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Abstract

Let {X1,...,X,} be stationary associated random variables with one dimensional marginal
distribution function F' . We study the properties of the classical sign statistic and the
Wilcoxon-signed rank statistic for testing for shift in location in the above set up. In the
process we extend the Newman’s inequality to functions of bounded variation which are mix-

tures of absolutely continuous component and discrete component only.
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1 Introduction
A finite family {X,..., X;,} of random variables is said to be associated if
COV(hl(Xl, ceey Xn), hQ(Xl, ceey Xn)) Z 0

for any two coordinatewise nondecreasing functions hi, ho on R"™ such that the covariance
exists. An infinite family of random variables is said to be associated if every finite subfamily
is associated (cf. Esary, Proschan and Walkup (1967)).

Let {X,,n > 1} be a stationary sequence of associated random variables. Let F(z,0) =
F(z —0), F € Qg where Q; = {F : F(z) = 1 — F(—z)} be the distribution function of X;
and suppose that the distribution function F' is absolutely continuous with bounded density
function f .

Suppose the finite sequence of stationary associated random variables {X;,1 < i < n} is

observed. We wish to test the null hypothesis
Hy:0=0 (1.1)

against the alternative hypothesis
H,:0>0. (12)

The most commonly used tests for this problem are the sign test and the Wilcoxon-signed

rank test when the observations are independent and identically distributed. We now study



the properties of these tests when the observations are on a stationary associated sequence of
random variables.

Probabilistic aspects of associated random variables have been extensively studied (see, for
example, Prakasa Rao and Dewan (2001) and Roussas(1999)). Dewan and Prakasa Rao (2003)
studied the Wilcoxon Mann-Whitney statistic for stationary associated sequences.

In Section 2, we obtain a stochastic inequality for the covariance of functions «(X) and S(Y)
of a bivariate random vector (X,Y’). This inequality follows from the results in Cuadras (2002).
Of particular interest to us is the case when the random variables X and Y are associated.
We discuss an application of this result to obtain tests for location for associated sequences in

Section 3.

2 Stochastic Inequality

Let (X,Y) be a bivariate random vector and suppose that E(X?) < oo and E(Y?) < oo.
Further let
H(z,y) = P(X <5,Y <y) - P(X < 0)P(Y < y). 2.1)

Hoeffding (1940) proved that
Cov(X,Y) = /ZH(.'JU,y) dzdy, (2.2)
-

hereafter called the Hoeffding identity. Lehmann (1966) gave a simple proof of this identity.
Multivariate versions of this identity were studied by Jogdeo (1968) and Block and Fang (1988)
using the concept of a cumulant of a random vector X = (X7y,..., Xg). Yu (1993) obtained a
generalisation of the covariance identity (2.2) to absolutely continuous functions of the compo-
nents of the random vector X extending the earlier work of Newman (1984). Quesada-Molina

(1992) generalised the Hoeffding identity to quasi-monotone functions K(.,.) in the sense that
K(z,y) - K(a',y) - K(z,y) + K(z',¢') 2 0 (2.3)

whenever z < 2’ and y < ¢/. It was proved that
EIK(X,Y) - K(X*,Y")] = /R H(z,y)K(dz, dy) (2.4)

where X* and Y*are independent random variables independent of the random vector (X,Y)
but with X* and Y* having the same marginal distributions as those of X and Y respectively.
The results in Yu (1993) and Quesada-Molina (1992) were generalised to the multidimensional
case in Prakasa Rao (1998). In a recent paper, Cuadras (2002) proved that if a(z) and S(y)
are functions of bounded variation on the support of the probabilty distribution of the random
vector (X,Y) with E|a(X)B(Y)], Ela(X)| and E|S(Y)| finite, then

Cov(a(X), (V) = [ H(a.y) aldr)B(dy). (2.5



It is clear that this result also follows as a special case of (2.4). It is possible to restate a
multidimensional version of the result in (2.5) as a special case of the results in Prakasa Rao
(1998).

