two single bit numbers with carry.

If we measure the last two qubits in the circuit in Figure 2.14, we get the outputs
{sn},{cn} and the collapsed states |s,), |¢,) provided d = 0. Hence, using this subroutine
we can add two n-bit numbers.

We would like to count the number of Toffoli and CNOT gates used by the circuit
as a measure of complexity. Suppose «,, Toffoli and 3, CNOT gates are used for adding
two n-bit numbers. Then

i1 :an+27 5n+1zﬂn+2
= o, =a;+2(n—-1), Bp=»F+2(n—-1)

Consider the circuit in Figure 2.15.

lao) ® L lao)
|bo) ®

N lao @ bo) 50

|d) <> |d ® aobo) co when d =0

Figure 2.15: Circuit for adding two single bit numbers without carry.

Thus, a; = 1 and $; = 1. This implies o, = £, = 2n — 1. So by this method of
adding two n bit numbers we need 2n — 1 Toffoli and 2n — 1 CNOT gates. The circuit
for adding two n bit numbers is shown in Figure 2.16.
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1 bit
ADD .

‘dn—2> . |Cn—2
1 bit
‘an—1> ADD |an—1

‘bn—l> |5n—1

~ ~ ~ ~

‘dn—l> | |Cn—1

Figure 2.16: Circuit for adding two n bit numbers without carry.

Subtraction:

To evaluate a — b, where a, b are two n bit numbers, add a and 2" — b to get
a+2"—b=-¢euep_1...¢€p.

Note that 2" — b can be easily computed using only CNOT gates.
Ife, =0,
then a — b = —(1 D en,l)(l D en,g) Ce (1 D 60).

Ife,=1,
then a —b=¢e,_1€,_o...¢.

Exercise 2.3.7 Count the number of gates required in the above subtraction algorithm.

Exercise 2.3.8 Device a circuit for addition (mod N), multiplication and division.






Lecture 3

Universal Quantum Gates

3.1 CNOT and Single Qubit Gates are Universal

In classical computation the AND, OR and NOT gates are universal which means that
any boolean function can be realized using only these three gates. In this lecture, we
prove the quantum analogue of this theorem. We show that any unitary transformation
in an n-qubit Hilbert space can be approximated by compositions of Hadamard, CNOT,
phase and 7/8 gates to any desired degree of accuracy. We proceed by proving two
propositions from which the theorem immediately follows.

Lemma 3.1.1 Any n x n unitary matrix U can be expressed as a product of at most
one phase factor and n{n-1) unitary matrices, each of which acts on a 2-dimensional

2
coordinate plane.

U1l U112 . Uip

U21 U2 ... U2
Proof: Let U = "

Up1 Up2 ... Unn

If uy; = 0, do nothing. Otherwise, left multiply by a unitary matrix
Pl
a)

‘ In—2

Ui=| -

OQIQ

such that —Buy, + @ug; = 0 and |a|? + |B]? = 1. Solving we get

U1 U1
o= and § =

VI ? + Jug [? Vu [* + |U21|2.

Now consider M' = U,U. The M*(2,1) entry is 0. If M'(3,1) is 0, we do nothing.
Otherwise we left multiply by Us in the (1, 3) plane to make the entry (3, 1) in the resulting

V11 V12 . Uln

. . . . o 0 V29 A V2n
matrix 0. Continuing this way we get U,_U,_s...UU =

0 Un2 ... Unn

25



where |vy;| = 1.
Orthogonality between the 1°¢ and any other column shows that

U12:U13:"':U1n:0. Thus
[ 1 0 0 0 ]
0
0
'UfllUnflUn,Q...UlU: W
- 0 -

where W is an n — 1 X n — 1 unitary matrix. The same procedure is repeated for the
reduced matrix W. We repeat these operations till we get the identity matrix /. Pooling
the phase factors we get €U, Up,_1 ...U,U = I where m < (Z) It is to be noted that
U; is an element in SU(2) acting in a two dimensional subspace. Transferring the U,’s
to the right we get U = eianUg AN

Lemma 3.1.2 Any matriz U € SU(2) acting in a 2-dimensional subspace can be realised
using single qubit and r-controlled 1-qubit gates.

Proof: Consider H = (C?)®" with computational basis {|z),z € {0,1}"}. Consider a
pair z,y which differ in exactly one place, say .

) = [a)[0)[b).

ly) = la)[1)[b).

with a and b being words of length ¢ — 1 and n — ¢ respectively.

A unitary matrix U in the two dimensional plane spanned by |z) and |y) which leaves

@ g}and

the other kets |2) fixed can be expressed as in Figure 3.1, where U = [ 3 @

o + |8 = 1.

Suppose now x and y differ in r places. Then we can construct a sequence

T = :L‘(O) x(l) .’E(2) . x(rfl) x(r) — y
of n length words such that () and 2(+V differ exactly in one position Vi = 0,1,2,...,r—
1.

Let x, (M differ at position ji,
M 2@ differ at position js,

and 2D 2 differ at position j,.

Now a controlled not gate (it is not the CNOT gate) is applied on = with the j; bit
as target and the remaining n — 1 bits as control bits. The not gate acts on the j; bit if
the first bit is x;, the second bit is x5 and so on. This can be implemented with X (not)
and CNOT gates as shown in the Figures 3.2 and 3.3.

We follow this by a controlled not on z(!) with j, as the target bit and the remaining
n—1 as the control bits. After continuing this up to =1, we apply U. Then we just do
the reverse of the controlled not operations. This implements U in the plane generated
by |z) and |y) keeping all |z) fixed where z differs from both z and y.
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Figure 3.1: A generalized controlled Figure 3.2: A generalized controlled
U operation on n-qubits. NOT operation on n-qubits.

Figure 3.3 shows how a generalized controlled 1-qubit gate can be realised using 1-
qubit gates and r-controlled 1-qubit gate. This completes the proof. O

Lemma 3.1.3 If n > 2, then an n-controlled 1-qubit gate can be realised by (n — 1)-
controlled 1-qubit gates.

Proof: Let U = V? where U,V € SU(2). Then we see that the two circuits in Figure 3.4
are equivalent. O

Lemma 3.1.4 A controlled 1-qubit gate can be realised using CNOT and single qubit
gates.

Proof: Let U = ¢ AXBXC, ABC =1, D = (1) e?a ] Then from (corollary 2.2.4)
we know that the two circuits in Figure 3.5 are equivalent. 0

Proposition 3.1.5 Any arbitary unitary matriz on an n-dimensional Hilbert space can
be realised using phase, single qubit and CNOT gates.
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Figure 3.3: Realizing a generalized controlled operation.

N

Figure 3.4:

Proof: The proof follows from Lemma 3.1.1, Lemma 3.1.2, Lemma 3.1.3 and Lemma
3.1.4. OJ

Proposition 3.1.6 The group generated by H and e *5% is dense in SU(2).

Proof: H*> = I, HZH = X, HYH = =Y, He "s?H = ¢ "% and e "§%¢ 's¥ =
cos” Z1—(isin §){(cos £ (X+Z)+(sin £)Y'} = Ry(o) where cos v = cos® &, i = (cos g oin <05 §)

\/1+cos? §

He '37e TN H = cos® 21 — (isin 2){(cos 5 (X + Z) = (sin )V} = Ria),

(cos T ,—sin g,cos )

\/1+cos2 3

where, m = . Now we need the following lemma.
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Figure 3.5:

Lemma 3.1.7 If cosa = cos® %, then acis an irrational multiple of .

Proof: See Appendix. !

Any R;(0) can be approximated as closely as we want by a suitable power of R;(«)
because « is an irrational multiple of 7. Similarly, any Rz (¢) can be approximated by a
suitable power of R («).

Since 7i and 1 are two linearly independent unit vectors, any U € SU(2) can be
written as U = e R;(0,) Rz (02)Ri(0s). This is an immediate consequence of Euler’s
theorem. This proves the proposed Lemma. 0

Now we are ready for the main theorem.

Theorem 3.1.8 The subgroup generated by the Hadamard gate H, phase gate, CNOT
and the /8 is dense in the unitary group U(2).

Proof: Immediate from Prpposition 3.1.5 and Proposition 3.1.6. U

3.2 Appendix

In this section we first give all the definitions and results needed to prove Lemma 3.1.7.
The proofs which are routine are left out. The reader may refer to Algebra by Artin
([13]) or Basic Algebra by Jacobson ([14]) for a comprehensive treatment. We start with
a few definitions.

A nonconstant polynomial P € F[z| is called irreducible if it is written as a product
of two polynomials P;, P, € F[x] then either Py or P; is a constant.

A polynomial is called monic if the coefficient of the leading term is 1.

A polynomial ay+a;z+- - -+ a,x™ in Zlz| is called primitive if g.c.d(|ao|, ..., |a,|) =1
and a, > 0.

Remark 3.2.1 Every nonzero polynomial P € Q[z] can be written as a product P =
cPy, where ¢ is a rational number and Fj is a primitive polynomial in Z[x]. Note that this
expression for P is unique and the polynomial P has integer coefficients iff ¢ is an integer.
In that case |¢| is the g.c.d. of the coefficients of P and ¢ and the leading coefficient of P
have the same sign.



The rational number ¢ which appears in this remark is called the content of P. If P
has integer coefficients, then the content divides P in Z[x]. Also, P is primitive iff its
content is 1.

Lemma 3.2.2 Let ¢ : R — R’ be a ring homomorphism. Then for any element
a € R, there is a unique homomorphism ® : R[z]| — R’ which agrees with the map ¢
on constant polynomials and sends x ~ a.

Let F, = Z/pZ. The lemma above gives us a homomorphism Z[z] — F,. This
homomorphism sends a polynomial P = a,,x™+- - -4ay to its residue P = a,,2™+- - -+ag
modulo p.

Theorem 3.2.3 (Gauss’s Lemma) A product of primitive polynomials in Z[x| is primi-
tive.

Proof:

Let P and () be two primitive polynomials in Z[z] and let R be their product. Ob-
viously the leading coefficient of R is positive. To show that R is primitive, it is enough
to show that no prime integer p divides all the coefficients of R. Consider the homo-
morphism Z[x] — F,[z] defined above. Since P is primitive, its coefficients are not all
divisible by p. So P # 0. Similarly, @ # 0. Since the polynomial ring F,[z] is an integral
domain, R = PQ # 0. Therefore p does not divide one of the coefficients of R. This
implies that R is primitive.

U

Proposition 3.2.4

1. Let F, G be polynomials in Q[x]|, and let Fy, Gy be the associated primitive poly-
nomials in Z|x|. If F divides G in Q[x], then Fy divides Gy in Z[x].

2. Let F,G € Z[z] such that F is primitive and G is divisible by F in Q[z], say
G = FQ, with Q € Q[z]. Then Q € Z[x], and hence F divides G in Z|x].

3. Let F', G be polynomials in Zlz|. If they have a common nonconstant factor in
Q[z], then they have such a factor in Z|x] too.

Proof:  To prove (1), we may clear denominators so that F' and G become primitive.
Then (1) is a consequence of (2). By Remark 3.2.1 we can write QQ = ¢Q)y, where Qg is
primitive and ¢ € Q. By Gauss’s Lemma, F'() is primitive, and the equation Gg = cF'Q)q
shows that it is the primitive polynomial )y associated to (). Therefore () = cQ)y is the
expression for () referred to in Lemma 3.2.1, and c¢ is the content of (). Since ¢ is the
content of both G and @), and G € Z[z], it follows that ¢ € Z, hence that @) € Z[z|. Now
let us prove (3). Suppose that F', G have a common factor H in Q[z]. We may assume
that H is primitive, and then by (2) H divides both F' and G in Z[z]. O

Corollary 3.2.5 If a nonconstant polynomial F is irreducible in Z[z|, then it is irre-
ducible in Q[z].



Proposition 3.2.6 Let F' be an integer polynomial with positive leading coefficient.
Then F is irreducible in Z|x] iff either

1. F' is a prime integer, or

2. F is a primitive polynomial which is irreducible in Q[x].

Proof: Suppose that F'is irreducible. As in Remark 3.2.1, we may write F' = cFy, where
Fy is primitive. Since F' is irreducible, this cannot be a proper factorization. So either
cor Fyis 1. If Fy = 1, then F is constant, and to be irreducible a constant polynomial
must be a prime integer. The converse is trivial. 0

Lemma 3.2.7 In a principal ideal domain, an irreducible element is prime.
Theorem 3.2.8 FEvery irreducible element of Z[x] is a prime element.

Proof: Let F be irreducible, and suppose F' divides GH, where G, H € Z[x].

Case 1: F' = p is a prime integer. Write G = ¢Gy and H = dH, as in Remark 3.2.1.
Then GyHy is primitive, and hence some coefficient a of GyHy is not divisible by p. But
since p divides GH, the corresponding coefficient, which is cda, is divisible by p. Hence
p divides ¢ or d, so p divides G or H.

Case 2: F is a primitive polynomial which is irreducible in Q[z]. By Lemma 3.2.7, F
is a prime element of Q[z|. Hence F divides G or H in Q[z]. By Proposition 3.2.4, F
divides G or H in Z[x]. O

Lemma 3.2.9 Let F' = a,2" + -+ - + ay € Z[z] be an integer polynomial, and let p be a
prime integer which does not divide a,. If the residue F' of F' modulo p is irreducible,
then F' is irreducible in Q[z].

Proof: This follows from the natural homomorphism Z[x] — F,[z] (see Lemma 3.2.2).
We may assume that F is primitive. Since p does not divide a,,, the degrees of F' and F'
are equal. If F' factors in Q[z], then it also factors in Z[z] by Corollary 3.2.5. Let F' = GH
be a proper factorization in Z[x]. Since F is primitive, G and H have positive degree.
Since deg F' = deg F and F = GH, it follows that deg G = deg G and deg H = deg H,
hence that F = GH is a proper factorization, which shows that F is reducible. 0]

Theorem 3.2.10 (FEisenstein Criterion) Let F' = ap,a™ + -+ + ag € Z[x] be an integer
polynomaal, and let p be a prime integer. Suppose that the coefficients of F' satisfy the
following conditions:

1. p does not divide a,,;
2. p divides other coefficients a,_1,...aq;

3. p? does not divide ay.

Then F' is irreducible in Qz|. If F is primitive, it is irreducible in Z[z].



Proof: Assume F satisfies the hypothesis. Let F denote the residue modulo p. The
conditions (1) and (2) imply that F = @,2™ and that @, # 0. If F is reducible in Q[z],
then it will factor in Z[xz] into factors of positive degree, say F' = GH. Then G and H
divide @, 2™, and hence each of these polynomials is a monomial. Therefore all coefficients
of G and of H, except the highest ones are divisible by p. Let the constant coefficients
of G, H be by, cy. Then the constant coefficient of F'is ag = bycy. Since p divides by and
Co, it follows that p? divides ag, which contradicts (3). This shows that F' is irreducible.
The last assertion follows from Proposition 3.2.6. U

Corollary 3.2.11 Let p be a prime. Then the polynomial f(x) = 2P 1 +aP 24 +2+1
is irreducible in Q[z]. (Such polynomials are called cyclotomic polynomials, and their
roots are the pth roots of unity.)

Proof: First note that (z—1) f(z) = 2? — 1. Now substituting x = y+1 into this product
we get
_ _ Py p-1 p
yfly+1) =@+ -1=y"+ <1>@/p Tt <p_1>y-

We have (!) =p(p—1)---(p—i+1)/il. If i < p, then the prime p isn’t a factor of i!,
so ¢! divides the product (p —1)---(p — i + 1) of the remaining terms in the numerator
of the integer (’Z’) This implies that (’Z’) is divisible by p. Dividing the expansion of
y f(y+ 1) by y shows that f(y + 1) satisfies the Eisenstein Criterion and hence it is an
irreducible polynomial. This implies that f(z) is also irreducible. O

Theorem 3.2.12 If cos o = cos? 2, then o is an irrational multiple of .

Before proceeding to the proof of this theorem we shall establish a lemma.

Lemma 3.2.13 Let A = a/7, where « is as in Theorem 8.2.12. Then 3 = €*™ is a
root of the irreducible monic polynomial mg = z* + 2 + 12 + 2 + 1 (over Q[z]).

Proof: Let mg be the irreducible monic polynomial which has 3 as one of its roots. Note
that sin 27\ is not equal to zero. This means mg has a complex root. Since its coefficients
are rational it must also have the root 3. Thus, mg must be divisible by 2% —2Re{3} + 1.
Elementary computation shows that

2Re{p} = —% +V2.

