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SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATIONMODELSSIVA ATHREYA AND ANITA WINTERAbstra
t. In this arti
le we dis
uss spatial 
ouplings for measure-valued population modelswhi
h have a parti
le representation. We will show that provided the 
orresponding genealog-i
al trees are 
ompa
t the qualitative behavior of a 
oupling of a parti
le's individual motiontranslates into a 
oupling of the 
ontinuous mass measure-valued models. As appli
ations ofthe above method we present a 
oupling of di�usions on Rn+ and a perturbation estimate fora 
lass of semilinear partial di�erential equations.
1. Introdu
tionCouplings of Markov pro
esses � have been widely studied in the literature and applied tovarious areas of Probability and Analysis. In this paper we study spatial 
ouplings of measure-valued population models, X, with values in �nite measures on a lo
ally 
ompa
t and separablemetri
 spa
e (E; d). These pro
esses are obtained as weak res
aling limits of bran
hing parti
lesystems where the parti
lesmigrate or mutate a

ording to a Markov pro
ess � in a geographi
alrespe
tively type spa
e E, and give birth to parti
les upon dying by a spe
i�ed bran
hingme
hanism.Let x; y 2 E: Assume that there is a 
oupling of two 
opies of � starting at x and y, su
hthat limt!1 d(�xt ; �yt ) = 0, almost surely. Consider two 
opies Xxt and Xyt of the measure-valued pro
ess starting at Æx and Æy, respe
tively, having syn
hronous bran
hing events, andunderlying migration(mutation) pro
ess given by �x and �y, respe
tively. We investigate thefollowing question: Does the distan
e Xxt and Xyt go to zero as well, and if so does this distan
e
onverge at the same rate?We begin with the diÆ
ulties that arise when one tries to answer the above question. Firstwe need to 
hoose a meaningful measurement of 
oupling of �nite measures. In parti
ular, onehas to keep in mind that the supports propagate, so it is not enough to try to 
onsider theHausdor� distan
e of the supports. Moreover, sin
e bran
hing models typi
ally (may) die out,a meaningful 
oupling should also apply to the models 
onditioned to stay alive for ever. We
onsider the various possibilities.Date: June 28, 2004.2000 Mathemati
s Subje
t Classi�
ation. Primary: 60G57 Se
ondary: 60H30.Key words and phrases. Measure-valued, Coupling, Look-down, Neumann Problem.1



2 SIVA ATHREYA AND ANITA WINTERGiven a spatial 
oupling of the motion pro
ess, �, there are various ways in whi
h one 
an
onstru
t a 
oupling of X 
onditioned on non-extin
tion. One approa
h 
ould be to use theimmortal parti
le representation ([13℄). In this representation there is one immortal parti
lethat throws of mass as it lives for ever. One 
ould also work with the histori
al version ofthese models as introdu
ed in [9℄ for superpro
esses and in [14℄ for intera
ting Fisher-Wrightdi�usions. However, we will follow an approa
h whi
h will 
over both aspe
ts, namely theso-
alled look-down 
onstru
tion given by Donnelly and Kurtz ([10℄,[11℄). This approa
h isappli
able for a wide 
lass of measure-valued population models.We rely on the last approa
h to present a generi
 way to spatially 
ouple X from the 
ouplingof �. In our main result (Theorem 2.1) we show that a spatial 
oupling of � 
an be lifted to aspatial 
oupling of X under 
ertain assumptions. A key fa
t that we make use of in the proofis that for some time t suÆ
iently 
lose to the extin
tion time � ext, all parti
les alive at time tshare a 
ommon an
estor at time 0, i.e., the 
orresponding genealogi
al tree is 
ompa
t.We apply Theorem 2.1 to di�erent situations. A 
lass of examples we study are super-re
e
tedBrownian motions on a planar domain D. Using syn
hronous 
ouplings of re
e
ted Brownianmotions on 
ertain planar domains D [[2℄, [3℄, [6℄, [7℄℄ we are able to provide su

essful 
ou-plings of these measure valued pro
esses (see Corollary 3.1). As an appli
ation we study the
orresponding Neumann problem, i.e.,
(1.1) �u�t = 12�u� `u+ 
2u1+�; x in D�u�n � 0; x on �Du(0; x) = g(x); x in D;where ��n is the normal derivative, ` � 0, and � 2℄0; 1℄. In [1℄ su
h a 
oupling is used toprovide monotoni
ity results for (1.1). Using Theorem 2.1 we are able to provide a spe
i�
rate at whi
h ju(t; x) � u(t; y)j ! 0, as t ! 1, for a 
ertain 
lass of planar domains D (seeCorollary 3.2). Another set of examples are Super Markov 
hains on a �nite set E = f1; : : : ; ng:These 
an be identi�ed with solutions of �nite dimensional di�usions in Rn+ . Suppose one has asu

essful 
oupling of a Markov 
hain on E, (see for instan
e [5℄), then our main result providesa su

essful 
oupling of �nite-dimensional di�usions. This is made pre
ise in Corollary 3.3.Various examples of 
ouplings of multi-dimensional di�usions are given in [15℄. However, thedi�usions we 
ouple 
over a di�erent set of examples.Furthermore in the literature, spatial 
ouplings of measure-valued pro
esses have been 
onsid-ered. In [12℄ a spatial 
oupling of Fleming-Viot pro
esses is used to study its ergodi
 properties.A 
oupling as in Theorem 2.1 (ii) is obtained for the Fleming-Viot pro
ess in [10℄ (see the proofof Theorem 4.1).



