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ABSTRACTConsider a vetor valued proess X given by X = ffXi(m);m � 1g;1 � i � kg takes values on a �nite set Ek where E : f1; 2; : : : ; ng. We derive suÆientonditions under whih suh a stohasti proess is assoiated in time. An illustrative examplewherein suh a proess is useful is also provided. We show that one data set on stain on toothis assoiated in time and the other one is 'almost' assoiated in time.Primary Subjet: 60K10, 60K20Seondary Subjet: 90B25Key words : Vetor valued stohasti proess, assoiation in time, stohastially inreasing,right-tail inreasing.
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1 IntrodutionConsider a vetor valued proess X given by X = ffXi(m);m � 1g; 1 � i � kg that takesvalues on a �nite set Ek where E : f1; 2; : : : ; ng. The array an be written asX1(1) X1(2) � � � X1(b� 1) X1(b) � � � X1(m)X2(1) X2(2) � � � X2(b� 1) X2(b) � � � X2(m)... ... ... ... ... ... ...Xa(1) Xa(2) � � � Xa(b� 1) Xa(b) � � � Xa(m)... ... ... ... ... ... ...Xk(1) Xk(2) � � � Xk(b� 1) Xk(b) � � � Xk(m):We assume that for �xed b, variables in the bth olumnX1(b);X2(b); : : : ;Xk(b) are dependent random variables and random vetors aross rows forma stohasti proess.Motivation for the model omes from data on an oral hygiene study. Dentists reordedthe redution in the amount of plaque on teeth . Eah individual in the data was monitoredfor ouple of days. Two teeth were identi�ed one on left lower anine whih is in the leftlower jaw of the orner of a jaw, and one on molar at upper right jaw. The redution in thethikness of plaque for subjets are usually reorded as belonging to four di�erent ategories,viz, no redution, slight redution, moderate redution and vast redution. One of the objetsof the study was to evaluate e�etiveness of brushing. In suh ases natural question an be:is it possible to redue the number of reords per individual per day? If there is some sort ofdependene, it may be possible to redue the dimension of the data. Das and Chattopadhyay(2004) developed a latent mixture regression model to study this ategorial multivariate data.Canonial orrelation fator analysis are the tools used for non-longitudinal measurabledata. To deal with reliability data Barlow and Proshan (1975) de�ned various onepts ofbivariate and multivariate dependene and studied their relationships. For sake of ompletenesswe give de�nitions of dependene onepts needed in sequene.Given random variables S and T following are some of the onepts of bivariate dependene.De�nition 1.1 (Right Tail Inreasing) : A random variable T is right tail inreasing(RTI) in a random variable S if P [T > tjS > s℄ is inreasing in s for all t.De�nition 1.2 (Stohastially Inreasing) : A random variable T is stohastially in-reasing (SI) in a random variable S if P [T > tjS = s℄ is inreasing in s for all t.De�nition 1.3 (Multivariate Stohastially Inreasing): A random variable T isstohastially inreasing in random variables S1; S2; : : : ; Sk if P [T > tjS1 = s1; S2 = s2; : : : ; Sk =sk℄ is inreasing in s1; s2; : : : ; sk.De�nition 1.4 (Conditionally Inreasing in Sequene): Random variables T1; T2; : : : ; Tn2



