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Summary : We revisit the problem of mutually unbiased measurements in the 
ontext ofestimating the unknown state of a d-level quantum system, �rst studied by W. K. Woottersand B. D. �elds[7℄ in 1989 and later investigated by S. Bandyopadhyay et al [3℄ in 2001 and A.O. Pittenger and M. H. Rubin [6℄ in 2003. Our approa
h is based dire
tly on the Weyl operatorsin the L2-spa
e over a �nite �eld when d = pr is the power of a prime. When d is not a primepower we sa
ri�
e a bit of optimality and 
onstru
t a re
overy operator for re
onstru
ting theunknown state from the probabilities of elementary events in di�erent measurements.Key words : Mutually unbiased measurements, �nite �eld, Weyl operators, error basis.AMS 2000 Mathemati
s Subje
t Classi�
ation 47L90, 47N50, 81P68 (?)1 Introdu
tionThis is almost an expository a

ount of a well-known problem of quantum probability andstatisti
s arising in the 
ontext of quantum information theory. There is a d-level quantumsystem whose pure states are des
ribed by unit ve
tors in a d-dimensional 
omplex Hilbertspa
e H equipped with the s
alar produ
t h'j i between elements '; in H: This s
alarprodu
t is linear in the variable  and antilinear in the variable ': Throughout this expositionwe assume that d is �nite. Denote by B(H) the ?-algebra of all operators on H: The 
omplexd2-dimensional ve
tor spa
e B(H) will also be viewed as a Hilbert spa
e with the s
alar produ
thXjY i = TrXyY where Xy denotes the adjoint of the operator X: Denote by S(H) � B(H)the 
ompa
t 
onvex set of all nonnegative (de�nite) operators of unit tra
e. Any element � inS(H) is 
alled a state of the system. The extreme points of S(H) are pre
isely one dimensionalorthogonal proje
tions. They are 
alled pure states. In the Dira
 notation any pure state 
an beexpressed as j ><  j where  is a unit ve
tor in H: Denote by P(H) the set of all orthogonal



proje
tion operators (or, simply, proje
tions) on H: Any element P in P(H) is 
alled an event
on
erning the system and the quantity Tr�P is interpreted as the probability of the event P inthe state �: In the 
ontext of quantum information theory the state of a quantum system 
anbe utilized as an information resour
e. If the system is in an unknown state � it is important toestimate � from \independent repeated measurements". If we 
hoose and �x an orthonormalbasis fe0; e1; : : : ; ed�1g in H then � is des
ribed in this basis by a nonnegative de�nite matrix((�ij)) where �ij = heij�jeji:Thus determination of � involves the determination of d2 � 1 real parameters, namely,�ii; i = 1; 2; : : : ; d � 1; Re �ij ; Im�ij ; 0 � i < j � d � 1: (Note that �00 = 1 � d�1Pi=1 �ii and�ij = ��ji:)By an elementary measurement M = fP0; P1; : : : ; Pd�1g we mean a family of d mutuallyorthogonal one dimensional proje
tion operators Pj ; j = 0; 1; 2; : : : ; d � 1 so that d�1P0 Pj = I;the identity operator. If the measurement M is performed when the state of the system is�; the result of su
h a measurement is one of the 
lassi
al out
omes j 2 f0; 1; 2; : : : ; d � 1gwith probability Tr�Pj = pj for ea
h j: Independent repeated trials of the measurement in thesame state � yield frequen
ies fj for ea
h elementary out
ome j and fj 
an be viewed as anestimate of pj for ea
h j: Thus an elementary measurement 
overs at most d � 1 degrees offreedom 
on
erning � in view of the relation d�1Pj=0 pj = 1: In order to estimate � it is thereforene
essary to examine the frequen
ies of elementary out
omes in at least d + 1 elementarymeasurements Mj ; 0 � j � d where no two of the measurements Mi and Mj have any\overlap of information". Su
h an attempt is likely to 
over all (d+1)(d� 1) = d2 � 1 degreesof freedom involved in re
onstru
ting or estimating the unknown �: To bring 
larity to thenotion of \nonoverlap of information" in a pair of elementary measurements it is useful to lookat the ?-abelian algebraA(M) = 8<: d�1Xj=0 ajPj������ aj 2 C ; j = 0; 1; : : : ; d� 19=; :Any element X = d�1Pj=0 xjPj in A(M) 
an be looked upon as a 
omplex-valued observable wherePj is interpreted as the event that \X assumes the value xj". Of 
ourse, this is justi�ed if allthe xj 's are distin
t s
alars. If x is any s
alar then the event that X assumes the value x isthe proje
tion Pj:xj=xPj : Thus the subalgebra C I � A(M) 
onsists pre
isely of 
onstant-valuedobservables. Su
h an interpretation motivates the following formal de�nition.De�nition 1.1 Two elementary measurements M = fP0; P1; : : : ; Pd�1g;M0 = fQ0; Q1; : : : ; Qd�1g are said to be weakly mutually unbiased (WMUB) ifA(M) \A(M0) = C I;2