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 3The rest of the paper is organised as follows. In the next se
tion we state the model andthe main result (Theorem 2.1). In Se
tion 3 we dis
uss the examples of 
ouplings and theappli
ation to semi-linear paraboli
 pdes. Finally in Se
tion 4 we give a proof of Theorem 2.1.A
knowledgments. We had many useful dis
ussions on various aspe
ts of the problem and adraft of the manus
ript with Krzysztof Burdzy, Steven Evans, Thomas Kurtz, Lea Popovi
 andIljana Z�ahle. Our many thanks to all of them.2. The model and main resultWe begin with a parti
le representation of the measure-valued pro
ess, followed by the 
ouplingand then by the main result.2.1. The model and its parti
le representation. Let (A;D(A)) be the generator of aMarkov pro
ess � := (�t)t�0 on E modeling the motion of a single parti
le, and P := (Pt)t�0be a sto
hasti
 pro
ess taking values in [0;1[ des
ribing the total mass of the model. Let(2.1) � ext := infft � 0 : Pt = 0g:Assumption on P We assume that Pt satis�es the following 
ondition:(P) Z �ext0 ds 1Ps =1:Consider the EN-valued Markov pro
ess (�1t ; : : : ; �nt ; : : :) whi
h evolves until � ext as follows:� (Migration/Mutation) For ea
h k 2 N, the kth-
oordinate pro
ess, �k := (�kt )t�0,also 
alled the kth-level pro
ess, performs, independently of all the other level pro
esses,a Markov-pro
ess on E with generator (A;D(A)).� (Bran
hing/Resampling) For any (i; j) 2 N�N with i < j, at rate 1=Pt, a parti
leof \type" (respe
tively at \position") �it is inserted one level above the jth level, whileall other parti
le retain their order. That is, after the jump we end up with the ve
tor(�1t ; :::; �i�1t ; �it ; �i+1t ; :::; �j�1t ; �it�; �jt ; �j+1t ; :::).It is easy to 
he
k that under Assumption (P) the dynami
s is well-de�ned, and that if (�10 ; �20 ; :::)is ex
hangeable then so is (�1t ; �2t ; :::) for any t � 0. Hen
e the de Finetti measure(2.2) ��t := limm!1 1m mXk=1 Æ�kt ; a:s:



4 SIVA ATHREYA AND ANITA WINTERexists. Let � 2 MF (E), where MF (E) denotes the set of �nite measures on (E;B(E)). Themodel X(P; �; �) we are interested in is the pro
ess X := (Xt)t�0 de�ned by(2.3) Xt := Pt � ��t 1ft��extg; t � 0:The above parti
le representation of measure-valued pro
ess and their appli
ations was �rstgiven in [11℄. We refer to that arti
le for more details of the 
onstru
tion.2.2. The 
oupling. We will use the following 
onstru
tion. Let � be the motion pro
esses.Denote by D([0;1[; E) the set of maps from [0;1[ to E whi
h are 
ontinuous from the rightand have limits from the left. Assume that there is a fun
tion(2.4) f : E �D([0;1[; E)! D([0;1[; E)su
h that for ea
h x 2 E, �x := f(x; �) equals in distribution � started in x. In the following fis referred to as a spatial 
oupling.Let x; y 2 E. Let two 
opies Xx � X(P; �; Æx) and Xy � X(P; �; Æy) are spatially 
oupled withrespe
t to f . That is, the pro
esses start at P0 � Æx and P0 � Æy, are driven by the same totalmass pro
ess P := (Pt)t�0, the bran
hing events o

ur simultaneously, but the spatial motionof the ith parti
le started in x and y is given by f(x; �i) and f(y; �i), respe
tively. For su
h a
oupling, we provide the following three measurements of eÆ
ien
y.� (Averaged spatial distan
e)(2.5) �zx;yt := limm!1 1m mXi=1 d(�i;xt ; �i;yt ); a.s.� (Minimal/maximal spatial distan
e)(2.6) m� x;yt := infi2N d(�i;xt ; �i;yt ); and �mx;yt := supi2N d(�i;xt ; �i;yt ):� (Wasserstein distan
e of the random measures)(2.7) dW(Xxt ;Xyt ) := suph2Cb ����Z hdXxt � Z hdXyt ���� ;where Cb = Cb(E) is the set of 
ontinuous fun
tions h : E ! R su
h that jh(x)j � 1and jh(x)� h(y)j � d(x; y) for x; y 2 E.Now note that sin
e (d(�1;xt ; �1;yt ); d(�2;xt ; �2;yt ); :::) is ex
hangeable the limit in (2.5) and 
onse-quently the quantity �zx;yt is well-de�ned. It is elementary to observe that the above eÆ
ien
ies
an be arranged in order. Let t � 0, then(2.8) Ptm� x;yt � dW(Xxt ;Xyt ) � Pt�zx;yt � Pt �mx;yt :



