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ABSTRACTConsider a ve
tor valued pro
ess X given by X = ffXi(m);m � 1g;1 � i � kg takes values on a �nite set Ek where E : f1; 2; : : : ; ng. We derive suÆ
ient
onditions under whi
h su
h a sto
hasti
 pro
ess is asso
iated in time. An illustrative examplewherein su
h a pro
ess is useful is also provided. We show that one data set on stain on toothis asso
iated in time and the other one is 'almost' asso
iated in time.Primary Subje
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1 Introdu
tionConsider a ve
tor valued pro
ess X given by X = ffXi(m);m � 1g; 1 � i � kg that takesvalues on a �nite set Ek where E : f1; 2; : : : ; ng. The array 
an be written asX1(1) X1(2) � � � X1(b� 1) X1(b) � � � X1(m)X2(1) X2(2) � � � X2(b� 1) X2(b) � � � X2(m)... ... ... ... ... ... ...Xa(1) Xa(2) � � � Xa(b� 1) Xa(b) � � � Xa(m)... ... ... ... ... ... ...Xk(1) Xk(2) � � � Xk(b� 1) Xk(b) � � � Xk(m):We assume that for �xed b, variables in the bth 
olumnX1(b);X2(b); : : : ;Xk(b) are dependent random variables and random ve
tors a
ross rows forma sto
hasti
 pro
ess.Motivation for the model 
omes from data on an oral hygiene study. Dentists re
ordedthe redu
tion in the amount of plaque on teeth . Ea
h individual in the data was monitoredfor 
ouple of days. Two teeth were identi�ed one on left lower 
anine whi
h is in the leftlower jaw of the 
orner of a jaw, and one on molar at upper right jaw. The redu
tion in thethi
kness of plaque for subje
ts are usually re
orded as belonging to four di�erent 
ategories,viz, no redu
tion, slight redu
tion, moderate redu
tion and vast redu
tion. One of the obje
tsof the study was to evaluate e�e
tiveness of brushing. In su
h 
ases natural question 
an be:is it possible to redu
e the number of re
ords per individual per day? If there is some sort ofdependen
e, it may be possible to redu
e the dimension of the data. Das and Chattopadhyay(2004) developed a latent mixture regression model to study this 
ategori
al multivariate data.Canoni
al 
orrelation fa
tor analysis are the tools used for non-longitudinal measurabledata. To deal with reliability data Barlow and Pros
han (1975) de�ned various 
on
epts ofbivariate and multivariate dependen
e and studied their relationships. For sake of 
ompletenesswe give de�nitions of dependen
e 
on
epts needed in sequen
e.Given random variables S and T following are some of the 
on
epts of bivariate dependen
e.De�nition 1.1 (Right Tail In
reasing) : A random variable T is right tail in
reasing(RTI) in a random variable S if P [T > tjS > s℄ is in
reasing in s for all t.De�nition 1.2 (Sto
hasti
ally In
reasing) : A random variable T is sto
hasti
ally in-
reasing (SI) in a random variable S if P [T > tjS = s℄ is in
reasing in s for all t.De�nition 1.3 (Multivariate Sto
hasti
ally In
reasing): A random variable T issto
hasti
ally in
reasing in random variables S1; S2; : : : ; Sk if P [T > tjS1 = s1; S2 = s2; : : : ; Sk =sk℄ is in
reasing in s1; s2; : : : ; sk.De�nition 1.4 (Conditionally In
reasing in Sequen
e): Random variables T1; T2; : : : ; Tn2