are onditionally inreasing in sequene if P [Ti > tijTi�1 = ti�1; : : : ; T1 = t1℄ is inreasing in t1; t2; : : : ; ti�1 for i = 1; 2; : : : ; n, that is Ti is stohas-tially inreasing in T1; T2; : : : ; Ti�1.De�nition 1.5 (Assoiated): Random variables T1; T2; : : : ; Tn are assoiated if Cov(�(T );�(T )) �0 for all pairs of o-ordinatewise inreasing funtions � and �.Remark 1.6 : An in�nite sequene of random variables fTn; n � 1g is said to be assoiatedif it is assoiated for every �nite n.Barlow and Proshan (1975) showed that SI(T jS) implies RTI(T jS) and if T1; T2; : : : ; Tnare onditionally inreasing in sequene then they are assoiated. Assoiated random variablesarise in reliability, statistial mehanis, perolation theory, et. For a detailed review seeRoussas (1999) and Prakasa Rao and Dewan (2001). The onept of assoiation in time wasde�ned by Hjort et al (1985).De�nition 1.7 (Assoiated in time ): The stohasti proess X is said to be assoiatedin time i�, for any integer m and ft1; : : : ; tmg, the random variables in the above array areassoiated.Hjort et al (1985) and Kuber and Dharamadhikari (1996) disuss suÆient onditions underwhih assoiation in time for Markov and semi Markov proesses holds.We model a vetor valued stohasti proess, reognize its multivarite struture for a spei�time, and longitudinal aspets over the period of time and identify suÆient onditions forsuh a proess to be assoiated in time. In setion 2 we disuss the disrete ase with speialreferene to multivariate Bernoulli random vetors. In setion 3 we disuss the ontinuous asewith speial referene to multivariate normal random vetors2 The Disrete CaseConsider the stohasti proess ffXi(m);m � 1g; 1 � i � kg. For i; j 2 E, letP [X1(1) = i℄ = �i; i = 1; 2; : : : ; n;P [Xa(b) = jjXa�1(b) = i℄ = Pi;j 8 2 � a � k;P [X1(b) = jjXk(b� 1) = i℄ = Li;j; b � 1: (2.1)Note that �i is the initial probability , Pi;j are the usual one step transition probabilities, Li;jlink two vetors X(b) and X(b � 1) in terms of the �rst entry of the bth olumn and the lastentry of the (b� 1)th olumn. Hene we all them linkage probabilities.Assume that 8 2 � a � k; b � 1A1 : P [Xa(b) = ib;ajXa�1(b) = ib;a�1; : : : ;X1(b) = ib1℄= P [Xa(b) = ib;ajXa�1(b) = ib;a�1℄3



= Pib;a�1;ib;a(b): (2.2)Further, suppose thatA2 : P [X1(b) = ib1jXb�1 = ib�1℄ = P [X1(b) = ib;1jXk(b� 1) = i(b�1);k℄: (2.3)Note that A1 is a Markov-like assumption for a �nite olletion of hronologially ordered ran-dom variables and A2 is a Markov-like assumption for the probabilities whih link a omponentof a vetor with the last omponent of the previous vetor.For b = 1 , the joint distribution of fX1(b); : : : ;Xk(b)g will be determined by f�i; Pi;j ; i; j =1; 2; : : : ; ng.For s = 1; 2; : : : ;m , let is = (is;1; is;2; : : : ; is;k). Then from assumption (A1; A2) it followsthat P [Xk(1) = i1;k;Xk�1(1) = i1;k�1; : : : ;X1(1) = i1;1℄= P [Xk(1) = i1;kjXk�1(1) = i1;k�1; : : : ;X1(1) = i1;1℄= P [Xk�1(1) = i1;k�1jXk�2(1) = i1;k�2; : : : ;X1(1) = i1;1℄ : : : P [X1(1) = i1;1℄= kYj=2P [Xj(1) = i1;j jXj�1(1) = i1;j�1; : : : ;X1(1) = i1;1℄P [Xj(1) = i1;1℄= kYj=2P [Xj(1) = i1;j jXj�1(1) = i1;j�1℄P [Xj(1) = i1;1℄ (2.4)Further, P [X(2) = i2;X(1) = i1℄= P [Xk(2) = i2kjXk�1(2) = i2;k�1; : : : ;X1(2) = i2;1;X(1) = i1℄: : : P [X2(1) = i21jXk(1) = i1k;Xk�1(1) = i1;k�1; : : : ;X1(1) = i1;1℄= kYj=2P [Xj(2) = i2;j jX(j�1)(2) = i2;j�1℄P [X1(2) = i21jXk(1) = i1k℄ kYj=2P [Xj(1) = i1;j jXj�1(1) = i1;j�1℄P [X1(1) = i1;1℄ (2.5)In general , let (a � 1)k < ` � ak; a � 1. Then ` = (a � 1)k + dfor some d 2 f1; 2; : : : ; kg: Consider the joint distribution of fX(1);X(2); : : : ;X(b� 1);X1(b) = ib;1; : : : ;Xd(b) = ib;dg.Then, using A1 and A2, we getP [X(1) = i1;X(2) = i2; : : : ;X(b� 1) = i(b�1);X1(b) = ib;1; : : : ;Xd(b) � ib;d℄= P [Xd(b) � ib;d;Xd�1(b) � ib;d�1; : : : ;X1(1) � i1;1℄4



= P [Xd(b) � ib;djXd(b) � ib;d℄ bYs=1 kYa=2P [Xa(s) = is;ajXa�1(s) = is;a�1℄bYs=2P [X1(s) = is;1jXk(s� 1) = is�1;k℄P [X1(1) = i1;1℄: (2.6)Note that this expression involves (b � 1) linkage probabilities and(b� 1)(k � 1) + d one step onditional probabilities and one initial probability.Hene P [Xd(b) � ib;djXd�1(b) � ib;d�1; : : : ;X1(1) = i1;1℄= ( P [X1(b) � ib;1jXk(b� 1) = ib�1;k℄ if d = (b� 1)k + 1;P [Xd(b) � ib;djXd�1(b) � ib;d�1℄ if (b� 1)k + 1 < d � bk:Thus, we an write all �nite dimensional distributions of suh a vetor valued proess one wouldrequire information about f�i; Pi;j ; Li;j; i; j 2 Eg: (2.7)Here Xi �i = 1; Xj Pij = 1 8i; Xj Lij = 1 8 i: (2.8)For the given proess X , let fZn; n � 1g be a proess, where,Z(i�1)k+j st= Xi(j); j � 1 ; 1 � k: (2.9)Hene all �nite dimensional distributions of X and fZn; n � 1g oinide.Now we onsider a set of suÆient onditions for assoiation in time for the proess fZn; n �1g.Theorem 2.1: If fZn; n � 1g is onditionally stohastially inreasing then it is assoiated intime.Proof follows from the fat that onditionally stohastially inreasing random variables areassoiated (see, Barlow and Proshan (1975)).Theorem 2.2: Suppose onditions A1 and A2 hold for the stohasti proess X. Furthersuppose thatP [Xa(b) � ib;ajXa�1(b) = ib;a�1℄ is inreasing in ib;a�1 8b � 1; a � 2; (2.10)P [X1(b) � ib;1jXk(b� 1) = ib�1;k℄ is inreasing in ib�1;k 8b � 1; a � 2: (2.11)Then it is assoiated in time.Proof follows immediately from (2.6). 5



Thus suÆient onditions for X to be assoiated in time are that all one-step onditionaland linkage survival probabilities are stohastially inreasing. Sine right tail inreasing im-plies stohastially inreasing, it is suÆient that these onditional probabilities are right tailinreasing.Lemma 2.3: Suppose X;Y are disrete random variables on the same �nite sample spae E.Further suppose thatP [X = xjY = y℄ is inreasing in y for eah x � y;is dereasing in y for eah x < y: (2.12)Then P [X � xjY = y℄ is inreasing in y for eah x: (2.13)Proof : First note that P [X � xjY = y℄ = mXz=xP [X = zjY = y℄The proof is trivial when y � x � m. When x < y � m , we haveP [X � xjY = y℄ = y�1Xz=xP [X = zjY = y℄ + mXz=yP [X = zjY = y℄= P [X < yjY = y℄� P [X < xjY = y℄ + P [X � yjY = y℄= 1� P [X < xjY = y℄The proof follows from the fat that P [X = xjY = y℄ is dereasing in y for eah x < y:The lemma leads to the following thorem.Theorem 2.4: Suppose onditions A1 and A2 hold for the stohasti proess X. Furthersuppose thatP [Xa(b) = ib;ajXa�1(b) = ib;a�1℄ is inreasing in ib;a�1 8ib;a � ib;a�1 b � 1; a � 2;is dereasing in ib;a�1 8ib;a < ib;a�1 b � 1; a � 2;(2.14)P [X1(b) = ib;1jXk(b� 1) = ib�1;k℄ is inreasing in ib�1;k 8ib;1 � ib�1;k 8b � 1; a � 2is dereasing in ib�1;k 8ib;1 < ib�1;k 8b � 1; a � 2(2.15)Then it is assoiated in time. 6



