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SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATIONMODELSSIVA ATHREYA AND ANITA WINTERAbstrat. In this artile we disuss spatial ouplings for measure-valued population modelswhih have a partile representation. We will show that provided the orresponding genealog-ial trees are ompat the qualitative behavior of a oupling of a partile's individual motiontranslates into a oupling of the ontinuous mass measure-valued models. As appliations ofthe above method we present a oupling of di�usions on Rn+ and a perturbation estimate fora lass of semilinear partial di�erential equations.
1. IntrodutionCouplings of Markov proesses � have been widely studied in the literature and applied tovarious areas of Probability and Analysis. In this paper we study spatial ouplings of measure-valued population models, X, with values in �nite measures on a loally ompat and separablemetri spae (E; d). These proesses are obtained as weak resaling limits of branhing partilesystems where the partilesmigrate or mutate aording to a Markov proess � in a geographialrespetively type spae E, and give birth to partiles upon dying by a spei�ed branhingmehanism.Let x; y 2 E: Assume that there is a oupling of two opies of � starting at x and y, suhthat limt!1 d(�xt ; �yt ) = 0, almost surely. Consider two opies Xxt and Xyt of the measure-valued proess starting at Æx and Æy, respetively, having synhronous branhing events, andunderlying migration(mutation) proess given by �x and �y, respetively. We investigate thefollowing question: Does the distane Xxt and Xyt go to zero as well, and if so does this distaneonverge at the same rate?We begin with the diÆulties that arise when one tries to answer the above question. Firstwe need to hoose a meaningful measurement of oupling of �nite measures. In partiular, onehas to keep in mind that the supports propagate, so it is not enough to try to onsider theHausdor� distane of the supports. Moreover, sine branhing models typially (may) die out,a meaningful oupling should also apply to the models onditioned to stay alive for ever. Weonsider the various possibilities.Date: June 28, 2004.2000 Mathematis Subjet Classi�ation. Primary: 60G57 Seondary: 60H30.Key words and phrases. Measure-valued, Coupling, Look-down, Neumann Problem.1



2 SIVA ATHREYA AND ANITA WINTERGiven a spatial oupling of the motion proess, �, there are various ways in whih one anonstrut a oupling of X onditioned on non-extintion. One approah ould be to use theimmortal partile representation ([13℄). In this representation there is one immortal partilethat throws of mass as it lives for ever. One ould also work with the historial version ofthese models as introdued in [9℄ for superproesses and in [14℄ for interating Fisher-Wrightdi�usions. However, we will follow an approah whih will over both aspets, namely theso-alled look-down onstrution given by Donnelly and Kurtz ([10℄,[11℄). This approah isappliable for a wide lass of measure-valued population models.We rely on the last approah to present a generi way to spatially ouple X from the ouplingof �. In our main result (Theorem 2.1) we show that a spatial oupling of � an be lifted to aspatial oupling of X under ertain assumptions. A key fat that we make use of in the proofis that for some time t suÆiently lose to the extintion time � ext, all partiles alive at time tshare a ommon anestor at time 0, i.e., the orresponding genealogial tree is ompat.We apply Theorem 2.1 to di�erent situations. A lass of examples we study are super-reetedBrownian motions on a planar domain D. Using synhronous ouplings of reeted Brownianmotions on ertain planar domains D [[2℄, [3℄, [6℄, [7℄℄ we are able to provide suessful ou-plings of these measure valued proesses (see Corollary 3.1). As an appliation we study theorresponding Neumann problem, i.e.,
(1.1) �u�t = 12�u� `u+ 2u1+�; x in D�u�n � 0; x on �Du(0; x) = g(x); x in D;where ��n is the normal derivative, ` � 0, and � 2℄0; 1℄. In [1℄ suh a oupling is used toprovide monotoniity results for (1.1). Using Theorem 2.1 we are able to provide a spei�rate at whih ju(t; x) � u(t; y)j ! 0, as t ! 1, for a ertain lass of planar domains D (seeCorollary 3.2). Another set of examples are Super Markov hains on a �nite set E = f1; : : : ; ng:These an be identi�ed with solutions of �nite dimensional di�usions in Rn+ . Suppose one has asuessful oupling of a Markov hain on E, (see for instane [5℄), then our main result providesa suessful oupling of �nite-dimensional di�usions. This is made preise in Corollary 3.3.Various examples of ouplings of multi-dimensional di�usions are given in [15℄. However, thedi�usions we ouple over a di�erent set of examples.Furthermore in the literature, spatial ouplings of measure-valued proesses have been onsid-ered. In [12℄ a spatial oupling of Fleming-Viot proesses is used to study its ergodi properties.A oupling as in Theorem 2.1 (ii) is obtained for the Fleming-Viot proess in [10℄ (see the proofof Theorem 4.1).