So myg is divisible by p(z) = 2% — (v/2— )z +1. Since, p(z) has irrational coefficients and

mg has rational coefficients, mg must have another irrational root, say ¢. This implies
mg has another quadratic factor with real coefficients. This means that deg(mg) > 4.
Consider the polynomial p'(z) = 2* + (V2 + 1)z + 1. Multiplying p(z) and p/(z) we get
z* + 2* 4+ 122 + 2 + 1. From the construction f is a root of the polynomial

1
m5:x4+x3+1x2+x+1,

which has no rational roots. O



Proof of Theorem 3.2.12: Note that the polynomial mg(z) is not cyclotomic. Let us
assume that A is rational. Then [ = I—q’ is a root of the cyclotomic polymomial

Py(z) =2 4+ 24+ -+ +1.

But ®,(z) = [[,, ®»(z), where p is prime. By Corollary 3.2.11 and Theorem 3.2.8
we know this is a prime factorization of ®,(x). Since, mg(x) is minimum irreducible
polynomial and Z[z] is a unique factorization domain (follows from Theorem 3.2.8),
mg(z) is prime. Thus, mg(z) must divide ®,(x). Hence, mg(z) must be a cyclotomic
polynomial. A contradiction. O






Lecture 4

The Fourier Transform and an
Application

4.1 Quantum Fourier Transform

The quantum Fourier transform on a finite dimensional Hilbert space H of dimension N
is defined as a linear operator whose action on an orthonormal basis |0),|1),...,|N —1)
is given by

T

2mijk

e N k).

Flj) —

2=
g

It can be easily verified that F' defined as above is a unitary operator and the matrix
. . 2rij k
of the transformation is M (F') = [u;y], where uj, = \/Lﬁeiwj

Theorem 4.1.1 Let the dimension of the Hilbert space H be 2". Then the quantum
Fourier transform F' also has the following product representation .

Flj) = Fljjz-- - Jn)

2_ﬂ(|0> +62ﬂ20.]n|1>)(|0> —|—€2mo']"_1]"|1>)...(|0> +627r10.]1]2...]n|1>).
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Proof:

1 i, 9
= x> SR, k)
k17k2: :kn
1 2mijk;
I Y. O k)
k1koy... ki
r ., 2mij
= 25 L (0) +e5 1)
where
o= a2 2" 4 a2+
j o . jnf(lfl) jn—l ]n
o = integer +T+---+2l_ +§
1 o .
Fljy = 5z ©fLy ([0) + €m0 Pmmtnint=ninjl))

1 . o L
= 2—g(|0> + 200 [1))(|0) + eT0Inm1In 1)) L ([0) A 2Oz 1))

The circuit for implementing Fourier Transform on n-qubits is shown in Figure 4.1 .

Figure 4.1: Efficient circuit for quantum Fourier transform. The output on the i qubit
from top is |0) +e2™*0Ji-n|1). The correctness of the circuit follows from Theorem 4.1.1.

In Figure 4.1, H represents the Hadamard gate and the unitary transform corre-

1 0
sponding to the gate Ry is [ 0 o ] From the product representation it is easy to
e 2

see that this circuit does compute the Fourier transform. To see how the circuit works
we consider the input state [jjo ... j,) and check how the system evolves. After the first
Hadamard gate the state is

(HI) sds -G} = %um W |19) jnds - . - )

After the controlled R, gate acting on the first qubit the state is

1

(RoH|j1))17275 - (|0>+627”7 D|1)|jads - - - )



Hence, after the sequence of the controlled Rj.s on the first qubit, the state is

(RnRy—1 ... RoH|j1))|jogs - jn) = ﬁ(|0>+€2 A1) gz - - )

1
ﬁ

Similarly, we can compute the action on the other qubits. The final state of the system
is

(10) + €727 1)) | s - - - i)

2_ﬂ(|0> + €2m0.y1]2...gn|1>)(|0> + eZmO.gz...gn|1>) o (|O> + €2m0.jn|1>)

2

Now, if we perform the swap operation i.e. interchange the order of the qubits we get

2in(|0> 4 eZin.jn)(|0> 4 627ri0.jn71jn) o (|0> 4 e27ri0.j1j2...jn)7
2

which is exactly the quantum Fourier transform. The number of Hadamard gates used
is n and the number of controlled rotation gates used is nnb)  In the end at most
L%J swap gates are used. Therefore, this circuit uses ©(n?) gates. The best classical
algorithm to compute Fourier transform on 2" elements takes ©(2"(log2")) gates. Thus
to compute classical Fourier transform using classical gates takes exponentially more
time to accomplish the task compared to computing quantum Fourier transform using a

quantum computer.

Remark 4.1.2 This fact cannot be exploited very well because it is not possible to
get access to the amplitudes in a quantum computer by measurements. Moreover, it is
very difficult to obtain the initial state whose Fourier transform is to be computed. But
quantum Fourier transform makes phase estimation easy which enables us to factor an
integer efficiently in a quantum computer.

4.2 Phase Estimation

Let U be a unitary operator with eigen vector |u) and eigen value ¢*™%. If |u) and
controlled U? are available then using Fourier transform one can efficiently estimate the
phase . The circuit for the first stage of the phase estimation is shown below :

In the second stage of the phase estimation inwverse Fourier transform is applied on
some selected qubits and a measurement is done on those qubits in the computational
basis. It will be shown that this yields a good estimate of the phase.

The first stage of the phase estimation uses two registers. The first register contains
t qubits all in the state |0) and the second register contains n qubits in the state |u).
The number of qubits ¢ in the first register is chosen according to the accuracy and the
probability of success required in the phase estimation procedure.

The final state after the first stage is

2t—1
1 t-1 ot : 1 :
2—£(I0>+62”2t ?I)(j0) + e ‘”|1>)---(|0>+€2m20“”|1>)IU>:27262“‘”’“|k>|w-
2 2 k=0



|0) H I ® [0) 4 2721 e)|
°
°
°
°
°
[0) H ® ecee 0y + 27 (278 1)
[0y H ° ceee 0) +e27i21 o)1)
i (20
o) H [ cece |0) 4 e2mi(27¢) 1)
[u) 2° 2t u2? ee0e 2N — |

Figure 4.2: First stage of the phase estimation circuit. Normalization factors of 1/\/5
have been omitted, on the right side.

In the second stage inverse Fourier transform is applied on the first register (the

first ¢ qubits). This gives us a good estimate of ¢. To get a rough idea why this is
true we consider the case when ¢ can be expressed exactly in ¢ bits by the notation
© = 0.01¢2 ... ¢;. In this case the final state after stage one can be written as
S (10) + 202 1)) (J0) + 202t 1)) (|0) 4 €m0 e1e2 2 1)) [u).
If we look at the product representation of the Fourier transform it is immediate that the
above expression is the Fourier transform of the state |p1¢ ... ¢;). Hence measurement
in the computational basis after the inverse Fourier transform will give the exact value
of p. If ¢ cannot be represented in ¢ bits the observed value after measurement will be
some ¢. In the next section we analyze how good is ¢ as an estimate of .

4.3 Analysis of the Phase Estimation Circuit

Let b € {0,1,2...2" — 1} be an integer such that & = 0.b1by...b, < ¢ is the the best
approximation to ¢. Then 0 = ¢ — 2—"t < 27'. After application of the inverse Fourier
transform in the second stage the state of the system is

1 2t—1

—2mikl -
= e 2t €2m<pk |l> )
2t

=0
Let o be the amplitude of |(b+ 1) (mod 2)). Then,

2t—1

1 ri(p— (OFD
o= 2(62 o= T Nk,
k=0

Taking the sum of the geometric series we get



11— e27ri(2t<pf(b+l))

a = e ) (4.3.1)
11— 627ri(2t(5—l)

2

Let e be the desired tolerance of error in the estimation of b. We would like to
get a bound on the probability of obtaining an integer m after measurement such that
|m —b| > e.

p(lm —b| > e) = > o>+ D el (4.3.3)
—2t=1f<—(e—1) et+1<i<2t=1

Hence
2

loy]? < (4.3.4)

By elementary calculus we get the inequality |1 — e¥| > @ whenever 0 € [—m,7].
We observe that if =21 <1 < 2! then —7 < 27(5 — &) < 7. Hence

gl < ——— 4.3.5
Substituting, we get
i —(e+1) 2t—1
1 1 1
b >e) < - B B
pm—=b>e) < 71 >, (=202 = 22 =)
[ =—20"1+1 l=e+1
Using the fact 0 < 2!§ < 1 we see that the R.H.S. is
i —(e+1) gt-1
1 1 1
< Z — -
S ST S
[ (=—2t=1+1 l=e+1
1 |
- 2 [2
l=e
1 ¥
< = / —di
2/ .
B 1
- 2(e—2)

The above analysis shows how close m is to b. But we know that |¢ —b| < 5. Hence
to approximate ¢ correct up to the first r bits in the binary expansion, we have to choose
e =2""—1. If we use t = r+p bits in the first register of the phase estimation algorithm,
the probability of obtaining an estimate of the phase within the desired error margin is at

least 1— m Hence, if the desired accuracy is r and the required probability of getting

an estimate in this range is 1 — ¢, then we have to choose ¢ greater than r + ﬂog 2+ ZLJ .






Lecture 5

Order Finding

5.1 The Order Finding Algorithm

For any two positive integers z, y denote their greatest common divisor (GCD) by (z,y).
For any positive integer N let Z} denote the set {z | x € N, (z, N) = 1}. Under
multiplication modulo N, Z% is an abelian group. Let ¢(N) be the order of this group.
Then ¢(.) is called the Eulers’s ¢ function. The order of an element x € Z} is defined
to be the smallest positive integer r satisfying 2" = 1 (mod N). In the classical model of
computation finding the order of an element in Z7}, is considered to be a hard problem.
Using the phase estimation procedure of quantum computation we shall demonstrate how
one can determine the order of an element with high probability using only a polynomial
number of gates.

To solve the problem of order finding using a quantum computer we first translate
the problem into a problem concerning unitary operators as follows.

Let N be an L bit number so that
N =200 4270 49272 ... 4 201 where 0 < jo < 1 < jo < +++ < jr—1 < L.

Let the Hilbert space generated by L qubits be denoted by H = (C?)®L. We define a
unitary operator U in H by

yr= ly) if N<y<2t-1

It is to be noted that if |zy; (mod N)) = |z ys (mod N)) for 0 < y; < yo < N then
we have x (yo — y1) = 0 (mod N). But GCD of z and N is 1. So N|(y2 — y1) which is
impossible. This means U is a permutation matrix and hence unitary.

Let

[

2% (mod N)) (5.1.1)
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We observe that

r—1
1 s
Ulus) = NG 2w | ket (mod N)) (5.1.2)
k=0
1 r—1
_ pmiy o2 | )k (mod N)) (5.1.3)
Vs

Thus |us) is an eigenvector of the unitary matrix U with corresponding eigenvalue
e?™ir for all s € {0,1,2,...,7r —1}.

Now if we use the phase estimation algorithm we will get enough information to
obtain the order r. But in order to be able to use the phase estimation we must be able
to implement the controlled U? operation efficiently. The other requirement is that we
must be able to prepare the eigen vectors accurately.

The controlled U? operations can be implemented using O(L?) gates as outlined in
Appendix 1. But the second requirement seems impossible because we need to know r
in order to prepare the eigen states. This problem can be solved by observing that

%z_:ms) = [1). (5.1.4)

s=0

Thus in the phase estimation procedure if we set the number of qubits in the first register
t =2L+ 1+ [2+ 5| and the L qubits in the second register in the state |1), then for
each s € {0,1,...,r — 1} we will get an estimate of the phase ¢ =  correct up to the
first 2L + 1 bits with probability at least % The circuit is shown in Figure 5.1.

Register 1, | u®t ; ﬁ& I
t qubits rr

Register 2
L qubits zJ mod N

Figure 5.1: Quantum circuit for order finding algorithm. The first register is initialized
to state |0) and the second register is initialized to state |1)

It can be checked that if in the phase estimation circuit we feed in the superposition
of eigen states

r—1 r—1
lu) = ch|us>, where Z les|? =1
s=0 5=0

then the output state before measurement will be

1 1 _ 6271'7:((,0572%)21:

— X kY lus). 5.1.5

22 { oy () (5.1.5)
S,




Hence on measuring the first ¢t qubits we will get the value of the phase ¢ correct up to
2L + 1 bits with probability at least |cs[*(1 — €).

Now our job is to extract the exact value of r from the estimated phase. We know the
phase ¢ =~ 2 correct up to 2L + 1 places. If this estimate is close enough to ¢ we should
be able to get r because we know that ¢ is the ratio of two bounded integers. This task
is accomplished efficiently using the following result from number theory.

Theorem 5.1.6 If 2 is a rational number such that

5 1
o 90‘ <53 (5.1.7)

then 2 is a convergent of the continued fraction for ¢ and hence can be efficiently computed
using the continued fraction algorithm.

Proof: See appendix. O
We know that [ — | < 2°CL-D < L gince r < N < 2F. So if we now use

2r2»
the continued fraction algorithm we will get the fraction j—: which is equal to * with
(r',s’) = 1. Thus if s and r are relatively prime then we get the order of the element
x. We know that the number of positive integers relatively prime and less than r is at
least % (see appendix). The order finding algorithm fails if the phase estimation
algorithm gives a bad estimate or if s divides r. The probability that the first case does
not occur is at least (1 — ¢) and the second case does not occur is at least %.
Hence if we repeat the algorithm O(L) times we will get the phase with a very high

probability.

The algorithm can be summarized as follows
Inputs: Relatively prime integers N and .

Output: Order of x.

Runtime: O(L*).

Procedure:

Initialize: Set “current smallest” equal to N.



1.  Prepare Uy, N the equivalent sequence of
controlled U? operations

2. 0)|1) initial state
3. — \/% Z?:OI l7)]11) create superposition
4. = LY i) (mod N)) apply Uge,n)
N S0 g € 1))
5. — % S|P us) apply inverse FT to first register
6. © measure first register
7.  Get denominator of all convergents of ¢ use theorem 5.1.9 of appendix 2.

8.  For all integers ¢ obtained in Step 7,

check if 2/ = 1 and keep the smallest of them.
9. Update “current smallest”

10. Repeat steps 1 to 9 O(log N) times
11. Return “current smallest” with a high probability. This

is the order

5.1.1 Appendix 0: Classical Reversible Computation

All quantum gates are reversible (i. e. from the output we can uniquely recover the
input). But the classical gates like ‘AND’ and ‘OR’ are not reversible. So a quantum
circuit cannot exist for any such gate. However, by adding a few extra wires we can obtain
a gate which is reversible and the required function appears on specified wires. This is
called a reversible classical gate. If the ‘size’ of the circuit is measured by the number of
‘wires’ then this procedure uses only a constant multiple of the number of wires used in
the earlier classical circuit. The latter gate can be implemented using a quantum gate.
Reversible classical gates can be built using the Fredkin gate (See Figure 5.2). If we set
x to 0 then 2’ will be y A ¢ which is the AND gate. If we set £ = 0 and y = 1 then we get
con ' and —¢ on 3'. Thus we get both NOT and FANOUT gates. CNOT can also be
used to copy classical bits. In the process of constructing functional equivalents of the
classical gates using quantum gates some extra wires have been introduced. The outputs
of these wires are called junk. But if the ‘junk’ is some arbitrary function of the input
then the circuit may not behave as a quantum gate for the function f(z). So instead
of some junk output we would like to have some fixed output on the extra wires. This
model is called clean computation. This can be done as shown in the Figures 5.3, 5.4
and 5.5.



c . c

Figure 5.2: Fredkin gate (controlled swap).

Input Bits Output Bits

, REVERSIBLE GATE | Junk Bits.
Clenits —

Figure 5.3: Reversible gate

5.1.2 Appendix 1: Efficient Implementation of Controlled U?
Operation

To compute the sequence of controlled U 4 operations we have to compute the transfor-
mation

2)y) = UL U )
= |2)z** 7 x - x 22?y (mod N))
|[2)|2%y (mod N)).

Thus the sequence of controlled U g operations is equivalent to multiplying the content
of the second register by the modular exponential 2* (mod N), where z is the content of
the first register. This can be computed using clean reversible computation (see Appendix
0).

