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1 Introduction

Maximum likelihood estimation and Bayes Estimation of a parameter # appearing linearly in
some stochastic partial differential equations (SPDE) has been considered by Hiibner et al.
(1993). Detail discussion of these SPDE’s and some interesting phenomena arising out of the
parameter estimation have been considered by them in two examples. A Berry-Esseen type
bound for the distribution of the maximum likelihood estimator (MLE) of the parameter 6 for
these SPDE’s have been considered in Mishra and Prakasa Rao (2004). We now study the
bounds on the large deviation probabilities for the maximum likelihood estimator (MLE) éN,E
and the Bayes estimator (BE) 5N7€ of a parameter 6 occuring linearly in such SPDE’s. We
follow the method of Ibragimov and Khasminskii (1981) in obtaining these results.

In Section 2, we describe a SPDE with parameter 6 such that the corresponding stochastic
process u. generates measures {FPg,6 € ©} which are mutually absolutely continuous and the

main results pertaining to this section have been described in the Section 3. In Section 4, we



describe a SPDE with parameter 6 such that the corresponding stochastic process u. generates
measures which form a family of probability measures {Pj,0 € ©} which are singular with
respect to each other and this section also contains the main results connected to this problem.
Comprehensive surveys on statistical inference for such classes of SPDE’s are given in Prakasa
Rao (2001,2002).

Throughout the paper, we shall denote by C,C,Cs etc. positive constants different at

different places of occurence possibly dependent on the initial conditions of the SPDE’s.

2 Stochastic PDE with linear drift (Absolutely continuous case)

: Estimation

Let (2, F, P) be a probability space and consider the process ue(t,z), 0 <z <1, 0<¢t<T

governed by the stochastic partial differential equation
duc(t,z) = (Au(t,z) + Ouc(t,z)) dt + edWo(t, z) (2. 1)
with the initial and boundary conditions given by

u6(0,$) = f(x)a f€ LZ[O’ 1]a
we(t,0) = wu(t,1)=0, 0<t<T 2. 2)

where A = 86—;2. Let ¢ — 0 and 6§ € © C IR. Here @ is a nuclear covariance operator for the
Wiener process W (t,z) taking values in L3[0, 1], so that Wq(t,z) = Q%W(t,x) and W (t,z)
is a cylindrical Brownian motion in Lj[0, 1]. Then it is known that (cf. Rozovskii (1990))

Wolt,s) = g?ei(@Wilt) as. 2. 3)
=1

where {W;(t), 0 <t <T},i>1 are independent one dimensional standard Wiener processes
and {e;} is a complete orthonormal system (CONS) in L2[0, 1] consisting of the eigen vectors of
Q) and {g¢;} the corresponding eigen values of ). Let us consider a special covariance operator
Q with e = sinkmx, k > 1 and A\; = (7k)%,k > 1. Then {e, } is a CONS with the eigen values
g = (L+X;)~L, i > 1 for the operator @ where @ = (I — A)~!. Furthermore, dW¢ = Q%dW

We define a solution u,(t,z) of (2.1) as a formal sum
oo
uc(t,r) = uic(t)ei(x) (2. 4)
i=1
(cf. Rozovskii (1990)). It is known that the Fourier coefficients u; (t) satisfy the stochastic

differential equation

duie(t) = (8 — \i)uge (1) dt + —— —dWi(t), 0<t<T (2. 5)

Nores



with the initial conditions

1
wie(0) = v;, vy :/0 f(z)e;i(z)dz. (2. 6)

It is further known that the function u(t,z) as defined above belongs to Ly ([0, T] x ; L2[0, 1])
together with its derivative in ¢. Furthermore u¢(t, ) is the only solution of (2.1) under the

boundary condition (2.2).

Let Pj be the measure generated by u. on C[0,7] when 6 is the true parameter. It has been
shown by Hiibner et al. [3] that the family of measures {Pe(e), 0 c @} are mutually absolutely

continuous and

dPf§
1 0
00 T T
Ai+1 1
=D "2 [(0 =00 [t (8) = 5 {0 =2 = 0 = 2%} ui(t)dt] .
i=1
The projection of the solution wu.(t,z) onto the subspace 7V spanned by {ei,es,...,en} is

given by oV (t,z) = Zl]\il wie(t)ei(x). Let PHE’N be the probability measure generated by the

process uX (t, ) on C[0,T] when  is the true parameter. Then the measure P, N g absolutely

continuous with respect to the measure P;[;N and
e,N
o ap,
e,N
dpy
N
=1

lo

R T T
= 32000 [ w0du) - 5 {0 - X7 = 60— 202} [ usloar].

)

2. 7)

Maximum likelihood estimator:
It is easy to see that the mazimum liklihood estimator (MLE) of the parameter 6 based on the
observation {u” (t,7),0 <t < T} is given by

Ezj\il(kl + 1) f()T uie(t)(duie(t) + Aiuie(t)dt)
S 1) fy ud (bt

ONT= (2. 8)

(cf. Hiibner et. al. (1993), p.154).

