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WILCOXON-SIGNED RANK TEST FOR ASSOCIATED SEQUENCESIsha Dewan and B.L.S. Prakasa Raoe-mail: isha�isid.a.in , blsp�isid.a.inIndian Statistial Institute , 7, S.J.S. Sansanwal MargNew Delhi 110016, INDIAAbstratLet fX1; : : : ;Xng be stationary assoiated random variables with one dimensional marginaldistribution funtion F . We study the properties of the lassial sign statisti and theWiloxon-signed rank statisti for testing for shift in loation in the above set up. In theproess we extend the Newman's inequality to funtions of bounded variation whih are mix-tures of absolutely ontinuous omponent and disrete omponent only.Key words : Sign statisti, Wiloxon-signed rank statisti, Assoiated random variables , Ho-e�ding identity.
1 IntrodutionA �nite family fX1; :::;Xng of random variables is said to be assoiated ifCov(h1(X1; :::;Xn); h2(X1; :::;Xn)) � 0for any two oordinatewise nondereasing funtions h1; h2 on Rn suh that the ovarianeexists. An in�nite family of random variables is said to be assoiated if every �nite subfamilyis assoiated (f. Esary, Proshan and Walkup (1967)).Let fXn; n � 1g be a stationary sequene of assoiated random variables. Let F (x; �) =F (x � �); F 2 
s where 
s = fF : F (x) = 1 � F (�x)g be the distribution funtion of X1and suppose that the distribution funtion F is absolutely ontinuous with bounded densityfuntion f .Suppose the �nite sequene of stationary assoiated random variables fXi; 1 � i � ng isobserved. We wish to test the null hypothesisH0 : � = 0 (1.1)against the alternative hypothesis H1 : � > 0: (1.2)The most ommonly used tests for this problem are the sign test and the Wiloxon-signedrank test when the observations are independent and identially distributed. We now study1



the properties of these tests when the observations are on a stationary assoiated sequene ofrandom variables.Probabilisti aspets of assoiated random variables have been extensively studied (see, forexample, Prakasa Rao and Dewan (2001) and Roussas(1999)). Dewan and Prakasa Rao (2003)studied the Wiloxon Mann-Whitney statisti for stationary assoiated sequenes.In Setion 2, we obtain a stohasti inequality for the ovariane of funtions �(X) and �(Y )of a bivariate random vetor (X;Y ): This inequality follows from the results in Cuadras (2002).Of partiular interest to us is the ase when the random variables X and Y are assoiated.We disuss an appliation of this result to obtain tests for loation for assoiated sequenes inSetion 3.2 Stohasti InequalityLet (X;Y ) be a bivariate random vetor and suppose that E(X2) < 1 and E(Y 2) < 1:Further let H(x; y) = P (X � x; Y � y)� P (X � x)P (Y � y): (2.1)Hoe�ding (1940) proved that Cov(X;Y ) = ZR2 H(x; y) dxdy; (2.2)hereafter alled the Hoe�ding identity. Lehmann (1966) gave a simple proof of this identity.Multivariate versions of this identity