This is achieved by first reversibly computing the function % (mod N) in a third
register and then multiplying the contents of the third and the second register such that
each qubit in the third register is in the state |0). The task is accomplished in two stages.
In the first stage we compute 2% for all j € {1,2,...,t — 1} by successively squaring
z (mod N), where t = 2L + 1 + [log2 + 5| = O(L). Each multiplication uses at most
O(L?) gates (Indeed an O(L log Lloglog L) algorithm using FFT is known. See [5].) and
there are ¢t — 1 such multiplications. Hence in this step at most O(L?) gates are used. In
the second stage we compute z* (mod ) using the identity

2% (mod N) = (z**”" (mod N))(z** " (mod N))---(z** (mod N)).  (5.1.8)
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Figure 5.4: Clean computation. Computing x — (x, f(x)
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Figure 5.5: Computing a bijective function f

Clearly this operation also uses at most O(L?) gates. Hence using O(L?) gates we com-
pute the transformation |2)|y) — |2)|z*y (mod N)).

5.1.3 Appendix 2: Continued Fraction Algorithm

A finite continued fraction of n + 1 variables is defined as

. 1
Qo

)

a
1 + ast T
agt-
tan

For convenience it is also written as [ag, a1, ..., a,]. The nth convergent of a continued
fraction [ag, ay,...ay] is defined as [ag, ay, ..., a,] for n < N.

The nth convergent is easily computed by the following theorem.

Theorem 5.1.9 If p, and q, are defined by

Po=0ay, Pr=a100+1, Dy =0anDn1+Pp2o for2<n<N,
=1 =0, Gn=0,9 1+ ¢z for2<n<N

S

n

qn”

then [ag,ay,...,a,] =

Proof: We prove by induction. It is easy to check for the base cases n =1, 2.
Induction Hypothesis: The conclusion holds for 1 < n < m.



Induction step.

1
[a’OJG’lJ"'a’mJa’m-i-l] = |:a’07a17"'7a’m—17am+ a
m+1

(am + L ) Pm—1 +pm—2

Am+1

<a'm + #> Gm—1 + qm—2

Am+1
Q1 (ampm—l + pm—Z) + Pm-1
Q41 (a'QO—l + Qm—2) + dm—1
Am4+1Pm + Pm—1

Crm+19m + Gm—1
pm+1

Gm+1

Theorem 5.1.10 The functions p, and q, satisfy the following relation
Pndn—1 — Pn—14n = (_1)n

Proof: We use induction. The result is true for the base cases n = 1,2. Assume the result
is true for any integer less than n.
Puln-1—Pn-1Gn = (@uPn1+Pn-2)@n-1 — Pn-1(@nGn-1+ Gu—2)
= —1(Pn-1Gn-2 — Pn—2qn-1)
(=1)"
This completes the proof. O

Let x be a real number. Then the system of equations

r = ap+ay withay €Z and o € [0,1)
1
— = a+a; witha; €Zand a; €[0,1)
Qp
1
— = ay+ay withay €Z and ay € [0,1)
63}

is called the continued fraction algorithm. The algorithm continues till «;, # 0.
It is easy to see that if the algorithm terminates in N +1 steps then x = [ag, a1, ... ay]
and hence rational. But the converse of this is also true.

Theorem 5.1.11 Any rational number can be represented by a finite continued fraction.
Proof: Let x = % Then from the continued fraction algorithm we get the following set

of equations.

h = a0k+k1 (0<k1<k)
k = aiky+ ko (0<I{12<k1)



We observe that k& > k; > ky---. Hence the algorithm must terminate. Also, this is
exactly the Euclid’s GCD algorithm. Hence its complexity is O((log(h + k))? [2]. O

Theorem 5.1.12 If x is representable by a simple continued fraction with an odd (even)
number of convergents, it is also representable by one with an even (odd) number of
convergents.

Proof: Let x = [ag, a4, ...,a,]. If a, > 2, then [ag, a4, ...,a,] = [ao,ay,...,a, — 1,1]. If
ap = 1, then [ag,al, ey Qp1, 1] = [(Lg,al, e, Qpo1 1] O

Theorem 5.1.13 Let x be a rational number and p and q two integers such that

Then ’é 15 a convergent of the continued fraction for x.

Proof: Let [ag, ...,a,]| be the continued fraction expansion of 2. From Theorem 5.1.12
it follows that without loss of generality we may assume n to be even. Let p; and ¢; be
defined as in Theorem 5.1.9.

Let ¢ be defined by the equation

Dn d
r=—+4+—

0 2¢2

Then [6] <1 and 2 = B is the nth convergent. Let

)\ -9 <ann1 - annl) _ dn—1 ‘
0 Gn

The definition of A ensures that the equation

_ )‘pn + Pn—1
r =
)‘Qn + qn—1

is satisfied. Hence = = [ay, .. .a,, A]. By Theorem 5.1.10 we get

P g - Qn-1
0 qn
> 2 —1since ¢; > q;_1
= 1.

This implies that A is a rational number greater than 1 and it has a finite continued
fraction, say [b,. .., by]. Hence x = [ay, ..., an,bo, ..., by]. Thus % is a convergent of x.
OJ



5.1.4 Appendix 3: Estimating

p(r)

-
Lemma 5.1.14 The ratio @ is at least lf§11§§: forr > 16.
Proof: Let r =[], p" H?‘:1 qu, where p; < py--- < p, < lfg}(ffgrr <@ <@ < Q.

Then ¢(r) = [T (ps — Dpi ™

H?:l(%’ - l)qffl. Note that ¢® < r. This implies b <

: 2logr logr
logq r< IOg r. Since 7> loglogr? we have b < log log r—log log log r+log 2~
Hence,
a i_l b 6'_1
o(r) [T (i = Dpy ™ ITi (g5 — Vg

r

i TT0 Bj
| B |

iz N P /50
2logr
log log r - b
-1 1
e
i=2 L} 4
B loglog7"1£[<1 1>
2logr ey q;
S log log r ] log log r b
2logr 2logr
S log log r ] log logrb
2logr 2logr
_ loglogr ] log log r log r
~ 2logr 2logr \loglogr —logloglogr + log 2
> lOg IOg’I“ 1-2F where E = log loglog r—log 2
2logr |2(1— E) loglogr
S loglogr (1 —2FE
2logr 2
log1
O80T for r > 16.
10logr
U
In fact the following theorem is true.
Theorem 5.1.15 li_mn_,oow = e~ 7 where vy is the Euler’s constant. l

n

The interested reader may look up Hardy and Wright [1] for the proof.






Lecture 6

Shor’s Algorithm

6.1 Factoring to Order Finding

Lemma 6.1.1 Let N be an odd number with prime factorization p'ps* ...p%m, m > 2.

Let
A2 {z € ZY : (ord(z) is odd) or (ord(x) is even and z°"4®)/? = —1)},

where ord(z) = min{i > 1: ' = 1}. If x is chosen at ramdom from Z%;, then

Pr[ce Al < —

A gm—1"

Proof: 1 Let |Z%] = ¢(N) = 2's, where s is odd (note ¢ > 2). Let V be the set of
square-roots of 1 in Zj,.

Claim 6.1.2 (a) If ord(z) is odd, then z* = 1.

(b) If ord(z) is even, then 22* € V — {1}, for some i € {0,1,... 0 —1}.

(c) If ord(x) is even and z°7®)/2 = —1, then 2%'* = —1 for some i € {0,1,...,0—1}.
Proof:

(a) Since z € Z%, we have ord(z)|¢(N). Since ord(z) is odd, ord(z)|s.

(b) and (c) Let ord(z) = 2°s" (where ¢ > 1 and s is odd). Then, ord(x)|2"s, but
ord(z) 1 2¢~'s. Hence, 22° ' € V—{1}. Now, if z74@)/2 = 1 then 22" "¢’ = —1.

!

0" —1
Hence, 22~ % = —1. O

LOur proof is based on the proof of correctness of Miller’s primality test in Kozen’s book [6, page 206].
Nielsen and Chuang [7, Theorem A4.13, page 634] give a bound of 2~™. Their bound is not correct: for

N =21=3x7, we have |Z}| = 12 and |A| = 6. Then, [zl £ 22
N

51



Fori=0,1,....0—1,and v € V, let S;, = {2 € Z : 22" = v}. By Claim 6.1.2, we
have

(-1
A g 5071 U U Sz’,fl; (613)
1=0
{—1
and ZXZ(V = 5071 U U U Si,v- (614)
1=0veV—{1}

Claim 6.1.5 All the sets appearing on the right hand side of (6.1.4) are disjoint.

Proof: Consider two such sets S;, and S;, appearing above. If ¢ = j then v # w and
these sets are disjoint by defnition. Hence, suppose ¢ < j; this implies that w # 1. But
for each z € S;,, we have 22 ¢ = v2 = 1. This implies that 2%'* = 1 # w, and therefore

X € Sj,’w- O

To prove that |A| < 27" HZ%|, we will use the isomorphism
Ly — Z;?l X Z;SQ X e X Z;gnm;
g = (7 (mod pi*), 5 (mod p5?), ..., 5 (mod py)),

which follows from the Chinese remainder theorem.

Since p; is odd, 1 # —1 (mod pi*), for i = 1,2,...,m, and the 2™ elements in
W = {+1,—1}" correspond to square roots of 1 in Z}; of these, the only trivial square
roots are 1 = (1,1,...,1) and -1 = (—1,—-1,...,-1).

Claim 6.1.6

[Soal = 1S0.-1l;
1Sj—1] = |Sjwl, forweW and j=0,1,...,0—1.

Proof: To see (6.1.7), observe that x € Sy iff 2° =1, iff (—z)* = -1, iff —2 € Sy _1.

To prove the second part of (6.1.8), fix j and w. We first show that if S; _; # (), then
Sjw # 0. For, suppose b = (b1, b,...,by) € Sj_1. Then, consider ¢ € Zja, X Z;a2 X
2

o X Lo, defined by
{ 1 ifw, =1
C;, =

Clearly, ¢* = w, s0 S;,, # (. Furthermore, the map z — b 'z is a bijection between

Sj7_1 and Sj,w- Hence, |Sj7_1| = |S',w|- [
Since |W| = 2", from (6.1.3), (6.1.4) and Claim 6.1.6 we obtain

2" YSoa U So 1| = | U So.wl,

weW
and fori=0,1,2,....0-1, 2"=1[S;| = | |J Sl
we{W—{1}}



which implies

-1 -1
2 Al < 2m_1|50,1 U U Si—1| < [Soa U U U Siw
i=0 i=0 we {W—{1}}

IN

/—1
Soaul) U Swl=lzal. O

i=0 ve{V —{1}}

The above Lemma is the main tool for analyzing the Shor’s factoring algorithm. The
crucial observation is that, if we can get a nontrivial square root of unity, then we can find
a nontrivial factor of N using Euclid’s G.C.D. algorithm. Lemma 6.1.1 tells us that if
we randomly pick a number x, less than N and look at its order, with probability greater

than 1 — 2# it is even and we can get a nontrivial square root of unity by raising x to

m—1
the power ord(x)/2. The lemma holds if N is odd and has at least two distinct prime
factors. But a classical polynomial time algorithm exists for finding the prime number
which divides N, if N is a prime power. So this gives us a polynomial time factoring
algorithm. So far it is not known whether classical computers can factorize a number N in
polynomial time, even if randomness is allowed. Below is the Shor’s factoring algorithm.

Shor’s factoring algorithm.

Input. N
1) If N is even, return 2.

2) Use quantum order finding algorithm to find the order of 2. If ord(2) = N — 1,
conclude N is prime and stop.

3) Check if N is of the form p®, a > 1 by the subroutine Prime-power.
4) Pick an element z € N.

5) If x | N, return x.

6) Use quantum order finding algorithm to find the order of x.

7) If ord(x) is odd then abort.

ord(x)

8) If x 2 = —1 (mod N) then abort.

ord(xz)

9) Get a nontrivial square root of 1 (mod N), by setting y <z~ 2

10) Use Euclid’s G.C.D. algorithm to find the greatest common divisor of (y — 1, N)
and (y + 1, N). Return the nontrivial numbers.



Output: With high probability it gives a divisor of N or tells if N is prime.
Subroutine: Prime-power

Input: Integer N

1 Compute y = log, V.

2 Foralli € {2,3,...,log, N} compute z; = £.

)

3 Find u; < 2% < wu;+1forallie {2,3,...,log, N}.

4 Check if u; | N or u;y | N for alli € {2,3,...,log, N}. If any one of the numbers
divide N, say u, then return u. Else fail.

Output: If NV is a prime power of p, the subroutine “prime-power” returns p. If it
is not a prime power it fails to produce any output. In O((logN)?) steps it terminates.
The most costly operation in the algorithm is the order finding algorithm. Since the
order finding takes O(log N)* time, the time taken by this factoring algorithm is also
O(log N)*.

Remark 6.1.9 Step 1) just checks if the number N is divisible by 2. Step 2) checks if
the number NN is prime and Step 3) if NV is a prime power. So after Step 3) Lemma 6.1.1
is applicable.

Probability of success in Shor’s algorithm is greater than probability of success in
order finding multiplied by the probability that the chosen element x is not in the set A,
of Lemma 6.1.1. Running time of the algorithm is O((log N)*. Thus, by running the
algorithm only a constant number of times we can get probability of success greater than
1 — € for any € > 0.

Exercise 6.1.10 Find a randomized polynomial time algorithm for factoring an integer
N, if ¢(N) is known.



Lecture 7

Quantum Error Correcting Codes

7.1 Khnill Laflamme Theorem

The mathematical theory of communication of messages through a quantum information
channel is based on the following three basic principles.

1) Messages can be encoded as states and transmitted through quantum channels.

2)The output state may not be the same as the input state due to presence of noise
in the channel.

3) There is a collection of “good” states which when transmitted through the noisy
channel leads to output states from which the input state can be recovered with no error
or with a small margin of error.

The aim is to identify the set of good states for a given model of the noisy channel
and to give the decoding procedure.

———— > CHANNEL

input state output state
) T(p)

noise

Figure 7.1: A model of noisy quantum channel

Let H be a finite dimentional complex Hilbert space. We assume that there is a linear
space £ C B(H), called the error space such that for any input state p on #H the output

%)



state T'(p) has always the form
T(p) = Z Lij} (See Figure 7.1). (7.1.1)
J

where L; belongs to £ for every j. (7.1.2)

If the same input state is transmitted again the operators L;’s may be completely differ-
ent. But they always come from the error space £ and satisfy the equation

k
(> LiLj)p=1. (7.1.3)
j=1

The L’s may or may not depend on the density matrix p which is transmitted through
the noisy channel.

Definition 7.1.4 A state p is said to have its support in a subspace S C H if Tr pE® =1
where E° is the orthogonal projection on S.

This means if we choose an orthonormal basis (O.N.B.) e, e, ... €k, €x11,..., ey for
‘H such that ey, es, ... e, is a O.N.B. for S then the matrix of p in this basis has the
form g 8 where p is a k x k matrix. To recover the input state at the output of

the channel we apply a recovery operator R of the form
R(T(p) = S MT(p)M], (7.1.5)

J
d MiM; = I (7.1.6)
J

It would be desirable to have R(T'(p)) = p for all p, whenever the L's are from £ and
they act on p as in (7.1.1). Of course this is too ambitious. We would like to achieve this
pleasant situation at least for all p with support in some ‘large’ subspace C C H. Then
we can encode messages in terms of states from C and recover them with the help of a
decoding operation R. The idea is formalized in the following definition.

Definition 7.1.7 A subspace C C H is called a £-correcting quantum code, if there exist
operators My, Ms, ... My, such that for every p with support in C and any Ly, Ls,...L; €
&, with Tr(>_; L}Lj)p = 1, one has

> M;LjpLiMf = p. (7.1.8)
(¥
Remark 7.1.9 Now consider |u) € C. Then |u)(u| has support in C. Consider the
equations

> M;Lju)(u| LT M = Ju)(u| (7.1.10)

and

J

(ul (Z L}Lj> lu) = 1. (7.1.11)



Choose any |v) € H such that (u | v) = 0. Then we have

> [l ML |u)[* =0 (7.1.12)
Y]
& (v|M;Ljluy =0 for all |v) € {|u)}*" and every i, j. (7.1.13)

Thus,
M;Ljlu) = c(u)|u)y V |u) €C.

M;L; is an operator and C is a subspace. Hence this can happen iff

M;L | ,= X\(L)I |, VL € €.

We state this as a proposition.

Proposition 7.1.14 A subspace C C H 1is an E-correcting quantum code iff there exist
operators My, My, ... My, in ‘H, such that, ). MiTMi =1 and

M;L | ,= X\(L)I |, VL € €.

We would like to have a characterization of the quantum code C without involving the
M]s. That is, a condition entirely in terms of C and £. This is achieved by the following
remarkable criterion due to Knill and Laflamme.