and strongly mutually unbiased (SMUB) if, in the Hilbert spa
e B(H); the subspa
es A(M)	C Iand A(M0)	 C I are mutually orthogonal. (Here, for two subspa
es S1 � S2 � B(H); S2 	 S1denotes the orthogonal 
omplement of S1 in S2).Clearly SMUB implies WMUB. We shall now des
ribe these two properties in terms of thequantities TrPiQj:Proposition 1.2 Two elementary measurementsM = fP0; P1; : : : ; Pd�1g;M0 = fQ0; Q1; : : : ; Qd�1gare SMUB if and only ifTrPiQj = d�1 for all i; j;2 f0; 1; 2; : : : ; d� 1g: (1.1)Proof: Note that the subspa
es A(M)	 C I and A(M0)	 C I are respe
tively spanned by thesubsets fPj � d�1I; 0 � j � d� 1g and fQj � d�1I; 0 � j � d� 1g: Thus the orthogonality ofthese two subspa
es is equivalent to the 
ondition0 = hPi � d�1I��Qj � d�1Ii = Tr(Pi � d�1I)(Qj � d�1I) = (TrPiQj)� d�1for all i; j in f0; 1; 2; : : : ; d� 1g: 2Proposition 1.3 Let M = fP0; P1; : : : ; Pd�1g; M0 = fQ0; Q1; : : : ; Qd�1g be two elementarymeasurements. SupposeL = [Tr(Pi � P0)(Qj �Q0)℄ ; i; j 2 f1; 2; : : : ; d� 1gand Jd�1 is the (d � 1) � (d � 1) matrix all the entries of whi
h are unity. Then M and M0are WMUB if and only ifdet�Id�1 + Jd�1 + d�1LJd�1Ly � LLy� > 0: (1.2)Proof: Let X 2 A(M) \ A(M0): Then there exist s
alars ai; bj ; i; j 2 f1; 2; : : : ; d � 1g su
hthat X = d�1(TrX)I + d�1Xi=1 ai(Pi � P0)= d�1(TrX)I + d�1Xj=1 bj(Qj �Q0):ThusM andM0 are WMUB if and only if the set fP1�P0; P2�P0; : : : ; Pd�P0; Q1�Q0; Q2�Q0; : : : ; Qd�Q0g of 2(d� 1) elements in the Hilbert spa
e B(H) is linearly independent. This,in turn, is equivalent to the stri
t positive de�niteness of the partitioned matrix" [Tr(Pi � P0)(Pj � P0)℄ [Tr(Pi � P0)(Qj �Q0)℄[Tr(Qi �Q0)(Pj � P0)℄ [Tr(Qi �Q0)(Qj �Q0)℄ # ; i; j 2 f1; 2; : : : ; d� 1g3



