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Summary : We revisit the problem of mutually unbiased measurements in the ontext ofestimating the unknown state of a d-level quantum system, �rst studied by W. K. Woottersand B. D. �elds[7℄ in 1989 and later investigated by S. Bandyopadhyay et al [3℄ in 2001 and A.O. Pittenger and M. H. Rubin [6℄ in 2003. Our approah is based diretly on the Weyl operatorsin the L2-spae over a �nite �eld when d = pr is the power of a prime. When d is not a primepower we sari�e a bit of optimality and onstrut a reovery operator for reonstruting theunknown state from the probabilities of elementary events in di�erent measurements.Key words : Mutually unbiased measurements, �nite �eld, Weyl operators, error basis.AMS 2000 Mathematis Subjet Classi�ation 47L90, 47N50, 81P68 (?)1 IntrodutionThis is almost an expository aount of a well-known problem of quantum probability andstatistis arising in the ontext of quantum information theory. There is a d-level quantumsystem whose pure states are desribed by unit vetors in a d-dimensional omplex Hilbertspae H equipped with the salar produt h'j i between elements '; in H: This salarprodut is linear in the variable  and antilinear in the variable ': Throughout this expositionwe assume that d is �nite. Denote by B(H) the ?-algebra of all operators on H: The omplexd2-dimensional vetor spae B(H) will also be viewed as a Hilbert spae with the salar produthXjY i = TrXyY where Xy denotes the adjoint of the operator X: Denote by S(H) � B(H)the ompat onvex set of all nonnegative (de�nite) operators of unit trae. Any element � inS(H) is alled a state of the system. The extreme points of S(H) are preisely one dimensionalorthogonal projetions. They are alled pure states. In the Dira notation any pure state an beexpressed as j ><  j where  is a unit vetor in H: Denote by P(H) the set of all orthogonal



projetion operators (or, simply, projetions) on H: Any element P in P(H) is alled an eventonerning the system and the quantity Tr�P is interpreted as the probability of the event P inthe state �: In the ontext of quantum information theory the state of a quantum system anbe utilized as an information resoure. If the system is in an unknown state � it is important toestimate � from \independent repeated measurements". If we hoose and �x an orthonormalbasis fe0; e1; : : : ; ed�1g in H then � is desribed in this basis by a nonnegative de�nite matrix((�ij)) where �ij = heij�jeji:Thus determination of � involves the determination of d2 � 1 real parameters, namely,�ii; i = 1; 2; : : : ; d � 1; Re �ij ; Im�ij ; 0 � i < j � d � 1: (Note that �00 = 1 � d�1Pi=1 �ii and�ij = ��ji:)By an elementary measurement M = fP0; P1; : : : ; Pd�1g we mean a family of d mutuallyorthogonal one dimensional projetion operators Pj ; j = 0; 1; 2; : : : ; d � 1 so that d�1P0 Pj = I;the identity operator. If the measurement M is performed when the state of the system is�; the result of suh a measurement is one of the lassial outomes j 2 f0; 1; 2; : : : ; d � 1gwith probability Tr�Pj = pj for eah j: Independent repeated trials of the measurement in thesame state � yield frequenies fj for eah elementary outome j and fj an be viewed as