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ABSTRACT

Consider a vector valued process X given by X = {{X;(m),m > 1},
1 < i < k} takes values on a finite set E¥ where E : {1,2,...,n}. We derive sufficient
conditions under which such a stochastic process is associated in time. An illustrative example
wherein such a process is useful is also provided. We show that one data set on stain on tooth
is associated in time and the other one is ’almost’ associated in time.
Primary Subject: 60K10, 60K20
Secondary Subject: 90B25
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right-tail increasing.



1 Introduction

Consider a vector valued process X given by X = {{X;(m),m > 1},1 < i < k} that takes

values on a finite set E¥ where E : {1,2,...,n}. The array can be written as
Xi(1) Xu(2) - Xi(b—1) Xy(b) -+ Xi(m)
Xa(1) Xa(2) -+ Xp(b—1) X3(b) -+ Xz(m)
Xa(l) Xa(2) Xa(b_ 1) Xa(b) Xa(m)
Xi(1) Xi(2) -+ Xp(b—1) Xg(b) -+ Xi(m).
We assume that for fixed b, variables in  the bth column
X1(b), X2(b), ..., X(b) are dependent random variables and random vectors across rows form

a stochastic process.

Motivation for the model comes from data on an oral hygiene study. Dentists recorded
the reduction in the amount of plaque on teeth . Each individual in the data was monitored
for couple of days. Two teeth were identified one on left lower canine which is in the left
lower jaw of the corner of a jaw, and one on molar at upper right jaw. The reduction in the
thickness of plaque for subjects are usually recorded as belonging to four different categories,
viz, no reduction, slight reduction, moderate reduction and vast reduction. One of the objects
of the study was to evaluate effectiveness of brushing. In such cases natural question can be:
is it possible to reduce the number of records per individual per day? If there is some sort of
dependence, it may be possible to reduce the dimension of the data. Das and Chattopadhyay
(2004) developed a latent mixture regression model to study this categorical multivariate data.

Canonical correlation factor analysis are the tools used for non-longitudinal measurable
data. To deal with reliability data Barlow and Proschan (1975) defined various concepts of
bivariate and multivariate dependence and studied their relationships. For sake of completeness
we give definitions of dependence concepts needed in sequence.

Given random variables S and T following are some of the concepts of bivariate dependence.

Definition 1.1 (Right Tail Increasing) : A random variable 7" is right tail increasing
(RTI) in a random variable S if P[T" > ¢|S > s] is increasing in s for all ¢.

Definition 1.2 (Stochastically Increasing) : A random variable T is stochastically in-

creasing (SI) in a random variable S if P[T' > t|S = s] is increasing in s for all ¢.

Definition 1.3 (Multivariate Stochastically Increasing): A random variable T is
stochastically increasing in random variables S, S, ..., Sg if P[T' > t|S1 = s1,S2 = s9,..., Sk =
sk| is increasing in s, S, . . ., Sk.

Definition 1.4 (Conditionally Increasing in Sequence): Random variables 7,75, ..., T),



are conditionally increasing in sequence if P[T; > ti
Ti—1 = ti—1,...,T1 = t1] is increasing in t1,%9,...,t;—1 for i = 1,2,...,n, that is 7} is stochas-

tically increasing in 11,75, ..., T; 1.

Definition 1.5 (Associated): Random variables T}, T5, . .., T}, are associated if Cov(I'(T), A(T")) >

0 for all pairs of co-ordinatewise increasing functions I' and A.

Remark 1.6 : An infinite sequence of random variables {7},, n > 1} is said to be associated

if it is associated for every finite n.

Barlow and Proschan (1975) showed that SI(T'|S) implies RTI(T|S) and if T1,T5,...,T,
are conditionally increasing in sequence then they are associated. Associated random variables
arise in reliability, statistical mechanics, percolation theory, etc. For a detailed review see

Roussas (1999) and Prakasa Rao and Dewan (2001). The concept of association in time was
defined by Hjort et al (1985).