of order 2(d � 1): We haveTr(Pi � P0)(Pj � P0) = Tr(Qi �Q0)(Qj �Q0) = ( 2 if i = j;1 if i 6= j:Thus, M and M0 are WMUB if and only if" Id�1 + Jd�1 LLy Id�1 + Jd�1 #has a stri
tly positive determinant. Left multipli
ation of this matrix by the matrix" Id�1 �L(Id�1 + Jd�1)�10 Id�1 #with unit determinant yields the equivalent 
onditiondet�Id�1 + Jd�1 � L(Id�1 + Jd�1)�1Ly� > 0: (1.3)Sin
e (Id�1 + Jd�1)�1 = Id�1 � d�1Jd�1;
ondition (1.3) redu
es to 
ondition (1.2). 2Corollary 1.4 If the matrix L of Proposition 1.3 satis�es the inequality kLk < 1(where k:k isthe standard operator norm in the ?-algebra B(C d�1) then M; M0 are WMUB. FurthermoreM; M0 are SMUB if and only if L = 0:Proof: Immediate. 2In the 
ontext of minimizing the number of elementary measurements required for estimat-ing the state � of a quantum system Proposition 1.2 emphasizes the importan
e of the sear
hfor d + 1 elementary measurements whi
h are pairwise SMUB. When d is a prime power prthe existen
e of su
h a family of SMUB measurements was proved by Wootters and Fields [7℄.Alternative proofs of this result were given by S. Bandyopadhyay et al in [3℄ and Pittenger andRubin in [6℄. In this paper we shall present a proof of the same result by using the 
ommutationrelations of Weyl operators in the L2 spa
e of the �nite �eld FP r :When d = pm11 pm22 : : : pmnn withpi's being prime we shall use the Weyl 
ommutation relations in the L2 spa
e of the additiveabelian group 
ni=1Fpimi and study the problem of estimating the unknown state of a d-levelsystem. This leads to an interesting re
onstru
tion formula for a state � in terms of proba-bilities of d2 � 1 events arising from Qni=1(pmii + 1) elementary measurements. However, onewould like to express � in terms of the probabilities of elementary out
omes in (Qni=1 pmii + 1)elementary measurements.
4



2 The 
ase d = prLet dimH = d = pr be a prime power. For any prime power q denote by Fq the unique (uptoa �eld isomorphism) �nite �eld of 
ardinality q: Choose and �x any nontrivial 
hara
ter � ofthe additive group Fd and put hx; yi = �(xy); x; y 2 Fd : (2.1)One 
an, for example, look upon Fd as an r-dimensional ve
tor spa
e over Fp ; express anyelement x in Fd as an ordered r-tuple: x = (s1; s2; : : : ; sr) where 0 � si � p� 1 for ea
h i andput �(x) = exp 2�ip s1: (2.2)Then we have jhx; yij = 1; hx; yi = hy; xi; hx; y1 + y2i = hx; y1ihx; y2i and x = 0 if hx; yi = 1for all y in Fd : In other words, h:; :i is a nondegenerate symmetri
 bi
hara
ter for Fd : Identifythe Hilbert spa
e H with L2(Fd ); using the 
ounting measure in Fd ; and putjx >= 1fxg; x 2 Fdwhere 1fxg is the indi
ator fun
tion of the singleton subset fxg in Fd : Then fjx >; x 2 Fdg isan orthonormal basis for H labelled by the elements of Fd : Now, 
onsider the unique unitaryoperators Ua; Ub in H determined by the relationsUajx > = ja+ x >;Vbjx > = < b; x > jx > for all x 2 Fd :Then we have UaUb = Ua+b; VaVb = Va+b; (2.3)VbUa = ha; biUaVb: (2.4)Elementary algebra shows thatTr (Ua1Vb1)yUa2Vb2 = dÆa1;a2Æb1 ;b2 (2.5)for all a1; a2; b1; b2 in Fd : In parti
ular, the family fUaVb; a; b 2 Fdg of d2 unitary operators
onstitute an orthogonal basis for the Hilbert spa
e B(H): This is an example of a unitaryerror basis in the theory of error 
orre
ting quantum 
odes [4℄. Noti
e also the fa
t that fUagand fVbg are like the position and momentum representations obeying the Weyl 
ommutationrelations in 
lassi
al quantum me
hani
s. In view of this property we 
all any operator of theform �UaVb; j�j = 1; a; b 2 Fd a Weyl operator. We say that (2.3) and (2.4) 
onstitute theWeyl 
ommutation relations. The usefulness of su
h an error basis of Weyl operators in thestudy of quantum 
odes has been explored in [1℄, [2℄,[5℄. We shall slightly modify the errorbasis fUaVbg by multiplying ea
h element UaVb by an appropriate phase fa
tor. On
e again5