Theorem 7.1.15 (Knill and Laflamme) A subspace C with an orthonormal basis 1y,
Y1, .., Y1 18 an E—correcting quantum code if and only if

1. (G| LI Lyl =0 Yi#j, and all Ly, Ly € E;

2. (Y| LY LyJuy) is independent of i = 0,1,... k —1.

Proof:

Necessity:

By the Proposition 7.1.14 we know that there must exist recovery operators R, R, ... R;
satisfying the equations ), RIRi =1 and R;,Ly = \;(L)y, v e€C, Lek.

Let Ly, Ly € £, then

(WILILal) = (iIL(Y RIR:) Laluy)
= SO RTTOA (L) (8 | )
= Zm)\r(L2)6U

Sufficiency:

Let the conditions (1) and (2) hold. Consider the subspaces £, Ey, ..., EP_1. It can
be verified that the correspondence Li; — Li; VL € £ is a scalar product preserving
map. So we can write the following table.



L R /7 N Vs |
Epy EPr o0 EYy o Edp
R
oo Lot e it Oy

Here ¢3, 08, ..., ¢4 " is an orthonormal basis for the subspace £v5. The map Lipy — Lp;,
for any L € &, is a unitary isomorphism between the subspaces £y and £v;. So
dim&y; =1 Vj € {0,1,...k—1} and there exists a global unitary operator Uj, satisfying
Uspy = &5, i =0,1,...,1—1. Since by the first condition (Ly1; | Lyth;) = 0for Ly, L, € €
and 7 # j, the subspaces £¢; 7 =0,1,...k — 1 are mutually orthogonal. Let E; be the
projection on the span of the i*" row in the array {gpz} Now we define a unitary operator
V) satisfying V@i = o, for i = 0,1,...,1— 1.

Let Ry = VWE; for i = 0,1,...,l —1 and R; = Ej, the projection on {¢%,0 < i <
[—1,0<j <k—1}" It can be verified that 3>\  RIR; = I.

Now consider any v = cotbg + c191 + -+ + cx—1¢k—1 in C. Then

LY = colipg + crLapy + - - - + cp1 Ly,
coLapg + Ui Lpg + - -+ + cp—1Up—1 Ly.

Let Lty = aO(L)gpg + al(L)gp(l) + -4 al_lgpé_l.

Then we have

Ujng = O[O(L)QO;) —+ (6 5] (L)(,Ol + -t al_lgpé-_l
= BU;Lpy = ai(L))

= VORU; LYy = ai(L)1.
That is,

Rin[ﬂ,bo = O!l(L)Zb] for i = 0, 1, .. .,l — 1,
ElUde)O == OZRZU]’L'([)().

Thus we have,
Rl = coai( L)y + croi(L)y + -+ + cp 10 (L) g1
= o(L)y forie {0,1,...,0—1},
and R Ly = 0.
ie. RiL |, = ay(L)I |,, where a;(L) = 0. O

Ezample: Let G be a finite group with identity element e and H = L?(G), the Hilbert
space of functions on G with (f1, fo) = >, . f1(z) f2(2). Let E' C G be called the error
set and C' C G the code set. Let

€ =lin{L, |z € B},



where (L,f)(z) = f(a~'x), lin denotes linear span and
C = lin{l{c} | CcE C}

It can be verified that L1y = Lap.
If ¢; # ¢y, then

My LELyLeay) = (Lgeaps Lamryen))
= 0ifalyes #cror ™y #cicyt or ETTENCO™! = {e}.
Also,

1 ifz=y,
<1{c}leLy1{C}> - { 0 otherwise.

Thus <1{C}, LlLyl{c}> is independent of ¢. Hence by Knill-Laflamme theorem we see that
C is an E-correcting quantum code if E-'ENCC ! = {e}.

Consider the model of a noisy classical channel shown in Figure 7.2.

input output

——— CHANNEL

ceC xc € Ee
rek

Figure 7.2: A model of noisy classical channel.

If ETYENCC! = {e} then for all distinct ¢;, ¢y, Ec; N Ecy = 0. So C is an E-
correcting classical code. If the output falls in the set Ec¢ the message is decoded as
c.

For example, set G = Z3, where Zy = {0, 1} with addition mod 2. Let the error set F
be {100, 010,001} and the code set C' be {000,111}. Then E — E = {000,110,011, 101}
and C' — C = C = {000,111} implying (E — E) N (C — C) = {000}.

In order to formulate our next proposition we introduce some notation. Let A be
a finite abelian group with operation +, null element 0 and character group A. In
the Hilbert space H = L?(A) of complex valued functions on A we define the unitary

A

operators U,,a € A,V,,a € A by
Uaf)(2) = fz+a), (Vof)(@)=alz)f(z).
Then we have the Weyl commutation rules:

Uan = Ua—l—b; VaV5 = Vag, UaVa = a(a)VaUa.



Let EC A, F C A and let
E(E,F)=1in{U,Vy |a € E,aecF}

Our aim is to construct a quantum code which is £(E, F')—correcting by using subgroups
C, C Cy C A. To this end, for any subgroup C' C A, we define

L=Ja|la€eA, afx)=1, Vz e C}.

C* is called the annihilator of C. We have Cit D Cf. Clearly Ci-, C3- are subgroups of
the character group A under multiplication. Suppose

(E—E)nCy, = {0}
F7'FNnCf C oy,

and let S be the cross section for Cy/C in the sense that S C Cy and Cy = U,esCy + a
is a coset decomposition (or partition) of Cy by C)—cosets. Note that

Lé{a|a€fl,a(a)lea,ES}
is a subgroup of A. One may view C, as a classical E-correcting group code in A. Define

%(33) = (#Cl)_% 101_1_@(33'), a € S.

Theorem 7.1.16 lin{vy, | a € S} is an E(E, F)-correcting quantum code of dimension
#C2
#Cr°

Proof: Note that
<77ba1 | 77b112> = 61111127 ay, G2 € S

It is enough to verify Knill-Laflamme conditions for
Ll - Ua1Va17 L2 - UaQVaza 1, a2 S E7 aq, Qi S F.
Then by the Weyl commutation rules we have

LiLy = on (a2 — 01)Uay-0,Vy 10, G2 — 1 € E— B, a7'ay € F'F,

27

Let ai,a, € S, a; # ay. We have fora € E — E,a € F'F,

(Va, [UaVa|tay) = (#C1)~ Z Loy tar+a(2)(2) Loy 4y (2)- (7.1.17)

z€eA

The z-th term in the summation on R.H.S. of (7.1.17) is not equal to zero only if
€ (Cr+ a1 +a) N (Cy + ag),
which implies the existence of x1, x5 € C; such that

ri+a+a = To+as
= a = (x9—1x1)+ay—a. (7.1.18)



In 7.1.18 L.H.S. lies in £ — E and R.H.S. in Cy. By hypothesis (E — E) N Cy = {0}.
Thus the z-th term vanishes if a # 0.

Now consider the case a = 0. Then for ay,as € S, ay # ay, C; + a; and C} + ay
are two disjoint cosets and therefore the R.H.S. of (7.1.17) vanishes once again. In other
words

(o, |UaVa|tha,) = 0 Va1 # as, a € E— E, a € F7'F.
Now let us consider the case a; = ap =b € S. Then L.H.S. of (7.1.17) is equal to

#01 Z 1Cl+b+a 1cl+b(.’L') O!(l‘) (7119)

reA

The z-th term is not equal to zero iff

6(01+b+a)ﬂ(01+b) — (01+a)ﬂ01:®
= a€CiN(E—-E)
= a=0.

Thus the expression (7.1.19) vanishes if a # 0. If a = 0 then (7.1.19) is equal to

(#Ch)~ Z Loyo(a = (#C1)a(b) Z a(r).

z€A zeCy

If ¢ Ci then, « is a nontrivial character for C; and by Schur orthogonality the R.H.S.
vanishes. If « € Cf, then

a€ CiNF'F = a€Cy = ab) = 1. Thus the expression (7.1.19) is independent
of b. In other words the Knill-Lalamme conditions are fulfilled for the orthonormal set

{ta |a € SY. O

Theorem 7.1.20 Let C; C Cy C A be subgroups. Consider the subgroups C3- C Ci- C A

and the coset decomposition

1 Lo

with respect to the cross section S. Define

Yo = (#Cg)’%lcpz, a€s.
Let E C A, F C A be such that (E — E)NCy = {0}, F'"FNC{t C Cf. Then
lin{t, | @ € S} is an E(E, F)—correcting quantum code of dimension (#C5)/(#Ch).
Proof: Let be E—FE, 3 € F'F, aq, 5 € S. Then

(Yo |UsVp|tha, ) = (#C2) Z Loy (2 az(x)le, (r)B(x)on(b).  (7.1.21)

If the z-th term in R.H.S. of equation (7.1.21) is not equal to zero, then
Co+bNCy#£0) = beCynN(E—E) = b=0. Thus the R.H.S. of equation (7.1.21)
vanishes whenever b # 0 for any o, as in S.

Let b = 0. Then R.H.S. of equation (7.1.21) is

(#Co) " ) (x)as()B(x). (7.1.22)

zeCh



If oy = oy = a € S this becomes (#C5)~! > wec, B(x) which is independent of o € S.
So we consider the case b = 0,07 # g, ay,an € S. Then the expression (7.1.22) is not
equal to zero only if @yaw3 € Cy. This implies f € C{- N F~'F. So by hypothesis 3 is in
Cs-. This implies @y € C3. i.e., @y and ay lie in the same coset of C3- in Ci-. This is
impossible. So expression (7.1.22) must be equal to zero. In other words Knill-Laflamme
conditions are fulfilled. O

7.2 Some Definitions

7.2.1 Invariants

Let C be an £ correcting quantum code with recovery operators Ry, R, ... ;. Suppose
U is a unitary operator such that UEU™! C €. Define, S; = UR;U~*. We have

R;Lp = \;j(L)v, where ¢p € C and L € €.

Since L = U™'LU is an element of £ we have

S;LUy = UR;U'LUY
= UR;Ly = \;(L)UY.

In other words, if C is an error correcting quantum code with recovery operators
Ry, R, ..., R, then for any unitary U, satisfying UEU* C &, U(C) is also £-correcting
with recovery operators Sy, Sa, ... Sk, where S; = UR;U™! for all j.

Definition 7.2.1 Two &£- correcting quantum codes Cy, Cy, are said to be equivalent iff
there exists a unitary operator U, satisfying UEU* C &, such that U(C;) = Cs.

Remark 7.2.2 Finding invariants for the equivalence of £-correcting quantum codes is
an important problem in the development of the subject.

Let A be a finite set, called an alphabet, of cardinality N.
An element @ in A™ is called a word of length n. A word x is also written as (1, o, . . ., Zy,).
C C A" is called an (n, M, d) 4 code if,
#C = M and

i d =d.
2y Ly (z,y)

Here, d(x,y) = #{i | v; # y;}. This is also known as the Hamming distance between

x and y.

If A is an abelian group with + as its addition and 0 its null element then

w(m) 2 #{i | 1 # 0}, @ = (21,70, ..., Tp)

is called the weight of . If C' C A" is a subgroup with
d= min  w(x), #C = M,
TH£0, TEC
then C' is called an (n, M,d)s group code, and it is denoted by (n, M, d),. If A is the
additive group of a finite field F, of ¢ elements (¢ = p™, for some prime p) and C' C Fy



is a linear subspace of the n—dimensional vector space Fy over F, and d = ming () w(x),

then C' is called a linear code over F, with minimum distance d and written as [n, k, d|,

code, where k£ = dim C'. When ¢ = 2, it is simply called an [n, k, d] code (binary code).
An (n, M,d) 4 code is t—error correcting when t = L%J

7.2.2 What is a t—error Correcting Quantum Code ?

Let G be a Hilbert space of finite dimension and H = G®" its n-fold tensor product. A
typical example is G = C2, so that H is an n-qubit Hilbert space. Consider all operators
in ‘H of the form
X=X10Xb® - ®X,,
where #{i | X; # I} <.
Denote by &; the linear span of all such operators. An element X € &; is called an

error operator of strength at most t. An &;-correcting quantum code C C H is called a
t—error correcting quantum code.

Remark 7.2.3 “In an n—qubit quantum computer, if errors affect at most ¢ wires among
the n wires, they can be corrected by a t—error correcting quantum code”.

7.2.3 A Good Basis for &;

We shall now construct a “good basis” for & C B(H). Suppose dimG = N. Consider
any abelian group A of cardinality N and identify G with L?(A). We define the unitary
operators U,, V, and W, , as follows

(Uuf)(x) = f(x+a) where a € A,
(Vof)(x) = a(x)f(x) where f € L*(A) and o € A,
and W, = UyVa.

Then we have

WaayWes = (b)Watbap
and TrW(La)W(bﬁ) = (6up0a4)N.

The family {W, o) | (a,a) € A X A} is irreducible and the set

{ﬁW(a,a) | (a,c) € A x A} is an orthonormal basis for the Hilbert space B(G) with
scalar product
(X,Y)=Tr XY, X,Y € B(G).

For (a,a) € A" x A"(= (A x A)") define

=

a,0) = Wiai,0) @ Wigg,00) @ -+ @ Wig,,a)

so that .
W(a,a)W(bﬂ) = H ai(bi)W(aer,aB)
i=1



and { W,

NL% ) | (a,cx) € A™ X A”} is an orthonormal basis for B(H) = B(G®"). Define
w(a’a a) = #{Z | (a’ia ai) 7& (07 1)}

the weight of (@, ) in the abelian group (A x A)". Then Weaa) | wa, o) <t}isa
linear basis for the subspace &;.

A subspace C C G®" is called a quantum code of minimum distance d, if C has an
orthonormal basis 1y, s, ..., 1} satisfying

L (WilWa,alh;) =0, i # j, w(a, o) < d,
2. (ilWia,a|¢i) is independent of ¢ whenever w(a, o) < d,

3. Either condition (1) or condition (2) is false, for some (a, &) with w(a,a) = d+1.

Such a quantum code is L%J—error correcting. We call it an [n, k, d] 4 quantum code.

7.3 Examples:

7.3.1 A Generalized Shor Code

We begin with a few definitions. Let A be a finite abelian group with binary operation
+ and identity element 0. Let A denote its character group. Let H be the Hilbert space
L*(A)®". Let Ug and Vg denote the Weyl operators. Let C,, C A™ be a t-error correcting

~

(d(Cy) > 2t+1) group code of length n with alphabet A. Let D, ,, C (C,)™ be a t-error
correcting group code with alphabet C), of length m.

An element in D, ,, is denoted by x. Sometimes we also denote by x the m-tuple
X15 X2s - - - » Xm, Where each x; is in C,,. Define

0 otherwise.

fa(z) = { #C, 2 az) if z € C,,

Let F'y = [, @ fy, ® - ® fy,,, where x is in Dy, .
Theorem 7.3.1 {I*y | x € Dpn} is a t-error correcting quantum code in

L2(A)®™" = [2(A™),

Proof: Let (@, a) € A™ x A™ such that w(a,a) < 2t. We have

(EglUaValty) = Y2 [ 75 @9 a1, (@)a(e). (73.2)

TecAmn j=1

Note that w(a) < 2t in A™ and w(a) < 2t in A™.



Case 1: Let a # 0. Then a'¥) # 0 for some j = jo,
w(a) < 2t = w(a¥)) < 2t. Then C, +a¥) NC, = (). So every summand in the
R.H.S. of equation (7.3.2) vanishes.

Case 2: Let @ = 0. Then R.H.S. of equation ( 7.3.2) reduces to

Y Bl@(@)a().

xecpy

Let B8 #~, 8,7 € Dy Then By € Dy (a group code), and w(B7y) > 2t + 1. Since
w(a) <2t, o ‘cm has weight < 2t. So Bv « ‘cm is nontrivial. By Schur orthogonality

relations R.H.S. of equation (7.3.2) is equal to 0.

Case 3: Let @ = 0, B = «. Then R.H.S. of equation (7.3.2) reduces to ) pccm ()
which is independent of 3.

Thus the Knill-Laflamme conditions are fulfilled. ]

7.3.2 Specialization to A = {0,1}, m=3,n=3.
Design of a 9-qubit, 1 error correcting, 2—dimensional code.

C; = {000,111}
C; has two elements,
x1(000) = x1(111) =1 (identity character) and

1

fa = \/§(|OOO>+|111>)
1
Fo = —5ll000) = 111))
D3,3 — {(Xl)XlaXl)a(X27X27X2)}
3
Fx1x1x1 - f;i
3
FX2X2X2 = f;?;

Thus, we encode 0 as F\ y,y, and 1 as F\,,,y,. The circuit for implementing the code is
shown in Figure 7.3.
7.3.3 Laflamme code

Laflamme found the following 5-qubit 1-error correcting quantum code.