Theorems 2.1 , 2.2 and 2.4 give suÆient onditions for X to be assoiated in time . The-orem 2.1 does not require the Markovian assumption (A1; A2). Theorem 2.2 requires one-steponditional and linkage survival probabilities to be stohastially inreasing. Sine right tailinreasing implies stohastially inreasing, it is suÆient that these onditional probabilitiesare right tail inreasing.However, the onditions in Theorem 2.4 are in terms of onditional mass funtion , that isin terms of the kernel of X. Hene these are easily ver�able. Theorems 2.2 and 2.4 give weakeronditions for verifying assoiated in time provided the underlying proess is Markovian in thesense de�ned (A1; A2).2.1 The Bernoulli CaseMarshall and Olkin (1985) onsidered a bivariate Bernoulli distribution whose marginals areBernoulli random variables. They have used this bivariate Bernoulli distribution to generatebivariate binomial, poisson and hypergeometri distributions.Now we onsider two models a multipliative and an additive whih arise from independentBernoulli random variables and an be onsidered as an extension of Bernoulli random variablesto k dimensional dependent variables.They will be used to study assoiation in time for the proesses like disussed above. How-ever, they are of independent interest as well.2.1.1 The Multipliative ModelLet Y1; Y2; : : : ; Yk�1; Yk be independent B(1; pi); i = 1; 2; : : : ; k random variables . De�ne anew random vetor W as follows,Wi = Yi � Yk; i = 1; 2; : : : ; k � 1;Wk = Yk (2.16)Note that eah Wi is inreasing in its arguments. Sine independent random variables areassoiated and inreasing funtions of assoiated randon variables are assoiated (Esray et al(1967) ), we have W = (W1;W2; : : : ;Wk) are assoiated random variables.The joint distribution of (W1;W2; : : : ;Wk) is given byP [W1 =W2 =; : : : ;Wk = 0℄ = 1� pk;P [W1 =W2 =; : : : ;Wk = 1℄ = kYi=1 pi;P [W1 = w1;W2 = w2; : : : ;Wk�1 = wk�1;Wk = 0℄ = 0;if wj = 1 for any1 � j < k;P [W1 = w1;W2 = w2; : : : ;Wk�1 = wk�1;Wk = 1℄ = pk[k�1Yj=1 pwjj (1� pj)1�wj ℄;otherwise: (2.17)7



For ompleteness note that for i = 1; 2; : : : ; k � 1,P [Wi = 1℄ = pipk;P [Wi = 0℄ = 1� pipk;Cov(Wi;Wj) = pipjpk(1� pk); i 6= j: (2.18)Further, for i 6= k, Cov(Wi;Wk) = pipk(1� pk): (2.19)However, note that P [W3 = 1jW2 = 0;W1 = 0℄ = (1� p1)(1� p2)p3pk1� p1pkP [W3 = 1jW2 = 0℄ = (1� p2)p3pk1� p2pk (2.20)Clearly the Markovian propert de�ned in (A1) does not hold. Following result is true .Theorem 2.5: Let fXa(b); a = 1; 2; : : : ; kg be independent B(1; pa) random variables for allb � 1. De�ne Z` = Xa(1) �Xk(1); 1 � ` � k � 1;Zjk = jYa=1Xk(a); j � 1;Z` = Xa(b) � Zbk; ` = (b� 1)k + a; 1 � a < k: (2.21)Then fZn; n � 1g are assoiated in time .2.1.2 The Additive ModelWe also onsider another