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EXISTENCE OF OPTIMAL MARKOV SOLUTIONS FOR ERGODICCONTROL OF MARKOV PROCESSES
By ABHAY G. BHATTIndian Statistial Institute, Delhi,andVIVEK S. BORKAR1Tata Institute of Fundamental Researh, Mumbai.SUMMARY. For the ergodi ontrol problem for a large lass of ontrolled Markov proessesin ontinuous time, existene of an optimal ergodi solution and an optimal, possibly time-inhomogeneous Markov solution, in both ases orresponding to a stationary Markov relaxedontrol poliy, are known separately under suitable onditions (Bhatt and Borkar, 1996).The aim of this artile is to re�ne this result to establish the existene of an optimal time-homogeneous Markov solution. The proof is based upon Krylov's Markov seletion proedure.AMS (2000) Subjet Classi�ation. Primary 93E20.Keywords and phrases. ontrolled Markov proesses, ergodi ontrol, Markov seletion, optimalontrol.1 IntrodutionIn Bhatt and Borkar (1996), the ergodi ontrol problem for a broad lass of ontrolled Markovproesses was analyzed and existene of an optimal ergodi solution and an optimal Markov,though possibly time-inhomogeneous solution were separately established under reasonable hy-potheses, both orresponding to a stationary Markov relaxed ontrol poliy. Experiene withsimpler situations (ountable Markov hains, nondegenerate di�usions in Rd, � � � ) suggeststhat one would have an optimal ergodi time-homogeneous Markov ontrol. The aim of thisartile is to provide suh a result by adapting Krylov's Markov seletion proedure (Chap-ter 12, Strook and Varadhan (1979)). Originally intended for extrating a Markov familyof probability measures satisfying a `martingale problem' in presene of nonuniqueness, thisproedure was adapted to extrat an optimal Markov solution to degenerate ontrolled di�u-sions in Haussmann (1986) and El Kaoui et al (1987), following a suggestion of Varadhan. Aompat treatment appears in Chapter IV (page 84) of Borkar (1989), whih we use as ourstarting point. As it stands, the proedure in the above referenes is geared for `integral osts'1Researh supported by a grant for `Nonlinear Studies' from Indian Spae Researh Organization and DefenseResearh and Development Organization, administered through the Indian Institute of Siene.1



suh as �nite horizon ost, in�nite horizon disounted ost, ost up to an exit time, et., andits appliation to ergodi ontrol alls for an additional limiting proedure, viz., the `vanishingdisount limit', whih is the main ontribution of this work.The next setion realls the problem set-up from Bhatt and Borkar (1996). Setion 3 provessome preliminary results for the disounted ost problem whih pave way for the `vanishingdisount' argument of setion 4. Setion 5 proves the main result. Setion 6 onludes withsome remarks.Notation:1. E: a Polish spae � the state spae of the ontrolled Markov proess X(�)2. U : a ompat metri `ontrol' spae3. U : the spae of measurable maps [0;1) ! V def= P(U) with the oarsest topology thatrenders ontinuous eah of the maps�(�) = �(�; du) 2 U 7! Z T0 g(t)ZU h(u)�(t; du)dt;for all T > 0; g 2 L2[0; T ℄; h 2 Cb(U). This is ompat metrizable (see, e.g., Borkar(1989)).4. For a Polish spae S:� B(S) is its Borel ���eld and P(S) the spae of probability measures on (S;B(S))with the Prohorov topology,� B(S) (resp., Cb(S)) is the spae of bounded measurable (resp., ontinuous) mapsfrom S ! R.5. L(� � � ) stands for `the law of ' � � � .6. For ffkg; f 2 B(S), fk bp! f (where `bp' stands for `bounded pointwise') if supx;kjfk(x)j <1 and fk(x)! f(x) 8x. Q � B(S) is bp-losed if fk 2 Q 8k and fk bp! f together implyf 2 Q. For Q � B(S), de�ne bp� losure(Q) def= the smallest bp-losed subset of B(S)ontaining Q.2 The ontrol problemLet A be an operator with domain D(A) � Cb(E) and range R(A) � Cb(E�U). Let � 2 P(E).DEFINITION. An E � V�valued proess (X(�); �(�) = �(�; du)) de�ned on a probability spae(
;F ; P ) is said to be a solution to the relaxed ontrolled martingale problem for (A; �) withrespet to a �ltration fFt; t � 0g if: 2



� (X(�); �(�)) is fFtg�progressive;� L(X(0)) = �;� for f 2 D(A), f(X(t))� Z t0 ZU Af(X(s); u)�(s; du)ds; t � 0; (2.1)is an fFtg�martingale.We omit expliit mention of fFtg or � when they are apparent from the ontext. Further,we may simplify notation by setting�Af(x; �) def= ZU Af(x; u)�(du); f 2 D(A); x 2 E;� 2 V;and rewrite (2.1) as f(X(t))� Z t0 �Af(X(s); �(s))ds; t � 0: (2.2)The operator A is assumed to satisfy the following onditions:1. (C1) There exists a ountable subset fgkg � D(A) suh thatf(g;Ag) : g 2 D(A)g � bp� losure(f(gk; Agk) : k � 1g):2. (C2) D(A) is an algebra that separates points in E and ontains onstant funtions. Also,A1 = 0, where 1 is the onstant funtion identially equal to 1.3. (C3) For eah u 2 U , let Auf(�) def= Af(�; u). Then there exists an r..l.l. solution to themartingale problem for (Au; Æx) for all u 2 U; x 2 E.We also make the following assumption: Let (X(�); �(�)) be a solution to the relaxed on-trolled martingale problem above.(y) For �xed initial law � of X0, L((X(�); �(�))) form a tight set �M(�) of P(C([0;1);E)�U).Simple suÆient onditions for this an be given in spei� ases mentioned above. Animmediate orollary is the following:Lemma 2.1 �M(�) is a ompat onvex set.PROOF. Let Us denote the set of restritions of �(�) 2 U to [0; s℄ with the indued topologyand let C([0; s℄;E) be the spae of ontinuous maps from [0; s℄ to E. A proess (X(�); �(�)) is a3



solution to the relaxed ontrol martingale problem for A if and only if for all t > s � 0; f 2 D(A)and G 2 Cb(C([0; s℄;E) � Us) ,E ��f(X(t))� f(X(s))� Z ts �Af(X(y); �(y))dy�G �X(�)j[0;s℄; �(�)j[0;s℄�� = 0:This relation is retained under onvex ombinations of laws and also under onvergene inP(C([0;1);E) �U). The laim follows. 2Let k : E � U ! [0;1℄ be a running ost funtion. The ergodi ontrol problem is tominimize the ergodi ost lim supt!1 1t Z t0 E �ZU k(X(s); u)�(s; du))� ds: (2.3)We assume that the set of L((X(�); �(�))) for whih this is �nite is nonempty.3 The disounted ost problemThe main argument will be based on ombining the Markov seletion proedure applied to thein�nite horizon disounted ost problem with the `vanishing disount limit'. With this goal,introdue the disounted ostJ(�; x) def= E �Z 10 e��t ZU k(X(t); u)�(t; du)dt���X(0) = x� ; (3.1)where � def= L((X(�); �(�))) and � > 0 is the disount fator. LetJ(�; �) def= ZE J(�; x)�(dx);	�0 (�) def= inf�2 �M(�) J(�; �);and M�0 (�) def= �� 2 �M(�) : J(�; �) = 	�0 (�)	 :Let ffig � Cb(E) be a ountable separating lass for P(E) and f�jg be a ountable denseset in (0;1). For i; j � 1; de�ne Fij : P (Cb([0;1);E) � U) 7! R as follows. Let � 2P (Cb([0;1);E) �U) denote the law of a proess (X(�); �(�)). ThenFij(�) def= Z 10 E he��itfj(X(t))i dt: (3.2)Enumerate Fij 's as F1; F2; � � � ; by a suitable relabelling. For i � 1, de�ne indutively	�i (�) def= inf�2M�i�1(�)Fi(�);M�i (�) def= �� 2M�i�1(�) : Fi(�) = 	�i (�)	 :4



Sine M�i (�) have been obtained as Argmins of lower semi-ontinuous linear funtionals onompat onvex sets of measures, we have the following immediate orollary to Lemma 2.1:Corollary 3.1 For �xed �; �; fM�i (�); i � 0g is a nested, dereasing family of ompatonvex nonempty sets.In partiular,M�1(�) def= \iM�i (�) is nonempty ompat and onvex. For sake of simpliity,we shall denote 	�i (Æx);M�i (Æx), where Æx def= the Dira measure at x, by 	�i ([x℄);M�i ([x℄) resp.The following lemma mimiks Lemma 1.2, p. 86, of Borkar (1989).Lemma 3.1 For � � L((X(�); �(�))) 2M�i (�), the regular onditional law of (X(�); �(�)) givenX(0) = x is in M�i ([x℄) for ��a.s. x. (Equivalently, 	�i (�) = R 	�i ([x℄)�(dx).)PROOF. For i = 0, the laim follows by a standard argument of dynami programming(see, e.g., Lemma 1.2, pp. 55-56, of Borkar (1989), in fat this is the same argument as fori � 1 below from (3.4) onwards, exept that the steps preeding (3.4) are not needed for i = 0).Suppose the laim is true for all j � i. Thus	�j (�) = Z 	�j ([x℄)�(dx); j � i:Let � > 0 and �n def= �=2n; n � 1. For n � 1, let �n = L((Xn(�); �n(�))) 2M�i (�) be suh thatFi+1(�n) � 	�i+1(�) + �n: (3.3)Let �n(x) denote the regular onditional law of (Xn(�); �n(�)) given Xn(0) = x. By theindution hypothesis, we an �nd a set N � E with �(N) = 0 suh that the �n(x) is inM�j ([x℄) for all x =2 N and for all j � i. LetBn = �x 2 E : Fi+1(�n(x)) < 	�i+1([x℄) + �	 ; n � 1:Then, (3.3) implies that �(Bn) < 2�n. De�ne Cn � E;n � 1; suessively byC1 = B1; Cn = Bn \ ([m<nBm); n > 1:Then learly Cn's are disjoint and �([nCn) = �([nBn) = 1. De�ne �� by�� =Xn ZCn �n(x)�(dx):
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Then �� is the law of a proess ( �X(�); ��(�)) suh that L( �X(0)) = � and for x 2 Cn; n � 1,the regular onditional law of ( �X(�); ��(�)) given �X(0) = x is �n(x). Using the fat that�n(x) 2M�j ([x℄) for all n � 1 and 0 < j � i, we getFj(��) =Xn ZCn Fj(�n(x))�(dx)=Xn ZCn 	�j ([x℄)�(dx)= 	�j (�);where the last equality above follows from the indution hypothesis. Thus �� 2 M�j (�); 0 <j � i: A similar argument works for j = 0 where F0 = J is the disounted ost de�ned in (3.1).Furthermore, another similar argument using (3.3) leads toFi+1(��) � ZE 	�i+1([x℄)�(dx) + �: (3.4)Sine � > 0 was arbitrary, we get	�i+1(�) � ZE 	�i+1([x℄)�(dx): (3.5)Now onsider an arbitrary �� = L�((X(�); ��(�))) 2 M�i (�). Let ��(x) denote the regularonditional law of (X�(�); ��(�)) given X�(0) = x. Then we haveFi+1(��) = ZE Fi+1(��(x))�(dx)� ZE 	