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 5Assuming that we may 
ouple the motion pro
esses su
h that d(�xt ; �yt )! 0, as t!1. Thenby ex
hangeability �zx;yt ! 0 in probability, as t! 1. For almost sure 
onvergen
e one mighttry to argue as follows:(2.9) limt!1 �zx;yt = limm!1 limt!1 max1�i�m d(�x;it ; �y;it ) = 0; a.s.The above 
al
ulation involves an inter
hange in limits whi
h 
annot be justi�ed without afurther assumption on the spatial 
oupling.Assumption on � Let � := (�t)t�0 be a sto
hasti
 pro
ess with values in E su
h that thereexists a 
oupling of two 
opies �x and �y started in x; y 2 E su
h that one of the following
onditions is satis�ed.(S1) There exist a fun
tion g : R+ �E �E ! R+ with(2.10) g(t; x; y)d(�xt ; �yt )! 0; a:s:;and an almost surely �nite stopping time T su
h that g(t; x; y)d(�xt ; �yt ) is almost surelynon-in
reasing on [T;1[.(S2) There exists an almost surely �nite stopping time S with(2.11) d(�xt ; �yt ) = 0for all t � S.We are now ready to state our main result.Theorem 2.1. Let Xx and Xy be spatially 
oupled versions of X as des
ribed in the previousse
tion.(i) Assume (S1). On the event f� ext =1g,(2.12) limt!1 g(t; x; y) �mx;yt = 0; a.s:(ii) Assume (S2). On the event f� ext =1g,(2.13) � := infft � 0 : �mx;yt = 0g <1; a.s:We will prove this theorem in Se
tion 4. The main idea in the proof is to prevent the o

urren
eof \ex
eptional" parti
les. For this we will make use of the fa
t that the underlying genealogi
altree is 
ompa
t, i.e., for any t � 0 and " 2℄0; t[, the 
ountably many levels at time t have �nitelymany an
estor levels at time t� ". The latter 
an be derived from Condition (P) for the totalmass pro
ess. Examples for total mass pro
esses satisfying Condition (P) are dis
ussed inSubse
tion 3.1.Remark 1.



6 SIVA ATHREYA AND ANITA WINTER(1) We have 
hosen �mx;yt to work with as this 
learly illustrates the 
oupling of the supportsof Xxt and Xyt , i.e. a spatial 
oupling. This is also the 
ase with �zx;yt . This is not so withthe Wasserstein distan
e. If one were to work with this distan
e, if Pt dies out thendW (Xxt ;Xyt ) approa
hes zero trivially. If Pt does not die out, then in order to ensurethat dW (Xxt ;Xyt ) approa
hes zero, one would require �mx;yt to approa
h zero at a 
ertainrate. In the next se
tion we will dis
uss various examples of Pt and in 
ertain 
asesit will be immediate to 
on
lude that dW (Xxt ;Xyt ) approa
hes zero given that �mx;ytapproa
hes zero. However, in Se
tion 3 we provide an example of a parti
le system(Remark 2 (iii)) where the Wasserstein distan
e will not approa
h zero even though�mx;yt does go to zero.(2) In 
ertain 
ases ([7℄) one 
an show that d(�x;it ; �y;it ) � 
(x; y)f(t) for all i 2 N and t 2 R+where f(t)! 0 as t!1. Su
h a uniform deterministi
 bound immediately yields(2.14) �mx;yt � 
(x; y)f(t):We will dis
uss examples in Subse
tion 3.2 to illustrate this.Assuming that we have a uniform deterministi
 bound on �mx;yt a perturbation estimate for thelog-Lapla
e equation is immediate. Let h : E ! R be a Lips
hitz fun
tion, i.e., there exists a
onstant Lh > 0 with jh(x)� h(y)j � Lhd(x; y) for all x; y 2 E. Let X := (Xt)t�0 be given by(2.3). De�ne u : R+ �E as(2.15) u(t; x) := � logE[e�<Xxt ;h>℄:Lemma 2.1. Assume that there exists a fun
tion ' : R+ � E2 ! R+ whi
h is symmetri
 inthe se
ond and third 
oordinate, and su
h that �mx;yt � '(t; x; y). Then t � 0, and x; y 2 E,(2.16) ��u(t; x) � u(t; y)�� � � logE�e�Lh'(t;x;y)Pt�:Proof. By (2.3) and the assumption of the l emma, we have
(2.17) < Xyt ; h > = Pt � limn!1 1n nXi=1 h(�y;it )� Pt � � limn!1 1n nXi=1 h(�x;it ) + Lh �mx;yt ��< Xxt ; h > + < Xxt ; Lh'(t; x; y) > :In the last equation we have used the fa
t that Pt =< Xxt ; 1 >=< Xyt ; 1 >. Now, sin
e (�1t ; :::)are ex
hangeable, for two non-negative fun
tions h1 and h2, < Xt; h1 > and < Xt; h2 > arenon-negatively 
orrelated. Hen
e(2.18) E[e�<Xt;h1+h2>℄ � E[e�<Xt;h1>℄E[e�<Xt;h2>℄:



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 7So, we have
(2.19) u(t; y)� u(t; x) = log E[e�<Xxt ;h>℄E[e�<Xyt ;h>℄� log E[e�<Xxt ;h>℄E[e�<Xxt ;h>�<Xxt ;Lh'(t;x;y)>℄� log E[e�<Xxt ;h>℄E[e�<Xxt ;h>℄E[e�<Xxt ;Lh'(t;x;y)>℄= � logE[e�Lh'(t;x;y)Pt ℄:By symmetry in x and y, also u(t; x) � u(t; y) � � logE[e�Lh'(t;x;y)Pt ℄. Hen
e we obtain theresult. �3. Appli
ations and ExamplesIn this se
tion we des
ribe appli
ations and examples. We begin with examples, from theliterature, of pro
esses that satisfy (P) and 
ouplings that satisfy (S1) or (S2).3.1. Examples of total mass pro
esses. In this subse
tion we dis
uss examples of Pt sat-isfying (P). These are part of the folklore in the literature. As we 
ould not �nd referen
es forall the examples, we present them with short proofs.(Sub)-
riti
al, �-stable, super-(A;D(A))-pro
ess Let A be the generator of a Markov pro
ess �on E. Let the total mass, P (`;�;
) be the (sub-)
riti
al, �-stable super bran
hing pro
ess withsub-
riti
ality ` � 0 and bran
hing rate 
. That is, its Lapla
e transform is for P0 � 0; 
 > 0,t > 0, 0 < � � 1, and ` � 0, given by(3.1) � logE[e��P (`;�;
)t ℄ = 8>><>>: e�`tP0(���+ 
2` (1�e�`�t)) 1� ; if ` 6= 0;P0(���+ 
�t2 ) 1� ; if ` = 0In this 
ase X is the (sub-)
riti
al, �-stable super-(A;D(A))-pro
ess. The next lemma statesthat Condition (P) is satis�ed for P (`;�;
).Lemma 3.1. Let P (`;�;
) be the total mass pro
ess of the (sub-)-
riti
al, �-stable super-pro
essX with sub-
riti
ality ` � 0 and bran
hing rate 
. Then P (`;�;
) satis�es (P).Proof. To see this, let us �rst assume that ` = 0. Let La�Pt� be the law of Pt starting at a. Inthis 
ase, we may use the following s
aling:(3.2) L��Pt� = L� 1� ���� 1�P�t�; � > 0; � > 0:



8 SIVA ATHREYA AND ANITA WINTERLet � 2℄0; 1[ and de�ne �� := infft � 0 : �� 1�P�t = 0g:(3.3) Z �10 dsP�1s = �1�1=� Z ��0 du �1=�P�u � Z ��0 du �1=�P�u :Let X is distributed like the left hand side of (3.3), where P is the 
riti
al, �-stable total masspro
ess started in P0 = �, while Y is distributed like R infft�0:Pt=�g0 ds 1Ps where P is the 
riti
al,�-stable total mass pro
ess started P0 = ��1=��. By the strong Markov property of P , (3.3)says therefore that X � X + Y in distribution, i.e, for all t � 0, PfX � tg � PfX + Y � tg.For � > 0, we know that Y > 0 almost surely. Hen
e PfX =1g = 1.Now let ` > 0. Then a simple 
al
ulation shows that P̂t := e`tP `;�;
t is the 
riti
al, �-stablesuperpro
ess with time-inhomogeneous bran
hing rate 
e`t. Hen
e for ea
h time T � 0,(3.4) (`T + 1)P̂`�1 log (`T+1) d= P 0;�;
T :Therefore
(3.5) Z �10 du �P `;�;
u ��1 � Z infft�0: P̂t=0g0 du P̂�1u= Z infft�0: P̂`�1 log (`t+1)=0g0 ds (`s+ 1)�1P̂�1`�1 log (`s+1)= Z infft�0:P 0;�;
=0g0 du �P 0;�;
u ��1 =1: �The super
riti
al �-stable superpro
ess. If Pt is the total mass pro
ess of a superpro
ess whi
hdoes not die out with positive probability, then it is easy to see that the 
orresponding ge-nealogi
al tree is not 
ompa
t anymore. Indeed, if the Lapla
e transform of P satis�es (3.1)for a ` < 0, then e�`t=�Pt is a martingale whi
h 
onverges to a nontrivial random variable Z,and R10 dsP�1s < 1 on Z 6= 0. However note that, 
onditioned on the event f� ext < 1g, Pthas the same distribution as the sub-
riti
al bran
hing di�usion with �` > 0, and hen
e willsatisfy (P).Fleming-Viot pro
ess. If we 
ondition the superpro
ess on having 
onstant total mass, then thepro
ess ��(x;y) is a Fleming-Viot pro
ess with type spa
e E. In this 
ase (P) is trivially ful�lled.Size-biased Feller di�usion. Conditioning the superpro
ess on non-extin
tion is equivalent to
onditioning the total mass pro
ess not to hit zero. When Pt satis�es (3.1) with ` = 0 and� = 1 it is well known that Pt is a solution of Feller's bran
hing di�usion. Namely,(3.6) dPt =p
PtdBt; t � 0;