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 3The rest of the paper is organised as follows. In the next setion we state the model andthe main result (Theorem 2.1). In Setion 3 we disuss the examples of ouplings and theappliation to semi-linear paraboli pdes. Finally in Setion 4 we give a proof of Theorem 2.1.Aknowledgments. We had many useful disussions on various aspets of the problem and adraft of the manusript with Krzysztof Burdzy, Steven Evans, Thomas Kurtz, Lea Popovi andIljana Z�ahle. Our many thanks to all of them.2. The model and main resultWe begin with a partile representation of the measure-valued proess, followed by the ouplingand then by the main result.2.1. The model and its partile representation. Let (A;D(A)) be the generator of aMarkov proess � := (�t)t�0 on E modeling the motion of a single partile, and P := (Pt)t�0be a stohasti proess taking values in [0;1[ desribing the total mass of the model. Let(2.1) � ext := infft � 0 : Pt = 0g:Assumption on P We assume that Pt satis�es the following ondition:(P) Z �ext0 ds 1Ps =1:Consider the EN-valued Markov proess (�1t ; : : : ; �nt ; : : :) whih evolves until � ext as follows:� (Migration/Mutation) For eah k 2 N, the kth-oordinate proess, �k := (�kt )t�0,also alled the kth-level proess, performs, independently of all the other level proesses,a Markov-proess on E with generator (A;D(A)).� (Branhing/Resampling) For any (i; j) 2 N�N with i < j, at rate 1=Pt, a partileof \type" (respetively at \position") �it is inserted one level above the jth level, whileall other partile retain their order. That is, after the jump we end up with the vetor(�1t ; :::; �i�1t ; �it ; �i+1t ; :::; �j�1t ; �it�; �jt ; �j+1t ; :::).It is easy to hek that under Assumption (P) the dynamis is well-de�ned, and that if (�10 ; �20 ; :::)is exhangeable then so is (�1t ; �2t ; :::) for any t � 0. Hene the de Finetti measure(2.2) ��t := limm!1 1m mXk=1 Æ�kt ; a:s:



4 SIVA ATHREYA AND ANITA WINTERexists. Let � 2 MF (E), where MF (E) denotes the set of �nite measures on (E;B(E)). Themodel X(P; �; �) we are interested in is the proess X := (Xt)t�0 de�ned by(2.3) Xt := Pt � ��t 1ft��extg; t � 0:The above partile representation of measure-valued proess and their appliations was �rstgiven in [11℄. We refer to that artile for more details of the onstrution.2.2. The oupling. We will use the following onstrution. Let � be the motion proesses.Denote by D([0;1[; E) the set of maps from [0;1[ to E whih are ontinuous from the rightand have limits from the left. Assume that there is a funtion(2.4) f : E �D([0;1[; E)! D([0;1[; E)suh that for eah x 2 E, �x := f(x; �) equals in distribution � started in x. In the following fis referred to as a spatial oupling.Let x; y 2 E. Let two opies Xx � X(P; �; Æx) and Xy � X(P; �; Æy) are spatially oupled withrespet to f . That is, the proesses start at P0 � Æx and P0 � Æy, are driven by the same totalmass proess P := (Pt)t�0, the branhing events our simultaneously, but the spatial motionof the ith partile started in x and y is given by f(x; �i) and f(y; �i), respetively. For suh aoupling, we provide the following three measurements of eÆieny.� (Averaged spatial distane)(2.5) �zx;yt := limm!1 1m mXi=1 d(�i;xt ; �i;yt ); a.s.� (Minimal/maximal spatial distane)(2.6) m� x;yt := infi2N d(�i;xt ; �i;yt ); and �mx;yt := supi2N d(�i;xt ; �i;yt ):� (Wasserstein distane of the random measures)(2.7) dW(Xxt ;Xyt ) := suph2Cb ����Z hdXxt � Z hdXyt ���� ;where Cb = Cb(E) is the set of ontinuous funtions h : E ! R suh that jh(x)j � 1and jh(x)� h(y)j � d(x; y) for x; y 2 E.Now note that sine (d(�1;xt ; �1;yt ); d(�2;xt ; �2;yt ); :::) is exhangeable the limit in (2.5) and onse-quently the quantity �zx;yt is well-de�ned. It is elementary to observe that the above eÆieniesan be arranged in order. Let t � 0, then(2.8) Ptm� x;yt � dW(Xxt ;Xyt ) � Pt�zx;yt � Pt �mx;yt :