�i+1([x℄)�(dx):Thus, taking the in�mum over all �� 2M�i (�) on the left hand side, we get	�i+1(�) � ZE 	�i+1([x℄)�(dx): (3.6)Now (3.5) and (3.6) together omplete the indution step. 2For � � L((X(�); �(�))), let � 0 def= L(X(t)) for some t � 0. Suppose �0 � L((X 0(�); �0(�)))is suh that L(X 0(0)) = � 0. We de�ne a t�onatenation ~� of � with �0 to be L(( ~X(�); ~�(�)))suh that L(( ~X(�); ~�(�))j[0;t℄) = L((X(�); �(�))j[0;t℄);and the regular onditional law of ( ~X(t + �); ~�(t + �)) given ( ~X(�); ~�(�))j[0;t℄ is the same as theregular onditional law thereof given ~X(t), whih is in turn the same as the regular onditionallaw of (X 0(�); �0(�)) given X 0(0), � 0�a.s. The next two lemmas are in the spirit of Lemmas1.3-1.4, pp. 87-88, of Borkar (1989). They are stated separately, but their indution steps areinterlinked: The i�th indution step of Lemma 3.2 invokes the laim of the i�th indutionstep of Lemma 3.3, whereas the i�th indution step of Lemma 3.3 invokes the laim of the(i� 1)�th indution step of Lemma 3.2. Let �;�0; ~�; (X(�); �(�)); (X 0(�); �0(�)); ( ~X(�); ~�(�)) beas above, with � 2M�i (�) and �0 2M�i (� 0) for some i � 0.6



Lemma 3.2 ~� 2M�i (�).PROOF. For i = 0, this is a standard part of the dynami programming argument (seesetion III.1 of Borkar (1989)). Let i � 1 and suppose that the laim is true for all ` < i. Now,� 2M�j (�) and �0 2M�j (� 0) for 0 � j � i.Fix j; 0 < j � i. Let m;n be suh that for �� = L((X�(�); ��(�))) (see (3.2))Fj(��) = Z 10 E he��msfn(X�(s))i ds:For any �� 2 P (Cb([0;1);E) � U) as above let ��t 2 P (Cb([0;1);E) �U) be de�ned by��t = L((X�(t+ �); ��(t+ �))).We have Fj(�t) = 	�j (� 0) = Fj(�0) = Fj(~�t) 0 < j � i;where the �rst equality follows from Lemma 3.3 below, the seond follows beause �0 2M�j (� 0),and the third follows from our de�nition of ~�. Multiply both extremes of the above equalityby e��mt and add E �Z t0 e��msfn(X(s))ds�to both sides. But sine L(X(s) : 0 � s � t) = L( ~X(s) : 0 � s � t) we get	�j (�) = Fj(�) = Fj(~�);implying ~� 2M�j (�) for 0 � j � i. 2Corollary 3.2 The following `dynami programming priniple' holds: For i � 1 and m;n asabove and � def= L((X(�); �(�))) 2M�i (�),,	�i (�) = E �Z t0 e��msfn(X(s))ds + e��mt	�i ([X(t)℄)� : (3.7)PROOF. By Lemma 3.1, the r.h.s. above equalsE �Z t0 e��msfn(X(s))ds�+ e��mt	�i (� 0)for � 0 def= L(X(t)). Take �0 def= L((X 0(�); �0(�))) 2 M�i (� 0) and let ~� = L(( ~X(�); ~�(�))) be thet�onatenation of � with �0. Then by the above lemma ~� 2M�i (�), leading to	�i (�) = E �Z 10 e��msfn( ~X(s))ds�= E �Z t0 e��msfn( ~X(s))ds�+E �Z 1t e��msfn( ~X(s))ds�= E �Z t0 e��msfn(X(s))ds� +E �Z 1t e��msfn(X 0(s� t))ds�= E �Z t0 e��msfn(X(s))ds� + e��mt	�i (� 0):7



This ompletes the proof. 2Lemma 3.3 If � = L((X(�); �(�))) 2M�i (�), then for eah t > 0, �t 2M�i (L(X(t))):PROOF. For i = 0, the laim follows from dynami programming as follows. If not, realling(3.1), one would haveE �Z 1t e��s Z k(X(s); u)�(s; du)ds� > e��t	�0 (L(X(t))): (3.8)Hene, 	�0 (�) = E �Z t0 e��s Z k(X(s); u)�(s; du)ds�+ E �Z 1t e��s Z k(X(s); u)�(s; du)ds�> E �Z t0 e��s Z k(X(s); u)�(s; du)ds + e��t	�0 ([X(t)℄)�= 	�0 (�); (3.9)