Suppose that «(z) and S(y) are functions of bounded variation which are mixtures of
absolutely continuous component and discrete component only. Let a()(z) and o(? (z) denote
the absolutely continuous component and the discrete components of a(x) respectively. Let
x;,% > 1 be the jumps of «(z) with jump sizes a(z; + 0) — a(x; — 0) = p; # 0. Similarly let
yj,7 > 1 be the jumps of B(y) with jump sizes S(y; + 0) — B(y; — 0) = ¢; # 0. Further more
let a(c),(x) denote the derivative of a9 (x) whenever it exists. Observe that the derivative of

o9 () exists almost everywhere. Suppose that

sup o' (z)] < o0, sup |pi] < o0 (2.6)
and
sup 6 ()] < o, sup lg;| < oo. (2.7)
Then
Cov(a(X).6(Y)) = [ Hizy) olda)B(dy)
= [ H@w) o8Oy
+ [ Hay) odn)s® dy)
+ [ Hy) o®d)p dy)
+ [ Hay) o(d)p ) (2.8
and hence
Cov(a(X), )| < suplal®' (@) sup 8 ()| [ H ()| dady
+supa(s sup|q]|z/ H(z, ;)| do

+sup g sup|pz|2/ H(z,y)\dy

oo o0
+sup pilsup lgj| > > 1H (24, y5)]. (2.9)
J i=1j=1

Remark 2.1 : Suppose the functions a(z) and S(y) are purely discrete. Let z;, ¢ > 1 be the
jumps of «(z) with jump sizes a(z; + 0) — a(x; — 0) = p; # 0 and «(x) is a constant between
different jumps. Similarly let y;, 7 > 1 be the jumps of 5(y) with jump sizes (y; +0) — B(y; —
0) = ¢j # 0 and S(y) is a constant between different jumps. Then

Cov(a(X / H(z,y) ol (dz)B® (dy)
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[o ol o]

= > H(wiy)pigs. (2.10)

i=1j=1

For instance, suppose that «(z) = sgn(z) and B(y) = sgn(y) where sgn(z) = 1 if z > 0,
sgn(x) = =1 if £ < 0 and sgn(xz) = 0 if x = 0. Then, for any zy and yy,

Cov(sgn(X — o), sgn(Y —yo)) =4 H (2o, yo) (2.11)

since the jump at xg is of size 2 for the function a(z) and for the function B(y) (cf. Cuadras
(2002)).

Remark 2.2 : Suppose we choose a(z) = F(z) and B(y) = G(y) where F(.) and G(.)
are continuous marginal distribution functions of the components X and Y respectively of a

bivariate random vector (X,Y’). Following the result given in (2.5), we get that

Cov(F(X),G(Y)) = /R H(z,y) F(dz)G(dy). (2.12)

It is easy to see that the Spearman’s rank correlation coefficient p between X and Y is given
by

p=Corr(F(X),G(Y)) =12 Cov(F(X),G(Y)) =12 /R2 H(z,y) F(dz)G(dy). (2.13)

Note that the random variables F'(X) and G(Y) have the standard uniform distribution.
Remark 2.3: Suppose that X and Y are associated. Then H(z,y) > 0. Newman (1980)
showed that if X and Y have finite variances, then, for any two differentiable functions h and

9,
|Cov(h(X),g(Y))| < sup|h'(x)] Sl;plg’(y)l Cov(X,Y) (2.14)

where h' and ¢’ denote the derivatives of h and g, respectively. Inequality (2.4) extends this
results to include functions of bounded variations which are mixtures of absolutely continuous
component and discrete component only. Bulinski (1996) extended this result to continuous
functions which are possibly not differentiable at atmost finite number of points. In the next

section we discuss an application of the inequality to associated sequences.

3 Tests for Location for Associated Sequences

Here we study the sign test and the Wilcoxon signed rank test, based on the stationary associ-
ated random variables {X;,1 <1 < n}, for testing Hy : § = 0 versus H; : # > 0. Let C denote

a generic positive constant in the sequel. Assume that
sup f(z) < C. (3.1)
x

Further assume that

Y Covs (X, Xj) < oo (3.2)
71=2



This would imply that Cov(X;, X,,) — 0 as n — oo. In particular it follows that sup,, |Cov(X1, X,,)| <
o0. Observing that Cov(X1, X,,) > 0 by associativity of Xi,..., X, we obtain that

0 < Cov(Xy,X;)
= [Cov(Xy, X )]é[Cov(Xl,X)]%
< [SupCOV(Xh )3 [Cov(X1, X;)]5.