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 5Assuming that we may ouple the motion proesses suh that d(�xt ; �yt )! 0, as t!1. Thenby exhangeability �zx;yt ! 0 in probability, as t! 1. For almost sure onvergene one mighttry to argue as follows:(2.9) limt!1 �zx;yt = limm!1 limt!1 max1�i�m d(�x;it ; �y;it ) = 0; a.s.The above alulation involves an interhange in limits whih annot be justi�ed without afurther assumption on the spatial oupling.Assumption on � Let � := (�t)t�0 be a stohasti proess with values in E suh that thereexists a oupling of two opies �x and �y started in x; y 2 E suh that one of the followingonditions is satis�ed.(S1) There exist a funtion g : R+ �E �E ! R+ with(2.10) g(t; x; y)d(�xt ; �yt )! 0; a:s:;and an almost surely �nite stopping time T suh that g(t; x; y)d(�xt ; �yt ) is almost surelynon-inreasing on [T;1[.(S2) There exists an almost surely �nite stopping time S with(2.11) d(�xt ; �yt ) = 0for all t � S.We are now ready to state our main result.Theorem 2.1. Let Xx and Xy be spatially oupled versions of X as desribed in the previoussetion.(i) Assume (S1). On the event f� ext =1g,(2.12) limt!1 g(t; x; y) �mx;yt = 0; a.s:(ii) Assume (S2). On the event f� ext =1g,(2.13) � := infft � 0 : �mx;yt = 0g <1; a.s:We will prove this theorem in Setion 4. The main idea in the proof is to prevent the ourreneof \exeptional" partiles. For this we will make use of the fat that the underlying genealogialtree is ompat, i.e., for any t � 0 and " 2℄0; t[, the ountably many levels at time t have �nitelymany anestor levels at time t� ". The latter an be derived from Condition (P) for the totalmass proess. Examples for total mass proesses satisfying Condition (P) are disussed inSubsetion 3.1.Remark 1.



6 SIVA ATHREYA AND ANITA WINTER(1) We have hosen �mx;yt to work with as this learly illustrates the oupling of the supportsof Xxt and Xyt , i.e. a spatial oupling. This is also the ase with �zx;yt . This is not so withthe Wasserstein distane. If one were to work with this distane, if Pt dies out thendW (Xxt ;Xyt ) approahes zero trivially. If Pt does not die out, then in order to ensurethat dW (Xxt ;Xyt ) approahes zero, one would require �mx;yt to approah zero at a ertainrate. In the next setion we will disuss various examples of Pt and in ertain asesit will be immediate to onlude that dW (Xxt ;Xyt ) approahes zero given that �mx;ytapproahes zero. However, in Setion 3 we provide an example of a partile system(Remark 2 (iii)) where the Wasserstein distane will not approah zero even though�mx;yt does go to zero.(2) In ertain ases ([7℄) one an show that d(�x;it ; �y;it ) � (x; y)f(t) for all i 2 N and t 2 R+where f(t)! 0 as t!1. Suh a uniform deterministi bound immediately yields(2.14) �mx;yt � (x; y)f(t):We will disuss examples in Subsetion 3.2 to illustrate this.Assuming that we have a uniform deterministi bound on �mx;yt a perturbation estimate for thelog-Laplae equation is immediate. Let h : E ! R be a Lipshitz funtion, i.e., there exists aonstant Lh > 0 with jh(x)� h(y)j � Lhd(x; y) for all x; y 2 E. Let X := (Xt)t�0 be given by(2.3). De�ne u : R+ �E as(2.15) u(t; x) := � logE[e�<Xxt ;h>℄:Lemma 2.1. Assume that there exists a funtion ' : R+ � E2 ! R+ whih is symmetri inthe seond and third oordinate, and suh that �mx;yt � '(t; x; y). Then t � 0, and x; y 2 E,(2.16) ��u(t; x) � u(t; y)�� � � logE�e�Lh'(t;x;y)Pt�:Proof. By (2.3) and the assumption of the l emma, we have
(2.17) < Xyt ; h > = Pt � limn!1 1n nXi=1 h(�y;it )� Pt � � limn!1 1n nXi=1 h(�x;it ) + Lh �mx;yt ��< Xxt ; h > + < Xxt ; Lh'(t; x; y) > :In the last equation we have used the fat that Pt =< Xxt ; 1 >=< Xyt ; 1 >. Now, sine (�1t ; :::)are exhangeable, for two non-negative funtions h1 and h2, < Xt; h1 > and < Xt; h2 > arenon-negatively orrelated. Hene(2.18) E[e�<Xt;h1+h2>℄ � E[e�<Xt;h1>℄E[e�<Xt;h2>℄:



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 7So, we have