are 
onditionally in
reasing in sequen
e if P [Ti > tijTi�1 = ti�1; : : : ; T1 = t1℄ is in
reasing in t1; t2; : : : ; ti�1 for i = 1; 2; : : : ; n, that is Ti is sto
has-ti
ally in
reasing in T1; T2; : : : ; Ti�1.De�nition 1.5 (Asso
iated): Random variables T1; T2; : : : ; Tn are asso
iated if Cov(�(T );�(T )) �0 for all pairs of 
o-ordinatewise in
reasing fun
tions � and �.Remark 1.6 : An in�nite sequen
e of random variables fTn; n � 1g is said to be asso
iatedif it is asso
iated for every �nite n.Barlow and Pros
han (1975) showed that SI(T jS) implies RTI(T jS) and if T1; T2; : : : ; Tnare 
onditionally in
reasing in sequen
e then they are asso
iated. Asso
iated random variablesarise in reliability, statisti
al me
hani
s, per
olation theory, et
. For a detailed review seeRoussas (1999) and Prakasa Rao and Dewan (2001). The 
on
ept of asso
iation in time wasde�ned by Hjort et al (1985).De�nition 1.7 (Asso
iated in time ): The sto
hasti
 pro
ess X is said to be asso
iatedin time i�, for any integer m and ft1; : : : ; tmg, the random variables in the above array areasso
iated.Hjort et al (1985) and Kuber and Dharamadhikari (1996) dis
uss suÆ
ient 
onditions underwhi
h asso
iation in time for Markov and semi Markov pro
esses holds.We model a ve
tor valued sto
hasti
 pro
ess, re
ognize its multivarite stru
ture for a spe
i�
time, and longitudinal aspe
ts over the period of time and identify suÆ
ient 
onditions forsu
h a pro
ess to be asso
iated in time. In se
tion 2 we dis
uss the dis
rete 
ase with spe
ialreferen
e to multivariate Bernoulli random ve
tors. In se
tion 3 we dis
uss the 
ontinuous 
asewith spe
ial referen
e to multivariate normal random ve
tors2 The Dis
rete CaseConsider the sto
hasti
 pro
ess ffXi(m);m � 1g; 1 � i � kg. For i; j 2 E, letP [X1(1) = i℄ = �i; i = 1; 2; : : : ; n;P [Xa(b) = jjXa�1(b) = i℄ = Pi;j 8 2 � a � k;P [X1(b) = jjXk(b� 1) = i℄ = Li;j; b � 1: (2.1)Note that �i is the initial probability , Pi;j are the usual one step transition probabilities, Li;jlink two ve
tors X(b) and X(b � 1) in terms of the �rst entry of the bth 
olumn and the lastentry of the (b� 1)th 
olumn. Hen
e we 
all them linkage probabilities.Assume that 8 2 � a � k; b � 1A1 : P [Xa(b) = ib;ajXa�1(b) = ib;a�1; : : : ;X1(b) = ib1℄= P [Xa(b) = ib;ajXa�1(b) = ib;a�1℄3



= Pib;a�1;ib;a(b): (2.2)Further, suppose thatA2 : P [X1(b) = ib1jXb�1 = ib�1℄ = P [X1(b) = ib;1jXk(b� 1) = i(b�1);k℄: (2.3)Note that A1 is a Markov-like assumption for a �nite 
olle
tion of 
hronologi
ally ordered ran-dom variables and A2 is a Markov-like assumption for the probabilities whi
h link a 
omponentof a ve
tor with the last 
omponent of the previous ve
tor.For b = 1 , the joint distribution of fX1(b); : : : ;Xk(b)g will be determined by f�i; Pi;j ; i; j =1; 2; : : : ; ng.For s = 1; 2; : : : ;m , let is = (is;1; is;2; : : : ; is;k). Then from assumption (A1; A2) it followsthat P [Xk(1) = i1;k;Xk�1(1) = i1;k�1; : : : ;X1(1) = i1;1℄= P [Xk(1) = i1;kjXk�1(1) = i1;k�1; : : : ;X1(1) = i1;1℄= P [Xk�1(1) = i1;k�1jXk�2(1) = i1;k�2; : : : ;X1(1) = i1;1℄ : : : P [X1(1) = i1;1℄= kYj=2P [Xj(1) = i1;j jXj�1(1) = i1;j�1; : : : ;X1(1) = i1;1℄P [Xj(1) = i1;1℄= kYj=2P [Xj(1) = i1;j jXj�1(1) = i1;j�1℄P [Xj(1) = i1;1℄ (2.4)Further, P [X(2) = i2;X(1) = i1℄= P [Xk(2) = i2kjXk�1(2) = i2;k�1; : : : ;X1(2) = i2;1;X(1) = i1℄: : : P [X2(1) = i21jXk(1) = i1k;Xk�1(1) = i1;k�1; : : : ;X1(1) = i1;1℄= kYj=2P [Xj(2) = i2;j jX(j�1)(2) = i2;j�1℄P [X1(2) = i21jXk(1) = i1k℄ kYj=2P [Xj(1) = i1;j jXj�1(1) = i1;j�1℄P [X1(1) = i1;1℄ (2.5)In general , let (a � 1)k < ` � ak; a � 1. Then ` = (a � 1)k + dfor some d 2 f1; 2; : : : ; kg: Consider the joint distribution of fX(1);X(2); : : : ;X(b� 1);X1(b) = ib;1; : : : ;Xd(b) = ib;dg.Then, using A1 and A2, we getP [X(1) = i1;X(2) = i2; : : : ;X(b� 1) = i(b�1);X1(b) = ib;1; : : : ;Xd(b) � ib;d℄= P [Xd(b) � ib;d;Xd�1(b) � ib;d�1; : : : ;X1(1) � i1;1℄4