were studied by Jogdeo (1968) and Blok and Fang (1988)using the onept of a umulant of a random vetor X = (X1; : : : ;Xk): Yu (1993) obtained ageneralisation of the ovariane identity (2.2) to absolutely ontinuous funtions of the ompo-nents of the random vetor X extending the earlier work of Newman (1984). Quesada-Molina(1992) generalised the Hoe�ding identity to quasi-monotone funtions K(:; :) in the sense thatK(x; y)�K(x0; y)�K(x; y0) +K(x0; y0) � 0 (2.3)whenever x � x0 and y � y0: It was proved thatE[K(X;Y )�K(X�; Y �)℄ = ZR2 H(x; y)K(dx; dy) (2.4)where X� and Y �are independent random variables independent of the random vetor (X;Y )but with X� and Y � having the same marginal distributions as those of X and Y respetively.The results in Yu (1993) and Quesada-Molina (1992) were generalised to the multidimensionalase in Prakasa Rao (1998). In a reent paper, Cuadras (2002) proved that if �(x) and �(y)are funtions of bounded variation on the support of the probabilty distribution of the randomvetor (X;Y ) with Ej�(X)�(Y )j; Ej�(X)j and Ej�(Y )j �nite, thenCov(�(X); �(Y )) = ZR2 H(x; y) �(dx)�(dy): (2.5)2



It is lear that this result also follows as a speial ase of (2.4). It is possible to restate amultidimensional version of the result in (2.5) as a speial ase of the results in Prakasa Rao(1998).Suppose that �(x) and �(y) are funtions of bounded variation whih are mixtures ofabsolutely ontinuous omponent and disrete omponent only. Let �()(x) and �(d)(x) denotethe absolutely ontinuous omponent and the disrete omponents of �(x) respetively. Letxi; i � 1 be the jumps of �(x) with jump sizes �(xi + 0) � �(xi � 0) = pi 6= 0: Similarly letyj; j � 1 be the jumps of �(y) with jump sizes �(yj + 0) � �(yj � 0) = qj 6= 0: Further morelet �()0(x) denote the derivative of �()(x) whenever it exists. Observe that the derivative of�()(x) exists almost everywhere. Suppose thatsupx j�() 0(x)j <1; supi jpij <1 (2.6)and supy j�()0(y)j <1; supj jqjj <1: (2.7)Then Cov(�(X); �(Y )) = ZR2 H(x; y) �(dx)�(dy)= ZR2 H(x; y) �()(dx)�()(dy)+ ZR2 H(x; y) �()(dx)�(d)(dy)+ ZR2 H(x; y) �(d)(dx)�()(dy)+ ZR2 H(x; y) �(d)(dx)�(d)(dy) (2.8)and hene jCov(�(X); �(Y ))j � supx j�() 0(x)j supy j�()0(y)j ZR2 jH(x; y)j dxdy+supx j�()0(x)j supj jqj j 1Xj=1 Z 1�1 jH(x; yj)jdx+supy j�()0(y)j supi jpij 1Xi=1 Z 1�1 jH(xi; y)jdy+supi jpij supj jqj j 1Xi=1 1Xj=1 jH(xi; yj)j: (2.9)Remark 2.1 : Suppose the funtions �(x) and �(y) are purely disrete. Let xi; i � 1 be thejumps of �(x) with jump sizes �(xi + 0) � �(xi � 0) = pi 6= 0 and �(x) is a onstant betweendi�erent jumps. Similarly let yj; j � 1 be the jumps of �(y) with jump sizes �(yj+0)��(yj�0) = qj 6= 0 and �(y) is a onstant between di�erent jumps. ThenCov(�(X); �(Y )) = ZR2 H(x; y) �(d)(dx)�(d)(dy)3