viewing Fd as an r-dimensional ve
tor spa
e over Fp ; expressing any x 2 Fd as an orderedr-tuple x = (s1; s2; : : : ; sr) with 0 � si � p � 1 for ea
h i and 
onsidering the basis elementsei = (0; 0; : : : ; 0; 1; 0; : : : ; 0) of the �eld Fd with 1 in the i-th position and 0 elsewhere we writex = s1e1 + s2e2 + � � �+ srer and de�ne�(a; x) = �0�a8<:Xi<j sisjeiej +Xj sj(sj � 1)2 e2j9=;1A ; ajx 2 Fd (2.6)where � is the 
hara
ter 
hosen and �xed at the beginning of this se
tion.Now put �Fd = Fd [ f1g and writeW (a; x) = ( �(a; x)UxVax if a 2 Fd ; x 2 Fd ;Vx if a =1: (2.7)Then we have the following proposition.Proposition 2.1 The family �I;W (a; x); a 2 �Fd ; x 2 Fd n f0g	 is an orthogonal basis of unitaryoperators for the operator Hilbert spa
e B(H) satisfying the relationsW (a; x)W (a; y) =W (a; x+ y) for all a 2 �Fd ; x 2 Fd : (2.8)Proof : The �rst part is immediate from the fa
t that the family of operators under 
onsider-ation di�ers from the family fUxVy; x; y 2 Fdg only by a s
alar fa
tor of modulus unity in ea
helement. If a 2 Fd ; x =P siei; y =P tiei we have from (2.3) (2.4)W (a; x)W (a; y)= �(a; x)�(a; y)hax; yiUx+yVa(x+y)= �(a; x)�(a; y)�(a; x + y)hax; yiW (a; x + y)where the 
oeÆ
ient of W (a; x+ y) is of the form �(az) withz = Xi<j sisjeiej +Xj sj(sj � 1)2 e2j +Xi<j titjeiej +Xj tj(tj � 1)2 e2j�Xi<j (si + ti)(sj + tj)eiej �Xj (sj + tj)(sj + tj � 1)2 e2j +Xi;j sitjeiej= 0:This proves (2.8) when a 2 Fd : When a =1; (2.8) is a part of (2.3). 2Theorem 2.2 There exists a family of one dimensional orthogonal proje
tion operators fP (a; x); a 2�Fd ; x 2 Fdg satisfying the following :(i) W (a; x) = Py2Fdhx; yiP (a; y) 6



(ii) P (a; y) = d�1 Px2Fd hx; yiW (a; x);(iii) P (a; x)P (a; y) = Æx;yP (a; x);(iv) Px2Fd P (a; x) = I;(v) TrP (a; x)P (b; y) = d�1 for all a 6= b; a; b 2 �Fd ; x; y 2 Fd :Proof : By Proposition 2.1 the 
orresponden
e x ! W (a; x) is a unitary representation ofthe additive abelian group Fd and fh:; yi; y 2 Fdg is the set of all its 
hara
ters. Thus thede
omposition of fW (a; :)g into its irredu
ible 
omponents yields a spe
tral measure P (a; :) onFd satisfying (i), (iii) and (iv). Substituting from (i) the expression for W (a; x) in the righthand side of (ii) and using the orthogonality relations for 
hara
ters we get (ii). Taking tra
eon both the sides of (ii) and observing that W (a; 0) = I and TrW (a; x) = 0 for x 6= 0 we getTrP (a; y) = 1: Thus ea
h P (a; y) is a one dimensional proje
tion. Substituting for P (a; x) andP (a; y) from (ii) in the left hand side of (v) we have from (2.7), (2.3) and (2.4)TrP (a; x)P (b; y)= d�2 Xz1;z22Fdhx; z1ihy; z2i Tr W (a; z1)W (b; z2)= d�2 Xz1;z22Fdhx; z1ihy; z2i�(a; z1)�(b; z2)haz1; z2iTrUz1+z2Vaz1+bz2 :Now observe that the (z1; z2)-th term of the sum on the right hand side is nonzero only ifz1 + z2 = 0; az1 + bz2 = 0: If a 6= b this is possible only if z1 = z2 = 0: This proves (v). 2Corollary 2.3 Let Ma = fP (a; x); x 2 Fdg: Then fMa; a 2 �Fdg is a set of (d+ 1) elementarymeasurements whi
h are pairwise SMUB.Proof: Immediate from Propostion 1.2. 2Our next result yields a re
overy formula for any state � from the probability distributionsfTr �P (a; x); x 2 Fdg on Fd arising from the measurements fMa; a 2 �Fdg:Theorem 2.4 Let fP (a; x); a 2 �Fd ; x 2 Fdg be the proje
tions in Theorem 2.2. Then, for anystate � on L2(Fd) the following holds:(i) � = Pa2�Fd Pz2FdfTr �P (a; z)� 1d+1gP (a; z)(ii) � = Px;y2Fda2�Fd hx; yifTr �P (a; y)gW (a; x)Proof: From the �rst part of Proposition 2.1, it follows that � admits the expansion� = d�18>><>>:I + Xa2�Fdx2Fdnf0g hTr �W (a; x)yiW (a; x)9>>=>>;7