= P [Xd(b) � ib;djXd(b) � ib;d℄ bYs=1 kYa=2P [Xa(s) = is;ajXa�1(s) = is;a�1℄bYs=2P [X1(s) = is;1jXk(s� 1) = is�1;k℄P [X1(1) = i1;1℄: (2.6)Note that this expression involves (b � 1) linkage probabilities and(b� 1)(k � 1) + d one step 
onditional probabilities and one initial probability.Hen
e P [Xd(b) � ib;djXd�1(b) � ib;d�1; : : : ;X1(1) = i1;1℄= ( P [X1(b) � ib;1jXk(b� 1) = ib�1;k℄ if d = (b� 1)k + 1;P [Xd(b) � ib;djXd�1(b) � ib;d�1℄ if (b� 1)k + 1 < d � bk:Thus, we 
an write all �nite dimensional distributions of su
h a ve
tor valued pro
ess one wouldrequire information about f�i; Pi;j ; Li;j; i; j 2 Eg: (2.7)Here Xi �i = 1; Xj Pij = 1 8i; Xj Lij = 1 8 i: (2.8)For the given pro
ess X , let fZn; n � 1g be a pro
ess, where,Z(i�1)k+j st= Xi(j); j � 1 ; 1 � k: (2.9)Hen
e all �nite dimensional distributions of X and fZn; n � 1g 
oin
ide.Now we 
onsider a set of suÆ
ient 
onditions for asso
iation in time for the pro
ess fZn; n �1g.Theorem 2.1: If fZn; n � 1g is 
onditionally sto
hasti
ally in
reasing then it is asso
iated intime.Proof follows from the fa
t that 
onditionally sto
hasti
ally in
reasing random variables areasso
iated (see, Barlow and Pros
han (1975)).Theorem 2.2: Suppose 
onditions A1 and A2 hold for the sto
hasti
 pro
ess X. Furthersuppose thatP [Xa(b) � ib;ajXa�1(b) = ib;a�1℄ is in
reasing in ib;a�1 8b � 1; a � 2; (2.10)P [X1(b) � ib;1jXk(b� 1) = ib�1;k℄ is in
reasing in ib�1;k 8b � 1; a � 2: (2.11)Then it is asso
iated in time.Proof follows immediately from (2.6). 5



Thus suÆ
ient 
onditions for X to be asso
iated in time are that all one-step 
onditionaland linkage survival probabilities are sto
hasti
ally in
reasing. Sin
e right tail in
reasing im-plies sto
hasti
ally in
reasing, it is suÆ
ient that these 
onditional probabilities are right tailin
reasing.Lemma 2.3: Suppose X;Y are dis
rete random variables on the same �nite sample spa
e E.Further suppose thatP [X = xjY = y℄ is in
reasing in y for ea
h x � y;is de
reasing in y for ea
h x < y: (2.12)Then P [X � xjY = y℄ is in
reasing in y for ea
h x: (2.13)Proof : First note that P [X � xjY = y℄ = mXz=xP [X = zjY = y℄The proof is trivial when y � x � m. When x < y � m , we haveP [X � xjY = y℄ = y�1Xz=xP [X = zjY = y℄ + mXz=yP [X = zjY = y℄= P [X < yjY = y℄� P [X < xjY = y℄ + P [X � yjY = y℄= 1� P [X < xjY = y℄The proof follows from the fa
t that P [X = xjY = y℄ is de
reasing in y for ea
h x < y:The lemma leads to the following thorem.Theorem 2.4: Suppose 
onditions A1 and A2 hold for the sto
hasti
 pro
ess X. Furthersuppose thatP [Xa(b) = ib;ajXa�1(b) = ib;a�1℄ is in
reasing in ib;a�1 8ib;a � ib;a�1 b � 1; a � 2;is de
reasing in ib;a�1 8ib;a < ib;a�1 b � 1; a � 2;(2.14)P [X1(b) = ib;1jXk(b� 1) = ib�1;k℄ is in
reasing in ib�1;k 8ib;1 � ib�1;k 8b � 1; a � 2is de
reasing in ib�1;k 8ib;1 < ib�1;k 8b � 1; a � 2(2.15)Then it is asso
iated in time. 6