anestimate of pj for eah j: Thus an elementary measurement overs at most d � 1 degrees offreedom onerning � in view of the relation d�1Pj=0 pj = 1: In order to estimate � it is thereforeneessary to examine the frequenies of elementary outomes in at least d + 1 elementarymeasurements Mj ; 0 � j � d where no two of the measurements Mi and Mj have any\overlap of information". Suh an attempt is likely to over all (d+1)(d� 1) = d2 � 1 degreesof freedom involved in reonstruting or estimating the unknown �: To bring larity to thenotion of \nonoverlap of information" in a pair of elementary measurements it is useful to lookat the ?-abelian algebraA(M) = 8<: d�1Xj=0 ajPj������ aj 2 C ; j = 0; 1; : : : ; d� 19=; :Any element X = d�1Pj=0 xjPj in A(M) an be looked upon as a omplex-valued observable wherePj is interpreted as the event that \X assumes the value xj". Of ourse, this is justi�ed if allthe xj 's are distint salars. If x is any salar then the event that X assumes the value x isthe projetion Pj:xj=xPj : Thus the subalgebra C I � A(M) onsists preisely of onstant-valuedobservables. Suh an interpretation motivates the following formal de�nition.De�nition 1.1 Two elementary measurements M = fP0; P1; : : : ; Pd�1g;M0 = fQ0; Q1; : : : ; Qd�1g are said to be weakly mutually unbiased (WMUB) ifA(M) \A(M0) = C I;2



and strongly mutually unbiased (SMUB) if, in the Hilbert spae B(H); the subspaes A(M)	C Iand A(M0)	 C I are mutually orthogonal. (Here, for two subspaes S1 � S2 � B(H); S2 	 S1denotes the orthogonal omplement of S1 in S2).Clearly SMUB implies WMUB. We shall now desribe these two properties in terms of thequantities TrPiQj:Proposition 1.2 Two elementary measurementsM = fP0; P1; : : : ; Pd�1g;M0 = fQ0; Q1; : : : ; Qd�1gare SMUB if and only ifTrPiQj = d�1 for all i; j;2 f0; 1; 2; : : : ; d� 1g: (1.1)Proof: Note that the subspaes A(M)	 C I and A(M0)	 C I are respetively spanned by thesubsets fPj � d�1I; 0 � j � d� 1g and fQj � d�1I; 0 � j � d� 1g: Thus the orthogonality ofthese two subspaes is equivalent to the ondition0 = hPi � d�1I��Qj � d�1Ii = Tr(Pi � d�1I)(Qj � d�1I) = (TrPiQj)� d�1for all i; j in f0; 1; 2; : : : ; d� 1g: 2Proposition 1.3 Let M = fP0; P1; : : : ; Pd�1g; M0 = fQ0; Q1; : : : ; Qd�1g be two elementarymeasurements. SupposeL = [Tr(Pi � P0)(Qj �Q0)℄ ; i; j 2 f1; 2; : : : ; d� 1gand Jd�1 is the (d � 1) � (d � 1) matrix all the entries of whih are unity. Then M and M0are WMUB if and only ifdet�Id�1 + Jd�1 + d�1LJd�1Ly � LLy� > 0: (1.2)Proof: Let X 2 A(M) \ A(M0): Then there exist salars ai; bj ; i; j 2 f1; 2; : : : ; d � 1g suhthat X = d�1(TrX)I + d�1Xi=1 ai(Pi � P0)= d�1(TrX)I + d�1Xj=1 bj(Qj �Q0):ThusM andM0 are WMUB if and only if the set fP1�P0; P2�P0; : : : ; Pd�P0; Q1�Q0; Q2�Q0; : : : ; Qd�Q0g of 2(d� 1) elements in the Hilbert spae B(H) is linearly independent. This,in turn, is equivalent to the strit positive de�niteness of the partitioned matrix" [Tr(Pi � P0)(Pj � P0)℄ [Tr(Pi � P0)(Qj �Q0)℄[Tr(Qi �Q0)(Pj � P0)℄ [Tr(Qi �Q0)(Qj �Q0)℄ # ; i; j 2 f1; 2; : : : ; d� 1g3