(2.19) u(t; y)� u(t; x) = log E[e�<Xxt ;h>℄E[e�<Xyt ;h>℄� log E[e�<Xxt ;h>℄E[e�<Xxt ;h>�<Xxt ;Lh'(t;x;y)>℄� log E[e�<Xxt ;h>℄E[e�<Xxt ;h>℄E[e�<Xxt ;Lh'(t;x;y)>℄= � logE[e�Lh'(t;x;y)Pt ℄:By symmetry in x and y, also u(t; x) � u(t; y) � � logE[e�Lh'(t;x;y)Pt ℄. Hene we obtain theresult. �3. Appliations and ExamplesIn this setion we desribe appliations and examples. We begin with examples, from theliterature, of proesses that satisfy (P) and ouplings that satisfy (S1) or (S2).3.1. Examples of total mass proesses. In this subsetion we disuss examples of Pt sat-isfying (P). These are part of the folklore in the literature. As we ould not �nd referenes forall the examples, we present them with short proofs.(Sub)-ritial, �-stable, super-(A;D(A))-proess Let A be the generator of a Markov proess �on E. Let the total mass, P (`;�;) be the (sub-)ritial, �-stable super branhing proess withsub-ritiality ` � 0 and branhing rate . That is, its Laplae transform is for P0 � 0;  > 0,t > 0, 0 < � � 1, and ` � 0, given by(3.1) � logE[e��P (`;�;)t ℄ = 8>><>>: e�`tP0(���+ 2` (1�e�`�t)) 1� ; if ` 6= 0;P0(���+ �t2 ) 1� ; if ` = 0In this ase X is the (sub-)ritial, �-stable super-(A;D(A))-proess. The next lemma statesthat Condition (P) is satis�ed for P (`;�;).Lemma 3.1. Let P (`;�;) be the total mass proess of the (sub-)-ritial, �-stable super-proessX with sub-ritiality ` � 0 and branhing rate . Then P (`;�;) satis�es (P).Proof. To see this, let us �rst assume that ` = 0. Let La�Pt� be the law of Pt starting at a. Inthis ase, we may use the following saling:(3.2) L��Pt� = L� 1� ���� 1�P�t�; � > 0; � > 0:



8 SIVA ATHREYA AND ANITA WINTERLet � 2℄0; 1[ and de�ne �� := infft � 0 : �� 1�P�t = 0g:(3.3) Z �10 dsP�1s = �1�1=� Z ��0 du �1=�P�u � Z ��0 du �1=�P�u :Let X is distributed like the left hand side of (3.3), where P is the ritial, �-stable total massproess started in P0 = �, while Y is distributed like R infft�0:Pt=�g0 ds 1Ps where P is the ritial,�-stable total mass proess started P0 = ��1=��. By the strong Markov property of P , (3.3)says therefore that X � X + Y in distribution, i.e, for all t � 0, PfX � tg � PfX + Y � tg.For � > 0, we know that Y > 0 almost surely. Hene PfX =1g = 1.Now let ` > 0. Then a simple alulation shows that P̂t := e`tP `;�;t is the ritial, �-stablesuperproess with time-inhomogeneous branhing rate e`t. Hene for eah time T � 0,(3.4) (`T + 1)P̂`�1 log (`T+1) d= P 0;�;T :Therefore
(3.5) Z �10 du �P `;�;u ��1 � Z infft�0: P̂t=0g0 du P̂�1u= Z infft�0: P̂`�1 log (`t+1)=0g0 ds (`s+ 1)�1P̂�1`�1 log (`s+1)= Z infft�0:P 0;�;=0g0 du �P 0;�;u ��1 =1: �The superritial �-stable superproess. If Pt is the total mass proess of a superproess whihdoes not die out with positive probability, then it is easy to see that the orresponding ge-nealogial tree is not ompat anymore. Indeed, if the Laplae transform of P satis�es (3.1)for a ` < 0, then e�`t=�Pt is a martingale whih onverges to a nontrivial random variable Z,and R10 dsP�1s < 1 on Z 6= 0. However note that, onditioned on the event f� ext < 1g, Pthas the same distribution as the sub-ritial branhing di�usion with �` > 0, and hene willsatisfy (P).Fleming-Viot proess. If we ondition the superproess on having onstant total mass, then theproess ��(x;y) is a Fleming-Viot proess with type spae E. In this ase (P) is trivially ful�lled.Size-biased Feller di�usion. Conditioning the superproess on non-extintion is equivalent toonditioning the total mass proess not to hit zero. When Pt satis�es (3.1) with ` = 0 and� = 1 it is well known that Pt is a solution of Feller's branhing di�usion. Namely,(3.6) dPt =pPtdBt; t � 0;