Hence

wl'—‘
A\
8
—_
o
w
S~—

o0 o0
ZCOV(Xl,Xj) [sup Cov(X1,X é Z Cov (X1, X

3.1 The Sign Test

For testing the hypothesis Hy : @ = 0 against Hy : 6 > 0, the sign test is based on the statistic

= % Z P(Xi), (3.4)
i=1
where
¢(z) = I(z > 0), (3.5)

and I(A) denotes the indicator function of the set A. Observe that
E(¢(X1)) = 1-F(0)=p (say),
Var(¢(X1)) = p—p?
and
Cov(¢(X1),$(X;)) = P[X1>0,X;>0]—p” (3.6)

Since the density function f(.) of the random variable X; is bounded, it follows,from Bagai
and Prakasa Rao (1991), that

sup |P[X, > z,Y] > y] — P[X; > z]P[Y; > ]| < C Cov'/3(X,Y). (3.7)
From (2.10), (3.73) and (3.7) it follows that
0? = Var ¢(X1) +2 i Cov(¢(X1), $(X;)) < oo. (3.8)
j=2
Since ¢(x) is an increasing function of z, we have ¢(X1), #(X2),...,d(X,) are stationary

associated random variables. The following theorem is an immediate consequence of the central

limit theorem for associated random variables (Newman (1980)).

Theorem 3.1 Let X,,,n > 1 be a sequence of stationary associated random variables with

bounded density function. Then
n 2300 [8(X)) - B((X)))]

o

5 N(0,1) as n — oo. (3.9)

The test procedure consists in rejecting the null hypothesis Hy for large values of the statistic

Ur(Ll), which is the proportion of positive observations.



3.2 Wilcoxon-signed Rank Test

Let Ry, Ro,...,R, be the ranks of X, X5,...,X,,. The Wilcoxon-signed rank statistic is
defined by

T = Zn: R;$(X;). (3.10)

i=1

We can write T as a linear combination of two U-statistics (Hettmansperger (1984))

T = U + (Z) U, (3.11)
where
n
1<i<j<n
and
Y(z,y) =I(z+y >0). (3.13)

Since the random variables {X,,,n > 1} form a stationary sequence, it follows that

Z Pij

1<i<j<n

S
N
|
~~
‘»—t m@‘»—t
N—

= (n—Jj+ L)py, (3.14)
=2

(3 -

NS

o = [ | wlemdr@are) .,
. O;F(—x)dF(x), (3.15)

Pi(z1) = E(y(z1,X2))
= /_OO T,b(xl,xg)dF(.Tg)

= 1— F(em). (3.16)
W (z1) = 4i(z1) -0, (3.17)
and
W (zy,m9) = (w1, 3) — Yr(m1) — Pr(m) + 0
= P(x1,29) + F(—x1) + F(—x2) —24+6. (3.18)

Then the Hoeffding-decomposition (H-decomposition) for U is given by (see, Lee (1990))

U? =0+2H" + H? (3.19)

n n n



where H,(lj) is a U-statistic of degree j based on the kernel ), j=1,2, that is,
Zh Xiyy oo X)) (3.20)
where summation is taken over all subsets 1 <41 < ... <4; <n of {1,...,n}.

In view of the H - decomposition , we have
Var(U?) = 4 Var(H") + Var(H?)) + 4 Cov(H(", H?). (3.21)

From Dewan and Prakasa Rao (2001), we get that

Var(H{!) = %(0% + 2ia%j) + 0(%), (3.22)
where
of = Var(F(-X))
otj = Cov(F(=X1),F(=X14))) (3.23)
Using the Newman’s inequality and the inequality (3.3) , we get
ialj ZCOV F(—X14j)) < 00 (3.24)
=
Furthermore
Var(H?) = (Z) 2 S S Cov{h® (X, X;), b (X, X0)} (3.25)
1<i<j<n 1<k<t<n
where
Cov{h® (X}, X;),h® (Xe, Xo)} = Cov(th(Xi, X;), 9 (X, X))
+  Cov(p(X, Xj), F(—=X)) + Cov((X5, Xj), F(—Xy))
+  Cov(y(Xy, Xp), F(=X;)) + Cov(y(Xy, Xy), F(=Xj))
+ Cov(F(—X;),F(—Xg)) + Cov(F(—X;), F(—Xy))
+ Cov(F(~X,), F(~Xg)) + Cov(F(~X;), F(~Xy))
(3.26)
Using the Newman’s (1980) inequality, we get that
[Cov (F(=X), F(—X1))| < sup(f(2))*Cov(X;, X, (3.27)