of order 2(d � 1): We haveTr(Pi � P0)(Pj � P0) = Tr(Qi �Q0)(Qj �Q0) = ( 2 if i = j;1 if i 6= j:Thus, M and M0 are WMUB if and only if" Id�1 + Jd�1 LLy Id�1 + Jd�1 #has a stritly positive determinant. Left multipliation of this matrix by the matrix" Id�1 �L(Id�1 + Jd�1)�10 Id�1 #with unit determinant yields the equivalent onditiondet�Id�1 + Jd�1 � L(Id�1 + Jd�1)�1Ly� > 0: (1.3)Sine (Id�1 + Jd�1)�1 = Id�1 � d�1Jd�1;ondition (1.3) redues to ondition (1.2). 2Corollary 1.4 If the matrix L of Proposition 1.3 satis�es the inequality kLk < 1(where k:k isthe standard operator norm in the ?-algebra B(C d�1) then M; M0 are WMUB. FurthermoreM; M0 are SMUB if and only if L = 0:Proof: Immediate. 2In the ontext of minimizing the number of elementary measurements required for estimat-ing the state � of a quantum system Proposition 1.2 emphasizes the importane of the searhfor d + 1 elementary measurements whih are pairwise SMUB. When d is a prime power prthe existene of suh a family of SMUB measurements was proved by Wootters and Fields [7℄.Alternative proofs of this result were given by S. Bandyopadhyay et al in [3℄ and Pittenger andRubin in [6℄. In this paper we shall present a proof of the same result by using the ommutationrelations of Weyl operators in the L2 spae of the �nite �eld FP r :When d = pm11 pm22 : : : pmnn withpi's being prime we shall use the Weyl ommutation relations in the L2 spae of the additiveabelian group 
ni=1Fpimi and study the problem of estimating the unknown state of a d-levelsystem. This leads to an interesting reonstrution formula for a state � in terms of proba-bilities of d2 � 1 events arising from Qni=1(pmii + 1) elementary measurements. However, onewould like to express � in terms of the probabilities of elementary outomes in (Qni=1 pmii + 1)elementary measurements.
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2 The ase d = prLet dimH = d = pr be a prime power. For any prime power q denote by Fq the unique (uptoa �eld isomorphism) �nite �eld of ardinality q: Choose and �x any nontrivial harater � ofthe additive group Fd and put hx; yi = �(xy); x; y 2 Fd : (2.1)One an, for example, look upon Fd as an r-dimensional vetor spae over Fp ; express anyelement x in Fd as an ordered r-tuple: x = (s1; s2; : : : ; sr) where 0 � si � p� 1 for eah i andput �(x) = exp 2�ip s1: (2.2)Then we have jhx; yij = 1; hx; yi = hy; xi; hx; y1 + y2i = hx; y1ihx; y2i and x = 0 if hx; yi = 1for all y in Fd : In other words, h:; :i is a nondegenerate symmetri biharater for Fd : Identifythe Hilbert spae H with L2(Fd ); using the ounting measure in Fd ; and putjx >= 1fxg; x 2 Fdwhere 1fxg is the indiator funtion of the singleton subset fxg in Fd : Then fjx >; x 2 Fdg isan orthonormal basis for H labelled by the elements of Fd : Now, onsider the unique unitaryoperators Ua; Ub in H determined by the relationsUajx > = ja+ x >;Vbjx > = < b; x > jx > for all x 2 Fd :Then we have UaUb = Ua+b; VaVb = Va+b; (2.3)VbUa = ha; biUaVb: (2.4)Elementary algebra shows thatTr (Ua1Vb1)yUa2Vb2 = dÆa1;a2Æb1 ;b2 (2.5)for all a1; a2; b1; b2 in Fd : In partiular, the family fUaVb; a; b 2 Fdg of d2 unitary operatorsonstitute an orthogonal basis for the Hilbert spae B(H): This is an example of a unitaryerror basis in the theory of error orreting quantum odes [4℄. Notie also the fat that fUagand fVbg are like the position and momentum representations obeying the Weyl ommutationrelations in lassial quantum mehanis. In view of this property we all any operator of theform �UaVb; j�j = 1; a; b 2 Fd a Weyl operator. We say that (2.3) and (2.4) onstitute theWeyl ommutation relations. The usefulness of suh an error basis of Weyl operators in thestudy of quantum odes has been explored in [1℄, [2℄,[5℄. We shall slightly modify the errorbasis fUaVbg by multiplying eah element UaVb by an appropriate phase fator. One again5