= 1Xi=1 1Xj=1H(xi; yj)piqj: (2.10)For instane, suppose that �(x) = sgn(x) and �(y) = sgn(y) where sgn(x) = 1 if x > 0;sgn(x) = �1 if x < 0 and sgn(x) = 0 if x = 0: Then, for any x0 and y0;Cov(sgn(X � x0); sgn(Y � y0)) = 4 H(x0; y0) (2.11)sine the jump at x0 is of size 2 for the funtion �(x) and for the funtion �(y) (f. Cuadras(2002)).Remark 2.2 : Suppose we hoose �(x) = F (x) and �(y) = G(y) where F (:) and G(:)are ontinuous marginal distribution funtions of the omponents X and Y respetively of abivariate random vetor (X;Y ): Following the result given in (2.5), we get thatCov(F (X); G(Y )) = ZR2 H(x; y) F (dx)G(dy): (2.12)It is easy to see that the Spearman's rank orrelation oeÆient � between X and Y is givenby � = Corr(F (X); G(Y )) = 12 Cov(F (X); G(Y )) = 12 ZR2 H(x; y) F (dx)G(dy): (2.13)Note that the random variables F (X) and G(Y ) have the standard uniform distribution.Remark 2.3: Suppose that X and Y are assoiated. Then H(x; y) � 0. Newman (1980)showed that if X and Y have �nite varianes, then, for any two di�erentiable funtions h andg, jCov(h(X); g(Y ))j � supx jh0(x)j supy jg0(y)j Cov(X;Y ) (2.14)where h0 and g0 denote the derivatives of h and g, respetively. Inequality (2.4) extends thisresults to inlude funtions of bounded variations whih are mixtures of absolutely ontinuousomponent and disrete omponent only. Bulinski (1996) extended this result to ontinuousfuntions whih are possibly not di�erentiable at atmost �nite number of points. In the nextsetion we disuss an appliation of the inequality to assoiated sequenes.3 Tests for Loation for Assoiated SequenesHere we study the sign test and the Wiloxon signed rank test, based on the stationary assoi-ated random variables fXi; 1 � i � ng; for testing H0 : � = 0 versus H1 : � > 0. Let C denotea generi positive onstant in the sequel. Assume thatsupx f(x) < C: (3.1)Further assume that 1Xj=2Cov 13 (X1;Xj) <1: (3.2)4



This would imply that Cov(X1;Xn)! 0 as n!1. In partiular it follows that supn jCov(X1;Xn)j <1: Observing that Cov(X1;Xn) > 0 by assoiativity of X1; : : : ;Xn, we obtain that0 � Cov(X1;Xj)= [Cov(X1;Xj)℄ 23 [Cov(X1;Xj)℄ 13� [supn Cov(X1;Xn)℄ 23 [Cov(X1;Xj)℄ 13 :Hene 1Xj=2Cov(X1;Xj) � [supn Cov(X1;Xn)℄ 23 1Xj=2[Cov(X1;Xj)℄ 13 <1: (3.3)3.1 The Sign TestFor testing the hypothesis H0 : � = 0 against H1 : � > 0, the sign test is based on the statistiU (1)n = 1n nXi=1 �(Xi); (3.4)where �(x) = I(x > 0); (3.5)and I(A) denotes the indiator funtion of the set A. Observe thatE(�(X1)) = 1� F (0) = p (say);Var(�(X1)) = p� p2;and Cov(�(X1); �(Xj)) = P [X1 > 0;Xj > 0℄� p2: (3.6)Sine the density funtion f(:) of the random variable X1 is bounded, it follows,from Bagaiand Prakasa Rao (1991), thatsupx;y jP [X1 > x; Y1 > y℄� P [X1 > x℄P [Y1 > y℄j � C Cov1=3(X;Y ): (3.7)From (2.10), (3.3) and (3.7) it follows that�2 = Var �(X1) + 2 1Xj=2Cov(�(X1); �(Xj)) <1: (3.8)Sine �(x) is an inreasing funtion of x, we have �(X1); �(X2); : : : ; �(Xn) are stationaryassoiated random variables. The