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 9where Bt is a Brownian motion. Likewise the onditioned total mass proess P̂ satis�es(3.7) dP̂t = dt+qP̂tdBt; t � 0;i.e., its law equals the size-biased law of Feller's branhing di�usion. In this ase � ext = 1,and the following lemma ensures that P̂ := (P̂t)t�0 satis�es (P).Lemma 3.2. Let P̂ := (P̂t)t�0 be a version of the unique strong solution of (3.7). Then thereexists a random variable Z with PfZ > 0g = 1 and suh that(3.8) lim inft!1 1log t Z t0 ds P̂�1s � Z; a.s.In partiular, P̂ satis�es Condition (P).Proof. Let L�[P ℄ and L�[P̂ ℄ denote the laws of a Feller di�usion and a size-biased Feller di�usion(ompare (3.6) and (3.7)), respetively, started in � � 0. Then L�[P̂ ℄ = L�[P ℄ � L0[P̂ ℄, where� denotes onvolution. Therefore w.l.o.g. we an assume P̂0 = 0. It is easy to hek thatE0[P̂ nt ℄ = (n+ 1)!(t=2)n. Hene(3.9) P0� P̂tt � x	 = Z 1x dy �2 �2y e�y:Sine P̂t is a size-biased martingale, P̂�1t := (1=P̂t)t�0 is a martingale, and ( t̂Pt )t�0 is a non-negative submartingale, whih therefore onverges almost surely to a non-trivial random vari-able Z. The distribution of Z is given by the inverse of a Gamma(2; =2)-variable (omparethe right hand side of (3.9)), and hene Z > 0, a.s.Fix " 2℄0; 1[. Then(3.10) lim inft!1 1log t Z t0 ds P̂�1s � lim inft!1 1log t Z tt" ds P̂�1s= lim inft!1 Z 1" da ta � P̂�1ta = Z(1� "); a.s.Sine " was hosen arbitrarily, (3.8) follows learly. �3.2. Examples of ouplings. In this subsetion we give appliations of the main theorembased on ouplings of two spatial Markov proesses. These are a reeting Brownian motionin a onvex domain D � R2 and a �nite state Markov hain.Super Reeted Brownian motion and Assumption (S1). Let D � R2 be a onvex domain, and(B1; B2) be a planar Brownian motion with B0 2 �D. Starting from a realization of B, byTheorem 2.1 in [16℄ there exists a uniquely determined solution (�; L) of(3.11) �t = Bt + Lt



10 SIVA ATHREYA AND ANITA WINTERsuh that Lt : R+ ! R2 is a right ontinuous funtion with left limits of bounded variationwith L0 = 0. � := (�t)t�0 is a strong Markov proess with ontinuous paths living in �D alledreeted Brownian motion, and an be written as � = g(B), for a measurable funtion g. Giveng, a synhronous oupling between two opies of reeted Brownian motion is de�ned by lettingf(x; g(B)) := g(B + x), x 2 D (reall the de�nition of a oupling f from (2.4)).Consider the super-reeted Brownian motion on D. That is, in our set up, E = D, � is thereeted Brownian motion on D and Pt satis�es (3.1).Corollary 3.1. Let D � R2 , �x and �y be two synhronously oupled reeted Brownian mo-tions on D, and Xx and Xy be two spatially oupled population models satisfying Condition (P)with motion proesses �x and �y.(i) If D is a onvex domain with a C2-boundary, and the urvature K(x) of the boundary�D is bounded to below by a positive onstant K then there exist onstants ; � > 0suh that �mx;yt � e��t:(ii) If D is a polygonal domain or Lip domain then �mx;yt ! 0, a.s.Proof. (i) In [7℄ the authors make the following observation under the above assumption. Forx; y 2 D,(3.12) d(�xt ; �yt ) � d(x; y) exp(��(t));where(3.13) limt!1 �(t)t = 12�K2 + 1m(D) Z�D �(dy)K(y)�with m denoting the Lebesgue measure. This was �rst observed in the PhD-thesis of Weeras-inghe for the unit dis D. With the above and Remark 1 (2), part (i) follows.(ii) In [3℄, Theorem 1.1 and its proof, it is shown that in suh domains D, (S1) holds. Henepart (ii) now follows from Theorem 2.1. �Semilinear Partial Di�erential Equation. Let X be a super-reeted Brownian motion in D asabove with X0 = Æx. It is well known that the log Laplae funtional of X, u : R+ �D ! Rde�ned by (2.15), is a unique solution of the initial value problem with Neumann boundaryonditions given by (1.1). We now present a onvergene result for these solutions with Lipshitzinitial onditions.Corollary 3.2. Let D be a onvex planar domain with a C2-boundary, suh that the urvatureK(x) of the boundary �D is bounded to below by a positive onstant K, g : D ! R be Lipshitz,and u be a solution to (1.1). Then there exists a onstant C suh that(3.14) ��u(t; x)� u(t; y)�� � Lg � C � e�(�+`)t;where � = 12�K2 + 1m(D) R�D �(dy)K(y)�.