viewing Fd as an r-dimensional vetor spae over Fp ; expressing any x 2 Fd as an orderedr-tuple x = (s1; s2; : : : ; sr) with 0 � si � p � 1 for eah i and onsidering the basis elementsei = (0; 0; : : : ; 0; 1; 0; : : : ; 0) of the �eld Fd with 1 in the i-th position and 0 elsewhere we writex = s1e1 + s2e2 + � � �+ srer and de�ne�(a; x) = �0�a8<:Xi<j sisjeiej +Xj sj(sj � 1)2 e2j9=;1A ; ajx 2 Fd (2.6)where � is the harater hosen and �xed at the beginning of this setion.Now put �Fd = Fd [ f1g and writeW (a; x) = ( �(a; x)UxVax if a 2 Fd ; x 2 Fd ;Vx if a =1: (2.7)Then we have the following proposition.Proposition 2.1 The family �I;W (a; x); a 2 �Fd ; x 2 Fd n f0g	 is an orthogonal basis of unitaryoperators for the operator Hilbert spae B(H) satisfying the relationsW (a; x)W (a; y) =W (a; x+ y) for all a 2 �Fd ; x 2 Fd : (2.8)Proof : The �rst part is immediate from the fat that the family of operators under onsider-ation di�ers from the family fUxVy; x; y 2 Fdg only by a salar fator of modulus unity in eahelement. If a 2 Fd ; x =P siei; y =P tiei we have from (2.3) (2.4)W (a; x)W (a; y)= �(a; x)�(a; y)hax; yiUx+yVa(x+y)= �(a; x)�(a; y)�(a; x + y)hax; yiW (a; x + y)where the oeÆient of W (a; x+ y) is of the form �(az) withz = Xi<j sisjeiej +Xj sj(sj � 1)2 e2j +Xi<j titjeiej +Xj tj(tj � 1)2 e2j�Xi<j (si + ti)(sj + tj)eiej �Xj (sj + tj)(sj + tj � 1)2 e2j +Xi;j sitjeiej= 0:This proves (2.8) when a 2 Fd : When a =1; (2.8) is a part of (2.3). 2Theorem 2.2 There exists a family of one dimensional orthogonal projetion operators fP (a; x); a 2�Fd ; x 2 Fdg satisfying the following :(i) W (a; x) = Py2Fdhx; yiP (a; y) 6



(ii) P (a; y) = d�1 Px2Fd hx; yiW (a; x);(iii) P (a; x)P (a; y) = Æx;yP (a; x);(iv) Px2Fd P (a; x) = I;(v) TrP (a; x)P (b; y) = d�1 for all a 6= b; a; b 2 �Fd ; x; y 2 Fd :Proof : By Proposition 2.1 the orrespondene x ! W (a; x) is a unitary representation ofthe additive abelian group Fd and fh:; yi; y 2 Fdg is the set of all its haraters. Thus thedeomposition of fW (a; :)g into its irreduible omponents yields a spetral measure P (a; :) onFd satisfying (i), (iii) and (iv). Substituting from (i) the expression for W (a; x) in the righthand side of (ii) and using the orthogonality relations for haraters we get (ii). Taking traeon both the sides of (ii) and observing that W (a; 0) = I and TrW (a; x) = 0 for x 6= 0 we getTrP (a; y) = 1: Thus eah P (a; y) is a one dimensional projetion. Substituting for P (a; x) andP (a; y) from (ii) in the left hand side of (v) we have from (2.7), (2.3) and (2.4)TrP (a; x)P (b; y)= d�2 Xz1;z22Fdhx; z1ihy; z2i Tr W (a; z1)W (b; z2)= d�2 Xz1;z22Fdhx; z1ihy; z2i�(a; z1)�(b; z2)haz1; z2iTrUz1+z2Vaz1+bz2 :Now observe that the (z1; z2)-th term of the sum on the right hand side is nonzero only ifz1 + z2 = 0; az1 + bz2 = 0: If a 6= b this is possible only if z1 = z2 = 0: This proves (v). 