following theorem is an immediate onsequene of the entrallimit theorem for assoiated random variables (Newman (1980)).Theorem 3.1 Let Xn; n � 1 be a sequene of stationary assoiated random variables withbounded density funtion. Thenn�1=2Pnj=1[�(Xj)�E(�(Xj))℄� L! N(0; 1) as n!1: (3.9)The test proedure onsists in rejeting the null hypothesisH0 for large values of the statistiU (1)n , whih is the proportion of positive observations.5



3.2 Wiloxon-signed Rank TestLet R1; R2; : : : ; Rn be the ranks of X1;X2; : : : ;Xn. The Wiloxon-signed rank statisti isde�ned by T = nXj=1Rj�(Xj): (3.10)We an write T as a linear ombination of two U-statistis (Hettmansperger (1984))T = nU (1)n +  n2!U (2)n ; (3.11)where  n2!U (2)n = X1�i<j�n (X1;Xj); (3.12)and  (x; y) = I(x+ y > 0): (3.13)Sine the random variables fXn; n � 1g form a stationary sequene, it follows thatE(U (2)n ) = 1�n2� X1�i<j�n pij= 1�n2� nXj=2(n� j + 1)p1j (3.14)where pij = P [Xi +Xj > 0℄. Let� = Z 1�1 Z 1�1  (x; y)dF (x)dF (y) ;= 1� Z 1�1 F (�x)dF (x); (3.15) 1(x1) = E( (x1;X2))= Z 1�1  (x1; x2)dF (x2)= 1� F (�x1): (3.16)h(1)(x1) =  1(x1)� � ; (3.17)and h(2)(x1; x2) =  (x1; x2)�  1(x1)�  1(x2) + �=  (x1; x2) + F (�x1) + F (�x2)� 2 + �: (3.18)Then the Hoe�ding-deomposition (H-deomposition) for U (2)n is given by (see, Lee (1990))U (2)n = � + 2H(1)n +H(2)n (3.19)6



where H(j)n is a U-statisti of degree j based on the kernel h(j); j = 1; 2 , that is,H(j)n = 1�nj� Xh(j)(Xi1 ; : : : ;Xij ) (3.20)where summation is taken over all subsets 1 � i1 < : : : < ij � n of f1; : : : ; ng.In view of the H - deomposition , we haveVar(U (2)n ) = 4 Var(H(1)n ) + Var(H(2)n ) + 4 Cov(H(1)n ;H(2)n ): (3.21)From Dewan and Prakasa Rao (2001), we get thatVar(H(1)n ) = 1n(�21 + 2 1Xj=2�21j) + o( 1n); (3.22)where �21 = Var(F (�X1))�21j = Cov(F (�X1); F (�X1+j)) (3.23)Using the Newman's inequality and the inequality (3.3) , we get1Xj=2�21j = 1Xj=2Cov(F (�X1); F (�X1+j)) <1 (3.24)FurthermoreVar(H(2)n ) =  n2!�2 X1�i<j�n X1�k<`�nCovfh(2)(Xi;Xj); h(2)(Xk;X`)g (3.25)whereCovfh(2)(Xi;Xj); h(2)(Xk;X`)g = Cov( (Xi;Xj);  (Xk ;X`))+ Cov( (Xi;Xj); F (�Xk)) + Cov( (Xi;Xj); F (�X`))+ Cov( (Xk;X`); F (�Xi)) + Cov( (Xk;X`); F (�Xj))+ Cov(F (�Xi); F (�Xk)) + Cov(F (�Xi); F (�X`))+ Cov(F (�Xj); F (�Xk)) + Cov(F (�Xj); F (�X`)):(3.26)Using the Newman's (1980) inequality, we get thatjCov(F (�Xi); F (�Xk))j � supx (f(x))2Cov(Xi;Xk): (3.27)Sine the density funtion is bounded, it follows, from Bagai and Prakasa Rao (1991), thatjCov( (Xi;Xj);  (Xk ;X`))j= jP [Xi +Xj > 0;X` +Xk > 0℄� P [Xi +Xj > 0℄P [X` +Xk > 0℄j� C[Cov(Xi +Xj ;Xk +X`)℄1=3= C[Cov(Xi;Xk) + Cov(Xj ;Xk) + Cov(Xi;X`) + Cov(Xj ;X`)℄1=3 (3.28)7