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 11Proof. Consider Xxt and Xyt , the two spatially oupled super reeted Brownian motions as inthe previous orollary. Let Xx0 = Æx and Xy0 = Æy. Let u(t; �) be as in (2.15). From Corollary3.1, we know that the assumptions of Lemma 2.1 are satis�ed with the above �: Using Lemma2.1 we have that,(3.15) ��u(t; x)� u(t; y)�� � � logE�e�Lge��tPt�;where the distribution of Pt is given by (3.1). Assume ` � 0. An Itô alulation implies thatE�e�Lge��tPt� = e�V (t) where V (t) satis�es(3.16) ddtV = �(�+ `)V � e��t 2V 1+�; V (0) = Lg:Solving this ordinary di�erential equation one obtains(3.17) V (t) = Lge�(�+`)t(1 + (Lg)�2(� 1+�� +`)(1� e�(� 1+�� +`)�t))1=�� Lge�(�+`)t:Using the above bound and substituting into (3.15) we have the result. �Super Markov Chains and Assumption (S2). A lass of ouplings alled "EÆient MarkovianCouplings" is onsidered in [5℄. Here the Markov hains on a �nite state spae along withvarious ouplings of reeted Brownian motions satisfying (S1) and (S2) are disussed. Usingthese results we are able to present a oupling result on a lass of �nite-dimensional di�usionson R+n : For x 2 R+n ; let k x kn be the usual Eulidean norm. Let m 2 f1; 2; : : : ; ng and; fqmlgnl;m=1 be non-negative onstants. Let X be a solution of(3.18) dXmt = nXl=1 qmlX ltdt+ dt+pXmt dBmt ; Xm0 = xm � 0;where Bmt are independent Brownian motions.Corollary 3.3. Let Xt and Yt be a solution of (3.18) starting at x = (x1; : : : xn) and y =(y1; : : : ; yn), respetively, with xl; yl � 0. Assume(1) P0 :=Pnl=1 xl =Pnl=1 yl, and(2) q := fqmlgm;l=1:::n are transition rates of a Markov hain on f1; : : : ; ng satisfying As-sumption (S2).Then there exits a oupling of Xt and Yt suh that(3.19) � := infft � 0 : k Xt � Yt kn= 0g <1; a.s.Proof. First if P0 = 0 then � = 0, and we are done. Now assume that P0 = 1. SetE := f1; 2; : : : ; ng. Then �x := Pnl=1 xlÆl is a probability measure on E. Consider � to bea ontinuous Markov hain with state spae E with transition rates given by qml. Consider the



12 SIVA ATHREYA AND ANITA WINTERtotal mass proess P satisfying (3.7) with � = 1. Finally onstrut X as in (2.3) with X0 = �.Using the identi�ation of MF (E) = R+n , it is easy to identify X as a solution of (3.18) withX0 = x. Similarly, we an onstrut a solution Y of (3.18) with Y0 = y: For the proof ofthis orollary, we will view these di�usions as �nite measures on E. Assume that the ratesqml satisfy Assumption (S2). Notie that two partiles starting at any l and m, respetively,performing jumps aording to the Markov hain with transition rates qml will land at the sameposition in �nite time, almost surely.Sine X0 = �x and Y0 = �y we shall start our exhangeable motion proess with startingpoints in E sampled aording to �x and �y, respetively. We shall refer to the motion proessgoverning X and Y as ��x and ��y , respetively. Note that not all of the partiles in eah levelwill have the same starting point anymore. As we have �nitely many starting points and theMarkov hain satisfy Assumption (S2), we an say that(3.20) S0 := max(l;m)2E�E infft � 0 : d(��xt ; ��yt ) = 0; ��x0 = l; ��y0 = mg <1; a.s.So we have a uniform �nite stopping time over all starting points in E suh that the positionof the two oupled Markov hains are the same. Therefore now proeed to apply Theorem 2.1with Assumption (S2) holding with S0 (as opposed to S) to see that � <1, a.s.So far we have assumed that P0 = 1. Suppose now that P0 > 0. It is easy to see that if qsatis�es