2Corollary 2.3 Let Ma = fP (a; x); x 2 Fdg: Then fMa; a 2 �Fdg is a set of (d+ 1) elementarymeasurements whih are pairwise SMUB.Proof: Immediate from Propostion 1.2. 2Our next result yields a reovery formula for any state � from the probability distributionsfTr �P (a; x); x 2 Fdg on Fd arising from the measurements fMa; a 2 �Fdg:Theorem 2.4 Let fP (a; x); a 2 �Fd ; x 2 Fdg be the projetions in Theorem 2.2. Then, for anystate � on L2(Fd) the following holds:(i) � = Pa2�Fd Pz2FdfTr �P (a; z)� 1d+1gP (a; z)(ii) � = Px;y2Fda2�Fd hx; yifTr �P (a; y)gW (a; x)Proof: From the �rst part of Proposition 2.1, it follows that � admits the expansion� = d�18>><>>:I + Xa2�Fdx2Fdnf0g hTr �W (a; x)yiW (a; x)9>>=>>;7



in terms of the orthogonal basis arising from the Weyl operators. Now substitute in the righthand side the expressions for W (a; x) in (i) of Theorem 2.2 and use the orthogonality relationsfor haraters: Xx2Fd hx; yihx; zi = dÆy;zThen we obtain the identity (i) of the theorem. If we substitute for P (a; z) from the identity(ii) of Theorem 2.2 we obtain the seond identity of the theorem. 2Remark: If we make repeated independent measurements Ma; obtain the frequenies forthe di�erent events P (a; z) and substitute those frequenies for the di�erent probabilitiesTr �P (a; z) in the unknown state � we will get an unbiased and asymptotially onsistentestimate �̂ of � but �̂ may not be a positive operator. One may replae �̂ by the normalisedversion of the positive part or the modulus of �̂ at the ost of losing unbiasedness. This alsoinreases the omputational ost.3 Estimation of states in the general aseLet d = pm11 pm22 : : : pmnn be the deomposition of d into its prime fators p1 < p2 < � � � < pn:Write dj = pmjj : We may identify the d-dimensional Hilbert spae H with H1 
H2 
 � � � 
Hnwhere Hj = L2(Fdj ); Fdj being the �nite �eld of ardinality dj : Following the de�nition in (2.7)onstrut the unitary operators W (j)(aj ; xj) when d = dj ; j = 1; 2; : : : ; n and using Theorem2.2, the orresponding projetions P (j)(aj ; xj); where aj 2 Fdj ; xj 2 Fdj : We now adopt thefollowing onvention: for any operator X in L2(Fdj ) = Hj denote by the same symbol X theoperator in H de�ned by X = X1 
 X2 
 � � � 
 Xn where Xi is the identity operator in Hiwhen i 6= j and Xj = X: The operator X thus de�ned in H = H1
H2
 � � � 
Hn is alled theampliation of X in Hj to H: Sine B(H) an be identi�ed with B(H1)
 B(H2)
 � � � 
 B(Hn)as Hilbert spaes as well as ?-algebras it follows from Proposition 2.1 that the familyF = nI;W (i1)(ai1 ; xi1)W (i2)(ai2 ; xi2) � � �W (ir)(air ; xir);aij 2 �Fdj ; xij 2 Fdj n f0g; j = 1; 2; : : : ; r;1 � i1 < i2 < � � � < ir � n; r = 1; 2; : : : ; ng (3.1)of unitary operators in H onstitute an orthogonal basis for the operator Hilbert spaes B(H):Note that the ardinality of F is, indeed, equal to1 + nXr=1 X1�i1<i2<���<ir�n(d2i1 � 1)(d2i2 � 1) : : : (d2ir � 1)= (1 + d21 � 1)(1 + d22 � 1) : : : (1 + d2n � 1)= d21d22 : : : d2n= d2; 8