Bayes estimator:

Suppose that A is a prior probability measure on (0,5) where B is the o-algebra of Borel
subsets of an open set ® C R. Further suppose that A has a density A(.) with respect to the
Lebesgue measure and the density A(.) is continuous and positive in an open neighbourhood
of 0y, the true parameter. The posterior density of 6 given ugN) (t,2),0<x<1,0<t<Tis
given by



(a7 jarg ) )A0)
Jo (dPaE’N/dngN) W™M)N0)do.

py (9 IU§N)> =

We define the Bayes Estimator (BE) éMT’E of 0, based on the path ugN) and prior density

A(6), to be the minimizer of the function

Brred) = [ 10,00 (01 s, g0

where L(#, ¢) is a given loss function defined on © x ©. In particular, for the quadratic loss

function |# — ¢|?, the Bayes Estimator éMT’E becomes the posterior mean given by

Onre = /@upng) <u|u§N)) du//@p(TN) (v|u£N)) dv.

Suppose the loss function L(#, ¢) : © x © — R) satisfies the following conditions:

D(i) L(0,¢) = L(|0 — ¢|);
D(ii) L(#) is non-negative and continuous on R;
D(iii) L(.) is symmetric;
D(iv) the sets {6 : L(0) < c} are convex sets and are bounded for all ¢ > 0; and

D(v) there exists numbers v > 0, Hy > 0 such that for H > H,,

sup {L(6) : 6] < H'} < inf {L(6) : 6] > H}.

Obviously, loss functions of the form L(6, ¢) = |0 — ¢|? satisfy these conditions D(i) - D(v).

3 Main Result (Absolute Continuous Case)
We now prove the following theorem giving the large deviation probability for the MLE and
BE discussed in Section 2. Suppose 6 < 2.

Theorem 3.1: Under the conditions stated above, there exists positive constants C7 and Cs,
depending on 6,e, N, T and ||f||, such that for every H > 0,

pV Q% e (e - 0)| > H} < oo

where éN,T,s is the MLE of the parameter 8 and
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N
Ai+1 Y Te?
QN,T,E _ Z |: 2(62(0 AT 1) -

2200 - )" X+ 1

Theorem 3.2: Under the conditions stated above, there exists positive constants C7 and Cs,
depending on 6,e, N, T and ||f||, such that for every H > 0,

L _
Py {|Q]2\7,T,€6_1(0N,T,E - 0)| > H} < Cre= I

where HNN,T’6 is the BE of the parameter 6 with respect to the prior A(.) and the loss function
L(.,.) satisfies the conditions D(i)-D(V). Let EZ’N denote the expectation with respect to the

probability measure P, N

Fix 6 € ©. For the proofs of these theorems, we need the following lemmas. Define
e,IN

dP0+€u/\/ QN,T,E
ZNvTaE (U’) = E,N *
dP;

Lemma 3.1 : Under the conditions stated above, there exists positive constants C; and Cy
such that

7N 3 *C‘ 2
5N 25 ()] < Cre O
for —o0 < u < 0.

Lemma 3.2 : Under the conditions stated above, there exists positive constant C; such that

2
N 1 1 9
E; {Z]%T,T,s(ul) — Z]%’,T,E(UQ) S Cl (u1 — UQ)
for —oo < uy,us < o0.

Lemma 3.3 : Let £(¢) be a real valued random function defined on a closed subset F' of the
Euclidean space R*. Assume that random process £(t) is measurable and separable. Assume
that the following conditions are fulfilled : there exists numbers m > v > k and a positive
continuous function on G(z) : R¥ — R bounded on the compact sets such that for all z, h € F,
z+h € F,

Ble(@)|™ < G(o), Blé( +h) — (@)™ < Gl) Al



Then, with probability 1, the realizations of £(¢) are continuous functions on F. Moreover let
LU(5, Sa L) = sup |§(‘,E) - 5(y)|

where the upper bound is taken over x,y € F with ||z —y|| < h, ||z|| < L, |ly|]| < L; then

B(w(h,& L)) < By ( sup G(x>) "L log(h )
[lz]|<L

where the constant By depends on m,yand k.

1
We shall use this lemma with {(u) = Z3 ;. _(u), m =2, v =

L=H+~y+1.

For the proof of this lemma, see Ibragimov and Khasminskii (1981) (Correction, cf. Kallian-

pur and Selukar (1993)).