SPATIAL COUPLING OF NEUTRAL MEASURE-VALUED POPULATION MODELS 9where Bt is a Brownian motion. Likewise the 
onditioned total mass pro
ess P̂ satis�es(3.7) dP̂t = 
dt+q
P̂tdBt; t � 0;i.e., its law equals the size-biased law of Feller's bran
hing di�usion. In this 
ase � ext = 1,and the following lemma ensures that P̂ := (P̂t)t�0 satis�es (P).Lemma 3.2. Let P̂ := (P̂t)t�0 be a version of the unique strong solution of (3.7). Then thereexists a random variable Z with PfZ > 0g = 1 and su
h that(3.8) lim inft!1 1log t Z t0 ds P̂�1s � Z; a.s.In parti
ular, P̂ satis�es Condition (P).Proof. Let L�[P ℄ and L�[P̂ ℄ denote the laws of a Feller di�usion and a size-biased Feller di�usion(
ompare (3.6) and (3.7)), respe
tively, started in � � 0. Then L�[P̂ ℄ = L�[P ℄ � L0[P̂ ℄, where� denotes 
onvolution. Therefore w.l.o.g. we 
an assume P̂0 = 0. It is easy to 
he
k thatE0[P̂ nt ℄ = (n+ 1)!(
t=2)n. Hen
e(3.9) P0� P̂tt � x	 = Z 1x dy �
2 �2y e�
y:Sin
e P̂t is a size-biased martingale, P̂�1t := (1=P̂t)t�0 is a martingale, and ( t̂Pt )t�0 is a non-negative submartingale, whi
h therefore 
onverges almost surely to a non-trivial random vari-able Z. The distribution of Z is given by the inverse of a Gamma(2; 
=2)-variable (
omparethe right hand side of (3.9)), and hen
e Z > 0, a.s.Fix " 2℄0; 1[. Then(3.10) lim inft!1 1log t Z t0 ds P̂�1s � lim inft!1 1log t Z tt" ds P̂�1s= lim inft!1 Z 1" da ta � P̂�1ta = Z(1� "); a.s.Sin
e " was 
hosen arbitrarily, (3.8) follows 
learly. �3.2. Examples of 
ouplings. In this subse
tion we give appli
ations of the main theorembased on 
ouplings of two spatial Markov pro
esses. These are a re
e
ting Brownian motionin a 
onvex domain D � R2 and a �nite state Markov 
hain.Super Re
e
ted Brownian motion and Assumption (S1). Let D � R2 be a 
onvex domain, and(B1; B2) be a planar Brownian motion with B0 2 �D. Starting from a realization of B, byTheorem 2.1 in [16℄ there exists a uniquely determined solution (�; L) of(3.11) �t = Bt + Lt