Definition 1.7 (Associated in time ): The stochastic process X is said to be associated
in time iff, for any integer m and {¢i,...,¢y}, the random variables in the above array are
associated.

Hjort et al (1985) and Kuber and Dharamadhikari (1996) discuss sufficient conditions under
which association in time for Markov and semi Markov processes holds.

We model a vector valued stochastic process, recognize its multivarite structure for a specific
time, and longitudinal aspects over the period of time and identify sufficient conditions for
such a process to be associated in time. In section 2 we discuss the discrete case with special
reference to multivariate Bernoulli random vectors. In section 3 we discuss the continuous case

with special reference to multivariate normal random vectors

2 The Discrete Case

Consider the stochastic process {{X;(m),m > 1},1 <i < k}. Fori,j € E, let

PXi(1) =4 = m,i=12,...,n,
PIXa(b) = j| X 1(b) =i] = P;jV2<a<k,
PIXi(b) = j|1Xp(b—1) =i] = Li; b>1. (2.1)

Note that ; is the initial probability , I; ; are the usual one step transition probabilities, L; ;

link two vectors X (b) and X (b — 1) in terms of the first entry of the bth column and the last

entry of the (b — 1)th column. Hence we call them linkage probabilities.
Assume that V2 <a <k, b>1

Ay P[Xa(b) = Z.b,apfafl(b) = ib,a—la o Xa (b) = Z.bl]
= P[Xa(b) = ib,a|Xa—1(b) = ib,afl]



= ‘F)ib,a—laib,a (b). (2.2)
Further, suppose that
Ay : PIX1(b) = i1 | Xy =i 1] = P[X1(b) = ip,1 | Xpe(b— 1) =igp—1) k). (2.3)

Note that A; is a Markov-like assumption for a finite collection of chronologically ordered ran-
dom variables and As is a Markov-like assumption for the probabilities which link a component
of a vector with the last component of the previous vector.

For b =1, the joint distribution of { X1 (b),..., X;(b)} will be determined by {7;, P; ;, 4,5 =
1,2,...,n}.

For s =1,2,...,m , let i, = (i5,1,%52,...,%s%). Then from assumption (A;, Az) it follows
that

PIXy(1) = i1 p, Xp—1(1) = i1 p—1,- .., X1 (1) = 41,1]
= PXp(1) = i1 4| Xp—1(1) =41 g—1,-.., X1(1) = 41,1]
= P[Xp 1(1) =i 1| Xp 2(1) =41k 2, ., X1(1) = di11] ... P[X1(1) = i1 1]

I
-

<
||
N

PIX;(1) =i

X; (1) =irj 1,..., X1 (1) = i1 ]P[X;(1) = i1.4]

I
-

<
||
N

PIX;(1) =i

X1 (1) = iy PG (1) = i) (2.4)

Further,

= P[Xk(2) = i2k|Xk_1(2) = iQ,k_l,...,Xl(z) = igyl,l(l) =1 ]
. P[X5(1) = i01 | Xk (1) = i1g, Xp—1(1) =41 p—1,--., X1(1) = i1,1]

k
= [l PIX;j(2) =iz | X 1)(2) = ig 1]
71=2

k
P[X1(2) = io1| X5 (1) = ing] [T PIXG(1) = i X5 1(1) = i1y 1] P[X1 (1) = 1]
7j=2
(2.5)

In general , let (@ — 1Dk < £ < ak, a > 1. Then ¢ = (a — 1)k +d
for some d € {1,2,...,k}. Consider the joint distribution of  {X(1),X(2),...,
X(b—-1),X1(b) =tp1,...,Xq(b) =ipa}