Since the density function is bounded, it follows, from Bagai and Prakasa Rao (1991), that
|COV(¢(XZ'7 X])a ’l,b(Xk, Xl))|
= |PXi+X; >0,Xy+ X, >0 - PX; + X; > 0]P[X, + X;, > 0]
< C[Cov(X; + Xj, X + X¢)]'/?
= C[Cov(X;, Xy) + Cov(Xj, X3) 4+ Cov(X;, X;) + Cov(Xj, X)]'/? (3.28)



Let Z = X; + X;. Note that the function (z;,z;) = I(z; +z; > 0) = I(z > 0) has a jump
of size 1 at z = 0. Then, from (2.5), it follows that

|Cov((Xs, Xj), F(=Xk))|

o0
= |/ P[Xi + X; <0, X}, < 7] — P[X; + X; < 0|P[X}, < 2])dF(z)]
—00

< / IP[X; + X; < 0,X,, < a] — P[X; + X; < 0]P[X; < 2]|dF(z)

— 00

IN

C /_ 7 [Cov(X; + X, Xp)]3dF (x)

= C[Cov(X; + X;, X;)]"/?
= C[Cov(X;, X;) + Cov(X;, X;)]Y3. (3.29)

Using (3.27), (3.28) and (3.29) in (3.26), we get

ICov{h® (X, X;), kD (X, X0)}|

<

AN+ +

+

+

C[Cov(X;, Xi) + Cov(Xj, X3) 4+ Cov(X;, Xy) + Cov(Xj, X)]H/?
[Cov(Xy, Xi) + Cov(X;, Xi)]Y3 + [Cov(X;, Xy) + Cov (X, X,)]'/3
[Cov(X, Xi) + Cov(Xy, Xi)]'/? + [Cov(Xy, X;) + Cov(Xy, X;)]M/?
Cov(X;, Xi) + Cov (X, Xy) + Cov(X;, X¢) + Cov(X;, Xy)
C[Cov(X;, Xi) + Cov(X;, Xj) + Cov(X;, Xy) + Cov(X;, X)]

C[Cov(X;, X3)'/? + Cov(Xj, X3)Y/3 4 Cov(X;, X,)'/3 + Cov(X;, X¢)'/3]
C[(Cov(X;, Xi) + Cov(Xi, X)Y3) + (Cov(X;, X3) 4+ Cov(X;, X3)Y3)

(Cov(Xi, X¢) + Cov(X;, Xo)'/?) + (Cov(X;, Xy) + Cov(X;, Xo)'/?)
(i = k) + (7 = k) + (i =€) + (5 = 4]) (say). (3.30)
From (3.2) and (3.3) it follows that
io: r(k) < oo. (3.31)
k=1

Hence, following Serfling (1968), we have , as n — oo

Var(H2)) = 0(%). (3.32)

Using the Cauchy-Schwartz inequality, it follows that

From (3.21),

1

Cov(H\V, H?)) = o(=). (3.33)
n
(3.22), (3.32) and (3.33), we get that
i 1
Var(U?) = 4[of + 2" o]+ o(>). (3.34)

j=1

Then using the same technique as in Theorem 3.2 in Dewan and Prakasa Rao (2001) for

obtaining the limiting distributiion of U-statistics , we get the following theorem.



Theorem 3.2: Let {X,,,n > 1} be an associated sequence . Suppose (3.2) holds. Then

n!2(U — 0)

N(0,1) as n — o0 (3.35)
20y
where of, = 07 + 2332, 0.
Finally, define
T —
r=""7 (3.36)
(3)
where
v =nP[X > 0]+ (Z) 0. (3.37)

The following theorem gives the limiting distribution of the Wilcoxon signed rank statistic.

Theorem 3.3: Let {X,,,n > 1} be an associated sequence with a bounded density function.
Suppose (3.2) holds. Then as

1/2T*
r 5 N(0,1) as n— oo. (3.38)
20y
Proof : Note that
E[UV] = P[X > 0], (3.39)
and from (3.8)
1
—Var[UM] = 0 asn — oco. (3.40)
n

The result now follows using Theorem 3.2 and Slutsky’s theorem.