the dimension of B(H): For any subset J = fi1; i2; : : : ; irg � f1; 2; : : : ; ng where 1 � i1 < i2 <� � � < ir � n; de�ne d(J) = di1di2 : : : dird0(J) = (di1 + 1)(di2 + 1) � � � (dir + 1);and for any state � in H; putS�(J) = Xaij2�Fdij ;yij2Fdij8j nTr�P (i1)(ai1 ; yi1)P (i2)(ai2 ; yi2) : : : P (ir)(air ; yir)oP (i1)(ai1 ; yi1)P (i2)(ai2 ; yi2) : : : P (ir)(air ; yir) (3.2)where fP (i)(ai; yi)g are the one dimensional projetions in Hi determined by the unitary repre-sentation xi !W (i)(ai; xi) of the additive group Fdi aording to Theorem 2.2 and ampliatedto the produt Hilbert spae H = H1 
 H2 
 � � � 
 Hn: Thus S�(J) is an operator in H de-termined by the probabilities Tr �P (i1)(ai1yi1)P (i2)(ai2yi2) : : : P (ir)(airyir) and the projetionsP (i1)(ai1 ; yi1)P (i2)(ai2 ; yi2) : : : P (ir)(air ; yir) of dimension �j 62fi1;i2;��� ;irgdj with ai's varying in�Fdi and yi's in Fdi for any i: With these notations and the onvention S�(�) = I; we have thefollowing theorem for the reovery of � from the probabilities.Theorem 3.1 Let � be any state in H: Then� = XJ�f1;2;:::;ng(�1)n�jJjS�(J) (3.3)where S�(J) is given by (3.2) and jJ j is the ardinality of J:Proof: Sine the family F of unitary operators in (3.1) is an orthogonal basis for B(H) we anexpand the state � in this basis as� = (d1d2 : : : dn)�18><>:I + nXr=1 X1�i1<i2<���<ir�n Xaij2�Fdij ;xij2Fdij nf0ghTr �W (i1)(ai1 ; xi1)y � � �W (ir)(air ; xir)yiW (i1)(ai1 ; xi1) � � �W (ir)(air ; xir)o : (3.4)From Theorem 2.2 we have for any �xed iXxi2Fdi nf0gW (i)(ai; xi)y 
W (i)(ai; xi)= Xy;z2Fdixi2Fdinf0g hxi; yihxi; ziP (i)(ai; y)
 P (i)(ai; z)= di Xy2Fdi P (i)(ai; y)
 P (i)(ai; y)� I(i) 
 I(i);9



I(i) being the identity operator in Hi: Using this identity and elementary properties of relativetrae, equation (3.4) an be written as� = (d1d2 : : : dn)�1XJ XK�J(�1)jJj�jKjd(K)d0(J nK)� Xaki2�Fdki ;yki2Fdki8i nTr �P (k1)(ak1 ; yk1)P (k2)(ak2 ; yk2) � � �P (ks)(aks ; yks)o�P (ki)(ak1 ; yk1)P (k2)(ak2 ; yk2) � � �P (ks)(aks ; yks)where J varies over all subsets i1 < i2 < � � � < ir of f1; 2; : : : ; ng and K varies over all subsetsk1 < k2 < � � � < ks of J: Now using the de�nition in (3.2) we an express � as� = XK�f1;2;:::;ng�(K)S�(K)where �(K) = (d1d2 : : : dn)�1d(K) XL:L\K=�(�1)jLjd0(L)= (�1)n�jKj:2Remark From Theorem 3.1 it is lear that � is reovered from the probabilities for the ele-mentary events P (1)(a1; x1)P (2)(a2; x2) : : : P (n)(an; xn); ai 2 �Fdixi 2 �Fdi :In other words the determination of � involves (d1 + 1)(d2 + 1) � � � (dn + 1) elementary mea-surements. As mentioned in the introdution one would like to determine � by d1d2 : : : dn + 1measurements.Aknowledgement: I wish to thank Professor S. Chaturvedi of the University of Hyderabadfor bringing my attention to the entral problem of this paper and the referene [7℄.Referenes1. V. Arvind and K. R. Parthasarathy, A family of quantum stabilizer odes based on theWeyl ommutation relations over a �nite �eld, in A Tribute to C. S. Seshadri, Perspetivesin Geometry and Representation Theory, Ed. V. Lakshmibai et al, Hindustan BookAgeny, New Delhi (2003) 133-149.2. V. Arvind, P. Kurur and K. R. Parthasarathy, Nonstabilizer quantum odes from abeliansubgroups of the error group, quant-ph/0210097, to appear in Volume in honour of A. S.Holevo on his 60th birthday Ed. O. Hirota, 2004.10
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