Then, using A; and As, we get

PIX(1) =4, X(2) =dy,..., X(b—1) =i 1), X1(0) = b1, -, Xa(b) > ip,d]
= P[Xq(b) > ipa, Xa1(b) > ipg-1,---, X1(1) —i11]



b k
= P[Xq(b) > ipal Xa(b) > iva) [] ] PlXa(s) = isa

Xo1 (3) = is,afl]

s=1a=2
b
H P[Xl(s) = ’L'571|Xk(8 - 1) == ’L's_l,k]P[Xl(l) == il,l]- (26)
5=2
Note  that this expression involves (b — 1) linkage probabilities and

(b —1)(k — 1) + d one step conditional probabilities and one initial probability.
Hence

P[X4(b) > ipa| Xq-1(b) > ipg—1,..., X1(1) = i1,1]
P[Xl(b) > Z-b71|Xk;(b — 1) = ibfl,k] ifd= (b — l)k + 1,
P[Xd(b) > ’L'b,d|Xd_1(b) > ib,d—l] if (b - 1)k +1 < d < bk.

Thus, we can write all finite dimensional distributions of such a vector valued process one would

require information about
{Kz’af)i,jaLi,ja 1, € E} (27)

Here

domi=1, > Py=1Vi, Y L=1Vi. (2.8)
( J J
For the given process X , let {Z,,n > 1} be a process, where,

Zivke; 2 Xi(G), §>1,1<k. (2.9)

Hence all finite dimensional distributions of X and {Z,,n > 1} coincide.

Now we consider a set of sufficient conditions for association in time for the process {Z,,,n >

1.

Theorem 2.1: If {Z,,,n > 1} is conditionally stochastically increasing then it is associated in

time.

Proof follows from the fact that conditionally stochastically increasing random variables are

associated (see, Barlow and Proschan (1975)).

Theorem 2.2: Suppose conditions A; and As hold for the stochastic process X. Further
suppose that

P[Xa(b) > ipq|Xa—1(b) = ipq—1] is increasing in 4,1 Vb > 1,0 > 2, (2.10)

P[X1(b) > ip1|Xk(b— 1) = ip_1] is increasing in i,y 4 Vb > 1,a > 2. (2.11)

Then it is associated in time.

Proof follows immediately from (2.6).



Thus sufficient conditions for X to be associated in time are that all one-step conditional
and linkage survival probabilities are stochastically increasing. Since right tail increasing im-
plies stochastically increasing, it is sufficient that these conditional probabilities are right tail

increasing.

Lemma 2.3: Suppose X, Y are discrete random variables on the same finite sample space E.

Further suppose that

PIX =z|Y =y] is increasing in y for each z >y,
is decreasing in y for each z < y. (2.12)
Then
P[X > z|Y =y] is increasing in y for each z. (2.13)

Proof : First note that

m
PIX >zlY =y] =) P[X =z|Y =y]
Z=T
The proof is trivial when y < 2 < m. When 2 < y < m , we have

y—1 m
PIX>zlY =y] = Y PX =z =y]+ > P[X =z]Y =y
2= Z=y
= PX <ylY =y] - P[X <z|]Y =y]+ P[X 2 y|Y =y]

= 1-P[X <alY =y
The proof follows from the fact that P[X = z|Y = y] is decreasing in y for each z < y.
The lemma leads to the following thorem.

Theorem 2.4: Suppose conditions A; and As hold for the stochastic process X. Further
suppose that
PIX,(b) =ipa|Xe—1(b) = ipq—1] is increasing in iy 41 Vip g > tpq-1 0> 1,0 > 2,
is decreasing in 4 41 Vipq < ipe—1 0> 1,0 > 2,

(2.14)

P[Xl (b) = ’L'b71|Xk(b - 1) = ib—l,k] is increasing in ib—l,k V’L'b,l > ib—l,k Vb > 1,a > 2
is decreasing in 4p—1 % Vip1 < ip—14 Vb > 1,0 > 2
(2.15)

Then it is associated in time.



Theorems 2.1 , 2.2 and 2.4 give sufficient conditions for X to be associated in time . The-
orem 2.1 does not require the Markovian assumption (A, As). Theorem 2.2 requires one-step
conditional and linkage survival probabilities to be stochastically increasing. Since right tail
increasing implies stochastically increasing, it is sufficient that these conditional probabilities
are right tail increasing.