additive model whih desribes the dental data mentioned earlier.Now , let Y1; Y2; : : : ; Yk be independent B(1; pi); i = 1; 2; : : : ; k random variables and U beB(1; p) random variable independent of Yi; i = 1; 2; : : : ; k. De�ne a new random vetor W � asfollows, W �i = Yi + U; i = 1; 2; : : : ; k: (2.22)Note that (W1;W2; : : : ;Wk) are assoiated random variables. Further eahW �i takes valuesf0; 1; 2g.We haveP [W �i = 0℄ = (1� pi)(1� p); P [W �i = 1℄ = (1� pi)p+ (1� p)pi; P [W �i = 2℄ = pi � p: (2.23)Note that E(W �i ) = p+ pi 8 i;Var(W �i ) = p(1� p) + pi(1� pi) 8 i;Cov(W �i ;W �j ) = p(1� p) 8 i 6= j: (2.24)8



This idea an be extended suh that W �i is a sum of 2 or more independent Bernoullirandom variables and a ommon e�et.In this ase alsoP [W �3 = 1jW �2 = 1;W �1 = 0℄ = p3P [W �3 = 1jW �2 = 1℄ = p(1� p2)(1� p3) + (1� p)p2p3p(1� p2) + p2(1� p) (2.25)Hene the Markovian property does not hold. However, the proess fZn; n � 1g , de�ned belowis assoiated in timeTheorem 2.6: Let fXa(b); a = 1; 2; : : : ; k; b � 1g be independent B(1; pa) random variablesfor all b � 1. Let Uj ; j = 1; 2; : : : ; be independent B(1; p�j ) random variables, independent offXa(b)g. De�ne Z` = Xa(1) + U1; 1 � ` � k;Z` = Xa(b) + bYj=1Uj; ` = (b� 1)k + a; 1 � a � k: (2.26)Then fZn; n � 1g are assoiated in time.Hene for both the models onsidered above the stohasti proesses of interest are notMarkovian. Hene theorems 2.2 and 2.4 annot be used. However, both the proesses areassoiated in time.3 The ontinuous aseIn setion 2, the state spae of the proess X was onsidered to be disrete. When the reordsare on atual measurements on an individual (devie) at a given point, the random variablesXa(b) take values in an interval. For example, in ase of dental data amount of stain may bemeasurable . In suh ases one has to study the vetor valued proess fXg, disrete in time andontinuous in state spae. In what follows we provide suÆient onditions for assoiation intime for suh a proess. To begin with, as in setion 2, we provide a result based on onditionallystohastially inreasing sequene and then following Pitt (1982) obtain the suÆient onditionfor assoiation when the �nite dimensional distribution follows multivariate normal distribution.As before X = fX(b); b 2 Ng. fX(b); b = 1; 2; : : : ;mg is a olletion of km randomvariables. One would know the behaviour of these km random variables ompletely if oneknows the orresponding km dimensional multivariate distribution ompletely. We note thatthere are two o-ordinates of this family of random variables. For a �xed b 2 N , there are�nitely many, i.e., k random variables , say fX1(b);X2(b); : : : ;Xk(b)g, eah taking value in R+.This k dimensional multivariate distribution will be known ompletely if we know one marginaland suessive onditionals, say P [X1(b) � x1℄; P [X2(b) � x2jX1(b) � x1℄; : : : ; P [Xk(b) �xkjXk�1(b) � xk�1; : : : ;X1(b) � x1℄. 9