Note that the Wilcoxon signed rank statistic 7" is the sum of ranks of positive observations.
The test procedure consists in rejecting the null hypothesis Hy for large values of the statistic
T. The quantity 0[2] depends on the unknown distribution F' even under the null hypothesis.
It can be estimated using the estimators given by Peligrad and Suresh (1995) and the result of
Roussas (1993) (cf. Dewan and Prakasa Rao (2003)) for estimating the variance of Wilcoxon

Mann-Whitney statistic for associated sequences) . A consistent estimator of o7 is given by

o = 5Bu, (3.41)
where, for ¢/ = ¢, R
o1 T80 — 4y
BZ = 2 n 3.42
p— ]2:% 7 (3.42)

and g](k) = Zgi;:»l 1/31(Xz)a 1/;n = % ?:1 Tﬁl(Xl)a 1&1(-’13) =1- Fn(_x)u where Fn is
the empirical distribution function corresponding to F' based on associated random variables
X1,Xo,...,X,. Note that under the null hypothesis X and —X are identically distributed.



References

Block, H.-W. and Fang Z. (1988), A multivariate extension of Hoeffding’s Lemma, Ann.
Probab., 16, 1803-1820.

Bulinski, A.V. (1996). On the convergence rates in the CLT for positively and negatively
dependent random fields, in: I.A. Ibragimov and A.Yu. Zaitsev, eds., Probability Theory
and Mathematical Statistics, Gordon and Breach, U.K.

Cuadras, C.M. (2002). On the covariance between functions, J. Mult. Anal., 81, 19-27.

Dewan, I. and Prakasa Rao, B.L.S., (2001). Asymptotic normality of U-statistics of associated
random variables, J. Statist. Plan. Inference, 97, 201-225.

Dewan, I. and Prakasa Rao, B.L.S., (2003). Mann-Whitney test for associated sequences,
Ann. Inst. Statist. Math., 55, 111-120.

Esary, J., Proschan, F. and Walkup, D. (1967). Association of random variables with appli-
cations, Ann. Math. Statist., 38, 1466-1474.

Hettmansperger, T.P. (1984). Statistical inference based on ranks, Wiley, New York.

Hoeffding, W. (1940). Masstabinvariante Korrelations-theorie, Schr. Math. Inst., University
Berlin, 5, 181-233.

Jogdeo, K. (1968). Characterization of independence in certain families of bivariate and
multivariate distributions., Ann. Math. Statist. , 39, 433-441.

Lee, A.J. (1990). U-Statistics, Marcel Dekker, New York.
Lehmann, E.L. (1966). Some concepts of dependence, Ann. Math. Statist., 37, 1137-1153.

Newman, C.M. (1980). Normal fluctuations and the FKG inequalities, Comm. Math. Phys.,
74, 119-128.

Newman, C.M. (1984). Asymptotic independence and limit theorems for positively and neg-
atively dependent random variables. In : Inequalities in Statistics and Probability, Tong,
Y.L. (ed.), 127-140, IMS, Hayward.

Peligard, M. and Suresh, R. (1995). Estimation of variance of partial sums of an associated

sequence of random variables, Stoch. Process. Appl. , 56, 307-319.

Prakasa Rao, B.L.S. (1998). Hoeffding identity, multivariance and multicorrelation, Statistics,
32, 13-29.

Prakasa Rao. B.L.S. and Dewan, I. (2001). Associated sequences and related inference prob-
lems, Handbook of Statistics, 19 , Stochastic Processes: Theory and Methods, (eds. C.R.
Rao and D.N. Shanbhag), 693-728, North Holland, Amsterdam.

10



Quesada- Molina , J.J. (1992). A generalization of an identity of Hoeffding and some appli-
cations, J. Ital, Stat. Sc., 1, 405-411.

Roussas, G.G. (1993) . Curve estimation in random field of associated processes, J. Nonpara-
metric Statist., 2, 215-224.

Roussas, G.G. (1999) . Positive and negative dependence with some statistical applications,
Asymptotics, nonparametrics and time series (ed. S. Ghosh), 757-788, Marcel Dekker,
New York.

Serfling , R.J. (1968). The Wilcoxon two-sample statistic on strongly mixing processes, Ann.
Math. Statist., 39, 1202-1209.

Yu, H. (1993). A Glivenko-Cantelli lemma and weak convergence for empirical processes of
associated sequences, Probab. Th. Rel. Fields, 95, 357-370.

11