in terms of the orthogonal basis arising from the Weyl operators. Now substitute in the righthand side the expressions for W (a; x) in (i) of Theorem 2.2 and use the orthogonality relationsfor 
hara
ters: Xx2Fd hx; yihx; zi = dÆy;zThen we obtain the identity (i) of the theorem. If we substitute for P (a; z) from the identity(ii) of Theorem 2.2 we obtain the se
ond identity of the theorem. 2Remark: If we make repeated independent measurements Ma; obtain the frequen
ies forthe di�erent events P (a; z) and substitute those frequen
ies for the di�erent probabilitiesTr �P (a; z) in the unknown state � we will get an unbiased and asymptoti
ally 
onsistentestimate �̂ of � but �̂ may not be a positive operator. One may repla
e �̂ by the normalisedversion of the positive part or the modulus of �̂ at the 
ost of losing unbiasedness. This alsoin
reases the 
omputational 
ost.3 Estimation of states in the general 
aseLet d = pm11 pm22 : : : pmnn be the de
omposition of d into its prime fa
tors p1 < p2 < � � � < pn:Write dj = pmjj : We may identify the d-dimensional Hilbert spa
e H with H1 
H2 
 � � � 
Hnwhere Hj = L2(Fdj ); Fdj being the �nite �eld of 
ardinality dj : Following the de�nition in (2.7)
onstru
t the unitary operators W (j)(aj ; xj) when d = dj ; j = 1; 2; : : : ; n and using Theorem2.2, the 
orresponding proje
tions P (j)(aj ; xj); where aj 2 Fdj ; xj 2 Fdj : We now adopt thefollowing 
onvention: for any operator X in L2(Fdj ) = Hj denote by the same symbol X theoperator in H de�ned by X = X1 
 X2 
 � � � 
 Xn where Xi is the identity operator in Hiwhen i 6= j and Xj = X: The operator X thus de�ned in H = H1
H2
 � � � 
Hn is 
alled theampliation of X in Hj to H: Sin
e B(H) 
an be identi�ed with B(H1)
 B(H2)
 � � � 
 B(Hn)as Hilbert spa
es as well as ?-algebras it follows from Proposition 2.1 that the familyF = nI;W (i1)(ai1 ; xi1)W (i2)(ai2 ; xi2) � � �W (ir)(air ; xir);aij 2 �Fdj ; xij 2 Fdj n f0g; j = 1; 2; : : : ; r;1 � i1 < i2 < � � � < ir � n; r = 1; 2; : : : ; ng (3.1)of unitary operators in H 
onstitute an orthogonal basis for the operator Hilbert spa
es B(H):Note that the 
ardinality of F is, indeed, equal to1 + nXr=1 X1�i1<i2<���<ir�n(d2i1 � 1)(d2i2 � 1) : : : (d2ir � 1)= (1 + d21 � 1)(1 + d22 � 1) : : : (1 + d2n � 1)= d21d22 : : : d2n= d2; 8