1
0 [yo) = 2{(|00000) + [11000) +[01100) + 00110) + 00011) + |10001))

—(]01010) + 00101) + [10010) + [01001) + [10100))
—(|11110) + |01111) + [10111) 4 |11011) + [11101))}
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Figure 7.3:

1
L ) = J{(|11111) + |00111) + [10011) + [11001) + [11100) +[01110))

—(]10101) + [11010) -+ [01101) + [10110) + [01011))
—(]00001) + |10000) + [01000) 4 [00100) + [00010))}

The code can also be written in the following way. Let ag = a1 +az+as+as+2x (mod 2).

1
T = |ihy) = T Z (_1)(aoaz+a1a3+a2a4+a3ao+a4a1)|a0>|a1a2a3a4>

a1,a2,a3,a4 EZ>

This observation allows us to construct a simple circuit for implementing the Laflamme
code. The circuit for the Laflamme code is shown below.

T ao
ay ai
as a2
al 1 ! a3z
I I
ag : ; ag
o)

,,,,,,,,,,,,




) —

|0

|0

)

) c®) c) c® 7
S— L
)

|0

|0

Figure 7.4: Circuit for encoding the Laflamme code.

7.3.4 Example 2: Hadamard-Steane Quantum Code

Consider the following table. The ;% entry, for 7,7 > 1, is the inner product of the i
entry in the first row and j* entry in the first column, computed over the field IF,.

000 001 010 011 100 101 110 111
000 0 o 0 0 0 0 0
001
010
011
100
101
110
111

OO HMHRFMERFE OO

S OO oo oo

1
0
1
0
1
0
1

__ O O~k O
O~ OO~
e == )

1
0
1
1
0
1
0

— OO Rk O

The portion inside the box is Hadamard [7, 3, 4] simplex code. Let C be the set of all
row vectors.
Define

|tho) = > Ja) and [¢) = > ).
2‘/_ xTeC 2‘/_ TeC+(1,1,1,1,1,1,1,1)
Then, lin{|¢y), [¢1)} is a 7-qubit single error correcting quantum code. Note that, C'U
C+(1,1,1,1,1,1,1,1) is a group code of minimum distance 3.

Permute the columns to the order 4 6 7 1 2 3 5 in the table above. Then the
enumerated rows can be expressed as
(.1‘1 To T3 .’L’1+.Z'2 .Z‘1+.’173 .’L’2+.Z'3 .’171+.Z'2—|—.’173)

where x1, x9, 3 vary in Fy. In other words we have expressed the code as a parity check
code with the first three position for messages and the last four as parity checks. Then
the Hadamard-Steane code can be expressed as

|7,ba>: Z |x1+a To+a Ty+a T +Te+a 1 +Tz3+a To+2T3+a x1+x2+x3+a>

T1,02,T3

where a € {0,1}. Put y; =21 + 23+ a, yo = 2 + 23+ a, y3 = x1 + T3 + o3 + a. Then

W)= Y letwmtayitystaytytytaptptayitayptaysta).

Y1 ay27y3€{071}

This shows that the code can be implemented by the circuit shown in Figure 7.5.
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Figure 7.5: Circuit implementing the Steane-Hadamard code.

Exercise 7.3.3 Verify directly the Knill-Laflamme conditions for {|¢y), |¢1)}, for single
error correction.

7.3.5 Example 3: Codes Based on Bush Matrices

Let F, = {a1,as,...,a,} be the field of ¢ = p™ elements, where p is prime.
Let P(¢,q) = { all polynomials of degree < ¢ with coefficients from F, }, a linear space
of dimension ¢'**.

We enumerate the elements of P(t —1,¢), t —1 < ¢ as @y, ¢1, - .., pn_1 and construct
the matrix B; of order ¢' x ¢, ¢' = N as follows :
a/l a2 ... a‘] .- . a/q
@i vi(a1) pilaz) - pilag) - vi(aq)
en-1 | prn-i(a) onv-i(ae) oo pnoala) - pn-i(ag)

Denote the linear space of all the row vectors in B; also by B;.

Proposition 7.3.4 B, is a linear code of minimum distance q —t + 1.

Proof: Consider the i-th row in By, 1 # 0. ¢; is a nonzero polynomial of degree <t — 1.
So ; has at most t — 1 zeroes. Thus, the weight of this row > ¢ — ¢+ 1. On the other
hand consider the polynomial

p(r) = (r —a)(x —az) -+ (v — ).

Its zeros are exactly aq, as, . ..a;_1. Thus, the weight of the corresponding row is ¢ —¢+1.
O

Corollary 7.3.5 B; is a LqT_tJ —error correcting group code.

If E, is the Hamming sphere of radius || with (0,...,0) as center in th then
(Et - Et) N Bt == {0}



Proposition 7.3.6 Let a € Bj- C (F,)?. If a # 1, then w(a) > t + 1. Thus B;-
1S a L%J error correcting group code. If Fy is the Hamming sphere of radius L%J then

F7'FoN B = {1}.

Proof: Suppose w(a) =r, where 0 < r < t. Let o = (o, q9,...,04), ; € Fq, a; # 1 iff
i€ {iy <ip < --- <} Write b = a;;, j = 1,2,...,r. For arbitrary ¢, ¢,...,¢ in I
consider the Lagrange polynomial (for interpolation)

(. —=b1)(x—bg) -+ (x—0b;) (v —0)
ZCJ (b — b1)(b; — by) -~ (b; — by~ (b; — b,)’

where “” indicates ommision of that term. Then ¢ is a polynomial of degree r —1 (<
t—1) and ¢(b;) =¢j, j=1,2,...,r. Corresponding to ¢ there is a row in B;. Evaluating
« on this row we get

a(gp(a,l), SO(G’Q)J T <tp(a’(])) = Haij (Cj) =1

since a € Bj+. Since ¢j’s are arbitrary, we have o;; = 1Vj = 1,2,...,r, a contradiction.
O

We can now use Theorem 7.1.16 and Theorem 7.1.20 to the case C; C Cy C A4,
A =F,, as an additive group, Cy = By, Cy = B;, 0 < t' <t < q. Then B, = By & 5,
where S consists of all polynomials of the form

S(ZL’) = ZL't,(CL[) +ax+---+ at,tf,la:tftlfl).
For any polynomial ¢ consider the state

) = lp(ar)p(az) . .. p(ag)).

For any s € S define

o™

22
peP(t'—1,q)

d)s:q_

Then C;p = lin{s, | s € S} is a quantum code with dim C;, = ¢'~*, which can correct
LqT_tJ N L%J errors.

Remark 7.3.7 Choose t = |fq]|,t = |[0'q],0 <8 < 0 < 1. Then, as ¢ — oo, we have
logdim C,py  t—t"  |0q] — |0'q]

= 0—6).
logdim #H q q = )
Therefore,
1-0) | A |24
# errors corrected 2 2 1—-0 ¢
. > — N =
# qubits q 2 2
as q — oo.
Then, for @ = 3, 0" = 1 we get, § — 0 = § and * 9 A 9, = %. It means 50% of the

qubits are used for sending the messages, 50% for error checklng and up to 12%% errors
can be corrected.



7.3.6 Quantum Codes from BCH Codes

In this example we use the celebrated BCH (Bose Chaudhuri Hocquenhem) codes to
construct a quantum code. We begin with a few facts from classical coding theory. Let
[F; be a vector space over the finite field F, with ¢ = p™, where p is a prime. Choose and
fix a primitive element o of Fyn.

Let o be a cyclic permutation defined by

o(ag,...an 1) (an_1,a0,...,0, 2).

Then a subspace C' C Fy invariant under the cyclic permutation o is called a cyclic code
of length n. For every word w = (wy, ..., wn_1) € F; we associate the word polynomial
w(z) = wo + w1 + -+ + w2zt If wis in C it is called the code word polynomial.
Let R, = F,[z]/(2" — 1). Then R, can be viewed as a vector space over F, and it is
isomorphic to Fy. Under the identification w ~ w(z) the image C* of a cyclic code C
in R,, is an ideal with a single generator polynomial g.. Without loss of generality we
may assume ¢gc to be monic and therefore unique. It is known that g¢ is a divisor of
a™ — 1. If deg(gc) = k then dim C' = n — k. If gc has a string of successive powers
a®, a0t a2 asits roots and 0 < a < a+b—2 < ¢" — 2, then d(C) > b (where

d(C) is the minimum distance of C'). For any cyclic code denote
Ct={z|zy=xy1+ -+ 2,9, =0, Yy € C}.

Then C* is also a cyclic code called the dual of C.

Conversely if ¢ is a divisor of 2 —1 then there exists a unique cyclic code C,, generated
by g. Suppose " — 1 = gh where g(z) = ag + a1z + - - - ap_12" 1 + 2%, h(z) = by + bz +
e by R 4 gk 5o that aghy = —1. Define h = by (14 by_p_12 + - - - + bz F).
If h has a string of successive powers !, a/t!, ..., o!T™*2 as its roots then so does the
polynomial h which can be written as

h=(=1)""Br...Buek) "1 = Prz) -+ (1 = Bu_y)

where 31, ..., B,— are the roots of h in Fy». It is known that Ct = C; and therefore it
follows that d(C+) > m. (For complete proofs we refer to [4] or [3]).

Let 2" — 1 = g19293, d(Cy,) = di, d(C,,) = ds. Note that C- = Cj,. By Theorem

9192
5.1.10 we get a quantum code C of dimension (#C,,)/(#Cy.g,) = ¢%9192). If C, and C,
are respectively ¢; and t3 — error correcting codes then C can correct min(ty,t3) errors.



Lecture 8

Classical Information Theory

8.1 Entropy as information

8.1.1 What is information ?

Let us consider a simple statistical experiment of observing a random variable X, which
takes one of the values xy,x9,...x, with respective probabilities pi,ps,...p,. When
we observe X we gain some information because the uncertainty regarding its value is
eliminated. So the information gained is the uncertainty eliminated. We wish to have
a mathematical model which gives us a measure of this information gained. A function
which measures this information gained or the uncertainty associated with a statistical
experiment must depend only on the probabilities p; and it should be symmetric. This
is based on the intuition that changing the names of the outcomes does not change the
uncertainty associated with the random variable X.

The desirable properties of a function H which measures the uncertainty associated
with a statistical experiment are listed below.

1) For each fixed n, H(p1,p2,...,pn;n) is a nonnegative symmetric function of py, po,
ey P
2)H(%,%;2) = 1. This is to fix the scale of the measurement. One can look at the

information obtained by performing one of the simplest statistical experiments. i. e.
tossing an unbiased coin and observing the outcome. An outcome of this experiment is
said to give one unit of information.

3) H(p1,p2,--.,pn;n) = 0 iff one of the p;’s is 1. This corresponds to the case when
there is no uncertainty in the outcome of the experiment.

4) Let X and Y be two independent statistical experiments. Let XY denote the
experiment where the experiments X and Y are performed together and the output is
the ordered pair of the outcomes of X and Y. Then H(XY) = H(X)+ H(Y).

5) H(p1,p2,...,pn;n) attains its maximum when p; = %,W €1,2,...n. i.e. we gain
maximum information when all possible outcomes are equally likely.

6) H(pl,pQ,---;pn;O;n+ ]-) - H(p17p27"'7pn;n)'

7) H(p1,p2, - - - pp;n) is continuous in py, . .. p,. This is a natural condition because we
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would like to say that, if two statistical experiments have the same number of possible
outcomes and their associated probabilities are close, then the information contained in
each of them should also be close.

Let Hy = — Z?:o pjlog, p;. This function is also known as the entropy function. It
can be verified that this function satisfies all the above desired properties.

Let X,Y be two statistical experiments in which the outcomes of X and Y are
T1,...,%, and Yy, ..., Yy, respectively. Suppose Pr(X =u;) =p;, Pr(Y =y, | X = ;) =
qij, PI‘(Y = y]) = gj. Then PI‘(X = .’L‘i,Y = y]) = PiGij- Let H(qil, .. -7Qim) = Hl(Y)
We define conditional entropy as H(Y | X) = > p;H;(Y) i.e. the entropy of Y on
knowing X.

Exercise: Verify that Hj defined earlier satisfies the following equality.
Hy(XY) = Hy(X)+ Hy(Y | X). (8.1.1)

This can be interpreted as follows: The total information obtained by performing the
experiments X and Y together is equal to the sum of the information obtained by per-
forming X and the information left in Y after knowing the outcome of X.

This seems to be a reasonable property that the function H should have. Note
that Property 4) is a special case of equation ( 8.1.1). If we replace Property 4) by
the hypothesis, H(XY) = H(X) + H(Y | X) then there is a unique function which
satisfies all the above properties. Hence Hj is the only candidate as a measure of entropy.
From now onwards we use H to denote the measure of entropy and H(P) to denote

H(p1,pa, -, pn;m).

Note: If Property 4) is not changed then there can be other functions which satisfy
properties 1) to 7). See [10] for other measures of entropy.

The entropy function H has several important properties. Some of them are listed in
the following exercises.

Exercise 8.1.2 Show that H(XY) > H(X).

Mutual information H(X :Y') of two statistical experiments is defined as
H(X:Y)=H(X)+HY) - HXY)=H(X) - HX |Y).
It is the information about X gained by observing Y.

Exercise 8.1.3 Show that H(Y : X) > 0, where X and Y are two statistical experi-
ments.

Exercise 8.1.4 Let X,Y,Z be three statistical experiments. Then show that the in-
equality H(X | Y) > H(X | YZ) holds.

Exercise 8.1.5 (Sub additivity) Show that H(XY) < H(X) + H(Y), where X and Y
are two statistical experiments.

Exercise 8.1.6 (Strong subadditivity) Show that

H(XYZ)+H(Y) < H(XY)+ H(YZ),



where X,Y and Z are three statistical experiments. Equality holds iff {Z,Y, X} is a
Markov chain.

The following identity is also very useful.

Theorem 8.1.7 (Chain rule for conditional entropy)

H(Xy,... X, |V)=HX |Y)+ HXy | YX) 4+ HX, | VX1 ... X, 1)

Proof: We prove by induction.
Base case: n=2.

HX1 X, |Y) = HXXpY) - H(Y)

H(X ,Y) — H(X,Y) + H(X,Y) — H(Y)
H(X, |X1 )+ H(X,|Y)

= H(X,|Y)+H(X; | X1Y)

Induction hypothesis: For all n € {2,3,...k}
HXy,.. X, |Y)=HX; |Y)+HX, | YX) 4+ +HX, | YX;... X, 1)
Induction step:

H(Xy, .. Xen |Y) = HX, |Y)+H(Xy... Xgq1 | YXy) (by base case)
(by induction hypothesis) O

Exercise: (Data processing inequality) Let X — Y — Z be a Markov chain. Then

HX)>H(X:Y)>H(X:Z).

Exercise: (Data pipeline inequality) Let X — Y — Z be a Markov chain. Then

H(Z)>H(Z:Y)>H(Z: X).

8.2 A Theorem of Shannon

Let A be an alphabet of size N. Denote by S(A) the free semigroup generated by A.
Any element W € S(A) can be expressed as W = a;,q;, .. .q;,, where a;;, € A for each
j. We say that W is a word of length n. Let B be another alphabet, say of size M.
Any map C : A — S(B) is called a code and any word in the image of C' is called a
codeword. Extend C' to a map C : S(A) — S(B) by putting C(W) = C(a;, a4, ... a;,) =
C(a;,)C(ag,) . ..C(a;,). We say that C' is uniquely decipherable if C' is injective (or one
to one). C' is called an irreducible code if no code word of C' is an extension of another
code word. An irreducible code is uniquely decipherable. Indeed, in such a case we can
recover a word W in S(A) from its image C'(W) by just reading C(W) left to right.



Theorem 8.2.1 Let A = {ay,...,ay} and B = {by,..., by} be two alphabets. Let C :
A — S(B) be an irreducible code. Let the lengths of the words C(ay),C(as), ...,C(ay),

be ny,na,...ny, respectively. Then
M™+M"™+...M " <1 (8.2.2)

Conversely, if ni,na,...ny are nonnegative integers satisfying this inequality then there
exists an irreducible code C : A — S(B) such that C(a;) has length n; for each i =
1,2,...,N.

Proof: Let C': A — S(B) be an irreducible code with L = max; n;. Denote by w; the
number of code words of length .