However, the conditions in Theorem 2.4 are in terms of conditional mass function , that is
in terms of the kernel of X. Hence these are easily verfiable. Theorems 2.2 and 2.4 give weaker
conditions for verifying associated in time provided the underlying process is Markovian in the
sense defined (A1, As).

2.1 The Bernoulli Case

Marshall and Olkin (1985) considered a bivariate Bernoulli distribution whose marginals are
Bernoulli random variables. They have used this bivariate Bernoulli distribution to generate
bivariate binomial, poisson and hypergeometric distributions.

Now we consider two models a multiplicative and an additive which arise from independent
Bernoulli random variables and can be considered as an extension of Bernoulli random variables
to k dimensional dependent variables.

They will be used to study association in time for the processes like discussed above. How-

ever, they are of independent interest as well.

2.1.1 The Multiplicative Model

Let Y7,Y5,...,Y,_1,Y; be independent B(1,p;), ¢ = 1,2,...,k random variables . Define a

new random vector W as follows,

Wi = YixYe, i=1,2,... k-1,
W, = Y (2.16)

Note that each W; is increasing in its arguments. Since independent random variables are
associated and increasing functions of associated randon variables are associated (Esray et al
(1967) ), we have W = (W1, Wo, ..., Wy) are associated random variables.

The joint distribution of (Wy, Wy, ..., Wy) is given by

P[Wl :W2 :,...,WkZO] = l—pk,
P[Wl :W2 :,...,Wk: 1] = ﬁpi,
=1
P[Wl :’wl,Wg :’wg,...,Wk_l :wk_l,Wk; :O] = 0,
if w; =1 for anyl <j <k,
P[Wl =w,Wo=wo,... Wi 1 =wg_1, Wi = 1] = pk[kl:[lp;)j(l _pj)l_wj],
=1
oth]erwise. (2.17)



For completeness note that for ¢+ =1,2,...,k — 1,

PWi=1] = pip,
PW;=0] = 1-pip,
Cov(Wi, W;) = pipjpk(l —pk), @ # J. (2.18)
Further, for ¢ # k,
Cov(Wi, Wi) = pipr(1 — pr). (2.19)

However, note that

(1 —p1)(1 — p2)pspx
1 — p1pk
1 _
PIWs = 1 Wy =0 = (L=P2)pae (2.20)
1 — popk

Clearly the Markovian propert defined in (A;) does not hold. Following result is true .

PIWs = 1|Wy = 0,W; = 0] =

Theorem 2.5: Let {X,(b), a =1,2,...,k} be independent B(1,p,) random variables for all
b > 1. Define

Zr = Xo(U)#x Xp(1), 1 <L<Fk—1,
J
Zip = ] Xe(a), j =1,
a=1
Zy = Xob)xZp, L=(b-1)k+a, 1 <a<k. (2.21)

Then {Z,,n > 1} are associated in time .

2.1.2 The Additive Model

We also consider another additive model which describes the dental data mentioned earlier.
Now , let Y1,Y5,...,Y; be independent B(1,p;),s = 1,2,...,k random variables and U be

B(1,p) random variable independent of Y;,i = 1,2,..., k. Define a new random vector W* as
follows,
Wr=Y;+U, i=1,2,...,k. (2.22)
Note that (Wi, Wy, ..., W) are associated random variables. Further each W;* takes values
{0,1,2}.
We have

PW{=0=1-p)(1=p), PWy=1]=1-pi)p+(1—p)pi, PW)=2]=p;xp. (2.23)
Note that
EW{) = p+pi Vi,
Var(W)) = p(l—p)+pi(l—pi) V i,
Cov(Wr, W5 = p(l—p) ¥ i#j. (2.24)



This idea can be extended such that W/ is a sum of 2 or more independent Bernoulli
random variables and a common effect.