Theorems 2.1 , 2.2 and 2.4 give suÆ
ient 
onditions for X to be asso
iated in time . The-orem 2.1 does not require the Markovian assumption (A1; A2). Theorem 2.2 requires one-step
onditional and linkage survival probabilities to be sto
hasti
ally in
reasing. Sin
e right tailin
reasing implies sto
hasti
ally in
reasing, it is suÆ
ient that these 
onditional probabilitiesare right tail in
reasing.However, the 
onditions in Theorem 2.4 are in terms of 
onditional mass fun
tion , that isin terms of the kernel of X. Hen
e these are easily ver�able. Theorems 2.2 and 2.4 give weaker
onditions for verifying asso
iated in time provided the underlying pro
ess is Markovian in thesense de�ned (A1; A2).2.1 The Bernoulli CaseMarshall and Olkin (1985) 
onsidered a bivariate Bernoulli distribution whose marginals areBernoulli random variables. They have used this bivariate Bernoulli distribution to generatebivariate binomial, poisson and hypergeometri
 distributions.Now we 
onsider two models a multipli
ative and an additive whi
h arise from independentBernoulli random variables and 
an be 
onsidered as an extension of Bernoulli random variablesto k dimensional dependent variables.They will be used to study asso
iation in time for the pro
esses like dis
ussed above. How-ever, they are of independent interest as well.2.1.1 The Multipli
ative ModelLet Y1; Y2; : : : ; Yk�1; Yk be independent B(1; pi); i = 1; 2; : : : ; k random variables . De�ne anew random ve
tor W as follows,Wi = Yi � Yk; i = 1; 2; : : : ; k � 1;Wk = Yk (2.16)Note that ea
h Wi is in
reasing in its arguments. Sin
e independent random variables areasso
iated and in
reasing fun
tions of asso
iated randon variables are asso
iated (Esray et al(1967) ), we have W = (W1;W2; : : : ;Wk) are asso
iated random variables.The joint distribution of (W1;W2; : : : ;Wk) is given byP [W1 =W2 =; : : : ;Wk = 0℄ = 1� pk;P [W1 =W2 =; : : : ;Wk = 1℄ = kYi=1 pi;P [W1 = w1;W2 = w2; : : : ;Wk�1 = wk�1;Wk = 0℄ = 0;if wj = 1 for any1 � j < k;P [W1 = w1;W2 = w2; : : : ;Wk�1 = wk�1;Wk = 1℄ = pk[k�1Yj=1 pwjj (1� pj)1�wj ℄;otherwise: (2.17)7



For 
ompleteness note that for i = 1; 2; : : : ; k � 1,P [Wi = 1℄ = pipk;P [Wi = 0℄ = 1� pipk;Cov(Wi;Wj) = pipjpk(1� pk); i 6= j: (2.18)Further, for i 6= k, Cov(Wi;Wk) = pipk(1� pk): (2.19)However, note that P [W3 = 1jW2 = 0;W1 = 0℄ = (1� p1)(1� p2)p3pk1� p1pkP [W3 = 1jW2 = 0℄ = (1� p2)p3pk1� p2pk (2.20)Clearly the Markovian propert de�ned in (A1) does not hold. Following result is true .Theorem 2.5: Let fXa(b); a = 1; 2; : : : ; kg be independent B(1; pa) random variables for allb � 1. De�ne Z` = Xa(1) �Xk(1); 1 � ` � k � 1;Zjk = jYa=1Xk(a); j � 1;Z` = Xa(b) � Zbk; ` = (b� 1)k + a; 1 � a < k: (2.21)Then fZn; n � 1g are asso
iated in time .2.1.2 The Additive ModelWe also 
onsider another additive model whi
h des
ribes the dental data mentioned earlier.Now , let Y1; Y2; : : : ; Yk be independent B(1; pi); i = 1; 2; : : : ; k random variables and U beB(1; p) random variable independent of Yi; i = 1; 2; : : : ; k. De�ne a new random ve
tor W � asfollows, W �i = Yi + U; i = 1; 2; : : : ; k: (2.22)Note that (W1;W2; : : : ;Wk) are asso
iated random variables. Further ea
hW �i takes valuesf0; 1; 2g.We haveP [W �i = 0℄ = (1� pi)(1� p); P [W �i = 1℄ = (1� pi)p+ (1� p)pi; P [W �i = 2℄ = pi � p: (2.23)Note that E(W �i ) = p+ pi 8 i;Var(W �i ) = p(1� p) + pi(1� pi) 8 i;Cov(W �i ;W �j ) = p(1� p) 8 i 6= j: (2.24)8