Necessity :

Since there can be at most M words of length 1 we have

’wlSM

Since C' is irreducible, all words of length 2 which are extensions of the code words of
length 1, cannot appear in the image of C'. This gives

w2§M2—w1M

Continuing this way we get
wp, < MY —w MY — o —wp M
The last inequality can be rewritten as
w M+ wa M w MR <L (8.2.3)

Sufficiency :

We pick any w; words of length 1. Then we pick any wy words of length 2 which are not
extensions of the w; words of length 1 already picked. This is possible because inequality
(8.2.3) is satisfied. This way we keep picking words of required lengths. O

Suppose the letters a;, 2 = 1,2, ..., n of the alphabet A are picked with probabilities
pi, t =1,2,...,n respectively. Then the expected length of the code is Zi\il pin;, where
n; is the length of C(a;).

Let N
M~ _
¢j = = and [(C) = Din;
Z?Ll Mmi ;

By using the inequality “arithmetic mean is greater than or equal to geometric mean”

we get
45 \p; 4;
HG <2 mCH=2 0=t
Dy 7 Dy 7

Taking logarithm on both sides and using (8.2.3)

Z(O) > _Zpi logpi
logy, M



_ > pilogp;

Hence the average length of an irreducible code must be at least g, M

Let n; be an integer between —:gg—;% and —izg'—;ﬁ +1 for all j € {1,2,...n}. Then

> ;M7 < 7 p; < 1. By the above discussion we know that an irreducible code C"
exists with length of C'(a;) equal to m;. The expected length of this code word is

5 3 log, pj
/ Ol — . < _Zp] 217) 1.
() - by = log, M +
Theorem 8.2.4 (Sardinas-Patterson,1953) If a code is uniquely decipherable then

N
Z M ™ < 1.
j=1

Proof: Let w; = #{i | n, = j}. Then the desired inequality can be rewritten as
L
ijM_”j <1 where L = max(ny, ng,...,ny).
j=1

Let Q(x) = Zle w;z? and let N (k) denote the number of B words of length %. Then
we have the following recursive relation.

N(k) =wiN(k —1) +weN(k —2) + - +w,N(k — L), (8.2.5)
where N(0) =1 and N(j) =0 if j < 0. Consider the formal power series
F(z) =Y N(k)a".
k=0

We know that N(k) < MF*. Hence the formal series converges in the case |z| < M~!.
From (8.2.5) we have

1
Flr)—1=Q(x)F(x) = F(v) = ———.
(#) = 1= QIF(a) = Fo) = ;g
F(z) is analytic in the disc (Jz| < M ') and 1 — Q(x) > 0 when |z| < M. Therefore,
by continuity we have, Q(M ') < 1. This is the required inequality. O

Corollary 8.2.6 Let A and B be as in Theorem 8.2.1. Suppose the letters aq,as, ..., ayx

are picked with probabilities py, pa, . ..pn respectively. Then for any uniquely decipherable
code C' from A to S(B) one has

Z(C) > — Zpi logpi
—  log, M

Thus, Theorem 8.2.4 implies that corresponding to any uniquely decipherable code
C : A — S(B) with length of code words ny,ny,...,ny there exists an irreducible code
C': A — S(B) with lengths of code words ny,ng, ..., ny.



Remark 8.2.7 Suppose an i.i.d. sequence Xi, Xy, ... of letters from A comes from a
source with Pr(X; = a;) = p;. Then Pr((X 1 Xs... X, = a;,a4, ... ai,) = pi,Di, - - - i, and

H(X1X2 .. Xn) = ’I’LH(pl,pg, e 7pN)

Now consider blocks of length n. The new alphabet is A”. Encode C': a — C'(a), where
a = a;a;, ...aq;, and C'(a) € S(B), in a uniquely decipherable form, so that the following
inequalities hold.

nH(p17p27"'7pN) nH(plap%"'apN)
< 0C 1.
log, M = za;p(a) (Cla)) < log, M i

This implies

Yar(@l(C(a))  H(pi,pz,-..,pn)| 1

In this block encoding procedure, the expected length of an encoded block is
U(C) =>_pla)(C(a)).
a

The ratio of expected length of an encoded block and the size of the a block, namely
>ar@)c(a))

- , is called the compression coefficient. Equation (8.2.8) tells us that, as n

increases the compression coefficient tends to W.
2

8.3 Stationary Source

We consider a discrete information source J which outputs elements z,, € A, n = 0, £1,
+2, ... where A is a finite alphabet. Thus a ‘possible life history’ of the output can be
expressed as a bilateral sequence

x=(...,0_1,%0,T1,Ta,...), Ty € A. (8.3.1)
Any set of the form
{:c | € AZ,xtl =ay,..., L, = an} =[ar...anli 1,10
is called cylinder with base a1, as,...,a, at times t; < t, < --- < t,. Consider the

smallest o-algebra F4 containing such cylinders. Any probability measure p on the
Borel space (A%, F4) is uniquely determined by the values of y on the cylinders. The
probability space (A%, F 4, p) is called a discrete time random process.

Consider the shift transformation 7" : A? — A% defined by T'x = y where y, = z,_;
for all n € Z. If the probability measure y is invariant under 17" we say that (A% F 4, p)
is a stationary information source and we denote it by [A, u]. For such a source

M([a1a2 .- -an]tl,tg,...,tn) = N([CHUQ - a'n]t1+1,t2+1,...,tn+1)



The information emitted by such a source during the time period ¢, t+1, ..., t+n—1

is also the information emitted during the period 0, 1, ..., n — 1 and is given by
Z p(C) log u(C
where the summation is over all cylinders based on ay, a1, ..., a, 1 at times 0, 1, 2, ...,

n — 1, a; varying in A. We call H"T(“) as the rate at which information is generated by

the source during [0, 7 — 1]. Our next result shows that this rate converges to a limit as
n — 00.

Theorem 8.3.2 For any stationary source [A, j1] the sequence H"T(“)
creases to a limit H(p).

monotonically de-

Proof: For any ag, a1, ..., a,_1 € A we write

[aoal .- -anfl] = [aoﬂh e anfl]O,l,Z,...,nfl-

Consider the output during [0,n — 1] as a random variable. Then we can express

Hn+1(/u) = _E(log [L[ib',n, T_(n—1)y--- ,ZU[]])
Hy(p) = —E(log plw—n,x_(n-1),--.,7_1])

where the expectation is with respect to u. We now show that the sequence H,,1(p) —
H,, (1) is monotonic decreasing Let A, B and C be schemes determined by the cylinders
[wo), [, ®_(n—1),...,2_1] and [ n+1)] respectively. Then the joint scheme BC'is given
by the cylinder [z _(n41), Z—pn,...,2_1]. Then we have

H(A|B) = Hpyi(p) — Ho(p) and
H(A|BC) = Hppo(p) = Hopa(p)-

By using the fact H(A | BC) < H(A | B) we get
Hypo(pt) = Hogr (1) < Hyga (1) = Hu(p).

Also Hy(p) < 2H; (). Thus the sequence Hy (), Ho(p) — Hy (1), ..., Hy(p) — Hy—q (1), - - -
is monotonic decreasing.

H,(pn)  Hi(p) + (Ho(p) — Hi(p) + - + (Ho(p) — Hooi (1)

Since = ,
n n
it follows that H"T(“) is monotonic decreasing. But H"T(“) is bounded from below. Hence
lim,, o H"T(“) exists. [






Lecture 9

Quantum Information Theory

9.1 von Neumann Entropy

Following the exposition of quantum probability in chapter 1 we now replace the classical
sample space 2 = {1,2,... N} by a complex Hilbert space H of dimension N and the
probability distribution py, ps ... py on €2 by a state p, i.e., a nonnegative definite operator
p of unit trace. Following von Neumann we define the entropy of a quantum state p by
the expression

S(p) = —"Tx(plogp) (9.1.1)

where the logarithm is with respect to the base 2 and it is understood that the function
xlog x is defined to be 0 whenever x = 0. We call S(p) the von Neumann entropy of p.
If A\, Aa, ..., Ay are the eigenvalues of p (inclusive of multiplicity) we have

S(p) == Ailog\;. (9.1.2)

If p is the diagonal matrix diag(A,..., Ay) then S(p) = H(P) = =Y. p;logp;.

9.2 Properties of von Neumann entropy

1) 0 < S(p) < log,d, where d is the dimension of the Hilbert space H. S(p) = 0 if and
only if p is pure, i.e., p =|¢)(¢| for some unit vector |¢) in H. S(p) = log, d if and only
if p=d'I.

2) For any unitary operator U, S(UpU') = S(p).

3) For any pure state [¢0), S(|)(¢|) = 0.

Note that property 3) is already contained in property 1).

Suppose H 4 ® Hp describes the Hilbert space of a composite quantum system whose
constituents are systems A and B with their states coming from the Hilbert spaces H
and H g respectively. For any operator X on H we define two operators X* and X* on
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H 4 and Hp respectively by

(ulX o) = Y (ue [ Xve f) (9.2.1)

J
W' Xy = Z(ei®u'|X|ei®U'> (9.2.2)

2

for all u,v € Ha, v',v" € Hp, {e;}, {f;} being orthonormal bases in H 4, H 5 respectively.
Note that the right side of (9.2.1) and (9.2.2) are sesquilinear forms on H 4 and H g, and
therefore the operators X4 and XZ are uniquely defined. A simple algebra shows that
X4 and X? are independent of the choice of orthonormal bases in H 4 and Hp. We write
XA =Trg X, X? =Try X. Try and Trp are called the operators of relative trace on the
operator variable X. Note that Tr X4 = Tr X® = Tr X. If X is nonnegative definite so
are X4 and XP. In particular, for any state p of the composite system p? and p? are
states on H and Hp respectively. We call them the marginal states of p.

Let |ia), |jB), @ = 1,2,...,M; j = 1,2,..., N be orthonormal bases for Ha, Hp
respectively. Then {|is)|jp),1 < i < M,1 < j < N} is an orthonormal basis for
H =Hsp =Has® Hp and hence any joint pure state |¢)) can be expressed as

) =D _aijlia)ljn)- (9.2.3)

The M x N matrix A = [a;;] can be expressed as

where U is a unitary matrix of order M x M, V is a unitary matrix of order N x N and
D = diag(sy, s2,...,57), 51 > S92 > -+ > s, > 0, r being the rank of [a;;]. It follows
that sq, $2,...,5, are positive eigenvalues of the matrices vV AtA and v AA%, called the
singular values of A.

Define the vectors

NE

l0l) =) upglka),1<i <M

=
Il

1
8% = vlls), 1 <j< N
=1

where U = [ug;], V = [vj]. Then (9.2.3) becomes

=

r

) = silady)|Bg). (9.2.4)

=1

Here |ay), |0?%), ..., |a%) and |85),]8%), ..., |8%) are orthonormal sets in H 4 and Hp of
same cardinality and s, so, . .., s, are the singular values of A. The decomposition of |¢))
in the form (9.2.4) is called the Schmidt decomposition of |1)).

4) Let |Q)(Q] be a pure state for AB and let p* and p? be its marginal states. Then
S(p*) = S(p").



Proof: By Schmidt decomposition we know that if |¢)) is a pure state for the composite
system, AB; then there exist orthonormal states |i4) for system A and orthonormal
states |ip) for system B such that [10) = >, A;|ia)|ip), where \;’s are nonnegative real
numbers satisfying >, A7 = 1. So we can write |Q)(Q| = > A\Aj]i4) (Jal @ |ig)(jp|. Thus
pt = ST A2 |ia)(ia| and p® = > A? |ig)(ip | Hence the eigenvalues of p* and p? are
same. Therefore by ( 9.1.2) we have S(p?) = S(p?). O

5) Let p1, pa, ..., py be states with mutually orthogonal support and let py, po, ..., p, be
a probability distribution. Then

S(Zpipi) = H(P) + ZpiS(pi), (9.2.5)

where H(P) = — > p;logp;.

Proof: Let )\g and |eg ) be the eigenvalues and corresponding eigenvectors of p;. Then
> pip; has eigenvalues p;\! with respective eigenvectors |e!). Thus,

S( Zpipi) = - Zpi)\j log pi\]
= —szlogpz ZplZA” log A]
= P)+ > piS(pi) O

An immediate consequence of property 5) is the following.

Corollary 9.2.6 (joint entropy theorem) Let (py, pa, ..., Pn) be a probability distribution,
{l7),i=1,2,...,n} an orthonormal set of states in Ha and {p;,i =1,2,...,n} a set of
density operators in Hg. Then

sz (i| ® pi) = (P)+ZPiS(Pi)-

6) The following theorem shows that the correspondence p — S(p) is continuous.

Theorem 9.2.7 (Fannes’ inequality) Suppose p and o are density matrices such that
the trace distance between them satisfies Tr |p — o| < % Then

1S(p) = S(0)| < Tr|p — o|logd + n(Tr|p — of),
where d is the dimension of the Hilbert space, and n(z) = —xlogzx.

Proof: Let ry > ry > --- > rgand s; > s9 > --+ > s4 be the eigenvalues of p and o
respectively. By the spectral decomposition we can write p — 0 = ) — R, where ) and
R are positive operators with orthogonal support, so T'(p, o) = Tr(R) 4+ Tr(Q). Defining
V=R+p= Q + o, we get Tr(p — o) = Tr(R) + Tr(Q) = Tr(2V) — Tr(p) — Tr(o).
Let ¢, >ty > --+ > t; be the eigenvalues of V. By the variational principle for the 7"
eigenvalue it follows that ¢; > max(r;, s;). Hence 2t; > r; + s; + |r; — s;| and

Tr|p—o| > Z|rZ — s (9.2.8)



When |r — s| < I, from mean value theorem it follows that [n(r) — n(s)| < n(|r — s|).
Since |r; — s;] < % for all 7, it follows that

Z(U(Tz‘) -

3

1S(p) = S(0)| =

si))| < Zﬁ(m - sil).

Setting A = ). |r; — s;| and observing that
n(Iri = sil) = An(lri = si /A) = |ri = si[ log(A),

we obtain
1S(p) = S(o)| < A nllr — sil /A) + n(A) < Alogd + n(A).
By ( 9.2.8) and monotonicity of n(.) on the interval [0, 1/e], we get
1S(p) = S(o)| < Tr[p — o|logd +n(Tr |p — of).

U

7) For any two quantum states p, o we define the relative entropy S(p||o) of p with
respect to o by

| Trplogp —Trplogo if suppp C suppo,
Slpllo) = { 00 otherwise. (9-2.9)

Theorem 9.2.10 (Klein’s inequality) S(p||o) > 0, where equality holds iff p = o.

Proof: Let the eigen decompositions of the states p and o be given by p = > p; |7)(i],
o=2:4;17){j| Then we have

S(plle) = Y pilogpi — > (ilplogali)
= Y pilogp; — sz | 4)I* log g;

We may assume S(p||o) to be finite. Since —logz is a convex function in the interval
[0,1] and >, [(i | 7)? =1, we have

=Y G| ) logg; > —log > [(i [ ) g;
J J
Putting r; = >, |(i | 7)° g; and observing that 3. 7; = 1, we have
S(pllo) > szlog— > 0.

U

8) Let p*? be a state in Hy ® Hp with marginal states p? and p®. We denote by
S(A), S(B) and S(AB) the von Neumann entropy of p*, p? and p*? respectively. The
quantum mutual information of the systems A and B is defined as

S(A:B) = S(A) + S(B) — S(AB).



Theorem 9.2.11 S(A:B) >0

Proof: Observe that S(A) = — Tr p”log p* = — Tr p*B log(p? @ Ip). Substituting in the
expression for S(A : B) we get

S(A:B) = —Trp*P(logp? ® Iz +logly ® pP?) + Tr p*Plog p*?
= S(p*?[|p* ® p?)
> 0 U

Let p*? be a state in H,4 ® Hp with marginal states p* and p®. The conditional
entropy of the state p? given the state p? is defined as

S(A| B)=S(AB) — S(B).
Note that the state p”Z may be a pure state and the state p? an impure state. So
S(A | B) can be less than zero.
9) Let A be a quantum system with Hilbert space H 4. By a projective measurement we
n
mean a family of projection operators Py, Ps, ..., P, in ‘H 4 satisfying >  P; = I. When
i=1

such a measurement is made in a state p the outcome of the measurement is j with

probability Tr pP;. According to collapse postulate 1.3 if the outcome is j the state
TﬁpP;’

equal to 3. (Tr pP;) 2225 = 5™ PipP;.
J

collapses to Thus the post measurement state, ignoring the individual outcome, is

TrpP;

J

Theorem 9.2.12 Let p be the state of a quantum system and let Py, P, ..., P, be a
projective measurement and let o' = > PjpP;. Then S(p') > S(p) and equality holds iff
J

p=p.
Proof:
0 < S(ollp)
= Trplogp —Trplogp
= Trplogp—Tr() _ Piplogp)
= Trplogp—TrY _ Pip(log ()P,
J
= Trplogp — Tr Z PipPj(logp')
J
= S() = S(p) O
By a generalized measurement we mean a set of operators Ly, Lo, ..., L, satisfying

n
> LgLi = I. If pis a state in which such a generalized measurement is made, the
i=1

Lt
probability of the outcome ¢ is Tr leT L; and the post measurement state is Tf’;LfL Thus

s i



the post measurement state, ignoring the individual outcome, is

3 (TrpLiLy) _LipLi_ Z LipL!.

rpzl

Remark 9.2.13 A generalized measurement may decrease the entropy.