10 SIVA ATHREYA AND ANITA WINTERsu
h that Lt : R+ ! R2 is a right 
ontinuous fun
tion with left limits of bounded variationwith L0 = 0. � := (�t)t�0 is a strong Markov pro
ess with 
ontinuous paths living in �D 
alledre
e
ted Brownian motion, and 
an be written as � = g(B), for a measurable fun
tion g. Giveng, a syn
hronous 
oupling between two 
opies of re
e
ted Brownian motion is de�ned by lettingf(x; g(B)) := g(B + x), x 2 D (re
all the de�nition of a 
oupling f from (2.4)).Consider the super-re
e
ted Brownian motion on D. That is, in our set up, E = D, � is there
e
ted Brownian motion on D and Pt satis�es (3.1).Corollary 3.1. Let D � R2 , �x and �y be two syn
hronously 
oupled re
e
ted Brownian mo-tions on D, and Xx and Xy be two spatially 
oupled population models satisfying Condition (P)with motion pro
esses �x and �y.(i) If D is a 
onvex domain with a C2-boundary, and the 
urvature K(x) of the boundary�D is bounded to below by a positive 
onstant K then there exist 
onstants 
; � > 0su
h that �mx;yt � 
e��t:(ii) If D is a polygonal domain or Lip domain then �mx;yt ! 0, a.s.Proof. (i) In [7℄ the authors make the following observation under the above assumption. Forx; y 2 D,(3.12) d(�xt ; �yt ) � d(x; y) exp(�
�(t));where(3.13) limt!1 �(t)t = 12�K2 + 1m(D) Z�D �(dy)K(y)�with m denoting the Lebesgue measure. This was �rst observed in the PhD-thesis of Weeras-inghe for the unit dis
 D. With the above and Remark 1 (2), part (i) follows.(ii) In [3℄, Theorem 1.1 and its proof, it is shown that in su
h domains D, (S1) holds. Hen
epart (ii) now follows from Theorem 2.1. �Semilinear Partial Di�erential Equation. Let X be a super-re
e
ted Brownian motion in D asabove with X0 = Æx. It is well known that the log Lapla
e fun
tional of X, u : R+ �D ! Rde�ned by (2.15), is a unique solution of the initial value problem with Neumann boundary
onditions given by (1.1). We now present a 
onvergen
e result for these solutions with Lips
hitzinitial 
onditions.Corollary 3.2. Let D be a 
onvex planar domain with a C2-boundary, su
h that the 
urvatureK(x) of the boundary �D is bounded to below by a positive 
onstant K, g : D ! R be Lips
hitz,and u be a solution to (1.1). Then there exists a 
onstant C su
h that(3.14) ��u(t; x)� u(t; y)�� � Lg � C � e�(�+`)t;where � = 12�K2 + 1m(D) R�D �(dy)K(y)�.
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oupled super re
e
ted Brownian motions as inthe previous 
orollary. Let Xx0 = Æx and Xy0 = Æy. Let u(t; �) be as in (2.15). From Corollary3.1, we know that the assumptions of Lemma 2.1 are satis�ed with the above �: Using Lemma2.1 we have that,(3.15) ��u(t; x)� u(t; y)�� � � logE�e�Lg
e��tPt�;where the distribution of Pt is given by (3.1). Assume ` � 0. An Itô 
al
ulation implies thatE�e�Lg
e��tPt� = e�V (t) where V (t) satis�es(3.16) ddtV = �(�+ `)V � e��t 
2V 1+�; V (0) = 
Lg:Solving this ordinary di�erential equation one obtains(3.17) V (t) = 
Lge�(�+`)t(1 + 
(
Lg)�2(� 1+�� +`)(1� e�(� 1+�� +`)�t))1=�� 
Lge�(�+`)t:Using the above bound and substituting into (3.15) we have the result. �Super Markov Chains and Assumption (S2). A 
lass of 
ouplings 
alled "EÆ
ient MarkovianCouplings" is 
onsidered in [5℄. Here the Markov 
hains on a �nite state spa
e along withvarious 
ouplings of re
e
ted Brownian motions satisfying (S1) and (S2) are dis
ussed. Usingthese results we are able to present a 
oupling result on a 
lass of �nite-dimensional di�usionson R+n : For x 2 R+n ; let k x kn be the usual Eu
lidean norm. Let m 2 f1; 2; : : : ; ng and
; fqmlgnl;m=1 be non-negative 
onstants. Let X be a solution of(3.18) dXmt = nXl=1 qmlX ltdt+ 
dt+p
Xmt dBmt ; Xm0 = xm � 0;where Bmt are independent Brownian motions.Corollary 3.3. Let Xt and Yt be a solution of (3.18) starting at x = (x1; : : : xn) and y =(y1; : : : ; yn), respe
tively, with xl; yl � 0. Assume(1) P0 :=Pnl=1 xl =Pnl=1 yl, and(2) q := fqmlgm;l=1:::n are transition rates of a Markov 
hain on f1; : : : ; ng satisfying As-sumption (S2).Then there exits a 
oupling of Xt and Yt su
h that(3.19) � := infft � 0 : k Xt � Yt kn= 0g <1; a.s.Proof. First if P0 = 0 then � = 0, and we are done. Now assume that P0 = 1. SetE := f1; 2; : : : ; ng. Then �x := Pnl=1 xlÆl is a probability measure on E. Consider � to bea 
ontinuous Markov 
hain with state spa
e E with transition rates given by qml. Consider the
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ess P satisfying (3.7) with � = 1. Finally 
onstru
t X as in (2.3) with X0 = �.Using the identi�
ation of MF (E) = R+n , it is easy to identify X as a solution of (3.18) withX0 = x. Similarly, we 
an 
onstru
t a solution Y of (3.18) with Y0 = y: For the proof ofthis 
orollary, we will view these di�usions as �nite measures on E. Assume that the ratesqml satisfy Assumption (S2). Noti
e that two parti
les starting at any l and m, respe
tively,performing jumps a

ording to the Markov 
hain with transition rates qml will land at the sameposition in �nite time, almost surely.Sin
e X0 = �x and Y0 = �y we shall start our ex
hangeable motion pro
ess with startingpoints in E sampled a