This idea 
an be extended su
h that W �i is a sum of 2 or more independent Bernoullirandom variables and a 
ommon e�e
t.In this 
ase alsoP [W �3 = 1jW �2 = 1;W �1 = 0℄ = p3P [W �3 = 1jW �2 = 1℄ = p(1� p2)(1� p3) + (1� p)p2p3p(1� p2) + p2(1� p) (2.25)Hen
e the Markovian property does not hold. However, the pro
ess fZn; n � 1g , de�ned belowis asso
iated in timeTheorem 2.6: Let fXa(b); a = 1; 2; : : : ; k; b � 1g be independent B(1; pa) random variablesfor all b � 1. Let Uj ; j = 1; 2; : : : ; be independent B(1; p�j ) random variables, independent offXa(b)g. De�ne Z` = Xa(1) + U1; 1 � ` � k;Z` = Xa(b) + bYj=1Uj; ` = (b� 1)k + a; 1 � a � k: (2.26)Then fZn; n � 1g are asso
iated in time.Hen
e for both the models 
onsidered above the sto
hasti
 pro
esses of interest are notMarkovian. Hen
e theorems 2.2 and 2.4 
annot be used. However, both the pro
esses areasso
iated in time.3 The 
ontinuous 
aseIn se
tion 2, the state spa
e of the pro
ess X was 
onsidered to be dis
rete. When the re
ordsare on a
tual measurements on an individual (devi
e) at a given point, the random variablesXa(b) take values in an interval. For example, in 
ase of dental data amount of stain may bemeasurable . In su
h 
ases one has to study the ve
tor valued pro
ess fXg, dis
rete in time and
ontinuous in state spa
e. In what follows we provide suÆ
ient 
onditions for asso
iation intime for su
h a pro
ess. To begin with, as in se
tion 2, we provide a result based on 
onditionallysto
hasti
ally in
reasing sequen
e and then following Pitt (1982) obtain the suÆ
ient 
onditionfor asso
iation when the �nite dimensional distribution follows multivariate normal distribution.As before X = fX(b); b 2 Ng. fX(b); b = 1; 2; : : : ;mg is a 
olle
tion of km randomvariables. One would know the behaviour of these km random variables 
ompletely if oneknows the 
orresponding km dimensional multivariate distribution 
ompletely. We note thatthere are two 
o-ordinates of this family of random variables. For a �xed b 2 N , there are�nitely many, i.e., k random variables , say fX1(b);X2(b); : : : ;Xk(b)g, ea
h taking value in R+.This k dimensional multivariate distribution will be known 
ompletely if we know one marginaland su

essive 
onditionals, say P [X1(b) � x1℄; P [X2(b) � x2jX1(b) � x1℄; : : : ; P [Xk(b) �xkjXk�1(b) � xk�1; : : : ;X1(b) � x1℄. 9



Assume that B1 : P [Xj(b) � xj jX1(b) � x1; : : : ;Xj�1(b) � xj�1℄= P [Xj(b) � xj jXj�1(b) � xj�1℄= �Fj�1;j(xjjxj�1) (say)B2 : �Fj�1;j(xjy) = �F1;2(xjy); (3.1)Then, in order to know the k dimensional distributions one would require to know f �F1(x); �Fj�1;j(xj jxj�1) 8 xj 2R; j = 1; 2; : : : ; kg; where �F1(x) = P [X1(b) � x1℄:Further if the 
onditional survival fun
tions satisfy the stationarity property B2 and themarginals are identi
al, then the kernel of this k dimensional ve
tor would be f �F (x); �F1;2(xjy)g:Above is the multivariate expe
t of the family of random variables des
ribed above.Now to 
onsider the "pro
ess" aspe
t of it , 8 0 < s < t; s; t 2 N fX(s);X(t)g are jointlydistributed.One 
an say that fX(t); t � 0g is a ve
tor valued Markov pro
ess ifB3 : P [X(t) � xtjX(s) = xs; 8s � t℄= P [X(t) � xtjX(s) = xs℄= �Fs;t(xtjxs): (3.2)Further we assume stationarity, that is�Fs;t(xtjxs) = �Ft�s(xtjxs); 8xt; xs 2 R+; 8 0 < s < t: (3.3)In light of (3.1) and (3.3), in order to write the joint distribution of fX(s);X(t)g, one needsthe 
onditional distribution fun
tion , say from one of the Xi(s) to one of the Xj(t)0s. Withoutloss of generality , let P [X1(t) � x1tjXk(s) = xks℄ = �Gk;1s;t (x1tjxks) (say): (3.4)These probabilities are the linkage probabilities.Then, using B1; B2; B3, the joint distribution of fX(1);X(2); : : : ;X(m)g 
an be determinedby f �F (s); �F1;2(tjs); �G(k;1)s;t (tjs)gFurther for 0 < s < t,P [X(t) � xt;X(s) � xs℄ = �F (xs1) tYs=1 kYj=2 �F1;2(xsj jxsj�1) tYs=2 �Gk;1s;t (x1tjxks) (3.5)In a similar way �nite distribution of any order 
an be written .As before , we 
onsider the pro
ess fZn; n � 1g given in (2.9) and study suÆ
ient 
onditionsfor the pro
ess to be asso
iated in time. Theorem 2.1 holds even in this 
ase when the statespa
e is 
ontinuous. 10