a ontradition. (Here the strit inequality follows from (3.8) and Lemma 3.1, and the lastequality follows from the dynami programming priniple.)Suppose now that the laim is true for 0 � j < i; i � 1. Let � 2 M�i (�). Then by theindution hypothesis, �t = L((X(t + �); �(t + �))) 2M�i�1(L(X(t))): (3.10)Let m;n be suh that Fi(��) = Z 10 E he��msfn(X�(s))i dsfor any �� = L(X�(�); ��(�)). Suppose now that the laim is false for i.Then we get E �Z 1t e��msfn(X(s))ds� > e��mt	�i (L(X(t))):This implies 	�i (�) = E �Z t0 e��msfn(X(s))ds�+E �Z 1t e��msfn(X(s))ds�> E �Z t0 e��msfn(X(s))ds + e��mt	�i ([X(t)℄)�= E �Z t0 e��msfn(X(s))ds�+ e��mt	�i (� 0) (3.11)where � 0 = L(X(t)). Let �0 = L((X 0(�); �0(�))) 2M�i (� 0). Hene, by de�nition,	�i (� 0) = Fi(�0) = E �Z 10 e��msfn(X 0(s))ds� : (3.12)8



Let ~� be the t�onatenation of � with �0. Sine (3.10) holds, Lemma 3.2 an be used for(i� 1) and hene we get that ~� 2M�i�1(�). This implies that Fi(~�) � 	�i (�). Using this andthe de�nition of ~�, and substituting (3.12) in (3.11) we get	�i (�) > E �Z t0 e��msfn(X(s))ds�+ e��mtE �Z 10 e��msfn(X 0(s))ds�= E �Z t0 e��msfn(X(s))ds�+E �Z 1t e��msfn(X 0(s� t))ds�= Fi(~�)� 	�i (�); (3.13)
a ontradition. This ompletes the indution step and hene the proof of the lemma. 2The following tehnial lemma is easily proved and is the same as Lemma 1.5, p. 89, ofBorkar (1989).Lemma 3.4 For bounded measurable f : [0;1)!R,Z 10 e��j tf(t)dt = 0 8j =) f(t) = 0 a:e:Corollary 3.3 For any two elements L((X(�); �(�)));L((X 0(�); �0(�))) of M�1(�), X(�);X 0(�)have the same one dimensional marginals. Furthermore, there exists a L((X̂(�); �̂(�))) 2M�1(�)suh that �̂(t) (= �̂(t; du)) = v(t; X̂(t)) (= v(t; X̂(t); du))for some measurable v : [0;1)! V (i.e., �̂(�) is a `Markov ontrol').PROOF. The �rst laim is immediate from Lemma 3.4 and our hoie of ffmg as a sep-arating lass for P(E). The seond is a onsequene of Corollary 2.2, p. 1549, of Bhatt andBorkar (1996). 2De�ne q�(x; t; B) def= P (X(t) 2 B) for B 2 B(E) and any L((X(�); �(�))) 2 M�1([x℄). Theexat hoie of the latter is immaterial by Corollary 3.3.Lemma 3.5 fq�(x; t; :); x 2 E; t � 0g satisfy the Chapman-Kolmogorov equations.PROOF. This is immediate from Lemma 3.3. 2Consider a Markov proess X�(�) with the transition kernel q�(�; �; �).9



Lemma 3.6 For X�(�) onstruted as above with L(X�(0)) = � and v(�; �) as in Corollary 3.3,(X�(�); v(�;X�(�))) satis�es the relaxed ontrolled martingale problem for (A; �).PROOF. By our onstrution L((X�(�); v(�;X�(�))) 2M�1(�). This implies the laim. 2Corollary 3.4 Without loss of generality, we may replae v(t;X�(t)) in Lemma 3.6 byv�(X�(t)) for a measurable v� : E ! V .PROOF. This follows as in Corollary 1.1, p. 13, of Borkar (1989). 24 The vanishing disount limitWe reall the following notation. For � = L((X(�); �(�))), �(x) denotes the regular onditionallaw of (X(�); �(�)) given X(0) = x. Also for any set D let D denote its losure.Now, for presribed i � 0; � 2 P(E), let M0i ([x℄) def= the set of limit points of M�i ([y℄) as�! 