In this case also

PW3 =1Wy =1, Wy =0] = p3
. . p(1 —p2)(1 —p3) + (1 = p)pop3
PW: =1|Wi=1] = 2.25
W W2 ] p(1 —p2) +p2(l —p) (2.25)

Hence the Markovian property does not hold. However, the process {Z,,,n > 1} , defined below

is associated in time

Theorem 2.6: Let {X,(b), a =1,2,...,k, b > 1} be independent B(1,p,) random variables
for all b > 1. Let Uj,j = 1,2,..., be independent B(1,p}) random variables, independent of
{X,(b)}. Define

Zi = X,1)+U;, 1<E<k,
b
Zy = X 0)+[[U;, t=0b-1k+a, 1<a<k. (2.26)
=1
Then {Z,,n > 1} are associated in time.
Hence for both the models considered above the stochastic processes of interest are not
Markovian. Hence theorems 2.2 and 2.4 cannot be used. However, both the processes are

associated in time.

3 The continuous case

In section 2, the state space of the process X was considered to be discrete. When the records
are on actual measurements on an individual (device) at a given point, the random variables
X, (b) take values in an interval. For example, in case of dental data amount of stain may be
measurable . In such cases one has to study the vector valued process { X }, discrete in time and
continuous in state space. In what follows we provide sufficient conditions for association in
time for such a process. To begin with, as in section 2, we provide a result based on conditionally
stochastically increasing sequence and then following Pitt (1982) obtain the sufficient condition
for association when the finite dimensional distribution follows multivariate normal distribution.

As before X = {X(b), b € N}. {X(b), b = 1,2,...,m} is a collection of km random
variables. One would know the behaviour of these km random variables completely if one
knows the corresponding km dimensional multivariate distribution completely. We note that
there are two co-ordinates of this family of random variables. For a fixed b € N , there are
finitely many, i.e., k random variables , say {X;(b), X2(b),..., X(b)}, each taking value in R*.
This k£ dimensional multivariate distribution will be known completely if we know one marginal
and successive conditionals, say P[X;(b) > =], P[X2(b) > z2|X1(b) > z1],...,P[Xk(b) >
Tp| Xp-1(0) > xf—1,...,X1(b) > z1].



Assume that

B : PIX;(b) > zj|X1(b) > z1,...,Xj_1(b) > xj_1]
= P[X;(b) > 2| X;-1(b) > zj-1]
= Fj_1,(wjlzj-1) (say)
By : Fj15(zly) = Fia(zly), (3.1)

Then, in order to know the k& dimensional distributions one would require to know {Fy (z), Fj_1 j(zj|zj_1) V z; €
R,j=1,2,...,k}, where Fi(z) = P[X1(b) > z1].

Further if the conditional survival functions satisfy the stationarity property Bs and the
marginals are identical, then the kernel of this k dimensional vector would be {F(z), F 2(z|y)}.
Above is the multivariate expect of the family of random variables described above.

Now to consider the "process” aspect of it , V0 < s < ¢,s,t € N {X(s),X(t)} are jointly
distributed.

One can say that {X(¢),t > 0} is a vector valued Markov process if

By:  PIX() > 5|X() = £, Vs < 1
= PlX(1) > 24| X(s) = z]
= Fy(zi]xs) (3.2)

Further we assume stationarity, that is
Fs,t(xt|xs) = ths($t|xs)7 Vﬂ,ﬁ c R+, V 0 <s<t. (33)

In light of (3.1) and (3.3), in order to write the joint distribution of {X (s), X (¢)}, one needs
the conditional distribution function , say from one of the X;(s) to one of the X;(¢)'s. Without

loss of generality , let

PIX1(t) > 1| X5 (s) = zps) = Gor (wre|wrs) (say). (3.4)