Theorem 3.1: Suppose that for the sto
hasti
 pro
ess X 
onditions B1 � B3 hold. Furthersuppose that P [Xj(s) � xsj jXj�1(s) = xsj�1 ℄ is in
reasing in xsj�1 8s � 1; j � 2; (3.6)P [X1(s) � xs1 jXk(s� 1) = xs�1k ℄ is in
reasing in xs�1k 8s � 1; j � 2: (3.7)Then it is asso
iated in time.Pitt (1982) showed that positively 
orrelated normal random variables are asso
iated. Hen
ewe have the following two results.Theorem 3.2: If fZn; 1 � n � mg have Nm(�;�), with �i;j � 0 , then fZn; n � 1g areasso
iated in time.Theorem 3.3: If fX(ti)1 � i � mg have Nk(�k;�k), with �ki;j � 0 , andP [X1(s) � xs1 jXk(s� 1) � x(s�1);k℄ is in
reasing in x(s�1);k 8s; (3.8)then the pro
ess fXg is asso
iated in time.Note that we donot need the pro
ess fXg to be Markovian for theorems 3.2 and 3.3 to betrue.4 Appli
ations to dental dataBelow given in Tables 1 and 2 is a part of dental data analysed by Das and Chattopadhyay(2004). It gives stain on the same tooth at all the four positions before and after brushing ,respe
tively. Numbers under (P1; P2; P3; P4), indi
ate the amount of stain at ea
h of the fourpositions on the sele
ted tooth of an individual.
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Table 1 Table 2Dental Data: Stain Before Brushing Dental Data: Stain Before BrushingIndividual P1 P2 P3 P41 1 1 1 22 1 1 2 23 1 1 2 24 1 1 2 25 1 1 2 26 1 2 2 27 1 2 2 28 1 2 2 29 1 2 2 210 1 2 2 211 1 2 2 212 1 2 2 213 1 2 2 314 2 1 2 215 2 2 2 216 2 2 2 217 2 2 2 218 2 2 2 219 2 2 2 220 2 2 2 221 2 2 2 222 2 2 2 223 2 2 2 224 2 2 2 325 2 2 2 3

Individual P1 P2 P3 P41 0 0 0 02 0 0 0 13 0 0 0 14 0 0 0 15 0 0 0 16 0 0 0 17 0 0 0 18 0 0 0 19 0 0 0 110 0 0 0 111 0 0 0 112 0 0 0 213 0 0 0 214 0 0 1 115 0 0 1 116 0 0 1 117 0 0 1 118 0 0 1 119 0 0 1 120 0 0 1 121 0 1 1 122 0 1 1 123 0 1 1 124 0 1 1 125 1 1 1 2It is easy to verify that data in Table 1 are 
onditionally in
reasing in its 
o-ordinates.However , for data in Table 2 all probability inequalities are in the desired dire
tion ex
ept thatP [P4 � 3jP1 = 1; P2 = 0; P3 = 1℄ = 1=2, while P [P4 � 3jP1 = 0; P2 = 0; P3 = 0℄ = 11=12. Notethat the �rst probability is based on only 2 observations and the departure 
an be attributed tosampling/measuring errors. With su
h an undertanding, both the data sets 
an be 
onsideredto be asso
iated in time . Hen
e measurement only at one of the four positions, say at P4,would suÆ
e for statisti
al analysis. To the best of our knowledge there are no statisti
al testsfor testing if a sequen
e of random variables is 
onditionally in
reasing.A
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