0 and y ! x. In other words, letting � denote any ompatible omplete metri on E,M0i ([x℄) def= \�>0 \�>0 [0<�<� [�(y;x)<�M�i ([y℄):Further let M0i (�) def= f� = L((X(�); �(�))) : L(X(0)) = �;�(x) 2M0i ([x℄) 8x a.s. [�℄g:First we note down the following observation.Lemma 4.1 M0i (�) is ompat and ontains the set of limit points ofM�i (� 0) as (�; � 0)! (0; �)(in partiular, is nonempty).PROOF. We �rst prove the seond laim. Let �n ! �; �n ! 0; and let L(Xn(�); �n(�)) 2M�ni . Then fL(Xn(�); �n(�))g an be shown to be a tight sequene as in Lemma 3.6 (pp. 126)of Borkar (1989). By dropping to a subsequene if neessary we an assume thatL(Xn(�); �n(�))! L(X(�); �(�)) (4.1)(say). Let  n : E ! P(C([0;1);E) � U) denote the regular onditional law of (Xn(�); �n(�))given Xn(0). By dropping to a further subsequene if neessary, we may suppose that(Xn(0);  n(Xn(0)))! (X 0(0);  0) (4.2)10



in law for an E�P(C([0;1);E)�U)� valued pair (X 0(0);  0). Clearly, the law of both X 0(0)in (4.2) and X(0) in (4.1) is �. Let f : E � (C([0;1);E) � U)! R be a bounded ontinuousfuntion. Then by (4.2),E[Z f(Xn(0); !) n(Xn(0); d!)℄ ! E[Z f(X 0(0); !) 0(d!)℄: (4.3)By Lemma 3.1,  n(Xn(0)) 2M�ni (Xn(0)) 8n; a.s. Thus 0 2M0i (X 0(0)) a:s: (4.4)De�ne  : E ! P(C([0;1);E) � U) by:Z hd (X 0(0)) = E[Z hd 0jX 0(0)℄for h in any ountable onvergene determining lass in Cb(C([0;1);E)�U). ClearlyM0i (�) isonvex for all i; � (being the set of limit points of a sequene of onvex ompat sets ontainedin a ompat set). By (4.4), it then follows that  (X 0(0)) 2M0i (X 0(0)); a.s. By (4.3),E[Z f(Xn(0); !) n(Xn(0); d!)℄! E[Z f(X 0(0); !) (d!)℄:Also, E[f(Xn(0); (Xn(�); �n(�)))℄! E[f(X(0); (X(�); �(�)))℄:Therefore  is the regular onditional law of (X(�); �(�)) given X(0). Hene L(X(�); �(�)) 2M0i (�).We have proved that every limit point of M�i (�) as � ! 0 and � ! � is in M0i (�). Toprove ompatness, let L(Xn(�); �n(�)) 2M0i (�) be suh thatL(Xn(�); �n(�))! L(X(�); �(�)):Pik �n # 0; �n ! � and L( ~Xn(�); ~�n(�)) 2M�ni (�n) suh thatj�nj < 2�n;�(�n; �) < 2�n;�0(L( ~Xn(�); ~�n(�));L(Xn(�); �(�))) < 2�n;where �; �0 denote the Prohorov metris on P(E);P(C([0;1);E) � U) resp. ThenL( ~Xn(�); ~�n(�))! L(X(�); �(�)):Argue exatly as above to onlude that L(X(�); �(�)) 2M0i (�). 2In partiular, we have the following result.Lemma 4.2 For eah �, fM0i (�); i � 0g is a nested dereasing family of nonempty ompatsets. 11



The following results mimi their ounterparts in the preeding setion. First we note thefollowing straightforward result without proof.Lemma 4.3 Let Cn be a sequene of ompat onvex subsets of a ompat set in P(C([0;1);E)�U) and C the set of its limit points as n ! 0. Let f be a bounded linear funtional onP(C([0;1);E)�U) and Dn, resp. D the set of minimizers of f on Cn, resp. C. Then the setof limit points of Dn is a ompat onvex subset of D.Corollary 4.1 For any two elements L((X(�); �(�)));L((X 0(�); �0(�))) of M01(�), X(�);X 0(�)have the same one dimensional marginals. Furthermore, there exists a L((X̂(�); �̂(�))) 2M01(�)suh that �̂(t) (= �̂(t; du)) = v(t; X̂(t)) (= v(t; X̂(t); du))for some measurable v : [0;1)! V (i.e., �̂(�) is a `Markov ontrol').PROOF. Lemma 4.3 implies that the minimum of Fi on M0i�1(�) is attained on M0i (�) fori > 0. Now mimiking the arguments of the preeding setion we get the result. 