Example: Let Ly = [0)(0| and L, = |0)(1|. Note that LIL, + LIL, = I. Let p =
p[0)(0]+ (1 —p)|1)(1]. Then S(p) = —plogp— (1 —p)log(l —p). Let p be measured using
the measurement operators Ly and Ly. The resulting state is p/ = L1 pL| 4+ LopL} =|0)(0].
This implies S(p/) =

10)

Theorem 9.2.14 Let p*® be a state in Hao @ Hp with marginal states p™* and p®. Then
the following inequalities hold.

1) S(AB) < S(4) + S(B),

2) S(AB) = |S(A) = 5(B)|-

The first inequality is known as the sub-additivity inequality for the von Neumann en-
tropy. The second is known as the triangle inequality or the Araki-Lieb inequality.

Proof: The first inequality follows from Klein’s inequality, S(p) < —Trplogo. Let p =
B and o = p* ® pP. Then

—Tr(plogo) = —Tr(p"(logp™ +logp”))
= —Tr(p*log p") — Tr(p" log p”)
S(A) + S(B).

Therefore we have S(AB) < S(A)+ S(B). From Klein’s theorem it follows that equality
holds iff p*? = p ® pP.

To prove the triangle inequality, we introduce a reference system R such that p?AB%

is a pure state in H4 @ Hp ® Hr. Then by sub-additivity we have
S(R)+ S(A) > S(AR).

Since pAP® is a pure state we have S(AR) = S(B) and S(R) = S(AB). Substituting we
get
S(AB) > S(B) — S(A).

By symmetry we get the second inequality. 0
Exercise 9.2.15 Let p*% = Y. \;]i)(i| be the spectral decomposition for pA5. Then,
show that S(AB) = S(B) — S(A) iff the operators pi* = Trp(|i)(i|) have a common eigen
basis, and the operators p? = Tr4(|)(:|) have orthogonal support.

11) S(p) is concave in p.



Theorem 9.2.16 Let py, po, ..., p, be states and let py,ps,...pn be a probability distri-
bution. Then
S(Zpipi) > ZPiS(Pi)-
i i

Proof: Let p;’s be the states in H 4. Consider an auxiliary Hilbert space H g, whose state
space has an orthonormal basis |i) corresponding to the index i of the density operators
pi. Let a joint state on H,4 ® Hp be defined by

P = pipi @ i) (il.
7

Note that S(AB) = H(P) + >_p;S(p;), by the joint entropy theorem (Corollary 9.2.6).
pt =Y pipi = S(p*) = S pipi)-
pP =Y pili)(i| = S(p”) = H(P).
By sub-additivity we have,
S(p™) +S(p”) = S(p"").

Substituting we get S(>_pipi) + H(P) > H(P) + > piS(pi). O
12)

Theorem 9.2.17 > p;S(p;) < SO pipi) < H(P) + > piS(pi)-

Proof: First let us consider the case when p; = |1;)(1;| for all i. Let p;’s be the states in
H 4 and let H g be an auxiliary Hilbert space with an orthonormal basis |i) corresponding
to the index ¢ of the probabilities p;. Let p*# =] AB)(AB| where [AB) = >~ \/ps|v:)|i).
In other words p% = 37, - /Bip;|i) (1] @ [i)(j]. Since p¥ is a pure state we have
S(A) = S(B) = S(X_,; pili)(wi]). After performing measurement on the state p? in the
|7) basis, the state of the system will be p&" = 3" p;]i)(i|]. But, projective measurements
never decrease entropy and using the fact S(p;) = 0 we get

S(A) < H(P) + ZpiS(p»-

Note that the equality holds iff p¥ = p” and this occurs iff |+;)'s are orthogonal. Now
we can prove the mixed state case.

Let p; = >, pijle;) (€5 be an orthonormal decomposition for the state p;. Let p =
> Pipijlej)(e;]. Applying the result for the pure state case and observing that >, pi; =
1 for all 7, we get

Slp) < - Z pipij log(pipi;)
(]
= Y pilogpi— Y _pi Y pijlogp;;
i i J

= H(P)+ ZPz‘S(Pi)-



The sub-additivity and the triangle inequality for two quantum systems can be ex-
tended to three systems. This gives rise to a very important and useful result, known as
the strong sub-additivity. The proof given here depends on a deep mathematical result
known as Lieb’s theorem.

Let A, B be bounded operator variables on a Hilbert space H. Suppose the pair
(A, B) varies in a convex set C. A map f :C — R is said to be jointly convex if

FOA + (1= XN)Ag, AB1 + (1 = X\)By) < Af(A1, Br) + (1 = A\) f(Ag, Bo).
forall0 <A <1, (A;,B;)eC,i=1,2.

Now we are ready to state the next property.

13)
Theorem 9.2.18 Relative entropy is jointly convex in its arguments.

Let H; and H, be two finite dimensional Hilbert spaces. Let a be a map from B(#,) to
B(H.,) which satisfies
a(XTX) > a(X) a(X).

In our case o will be a star homomorphism. Let T;, S;, i € {1,2} be positive operators in
H;, 1 =1,2. The index ¢ corresponds to the Hilbert space H;. To prove Theorem 9.2.18
we need the following lemma. This is also known as Lieb’s inequality.

Lemma 9.2.19 If Tr X7} > Tra(X)Ty and Tr XS} > Tra(X)Sy and T;,i = 1,2 are
invertible then

Tra(XH)Sha(X)T), ™ < Tr XTSIXT! (9.2.20)

Observe that (9.2.20) is true when the parameter ¢ is equal to 1 or 0. We need to
show that the conclusion of (9.2.20) holds even when ¢ is a real number in the range
(0,1). So Lieb’s inequality is an interpolation inequality. To prove Lieb’s inequality we
need the following results.

Lemma 9.2.21 The following equation is true.
' 1

i P /OOO N = X (A +2)7 ] dA. (9.2.22)

Proof: We first perform the substitution 1 + % = i Then,

e 11 — /0 TSN (A4 1) d

- [ )T (5 ) (e

t

1
= ﬁ/{) (1 —u)"tu'du

= g




Lemma 9.2.23 Let 0 <t <1 and let A, B be two positive operators such that A < B.

Then At < Bt
Proof:
A < B
= A+A)~" > A+B)™"
= MNA+A)" > NA+B)!
= )\tfl - )\t()\+A)fl S )\tfl - )\t()\—FB)il

Thus by spectral theorem and Lemma 9.2.21 we have

Al < Bt

Lemma 9.2.24 Let

A Ap ]
A=
{ Ay Agy

be a strictly positive definite matriz where Ay and Asy are square matrices. Then Aqq
and Ay are also strictly positive definite and

Ay A - -1
> AT
<|: A21 A22 :| " 1

Proof: Note that

[ A A ]1 _ [ (A — A12A2_21A21)71 —(Ay — A12A2_21A21)71A12A2_21
Ay Ag —(Ag — A21Af11A12)71A21AH (Age — A21A1_11A12)71
Therefore

(Ail)n = (A — A12A2721A21)71-

Since AjpA5,) Ay is a positive operator we have (A71);; > A7 O

Lemma 9.2.25 Let X be a positive operator in a finite dimensional Hilbert space Hg
and let V' be a contraction map. Then

(VIXV) > VIX'V.

Proof: Observe that the lemma is true when V' is unitary. Let

Voo VT
—V1-ViV v

Note that, since V' is a contraction map, v1 — V'Vt and v/1 — V1V are well defined and
U is unitary.

U =



Let P be the map P : Hy & Ho — Ho which is projection on the first co-ordinate.

Then V' = PUP|gy . By Lemma 9.2.24 we have
My, +VIXV)™ = (Mg, + PUTPXPUP |3 )7

< P +U'PXPU)'P |y,
= PU'A'PE+ PN+ X)'P)UP |y,
_ \—lprrt(r _ i -1
= AT PUY(I=P)UP |y, +VI(A+X)"V

ATHI = VIV + VIO + X))V

This implies

1 o
B0 / N N+ VIXV)THdA
y L T 0

> m /OOO ML NMOTHI = VIV) + VIO + X)) dA
By applying Lemma 9.2.21 we get
(VIXV) > VIX'V.
This completes the proof. 0]

Remark: Lemma 9.2.25 holds even when the contraction V' is from one Hilbert space H;
to another Hilbert space H, and X is a positive operator in Hs. In this case the operator
U of the proof is from H; ® Hy to Ho ® H;.

We look upon B(#,) and B(#H,) as Hilbert spaces with the scalar product between
1
two operators defined as (X,Y) = Tr X'Y. Define V : B(H,) — B(H,) by V : XT? =
a(X)Ty.

Lemma 9.2.26 V is a contraction map.

Proof:
1 1 1
la(TZ[)? = TrTya(X) a(X)Ty
< Tra(XTX)T, < Tr XTXT
= TrTPX'XT? = || XT?|[?
Hence the claim holds. U

Assume that T} and Ty are invertible and put A, X = SIXT7" and DY = SLY'T; "
Note that A;Ay = Ay and Dy Dy = Dy for s,t > 0. Furthermore

t

(XT? | A | XT?) = TrTpXTSIXT?
= Tr(XTSixX)T!
0

Y

1 1
and similarly (YT} | Dy | YT?) >0

Hence A; and D, are positive operator semigroups and in particular A, = Al and
-Dt — Dli



Lemma 9.2.27

(M

1 1 1
(XT2 | AL | XT2) > (XT? | VID\V | XT?)

Proof:
(XT? | AL | XT?) = TrTPX'S,XT,?
= TrX'S$ X
= TrXX'S
> Tra(XXhS,
> Tra(X)a(XT)S,
1 _1
= TrT7a(X) Soa(X)T, 2
1 1
= (XT? | V'D\V | XT¢)
O
From Lemma 9.2.27, Lemma 9.2.23 and Lemma 9.2.25 it follows that
Ay > ViDy
= A, > (VID\V)
> VID!V  (true since V is a contraction map)
= VDV
1 1 1
By expanding one can verify that the inequality (X797 | A, | XT7?) > («(X)T? | Dy |
a(X)T?) is same as (9.2.20). O
Proof of Property 13), Theorem 9.2.18
X 0
Let Ho = H® H and o(X) = [ 0 X }

For 0 < A < 1 define Sy, T}, Sy and T3 as follows. S} = Ap; + (1 — N)po, T1 =
Aoy + (1 — A)og,

Sy = [ Ap1 0 } and T, = [ Aoy 0 ] where o; and o, are invertible.

Then Tra(X)S; = ATrp X + (1 —)N) TrppX
= Tr SlX

and Tra(X)T, = ATrop X + (1 —A) TropX
= Tr7h X

Applying (9.2.20) with X = I we get,

TrSiT) "t < TrSiTHt
_ trpl—t 1 — TrStTLt
lim 1 —Tr S5T, > lim r SiT)
t—1 1—1¢ t—1 1—1¢
d d
% Tr S;T;it |t:1 Z % Tr S{Tllit |t:1



Tr Sy log Sy — Tr Sy log T, > Tr Sy log S; — Tr Sy log T, i.e.

Tr Apylog Apy 4 (1 — A)palog(1 — A)py — Apylog Aoy — (1 — A)pylog(1 — Ao
> S(p1+ (1= Nps|[Aor + (1 — N)aw).

Thus AS(p1||o1) + (1 = X)S(pa]|o2) > S(Ap1 + (1 = A)ps|| Aoy + (1 — N)o).

O

14) Let p*® be a state in H 4 ®H p with marginal states p# and p?. Then the conditional
entropy is concave in the state p*Z of H4 @ Hp.

Proof: Let d be the dimension of H 4. Then

; I
S(p*Pll5@p") = —S(AB) = Tx(p"" log(5 @ p"))

= —S(AB) —Tr(p"log p®) + logd
—S(A | B) +logd

Therefore concavity of S(A | B) follows from convexity of the relative entropy. O
15)

Theorem 9.2.28 (Strong sub-additivity) For any three quantum systems, A, B, C, the
following inequalities hold.

1) S(A)+ S(B) < S(AC) + S(BC)

2) S(ABC) + S(B) < S(AB) + S(BC)

ABCY as follows:

Proof: To prove 1), we define a function 7'(p
T(p*P%) = S(A)+ S(B) — S(AC) — S(BC) = -S(C | A) — S(C | B).

Let pAPY = >".p; |4)(i | be a spectral decomposition of p*5¢. From the concavity of
the conditional entropy we see that T(p?P¢) is a convex function of p*Z¢. From the
convexity of 7" we have T'(pABC) < 3. pT'(|i)(i]). But T'(]i)(i]) = 0, as for a pure state
S(AC) = S(B) and S(BC) = S(A). This implies T(pP¢) < 0. Thus S(A) + S(B) —
S(AC) - S(BC) <0.

To prove 2) we introduce an auxiliary system R purifying the system ABC so that
the joint state pAPC® is pure. Then using 1) we get
S(R)+ S(B) < S(RC) + S(BC).
Since ABCR is a pure state, we have, S(R) = S(ABC) and S(RC) = S(AB). Substi-
tuting we get
S(ABC)+ S(B) < S(AB) + S(BC). O
16) S(A: BC) > S(A: B)

Proof: Using the second part of property 15) we have
S(A:BC)—S(A:B) = S(A)+S(BC)—S(ABC)—[S(A)+ S(B) — S(AB)]
= S(BC)+ S(AB) — S(ABC) — S(B)
0.

v



Let H be the Hilbert space of a finite level quantum system. Recall that by a gener-
alized measurement we mean a finite collection of operators {Lq, Lo, ..., Ly} satisfying
the relation LZLZ- = I. The set {1,2,...,k} is the collection of the possible outcomes

13
of the measurement and if the state of the system at the time of measurement is p then
the probability p; of the outcome ¢ is given by

pi = Tr LipL! = Tr pL;L}.
If the outcome of the measurement is ¢, then the state of the system collapses to

LipL!
pi=——"
Di

Thus the post measurement state is expected to be
zi:pipi = XZ: LipL!.
The map £ defined by
E(p) = LipL! (9.2.29)

on the set of states is called a quantum operation.

If we choose and fix an orthonormal basis in H and express the operators L; as
matrices in this basis the condition that LZ L; = I can be interpreted as the property
i

that the columns of the matrix

Ly

L,

Ly,
constitute an orthonormal set of vectors. The length of the column vector is kd where
d is the dimension of the Hilbert space H. Extend this set of orthonormal vectors into

an orthonormal basis for H ® C* and construct a unitary matrix of order kd x kd of the
form

Ly
U= L_2
Ly,
We can view this as a block matrix where each block is a d x d matrix. Define
1
0
|0> - : )
0
so that for any state p in H we have
p 0 - 0
0o 0 - 0
M=p®|0){0]= )



as states in H ® C¥. Then

LipL] LipL} -~ LipL]
— LopL} LopLh -+ LopLl
LipL} LypL} -+ LygpL}

Thus we have i
Trex U(p® [0)(0NU" = 3 LipLi = £(p),

where £(p) is defined as in (9.2.29). We summarize our discussion in the form of a lemma.

Lemma 9.2.30 Let £ be a quantum operation on the states of a quantum system with
Hilbert space H determined by a generalized measurement {L;, 1 < i < k}. Then there
exists a pure state |0) of an auziliary system with a Hilbert space IC of dimension k and
a unitary operator U on H ® IC satisfying the property

E(p) = Trx U(p® [0)(0)U"
for every state p in H.

17) Let AB be a composite system with Hilbert space Hap = Ha ® Hp and let € be
a quantum operation on B determined by the generalized measurement {L;, 1 < i <
k} in Hp. Then id ® € is a quantum operation on AB determined by the generalized
measurement {14 ® L;, 1 <i < k}. If pAP is any state in Hap = Ha ® Hp and

pA'B’ — Zd®g(pAB)

then,
S(A": B") < S(A:B).