Assumption (S2) then so will the hain with transition rates qP0 . Hene we an do asale hange by 1P0 , repeat the above argument to onlude the proof of the orollary. �We onlude this setion with some remarks.Remark 2(i) In [2℄, ouplings of reeted Brownian motions were used to analyse the \hot spots"onjeture. A key fat about the ouplings is that the geometry of the initial startingloation is preserved. It is easy to see from the proof of Theorem 2.1 that this translatesto the measure-valued setting as well. This fat was established earlier in [1℄ usinghistorial proesses.(ii) Corollary 3.3 presents a new way to ouple di�usions in Rn+ provided they have a partilerepresentation. Even though Corollary 3.3 has been stated with Assumption (S2),this an be easily adapted to the situation when Assumption (S1) holds instead ofAssumption (S2).If Pt satis�ed (3.1) with � = 1 and ` � 0 then the di�usions onsidered in theorollary would be a solution to(3.21) dXmt = nXl=1 qmlX ltdt� `Xmt dt+ dt+pXmt dBmt ; Xm0 = xm � 0:



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 13The oupling result would hold for these di�usions as well.Notie that our examples are not overed by those obtained in [15℄ for multidimen-sional di�usions by reeting the inrements of the driving Brownian motion. Theirresult applies to di�usions whose di�usion matrix are perturbations of a onstant ma-trix and whose drift is suh that the ordinary di�erential equation given by ignoringthe noise ensures that the distane between two solutions dereases in time.(iii) We present an example to show that the Wasserstein distane may not be the mostappropriate distane to onsider. In [4℄, a synhronous oupling of two reeted Brow-nian motions in a smooth domain D � R2 is onsidered. Let �x (and �y, respetively,)be the synhronously oupled reeted Brownian motions in D. They show that forertain planar domains D, there exists � > 0 suh that for all x; y,limt!1 log d(�xt ; �yt )t = ��:Consider the following branhing reeted Brownian motions. Eah partile lives anexponential time (with mean 1) and then dies. Upon dying it is replaed by K partilesat the site of its death. These K partiles perform independent reeted Brownianmotions in D: Assume that we start with one partile at x 2 D. For t � 0, let It bethe index of partiles alive at time t. Let f�x;it : i 2 Itg represent the partile positions.De�ne Xxt =PjItji=1 Æ�x;it . Let Xy be another branhing reeted Brownian motion suhthat the branhing events are exatly the same as Xx, while the reeted Brownianmotion �y;� are synhronously oupled with �x;�. Let Pt =< Xxt ; 1 >=< Xyt ; 1 > be thetotal mass. Note that by the martingale onvergene theorem there exists a non-trivialrandom variable Z suh that(3.22) limt!1 e�t logKPt = Z; a.s.;where Z is a non-negative random variable. Now for � > 0, for t large enough,(3.23) dW(Xxt ;Xyt ) � Ptmini2It fd(�x;it ; �y;it )g� Pte�(�+�)t� (Z � �)et logKe�(�+�)t:Now hoosing K suitably large one sees that dW(Xxt ;Xyt ) does not go to zero almostsurely even though learly supi2It d(�x;it ; �y;it )! 0, a.s.4. Proof of Theorem 2.1Proof. (i) Fix a sequene (tn) " 1, as n!1, and " > 0. Given the total population proessP , hoose a sequene (Æn)n2N suh that(4.1) limn!1(tn � Æn) =1;