2Lemma 4.4 If L((X(�); �(�))) 2 M01(�) and � 0 def= L(X(t)) for some t > 0, then L((X(t +�); �(t+ �))) 2M01(� 0).PROOF. It suÆes to prove the laim forM0i (�);M0i (� 0) in plae ofM01(�);M01(� 0) resp.for all i � 0. Furthermore, it suÆes to onsider � = Æx for some x 2 E. Fix i � 0. LetL((X(�); �(�))) 2 M0i ([x℄). From the de�nition of M0i ([x℄), there exist xn ! x; �n ! 0; andL((Xn(�); �n(�))) 2M�ni ([xn℄) suh thatL((Xn(�); �n(�)))! L((X(�); �(�)))in law. Then L((Xn(t+ �); �n(t+ �)))! L((X(t+ �); �(t+ �)))in law. The laim now follows from Lemma 3.3 above. 2De�ne q(x; t; B) def= P (X(t) 2 B) for B 2 B(E) and any L((X(�); �(�))) 2 M01([x℄). Theexat hoie of the latter is immaterial by Corollary 4.1.Lemma 4.5 fq(x; t; :); x 2 E; t � 0g satisfy the Chapman-Kolmogorov equations.12



PROOF. This is immediate from Lemma 4.4. 2Consider a Markov proess X�(�) with the transition kernel q(�; �; �).Lemma 4.6 For X�(�) onstruted as above with L(X�(0)) = � and v(�; �) as in Corollary 4.1,(X�(�); v(�;X�(�))) satis�es the relaxed ontrolled martingale problem for (A; �).Corollary 4.2 Without loss of generality, we may replae v(t;X�(t)) in Lemma 4.6 byv�(X�(t)) for a measurable v� : E ! V .5 The existene resultWe begin by adapting for the present set-up the existene results from Bhatt and Borkar (1996),setion 3. For a stationary L((X(�); �(�))), de�ne the assoiated ergodi oupation measure' 2 P(E � U) by: Z f'(dxdu) def= E[ZU f(X(t); u)�(t; du)℄:Note that (2.3) then beomes R kd'. Let G denote the set of all ergodi oupation measures.From Theorem 2.1, pp. 1538-1541, of Bhatt and Borkar (1996), we have:Lemma 5.1 G is losed onvex and is haraterized asG = f� 2 P(E � U) : Z Afd� = 0 8f 2 D(A)g:De�ne � : [0;1)! P(E � U), �(t) = �(t; dxdu) byZ f�(t) def= 1t Z t0 E[ZU f(X(s); u)�(s; du)℄ds; f 2 Cb(E � U):We make the following `stability' assumption:(A1) G is ompat and for any ompat B � P(E) and L((X(�); �(�))) 2 �M(�); � 2 B (inpartiular, for a �xed � 2 P(E)), fL(X(t)); t � 0g is tight.This implies in partiular that �(t); t � 0, is tight and therefore relatively ompat inP(E � U) by Prohorov's theorem.Lemma 5.2 Any limit point �� of �(t) in P(E � U) as t!1 is in G.13



PROOF. Let t!1 along an appropriate subsequene in the formulaE[f(X(t))℄t � E[f(X(0))℄t = 1t Z t0 E[ �Af(X(s); �(s))℄ds; f 2 D(A);to onlude that R Afd�� = 0 8f 2 D(A). The laim now follows from Lemma 5.1 above. 2This enables us to establish the following basi existene result in the spirit of Lemma 3.1,p. 1553, of Bhatt and Borkar (1996).Lemma 5.3 Under (A1), there exists a stationary ergodi L(( �X(�); ��(�))) that is optimal forthe ergodi ontrol problem.PROOF. By the above lemma,lim inft!1 Z kd�(t) � inf�2G Z kd�:By ompatness of G, the in�mum on the right is a minimum. From Theorem 2.1 of Bhatt andBorkar (1996), we know that the minimum will orrespond to a stationary pair (X(�); �(�)).Considering the ergodi deomposition of the latter, the laim follows. 