ording to �x and �y, respe
tively. We shall refer to the motion pro
essgoverning X and Y as ��x and ��y , respe
tively. Note that not all of the parti
les in ea
h levelwill have the same starting point anymore. As we have �nitely many starting points and theMarkov 
hain satisfy Assumption (S2), we 
an say that(3.20) S0 := max(l;m)2E�E infft � 0 : d(��xt ; ��yt ) = 0; ��x0 = l; ��y0 = mg <1; a.s.So we have a uniform �nite stopping time over all starting points in E su
h that the positionof the two 
oupled Markov 
hains are the same. Therefore now pro
eed to apply Theorem 2.1with Assumption (S2) holding with S0 (as opposed to S) to see that � <1, a.s.So far we have assumed that P0 = 1. Suppose now that P0 > 0. It is easy to see that if qsatis�es Assumption (S2) then so will the 
hain with transition rates qP0 . Hen
e we 
an do as
ale 
hange by 1P0 , repeat the above argument to 
on
lude the proof of the 
orollary. �We 
on
lude this se
tion with some remarks.Remark 2(i) In [2℄, 
ouplings of re
e
ted Brownian motions were used to analyse the \hot spots"
onje
ture. A key fa
t about the 
ouplings is that the geometry of the initial startinglo
ation is preserved. It is easy to see from the proof of Theorem 2.1 that this translatesto the measure-valued setting as well. This fa
t was established earlier in [1℄ usinghistori
al pro
esses.(ii) Corollary 3.3 presents a new way to 
ouple di�usions in Rn+ provided they have a parti
lerepresentation. Even though Corollary 3.3 has been stated with Assumption (S2),this 
an be easily adapted to the situation when Assumption (S1) holds instead ofAssumption (S2).If Pt satis�ed (3.1) with � = 1 and ` � 0 then the di�usions 
onsidered in the
orollary would be a solution to(3.21) dXmt = nXl=1 qmlX ltdt� `Xmt dt+ 
dt+p
Xmt dBmt ; Xm0 = xm � 0:
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oupling result would hold for these di�usions as well.Noti
e that our examples are not 
overed by those obtained in [15℄ for multidimen-sional di�usions by re
e
ting the in
rements of the driving Brownian motion. Theirresult applies to di�usions whose di�usion matrix are perturbations of a 
onstant ma-trix and whose drift is su
h that the ordinary di�erential equation given by ignoringthe noise ensures that the distan
e between two solutions de
reases in time.(iii) We present an example to show that the Wasserstein distan
e may not be the mostappropriate distan
e to 
onsider. In [4℄, a syn
hronous 
oupling of two re
e
ted Brow-nian motions in a smooth domain D � R2 is 
onsidered. Let �x (and �y, respe
tively,)be the syn
hronously 
oupled re
e
ted Brownian motions in D. They show that for
ertain planar domains D, there exists � > 0 su
h that for all x; y,limt!1 log d(�xt ; �yt )t = ��:Consider the following bran
hing re
e
ted Brownian motions. Ea
h parti
le lives anexponential time (with mean 1) and then dies. Upon dying it is repla
ed by K parti
lesat the site of its death. These K parti
les perform independent re
e
ted Brownianmotions in D: Assume that we start with one parti
le at x 2 D. For t � 0, let It bethe index of parti
les alive at time t. Let f�x;it : i 2 Itg represent the parti
le positions.De�ne Xxt =PjItji=1 Æ�x;it . Let Xy be another bran
hing re
e
ted Brownian motion su
hthat the bran
hing events are exa
tly the same as Xx, while the re
e
ted Brownianmotion �y;� are syn
hronously 
oupled with �x;�. Let Pt =< Xxt ; 1 >=< Xyt ; 1 > be thetotal mass. Note that by the martingale 
onvergen
e theorem there exists a non-trivialrandom variable Z su
h that(3.22) limt!1 e�t logKPt = Z; a.s.;where Z is a non-negative random variable. Now for � > 0, for t large enough,(3.23) dW(Xxt ;Xyt ) � Ptmini2It fd(�x;it ; �y;it )g� Pte�(�+�)t� (Z � �)et logKe�(�+�)t:Now 
hoosing K suitably large one sees that dW(Xxt ;Xyt ) does not go to zero almostsurely even though 
learly supi2It d(�x;it ; �y;it )! 0, a.s.4. Proof of Theorem 2.1Proof. (i) Fix a sequen
e (tn) " 1, as n!1, and " > 0. Given the total population pro
essP , 
hoose a sequen
e (Æn)n2N su
h that(4.1) limn!1(tn � Æn) =1;