Proof:  Following Lemma 9.2.30, we construct an auxiliary system C' with Hilbert space
He, a pure state |0) in He and a unitary operator U on Hp @ He so that

") = Y Lip"Ll

= TrcU(p"® [0)(0))U"

Define .
U=1,U.
Let
pPC = p® |0)(0]
and pA’B’C’ _ UpABcﬁ’[‘

Then for the marginal states we have
pA' _ pA, pB'C' _ UPBCUT

and therefore

S(A') = S(A), S(B'C) = S(BC).



Thus using 16), we get

S(A:B) = S(A)+S(B)— S(AB)
= S(A) + S(BC) — S(ABC)
= S(A’)+S(B(J) S(A'B'C")
— S(A':B'C") > S(A': B).

0
18) Holevo Bound

Consider an information source in which messages x from a finite set X come with
probability p(z). The information obtained from such a source is given by

==Y p(x)log, p(x

zeX

Now suppose the message x is encoded as a quantum state p, in a Hilbert space H.
In order to decode the message make a generalized measurement {L,,Y € Y} where

> L;Ly = I. Given that the message x came from the source, or equivalently, the state
yey
of the quantum system is the encoded state p, the probability for the measurement value

y is given by
ply | x) =Tr LyprL.

Thus the joint probability Pr(z,y), that x is the message and y is the measurement
outcome, is given by

Pr(z,y) = p(x)p(y | ) = p(x) Tr prLLy.

Thus we obtain a classical joint system XY described by this probability distribution in
the space X x Y. The information gained from the generalized measurement about the
source X is measured by the quantity H(X)+ H(Y)— H(XY). (See reference [12].) Our

next result puts an upper bound on the information thus gained.

Theorem 9.2.31 (Holevo, 1973)

H(X)+H(Y)-H(XY) < S(Zwlp(@“)px) — 2. p(x)S(px)-

T

Proof: Let {|x),z € X}, {]y),y € Y} be orthonormal bases in Hilbert spaces Hx, Hy of
dimension #X, #Y respectively. Denote by H, the Hilbert space of the encoded states
{pz, * € X}. Consider the Hilbert space Hxzy = Hyx ® Hz @ Hy. Choose and fix an
element 0 in Y and define the joint state

= 2 p(e) )| @20 0)01.

In the Hilbert space H zy consider the generalized measurement determined by {\/E, ®
Uy,y € Y} where E, = LLLy and U, is any unitary operator in My satisfying U,|0) = |y).



Such a measurement gives an operation £ on the states of the system ZY and the
operation id ® &£ satisfies

(W@ &)™) = ¥ pla) o) e VEp/E,@ |y)y]

zeX, yeYy

o X'7'Y’
= p ,  say.

By property 17) we have
S(X:2Z)=S(X:2Y)>S(X": Z'Y").
By property 16)
S(X:Z)>8(X":Y"). (9.2.32)

Since
P = pa) |2 (x| @p

we have from the joint entropy theorem

Furthermore
p* = > ple)|e)x], S(X)=H(P)=H(X)
p? = p@)ps, S(Z)=S(p?)
S(X:Z) = SO p(@)pz) — > p(x)S(ps) (9.2.33)

On the other hand

P = 3 p) [0 (] @V Eype VB, 13) (]

P’ =) p() Trp.Ey |y)(y|

7y
P =) pa) Trp By 2 (2| © |y)(yl
@y
Thus,
S(X":Y"Y=H(X)+H®Y)—- H(XY) (9.2.34)
Combining (9.2.32), (9.2.33) and (9.2.34) we get the required result. O

19) Schumacher’s theorem:
Let P be a probability distribution on a finite set X. For € > 0 define

v(P,e) =min{#E | EC X, P(E) > 1—¢€}.



It is quite possible that #X is large in comparison with v(P,¢). In other words, by
omitting a set of probability at most ¢ we may have most of the statistical information
packed in a set F of size much smaller than #.X. In the context of information theory it

is natural to consider the ratio I‘Ig;;;f;’;) as the information content of P upto a negligible

set of probability at most €. If now we replace the probability space (X, P) by (X™, P®")
and allow n to increase to infinity then an application of the law of large numbers leads
to the following result.

. logv(P®"¢) H(P)
m =
n—oo  log #X" log X

or equivalently,

1 pen
hm Og l/( ? 6)

n—00 n

— H(P) Ve >0 (9.2.35)

where H(P) is the Shannon entropy of P. This is a special case of Macmillan’s theorem
in classical information theory. Our next result is a quantum analogue of (9.2.35), which
also implies (9.2.35). Let (#,p) be a quantum probability space where H is a finite
dimensional Hilbert space and p is a state. For any projection operator £ on H denote
by dim £ the dimension of the range of £. For any € > 0 define

v(p,€) = min{dim E | E is a projection in H, Tr pE > 1 — €} (9.2.36)
Theorem 9.2.37 For any e > 0
log v(p®"
lim 282007 O g (9.2.38)
n—00 n

where S(p) is the von Neumann entropy of p.
Proof: By the spectral theorem p can be expressed as
p =2 p(x) [r)(z|

where z varies in a finite set X of labels, P = {p(z),x € X} is a probability distribution
with p(xz) > 0 for every = and {|z), x € X'} is an orthonormal set in 7. Then

Pr= Y b)) o) |2) e

w:(xl,x2,---,ﬂ3n)

where 2's vary in X and |z) denotes the product vector |z1)|xs) ... |z,). Write p,(x) =
p(x1)p(z2) ... p(x,) and observe that P®" = {p,(x), x € X®"} is the probability distri-
bution of n i. i. d. copies of P. We have

S(p) ==Y _p(z)logp(x) = H(P).
From the strong law of large numbers for i. i. d. random variables it follows that
: 1 , 1 <
lim ——logp(z1)p(z2) ... p(wa) = T}ggo—ﬁz;logp(:ci)

- S



in the sense of almost sure convergence in the probability space (X, P®*). This suggests
that, in the search for a small set of high probability, we consider the set

T(n,e) ={x: —% log p(x1)p(x2) ...p(x,) — S(p)| < €} (9.2.39)

Any element of T'(n, €) is called an e-typical sequence of length n. It is a consequence of
the large deviation principle that there exist constants A > 0, 0 < ¢ < 1 such that

Pr(T(n,e)) > 1 — Ac", (9.2.40)

Pr denoting probability but according to the distribution P®". This says but for a set of
sequences of total probability < Ac"™ every sequence is e-typical. It follows from (9.2.39)
that for any e-typical sequence

970+ <y () < 275079, (9.2.41)

Define the projection

E(ne)= > |z)(z| (9.2.42)

and note that
dim E(n,€) = #T(n,¢). (9.2.43)
Summing over € T'(n,¢) in (9.2.41) we conclude that
275+ dim E(n, €) < Pr(T(n,¢)) < 2750~ dim F(n, €)
and therefore by (9.2.40) and the fact that probabilities never exceed 1, we get
n(SD=9)(1 — Ac") < dim E(n,e) < 2"+ ve s 0n=1,2,...  (9.2.44)

In particular

log dim E(n, €)
n

< S(p) +e. (9.2.45)

Fix € and let § > 0 be arbitrary. Choose ny so that Ac" < 4.
Note that

Tr p*"E(n,e) = Pr(T(n,€)) > 1 — 6 for n > ny.

By the definition of v(p®",d) we have

log v(p®™,9) - log dim E(n, €)

< S(p) +¢€, for n > ny.
n n

Letting n — oo we get

I &n
limn%ww < S(p) +e.



Since € is arbitrary we get

_ 1 Q@n
i, o, 2820P70) g
n

Now we shall arrive at a contradiction by assuming that

log v(p™", d)
n

< S(p).

Under such a hypothesis there would exist an n > 0 such that

logv(p®", 6)

< S(p) —
" <S(p)—n
for infinitely many n, say n = ny,ns, ... where n; < ny < ---. In such a case there exists
a projection Fy,. in H®" such that
dimF,, < 2"S@-m) (9.2.46)
TepF, > 1-9¢ (9.2.47)

for j =1,2,.... Choosing ¢ < n and fixing it we have

1-6 < Trp®vE, (9.2.48)
= Trp*" E(nj,€)F,, + Trp*" (I — E(nj,€))F,, (9.2.49)

From (9.2.40) and the fact that p®* and E(n,¢) commute with each other we have

Trp" (I — E(nj, €))F,, < Trp®(I — E(ny,e€)) (9.2.50)
= 1—Pr(T(n,¢) (9.2.51)
< Acv (9.2.52)

Furthermore from (9.2.41) we have

P E(ne) = Y () |x)(x]
T eT (nj,e)
91 (S(p)=e))

IN

Thus by (9.2.47) we get

T B(ny, )R € 250 dim (92:5)
< 2 ni(S(0)=0)+n; (S(o)=m) (9.2.54)
— 9o (9.2.55)

Now combining (9.2.49), (9.2.52) and (9.2.55) we get
1—8<27m0=e) 4 Achi

where the right side tends to 0 as j — oo, a contradiction. U

20) Feinstein’s fundamental lemma



Consider a classical information channel € equipped with an input alphabet A, an
output alphabet B and a transition probability {p,(V),z € A,V C B}. We assume that
both A and B are finite sets. If a letter x € A is transmitted through the channel € then
any output y € B is possible and p,(V') denotes the probability that the output letter
belongs to V' under the condition that x is transmitted. For such a channel we define a
code of size N and error probability < € to be a set C' = {¢1,¢,...,cy} C A together
with a family {V,V5,..., Vx} of disjoint subsets of B satisfying the condition

p(Vi)>1—¢ Vi=12 ... N. (9.2.56)
Let
v(C,e) = max {N | there exists a code of size N and error probability < e}

Our aim is to estimate v(C,¢) in terms of information theoretic parameters concerning
the conditional distributions p,(.),x € A. To this end consider an input probability
distribution p(z),x € A and define the joint input-output distribution

Pr(z,y) = p(x)p.({y})- (9.2.57)

Denote by H,(A : B) the mutual information between the input and the output according
to this joint distribution. Put

C =sup H,(A: B) (9.2.58)
p

where the supremum is taken over all input distributions p. For a fixed input distribution
p, put

2 _ e op LE@:Y) N
o _m;’ijp (z,y) {1 8 o T)a(o) H,(A: B)} (9.2.59)

where ¢ is the B-marginal distribution determined by P. Thus ¢(y) = >, Pr(z,y). With
these notations we have the following lemma.

Lemma 9.2.60 Letn > 0, 0 > 0 be positive constants and let p be any input distribution
on A. Then there exists a code of size N and error probability < n where

o) B)—
N > (77 — 6—;’) 2 Hp(A:B)=0 (9.2.61)
Proof: Put
R =H,(A: B).
Define the random variable £ on the probability space (A x B, P) by
Pr(z,y)
§(z,y) = log ———.
) =18 )
Then & has expectation R and variance o7 defined by (9.2.59).
Let

Vz{(x,y):

Pr(z, y)
logm - R‘ < (5} . (9.2.62)



Then by Chebyshev’s inequality for the random variable & we have

Pr(V)>1— L. (9.2.63)

Define
Vo =A{y [ (z,y) €V}
Then (9.2.63) can be expressed as

0.2

> p(@)ps(Va) > 1- 2. (9.2.64)
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This shows that for a p-large set of x’s the conditional probabilities p,(V,) must be large.
When (z,y) € V we have from (9.2.62)

Pr(z, y)
R—5§logm§R+5 (9.2.65)

or equivalently
q(y)2" < paly) < qly)2"™°,

Summing over y € V, we get

q(Ve)27 < po(Va) < q(Va)2.
In particular,

q(Vy) < pa(Vy)27 =0 < 2= (H=0), (9.2.66)
In other words V,’s are ¢g-small. Now choose z; in A such that p,,(V,,) > 1 —n and set
Vi = Vi,. Then choose x5 such that p,,(V,, N V/) > 1 —n where the prime ' denotes
complement in B. Put V, = V,, N V/. Continue this procedure till we have an xy such
that

Poy Vay OVINVEN N Vi) >1—n
and for any = ¢ {xy,29,...,2x}
pe(Ve N (UYL, V;)) <1 =1

where Vy =V, nV/nVyn---NV{_ ;. By choice the sets Vi, V5, ..., Vy are disjoint,
N N

'U1 Vi= 'U1 Vy, and therefore

1= 1=

pe(VaN (UL, V))) <1—n Vo e A (9.2.67)



From (9.2.64), (9.2.66) and (9.2.67) we have

1—% < > p@)pa(Va)

x

= D> p@)pe(Ve N (UL V) + Y p(@)pa (Ve N (UX,V0))

T

< 1=+ p@)p.(Ve N (WY, V)

= 1—n+qUY,Vi)

N

< 1-n+> q(V)
=1
N

< 1—774‘2‘](‘/:%)
=1

< 1—n+4 N2 (B9

Thus
0_2
P R—d
N> <77 — §> 2(R=9), O

Now we consider the n-fold product €™ of the channel € with input alphabet A",
output alphabet B™ and transition probability {pg)(V),m € A"V C B"} where for

T = (.’El,.TQ,---,-’En), y:(ylay%---ayn)

n

ps {y}h) = [ = Guid)-

i=1
We now choose and fix an input distribution p on A and define the product probability
distribution P™ on A™ x B™ by

n

P (x,y) = [ [ p(e)pe {:})-

1=1

Then the A™ marginal of P™ is given by

and
H,wy (A" : B") = nH,(A : B),
0.12)(") = TLO';

where 0’5 is given by (9.2.59). Choose n > 0, 6 = ne and apply the Lemma to the product
channel. Then it follows that there exists a code of size N and error probability < n with

2
N > (77 B ”:;;) on(Hy(A:B)—¢)
n-e

2
_ ( _ &) on(Hy(A:B)—)



Thus
2

1 1 o
~1 CM )y > =1 — L2 )4+ H(A:B)—e
logu(€™, ) = — 0g<n n€2>+ p( ) —¢€
In other words
1
lim, .~ log v(€7,7) = Hy(4: B) .

Here the positive constant € and the initial distribution p on the input alphabet A are
arbitrary. Hence we conclude that

1
lim, , .~ logv(C™, n) > C.
n

———n—00

[t has been shown by J. Wolfowitz ([11])that
T L (n)
lim,, ,— logv (€™ n) < C.
n

The proof of this assertion is long and delicate and we refer the reader to [11]. We
summarize our discussions in the form of a theorem.

Theorem 9.2.68 (Shannon- Wolfowitz) Let C be a channel with finite input and output
alphabets A and B respectively and transition probability {p.(V),z € A,V C B}. Define
the constant C' by (9.2.58). Then

1
lim —logv (€™ n)=C V0 <n< 1.
n—oo 1

Remark: The constant C' deserves to be and is called the capacity of the discrete memo-
ryless channel determined by the product of copies of C.

A quantum information channel is characterized by an input Hilbert space H 4, an
output Hilbert space Hp and a quantum operation £ which maps states on H 4 to states
on Hp. We assume that H 4 and Hp are finite dimensional. The operation £ has the
form

k
E(p) =) LipL! (9.2.69)
=1

where Ly, L, ..., Lj are operators from H 4 to Hp obeying the condition ) . LZLZ- = 14.
A message encoded as the state p on H 4 is transmitted through the channel and received
as a state £(p) in Hp and the aim is to recover p as accurately as possible from &(p).
Thus &£ plays the role of transition probability in the classical channel. The recovery
is implemented by a recovery operation which maps states on Hp to states on H4. A
quantum code € of error not exceeding € can be defined as a subspace € C H 4 with the
property that there exists a recovery operation R of the form

¢
R(p') = ZMjp'M} for any state p’ on Hp
=1

where the following conditions hold:



1. My, M,, ..., M, are operators from H 4 to Hp satisfying Zﬁ.zl M}Mj = Ip;

2. for any ¢ € C
(WIRE(V) (WD) 21—

Now define
v(€,€) = max{dim € | € is a quantum code of error not exceeding €}.

We may call v(&, €) the maximal size possible for a quantum code of error not exceeding
. As in the case of classical channels one would like to estimate v (€, €).

If n > 1 is any integer define the n-fold product £¥" of the operation £ by

01,i25eemin

for any state p on H%", where the L;’s are as in (9.2.69). It is an interesting problem to
analyze the asymptotic behavior of the sequence

{% log v(£°™, e)}

as n — oQ.
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