Assume that B1 : P [Xj(b) � xj jX1(b) � x1; : : : ;Xj�1(b) � xj�1℄= P [Xj(b) � xj jXj�1(b) � xj�1℄= �Fj�1;j(xjjxj�1) (say)B2 : �Fj�1;j(xjy) = �F1;2(xjy); (3.1)Then, in order to know the k dimensional distributions one would require to know f �F1(x); �Fj�1;j(xj jxj�1) 8 xj 2R; j = 1; 2; : : : ; kg; where �F1(x) = P [X1(b) � x1℄:Further if the onditional survival funtions satisfy the stationarity property B2 and themarginals are idential, then the kernel of this k dimensional vetor would be f �F (x); �F1;2(xjy)g:Above is the multivariate expet of the family of random variables desribed above.Now to onsider the "proess" aspet of it , 8 0 < s < t; s; t 2 N fX(s);X(t)g are jointlydistributed.One an say that fX(t); t � 0g is a vetor valued Markov proess ifB3 : P [X(t) � xtjX(s) = xs; 8s � t℄= P [X(t) � xtjX(s) = xs℄= �Fs;t(xtjxs): (3.2)Further we assume stationarity, that is�Fs;t(xtjxs) = �Ft�s(xtjxs); 8xt; xs 2 R+; 8 0 < s < t: (3.3)In light of (3.1) and (3.3), in order to write the joint distribution of fX(s);X(t)g, one needsthe onditional distribution funtion , say from one of the Xi(s) to one of the Xj(t)0s. Withoutloss of generality , let P [X1(t) � x1tjXk(s) = xks℄ = �Gk;1s;t (x1tjxks) (say): (3.4)These probabilities are the linkage probabilities.Then, using B1; B2; B3, the joint distribution of fX(1);X(2); : : : ;X(m)g an be determinedby f �F (s); �F1;2(tjs); �G(k;1)s;t (tjs)gFurther for 0 < s < t,P [X(t) � xt;X(s) � xs℄ = �F (xs1) tYs=1 kYj=2 �F1;2(xsj jxsj�1) tYs=2 �Gk;1s;t (x1tjxks) (3.5)In a similar way �nite distribution of any order an be written .As before , we onsider the proess fZn; n � 1g given in (2.9) and study suÆient onditionsfor the proess to be assoiated in time. Theorem 2.1 holds even in this ase when the statespae is ontinuous. 10



Theorem 3.1: Suppose that for the stohasti proess X onditions B1 � B3 hold. Furthersuppose that P [Xj(s) � xsj jXj�1(s) = xsj�1 ℄ is inreasing in xsj�1 8s � 1; j � 2; (3.6)P [X1(s) � xs1 jXk(s� 1) = xs�1k ℄ is inreasing in xs�1k 8s � 1; j � 2: (3.7)Then it is assoiated in time.Pitt (1982) showed that positively orrelated normal random variables are assoiated. Henewe have the following two results.Theorem 3.2: If fZn; 1 � n � mg have Nm(�;�), with �i;j � 0 , then fZn; n � 1g areassoiated in time.Theorem 3.3: If fX(ti)1 � i � mg have Nk(�k;�k), with �ki;j � 0 , andP [X1(s) � xs1 jXk(s� 1) � x(s�1);k℄ is inreasing in x(s�1);k 8s; (3.8)then the proess fXg is assoiated in time.Note that we donot need the proess fXg to be Markovian for theorems 3.2 and 3.3 to betrue.4 Appliations to dental dataBelow given in Tables 1 and 2 is a part of dental data analysed by Das and Chattopadhyay(2004). It gives stain on the same tooth at all the four positions before and after brushing ,respetively. Numbers under (P1; P2; P3; P4), indiate the amount of stain at eah of the fourpositions on the seleted tooth of an individual.
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Table 1 Table 2Dental Data: Stain Before Brushing Dental Data: Stain Before BrushingIndividual P1 P2 P3 P41 1 1 1 22 1 1 2 23 1 1 2 24 1 1 2 25 1 1 2 26 1 2 2 27 1 2 2 28 1 2 2 29 1 2 2 210 1 2 2 211 1 2 2 212 1 2 2 213 1 2 2 314 2 1 2 215 2 2 2 216 2 2 2 217 2 2 2 218 2 2 2 219 2 2 2 220 2 2 2 221 2 2 2 222 2 2 2 223 2 2 2 224 2 2 2 325 2 2 2 3
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