Let Z = Xi+Xj . Note that the funtion  (xi; xj) = I(xi+xj > 0) = I(z > 0) has a jumpof size 1 at z = 0. Then, from (2.5), it follows thatjCov( (Xi;Xj); F (�Xk))j= j Z 1�1 P [Xi +Xj � 0;Xk � x℄� P [Xi +Xj � 0℄P [Xk � x℄)dF (x)j� Z 1�1 jP [Xi +Xj � 0;Xk � x℄� P [Xi +Xj � 0℄P [Xk � x℄jdF (x)� C Z 1�1[Cov(Xi +Xj ;Xk)℄1=3dF (x)= C[Cov(Xi +Xj ;Xk)℄1=3= C[Cov(Xi;Xk) + Cov(Xj ;Xk)℄1=3: (3.29)Using (3.27), (3.28) and (3.29) in (3.26), we getjCovfh(2)(Xi;Xj); h(2)(Xk;X`)gj� C[Cov(Xi;Xk) + Cov(Xj ;Xk) + Cov(Xi;X`) + Cov(Xj ;X`)℄1=3+ [Cov(Xi;Xk) + Cov(Xj ;Xk)℄1=3 + [Cov(Xi;X`) + Cov(Xj ;X`)℄1=3+ [Cov(Xk;Xi) + Cov(X`;Xi)℄1=3 + [Cov(Xk;Xj) + Cov(X`;Xj)℄1=3+ Cov(Xi;Xk) + Cov(Xj ;Xk) + Cov(Xi;X`) + Cov(Xj ;X`)� C[Cov(Xi;Xk) + Cov(Xj ;Xk) + Cov(Xi;X`) + Cov(Xj ;X`)℄+ C[Cov(Xi;Xk)1=3 +Cov(Xj ;Xk)1=3 +Cov(Xi;X`)1=3 +Cov(Xj ;X`)1=3℄= C[(Cov(Xi;Xk) + Cov(Xi;Xk)1=3) + (Cov(Xj ;Xk) + Cov(Xj ;Xk)1=3)+ (Cov(Xi;X`) + Cov(Xi;X`)1=3) + (Cov(Xj ;X`) + Cov(Xj ;X`)1=3)= r(ji� kj) + r(jj � kj) + r(ji� `j) + r(jj � `j) (say): (3.30)From (3.2) and (3.3) it follows that 1Xk=1 r(k) <1: (3.31)Hene, following Sering (1968), we have , as n!1Var(H(2)n ) = o( 1n): (3.32)Using the Cauhy-Shwartz inequality, it follows thatCov(H(1)n ;H(2)n ) = o( 1n): (3.33)From (3.21), (3.22), (3.32) and (3.33), we get thatVar(U (2)n ) = 4[�21 + 2 1Xj=1�21j ℄ + o( 1n): (3.34)Then using the same tehnique as in Theorem 3.2 in Dewan and Prakasa Rao (2001) forobtaining the limiting distributiion of U-statistis , we get the following theorem.8



Theorem 3.2: Let fXn; n � 1g be an assoiated sequene . Suppose (3.2) holds. Thenn1=2(U (2)n � �)2�U L! N(0; 1) as n!1 (3.35)where �2U = �21 + 2P1j=1 �21j :Finally, de�ne T � = T � �n2� ; (3.36)where  = nP [X > 0℄ +  n2!�: (3.37)The following theorem gives the limiting distribution of the Wiloxon signed rank statisti.Theorem 3.3: Let fXn; n � 1g be an assoiated sequene with a bounded density funtion.Suppose (3.2) holds. Then as n1=2T �2�U L! N(0; 1) as n!1: (3.38)Proof : Note that E[U (1)n ℄ = P [X > 0℄; (3.39)and from (3.8) 1nVar[U (1)n ℄! 0 as n!1: (3.40)The result now follows using Theorem 3.2 and Slutsky's theorem.Note that the Wiloxon signed rank statisti T is the sum of ranks of positive observations.The test proedure onsists in rejeting the null hypothesis H0 for large values of the statistiT . The quantity �2U depends on the unknown distribution F even under the null hypothesis.It an be estimated using the estimators given by Peligrad and Suresh (1995) and the result ofRoussas (1993) (f. Dewan and Prakasa Rao (2003)) for estimating the variane of WiloxonMann-Whitney statisti for assoiated sequenes) . A onsistent estimator of �2U is given byJ2n = �2 B̂2n; (3.41)where, for ` = `n, B̂2n = 1n� ` n�X̀j=0 jŜj(`)� ` �̂ njp` ; (3.42)and Ŝj(k) = Pj+ki=j+1  ̂1(Xi); �̂ n = 1nPni=1  ̂1(Xi);  ̂1(x) = 1 � Fn(�x), where Fn isthe empirial distribution funtion orresponding to F based on assoiated random variablesX1;X2; : : : ;Xn. Note that under the null hypothesis X and �X are identially distributed.9
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