2Our aim is to re�ne this result to the existene of an optimal ergodi L((X(�); �(�))) sothat X(�) is a time-homogeneous Markov proess (whene �(�) may be taken to be a stationaryMarkov ontrol as observed earlier). Let  def= min�2G R kd� denote the optimal ost and�� def= L( �X(t)) for �X(�) as in Lemma 5.3.Reall the time-homogeneous Markov proesses X�(�); � > 0; of setion 3, with the assoi-ated ontrol proesses fv�(X�(�))g resp. From now on we onsider these with L(X�(0)) = ��.We shall need the following assumption:(A2) Eah X�(�) is asymptotially stationary.Lemma 5.4 For all � > 0,�E[Z 10 e��t ZU k(X�(t); u)v�(X�(t); du)dt℄ � : (5.1)PROOF. This is immediate from the optimality of L((X�(�); v�(X�(�)))) for the ��disountedost and the fat that the orresponding ost for L(( �X(�); ��(�))) is =� for all � > 0. 2Lemma 5.5 As �! 0,�E[Z 10 e��t ZU k(X�(t); u)v�(X�(t); du)dt℄ ! :14



PROOF. By the above lemma,lim sup�!0 �E[Z 10 e��t ZU k(X�(t); u)v�(X�(t); du)dt℄ � :Consider the `disounted oupation measures' �� 2 P(E � U) de�ned byZ fd�� def= �E[Z 10 e��t ZU f(X�(t); u)v�(X�(t); du)dt℄; f 2 Cb(E � U):As shown in Bhatt and Borkar (1996), these satisfyZ (Af � �f)d�� + Z fd�� = 0; f 2 D(A): (5.2)It follows from (A1) that f��g are tight. Letting �! 0 in (5.2) leads toZ Afd�� = 0 8f 2 D(A);for any limit point �� of �� as �! 0, implying �� 2 G by Lemma 5.1. Thuslim inf�!0 �E[Z 10 e��t ZU k(X�(t); u)v�(X�(t); du)dt℄= lim sup�!0 Z kd�� � Z kd�� � :The laim follows. 2Let L((X̂�(�); v�(X̂�(�)))) for � > 0 denote the limiting stationary laws of L((X�(�); v�(X(�)))),impliit in the statement of assumption (A2) above. By (A1), these are tight. Let �(n) # 0 bea subsequene suh thatL((X̂�(n)(�); v�(n)(X̂�(n)(�)))) ! L((X 0(�); �0(�)))(say), whih will also be stationary. Let�̂n def= L(X̂�(n)(t))! �̂ def= L(X 0(t)):Sine L((X̂�(n)(�); v�(n)(X̂�(n)(�)))) 2M�(n)1 (�̂n), it follows thatL((X 0(�); �0(�))) 2M01(�̂):ConsiderL((X�(�); v�(X�(�)))) as in the preeding setion with L(X�(0)) = �̂. Then L((X�(�); v�(X�(�)))) 2M01(�̂). Thus by Corollary 4.1, it has the same one dimensional marginal as L((X 0(�); �0(�))),viz., the onstant marginal �̂. Sine it is also time-homogeneous Markov, it follows that it isstationary. Furthermore, E[ZU k(X̂�(n)(t); u)v�(n)(X̂(t); du))℄! E[ZU k(X̂ 0(t); u)�0(t; du))℄= E[ZU k(X�(t); u)v�(X�(t); du))℄= limt!1 1t Z t0 E[ZU k(X�(s); u)v�(X�(s); du)ds℄;15



implying that the latter equals . That is, L((X�(�); v�(X�(�)))) is an optimal stationary pair.By onsidering its ergodi deomposition if neessary, we have proved:Theorem 5.1 Under (A1), (A2), there exists an optimal ergodi, time-homogeneous Markovsolution to the ergodi ontrol problem.6 Conluding remarksWe have established the existene of an optimal time-homogeneous Markov and ergodi solutionto the ergodi ontrol problem under a ertain set of onditions. A areful look at the argumentsof the �nal setion shows that it is of the nature: `if an optimal ergodi solution exists, thenso does one whih is also time-homogeneous Markov'. Condition (A1) played a ruial role inestablishing the former. In spei� ases, however, one may be able to replae it by other moreonvenient onditions for the purpose, see, e.g., setion 3 of Bhatt and Borkar (1996) for onesuh instane.
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