the dimension of B(H): For any subset J = fi1; i2; : : : ; irg � f1; 2; : : : ; ng where 1 � i1 < i2 <� � � < ir � n; de�ne d(J) = di1di2 : : : dird0(J) = (di1 + 1)(di2 + 1) � � � (dir + 1);and for any state � in H; putS�(J) = Xaij2�Fdij ;yij2Fdij8j nTr�P (i1)(ai1 ; yi1)P (i2)(ai2 ; yi2) : : : P (ir)(air ; yir)oP (i1)(ai1 ; yi1)P (i2)(ai2 ; yi2) : : : P (ir)(air ; yir) (3.2)where fP (i)(ai; yi)g are the one dimensional proje
tions in Hi determined by the unitary repre-sentation xi !W (i)(ai; xi) of the additive group Fdi a

ording to Theorem 2.2 and ampliatedto the produ
t Hilbert spa
e H = H1 
 H2 
 � � � 
 Hn: Thus S�(J) is an operator in H de-termined by the probabilities Tr �P (i1)(ai1yi1)P (i2)(ai2yi2) : : : P (ir)(airyir) and the proje
tionsP (i1)(ai1 ; yi1)P (i2)(ai2 ; yi2) : : : P (ir)(air ; yir) of dimension �j 62fi1;i2;��� ;irgdj with ai's varying in�Fdi and yi's in Fdi for any i: With these notations and the 
onvention S�(�) = I; we have thefollowing theorem for the re
overy of � from the probabilities.Theorem 3.1 Let � be any state in H: Then� = XJ�f1;2;:::;ng(�1)n�jJjS�(J) (3.3)where S�(J) is given by (3.2) and jJ j is the 
ardinality of J:Proof: Sin
e the family F of unitary operators in (3.1) is an orthogonal basis for B(H) we 
anexpand the state � in this basis as� = (d1d2 : : : dn)�18><>:I + nXr=1 X1�i1<i2<���<ir�n Xaij2�Fdij ;xij2Fdij nf0ghTr �W (i1)(ai1 ; xi1)y � � �W (ir)(air ; xir)yiW (i1)(ai1 ; xi1) � � �W (ir)(air ; xir)o : (3.4)From Theorem 2.2 we have for any �xed iXxi2Fdi nf0gW (i)(ai; xi)y 
W (i)(ai; xi)= Xy;z2Fdixi2Fdinf0g hxi; yihxi; ziP (i)(ai; y)
 P (i)(ai; z)= di Xy2Fdi P (i)(ai; y)
 P (i)(ai; y)� I(i) 
 I(i);9



I(i) being the identity operator in Hi: Using this identity and elementary properties of relativetra
e, equation (3.4) 
an be written as� = (d1d2 : : : dn)�1XJ XK�J(�1)jJj�jKjd(K)d0(J nK)� Xaki2�Fdki ;yki2Fdki8i nTr �P (k1)(ak1 ; yk1)P (k2)(ak2 ; yk2) � � �P (ks)(aks ; yks)o�P (ki)(ak1 ; yk1)P (k2)(ak2 ; yk2) � � �P (ks)(aks ; yks)where J varies over all subsets i1 < i2 < � � � < ir of f1; 2; : : : ; ng and K varies over all subsetsk1 < k2 < � � � < ks of J: Now using the de�nition in (3.2) we 
an express � as� = XK�f1;2;:::;ng�(K)S�(K)where �(K) = (d1d2 : : : dn)�1d(K) XL:L\K=�(�1)jLjd0(L)= (�1)n�jKj:2Remark From Theorem 3.1 it is 
lear that � is re
overed from the probabilities for the ele-mentary events P (1)(a1; x1)P (2)(a2; x2) : : : P (n)(an; xn); ai 2 �Fdixi 2 �Fdi :In other words the determination of � involves (d1 + 1)(d2 + 1) � � � (dn + 1) elementary mea-surements. As mentioned in the introdu
tion one would like to determine � by d1d2 : : : dn + 1measurements.A
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