These probabilities are the linkage probabilities.
Then, using By, BQ, Bg, the joint distribution of {X (1), X (2),...,X(m)} can be determined

by {F(s), F1(t]s), GY5V (1))}
Further for 0 < s < t,

P[X(t) > z;, X(s) > z,] = F (1) H H Fi (s, |2, H GOl (w1t zhs) (3.5)
s=1j5=2
In a similar way finite distribution of any order can be written .
As before , we consider the process {Z,,,n > 1} given in (2.9) and study sufficient conditions
for the process to be associated in time. Theorem 2.1 holds even in this case when the state

space is continuous.
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Theorem 3.1: Suppose that for the stochastic process X conditions B; — B3 hold. Further
suppose that

P[X;(s) > zs;|Xj1(s) = ws,_,] is increasing in 75, , Vs > 1,5 > 2, (3.6)
P[Xi(s) > x| Xk(s — 1) = x4_1,] is increasing in z,_1, Vs > 1,7 > 2. (3.7)
Then it is associated in time.

Pitt (1982) showed that positively correlated normal random variables are associated. Hence

we have the following two results.

Theorem 3.2: If {Z,,1 < n < m} have N, (u, %), with 0;; > 0, then {Z,,n > 1} are

associated in time.

Theorem 3.3: If {X(#;)1 <4 < m} have Ni(ux, £¥), with of; > 0, and

i:
P[X1(8) > @5, | Xg(s — 1) > ®(5_1) ;] is increasing in @,y Vs, (3.8)

then the process {X} is associated in time.
Note that we donot need the process {X} to be Markovian for theorems 3.2 and 3.3 to be

true.

4 Applications to dental data

Below given in Tables 1 and 2 is a part of dental data analysed by Das and Chattopadhyay
(2004). It gives stain on the same tooth at all the four positions before and after brushing ,
respectively. Numbers under (P, P», P3, Py), indicate the amount of stain at each of the four

positions on the selected tooth of an individual.
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Table 1 Table 2

Dental Data: Stain Before Brushing Dental Data: Stain Before Brushing
Individual P1 P2 P3 P4 Individual P1 P2 P3 P4
1 1 1 1 2 1 0 0 0 0
2 1 1 2 2 2 0 0 0 1
3 1 1 2 2 3 0 0 0 1
4 1 1 2 2 4 0 0 0 1
5 1 1 2 2 5 0 0 0 1
6 1 2 2 2 6 0 0 0 1
7 1 2 2 2 7 0 0 0 1
8 1 2 2 2 8 0 0 0 1
9 1 2 2 2 9 0 0 0 1
10 1 2 2 2 10 0 0 0 1
11 1 2 2 2 11 0 0 0 1
12 1 2 2 2 12 0 0 0 2
13 1 2 2 3 13 0 0 0 2
14 2 1 2 2 14 0 0 1 1
15 2 2 2 2 15 0 0 1 1
16 2 2 2 2 16 0 0 1 1
17 2 2 2 2 17 0 0 1 1
18 2 2 2 2 18 0 0 1 1
19 2 2 2 2 19 0 0 1 1
20 2 2 2 2 20 0 0 1 1
21 2 2 2 2 21 0 1 1 1
22 2 2 2 2 22 0 1 1 1
23 2 2 2 2 23 0 1 1 1
24 2 2 2 3 24 0 1 1 1
25 2 2 2 3 25 1 1 1 2

It is easy to verify that data in Table 1 are conditionally increasing in its co-ordinates.
However , for data in Table 2 all probability inequalities are in the desired direction except that
P[Py > 3|P, =1,P, =0,P; = 1] =1/2, while P[Py > 3|P, =0,P, =0,P; = 0] = 11/12. Note
that the first probability is based on only 2 observations and the departure can be attributed to
sampling/measuring errors. With such an undertanding, both the data sets can be considered
to be associated in time . Hence measurement only at one of the four positions, say at Py,
would suffice for statistical analysis. To the best of our knowledge there are no statistical tests

for testing if a sequence of random variables is conditionally increasing.
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