14 SIVA ATHREYA AND ANITA WINTERand(4.2) limn!1Z tntn�Æn ds 1Ps =1:Aording to Assumption (S1) or (S2) there exists a oupling f : E�D([0;1[; E) ! D([0;1[; E)(reall from (2.4)) suh that for all x; y 2 E there is a �nite stopping time satisfying Assump-tion (S1) or (S2), respetively.Let f�i : i 2 Ng be i.i.d. opies of the motion proess �, V̂ := fV̂ i;j : 1 � i < j < 1g bea family of independent unit rate Poisson proesses, and P be a total mass proess satisfyingAssumption (P). For i; j 2 N, let V i;j be the ounting proess given by the following relation:(4.3) V i;jftg := ( 1; if V̂ i;jfR t0 dsP�1s g = 1;0; else.For i 2 N and 0 � s � t <1, let Ait;s denote the \anestor" at time s of level i at time t. Thatis,(4.4) Ait;s := j 2 N; i� there exist a \path from (j; s) to (i; t)";where for eah s � t and 1 � j � i < 1 we say there is a path from (j; s) to (i; t) if thereexist s := s0 < s1 < ::: < sn =: t and j := j0 < j1 < ::: < jn =: i suh that V jk;jk+1fsjkg = 1,and Pj<jk+1 V j;jk ℄sjk ; sjk+1 [= 0. (Note that there is always exatly one path joining (j; s) and(i; t).)Notie that the proess Xt := Pt � � limn!1 1n nXi=1 Æ�Ait;0t �1f�ext<tgis a version of the proess de�ned in (2.2) and (2.3).Denote by(4.5) �t;s := ffj 2 N : Ajt;s = Ait;sg : i 2 Ng;the partition of N into the family pathes of individuals at time t sharing a ommon anestorat time s. Condition (P) ensures that for all 0 � s < t < 1, #�t;s < 1, almost surely. Inpartiular, by Theorem 5.1 in [11℄, (�t;s^t)s�0 = (Ks^t)s�0 in distribution, where K := (Kt)t�0is Kingman's oalesent.We will show that Assumption (S1) yields that (g(tn � Æn; x; y) �mx;ytn�Æn)n2N is eventually (de-pending on x; y 2 E) smaller than a given ", and therefore g(t; x; y) �mx;yt ! 0, almost surely, asn!1.Let T i be a stopping time suh that d(�i;xt ; �i;yt )t�0 is non-inreasing on [T i;1[. We onsiderthe \bad events" that at time tn � Æn we an not predit that g(tn; x; y) �mx;ytn � " by looking



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 15bak a time Æn. We therefore set(4.6) Bn := [i2NBn;i;with(4.7) Bn;i := �tn � Æn < TAitn;tn�Æn	 [ �g(tn; x; y) d(�Aitn;tn�Æn ;xtn�Æn ; �Aitn;tn�Æn ;ytn�Æn ) � "	:Then(4.8) P(Bn) = E�P([�2�tn;tn�Æn [i2� Bn;ij�tn;tn�Æn)�= E�P([�2�tn;tn�ÆnBn;min�j�tn;tn�Æn)�;where we have used that given �tn;tn�Æn , Bn;i = Bn;j for all i; j 2 � 2 �tn;tn�Æn . Moreover,given �tn;tn�Æn , the events fBn;min�; � 2 �tn;tn�Æng are all independent, and have the sameprobabilities. Hene(4.9) P(Bn) = E�1�P(Bn;1)#�tn;tn�Æn �:In order to be in a position where we may apply the Borel-Cantelli lemma, we would like tohave that P(Bn) is summable along a subsequene. Indeed, by Assumption (S1), P(Bn;1)! 1as n!1, and hene(4.10) limn!1P(Bn;1)#�tn;tn�Æn = 1; a.s.In partiular, we may hoose a subsequene (tnk)k2N suh that P(Bnk) is summable over k 2 N.Then T itnk � tnk � Ænk and g(tnk ; x; y)d(�i;xtnk =2; �i;ytnk=2) < ", for all i 2 N and k suÆiently large.In partiular, for all suÆiently large k 2 N,(4.11) g(tnk ; x; y) �mx;ytnk < ";and therefore g(tnk ; x; y) �mtnk ! 0 almost surely, as k !1. Sine any subsequene of (tn)n2Nontains a subsequene along whih (g(t; x; y) �mx;yt )t�0 tends to zero, and sine (tn)n2N washosen arbitrarily, we have shown that g(t; x; y) �mx;yt ! 0, almost surely, as t!1.(ii) Under Assumption (S2), for eah i 2 N, Si := infft � 0 : �i;xt = �i;yt g < 1, almost surely.Then the \bad events" are(4.12) Cn := [i2NfSi > tn � Æng:Similar to (4.8), we have(4.13) P(Cn) = E�1�P(S1 > tn � Æn)#�tn;tn�Æn �;whih an be made summable along a subsequene (tnk)k2N under (S2), and hene there existsa K suh that for all k � K, �mx;ytnk = 0. Sine the ouplings are suessful, zero is a trap for�mx;ytnk , and therefore �mx;yt = 0 for all t � tnK . �
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