14 SIVA ATHREYA AND ANITA WINTERand(4.2) limn!1Z tntn�Æn ds 1Ps =1:A

ording to Assumption (S1) or (S2) there exists a 
oupling f : E�D([0;1[; E) ! D([0;1[; E)(re
all from (2.4)) su
h that for all x; y 2 E there is a �nite stopping time satisfying Assump-tion (S1) or (S2), respe
tively.Let f�i : i 2 Ng be i.i.d. 
opies of the motion pro
ess �, V̂ := fV̂ i;j : 1 � i < j < 1g bea family of independent unit rate Poisson pro
esses, and P be a total mass pro
ess satisfyingAssumption (P). For i; j 2 N, let V i;j be the 
ounting pro
ess given by the following relation:(4.3) V i;jftg := ( 1; if V̂ i;jfR t0 dsP�1s g = 1;0; else.For i 2 N and 0 � s � t <1, let Ait;s denote the \an
estor" at time s of level i at time t. Thatis,(4.4) Ait;s := j 2 N; i� there exist a \path from (j; s) to (i; t)";where for ea
h s � t and 1 � j � i < 1 we say there is a path from (j; s) to (i; t) if thereexist s := s0 < s1 < ::: < sn =: t and j := j0 < j1 < ::: < jn =: i su
h that V jk;jk+1fsjkg = 1,and Pj<jk+1 V j;jk ℄sjk ; sjk+1 [= 0. (Note that there is always exa
tly one path joining (j; s) and(i; t).)Noti
e that the pro
ess Xt := Pt � � limn!1 1n nXi=1 Æ�Ait;0t �1f�ext<tgis a version of the pro
ess de�ned in (2.2) and (2.3).Denote by(4.5) �t;s := ffj 2 N : Ajt;s = Ait;sg : i 2 Ng;the partition of N into the family pat
hes of individuals at time t sharing a 
ommon an
estorat time s. Condition (P) ensures that for all 0 � s < t < 1, #�t;s < 1, almost surely. Inparti
ular, by Theorem 5.1 in [11℄, (�t;s^t)s�0 = (Ks^t)s�0 in distribution, where K := (Kt)t�0is Kingman's 
oales
ent.We will show that Assumption (S1) yields that (g(tn � Æn; x; y) �mx;ytn�Æn)n2N is eventually (de-pending on x; y 2 E) smaller than a given ", and therefore g(t; x; y) �mx;yt ! 0, almost surely, asn!1.Let T i be a stopping time su
h that d(�i;xt ; �i;yt )t�0 is non-in
reasing on [T i;1[. We 
onsiderthe \bad events" that at time tn � Æn we 
an not predi
t that g(tn; x; y) �mx;ytn � " by looking
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k a time Æn. We therefore set(4.6) Bn := [i2NBn;i;with(4.7) Bn;i := �tn � Æn < TAitn;tn�Æn	 [ �g(tn; x; y) d(�Aitn;tn�Æn ;xtn�Æn ; �Aitn;tn�Æn ;ytn�Æn ) � "	:Then(4.8) P(Bn) = E�P([�2�tn;tn�Æn [i2� Bn;ij�tn;tn�Æn)�= E�P([�2�tn;tn�ÆnBn;min�j�tn;tn�Æn)�;where we have used that given �tn;tn�Æn , Bn;i = Bn;j for all i; j 2 � 2 �tn;tn�Æn . Moreover,given �tn;tn�Æn , the events fBn;min�; � 2 �tn;tn�Æng are all independent, and have the sameprobabilities. Hen
e(4.9) P(Bn) = E�1�P(B
n;1)#�tn;tn�Æn �:In order to be in a position where we may apply the Borel-Cantelli lemma, we would like tohave that P(Bn) is summable along a subsequen
e. Indeed, by Assumption (S1), P(B
n;1)! 1as n!1, and hen
e(4.10) limn!1P(B
n;1)#�tn;tn�Æn = 1; a.s.In parti
ular, we may 
hoose a subsequen
e (tnk)k2N su
h that P(Bnk) is summable over k 2 N.Then T itnk � tnk � Ænk and g(tnk ; x; y)d(�i;xtnk =2; �i;ytnk=2) < ", for all i 2 N and k suÆ
iently large.In parti
ular, for all suÆ
iently large k 2 N,(4.11) g(tnk ; x; y) �mx;ytnk < ";and therefore g(tnk ; x; y) �mtnk ! 0 almost surely, as k !1. Sin
e any subsequen
e of (tn)n2N
ontains a subsequen
e along whi
h (g(t; x; y) �mx;yt )t�0 tends to zero, and sin
e (tn)n2N was
hosen arbitrarily, we have shown that g(t; x; y) �mx;yt ! 0, almost surely, as t!1.(ii) Under Assumption (S2), for ea
h i 2 N, Si := infft � 0 : �i;xt = �i;yt g < 1, almost surely.Then the \bad events" are(4.12) Cn := [i2NfSi > tn � Æng:Similar to (4.8), we have(4.13) P(Cn) = E�1�P(S1 > tn � Æn)#�tn;tn�Æn �;whi
h 
an be made summable along a subsequen
e (tnk)k2N under (S2), and hen
e there existsa K su
h that for all k � K, �mx;ytnk = 0. Sin
e the 
ouplings are su

essful, zero is a trap for�mx;ytnk , and therefore �mx;yt = 0 for all t � tnK . �
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