Proof of Lemma 3.1: We know

dPE,N
_ 9+5u/\/ QN,T,E

ZNT1e(u) =
N, () e
N
VA +1 ( —1/2 /T )
= exp — | cu - Wie (0)dW; (t
[Z{ - Wi | e
. T
S (e, [ o) |]
N T
— exp [Z {\/)\ivl—luQ]_V%i / i (£)dW; (t)
i=1 0
T
~a/2 0+ DEQRY, [ o]
where N
B Ai+1l o a0 1) g



Observe that
e,IN 1/2
BN (235, (w)
N 1 T
—1/2
— BV exp [Z{E\/)\H—l(u N,;,yg)/ wie (£)dW; (1)
i=1 0

T
1 (Ai+1)u2Q]—V71T’€/ ugg(t)dt}]
0

= B {exp( Z\/A +1uQy / wie () dW; (2)
T
_% Z(}\Z + 1)U2QN,1T,E/0 ui_(t)dt)
1= N .
exp < (1/12) > (N +1) 2QNT€/ fg(t)dt>}
=1

T
< |ESN {exp( Z\/A +1uQN1/2/ wie (£)dW; (t)
N - 4/373/4
—(1/6) > (N + )uQy'y. / ui(t)dt)} ]
i=1 0
T 471/4
Ej {exp (—(1/12)()% + I)UQQN}T78/0 u?E(t)dt> } ] (by Holder’s inequality)
T
- {EZ’Nexp< Z\/A +1uQ / wi= (£)dW; (t)
N T
—(2/9) Y (i + DuPQyly. / ui-(t)dt) ¥
i=1 0
N 1/4
X {Eg’N exp <—(1/3) Z/O (N + 1)u2QN,1T76u22€(t)dt> }
=1
LN T 1/4
< |Ej {exp (-52/ (Ai+1)u2Q;,}T7€u?E(t)dt> H (3. 1)
=170

(since the first term is less than or equal to one (cf. Gikhman and Skorohod(1972))).

From (2.5), we obtain that

duic(s) = (0 — Xi)uge(s)ds +
u;e(0) = ;.



By the Ito’s Lemma, we have

d(ug (s)e= 025y = € —(0-X)s gy
(i ()™ 0) = e ()
or .
(B 02t _ gy = £ ~(0-X)s gy
we(t)e v ; me (s)
An application of Lemma 1.13 of Kutoyants (1998), p.26 shows that
sup e (t) — wio(t)] < el M7= qup [Wi(1)].
0<t<T Ai +1o<t<r
Note that
win(t) = vel0At
and hence

sup |W;(t)|dt.

r T
wio (t)| |wie (t) — wio(t dt<e|9)‘iT/ P O
| Ol ) = (o)t < 1 —

(3. 2)



Using the above inequality and (3.1), we obtain that

N 9 T
eN (12 4 e, N RelatEs) 2
|:E6‘ (ZN,T,E(U’)>] < E0 {exp< lzzl 3QN,T,E 0 uzs(t)dt
N N u2 T )
< E; exp A +1 {(—/ u; tdt)
[/ ; 3QN,T,E( 1 ) 0 ZO( )
T
+ (/ 2| w0 (t)] |use (t) — uig(t)|dt> H
0
N 2 T
_ u ] 2
2 N T
xEoN e i >\,+1/ lwio (t)] |uie () — wio(t)|dt
0 P [3@1\777«,E ;( i ) . | io( )|| ie () io )|
N
< exp Z u? (A +1)/Tv;?e—2()‘i_‘9)tdt
3QN, T, 0
N
XE;’N {exp [Z 30~ \/ (Ai + 1)|vileniel® T/ (Aia)tdt] }
(where 7; = oiltlfT [Wi(t )I)
N 2.2
u ’U >\Z + 1 72()\_70)71
e — 1 _ i
eXp[ ;{3QN,T,E2(AZ-—9)< ¢ )
N 2
e,N ut VA ileni oy ~u-0i1)
xE, {exp [2; CToJ SV (1-— )
N 2,2
UV A +1
< - U .
= o [ ; 3QN,1e 2(Ni — 0)
2
&N VAi+L T~ (0T
xE," exp [223@1\”6 N0 |vilenie (1—e )
u?
< exp —CleNT v}
: €
wle
xEy N (exp Cy Z On elf= /\”T(l — e_(/\i_e)T)]>
7 75
< exp[ ||f||2]

QN, T,

N ule
7/:1 ) 7 f

o0
(Where > vl = ||f||2> .
=1



Hence

€ 1/2 4 u2
5 (25.w)]" < ew |-ag i
N
% HeXp <(302/2) Tute? 1 2 o210—Xi \T( e(AiH)T)2> :
j— NTEA
=1
(since Epexp {l sup |Wz(t)|} < 2eB/2TF | ¢f Kutoyants (1998))
0<t<T
u? ute? )
< exp |-C 2]ex o 2 2(N%r 9)T’
= P[ 3QN,T,5||f|| P|Cgr £ 1%

Hence
B (242, ) < Oy

(the constants Cs and Cs depend on ¢,0, N,T and ||f]]).

Proof of Lemma 3.2 : Note that
1 2
55 {2 g )~ 2 )}
1 1
= EyN {Znme(w) + Znre(uz)} — 2B {ZZZ‘V,TE(UI)Z]@TE(UQ)}
= 215 2h ) 2 )}

N T

VA +1
(since E;’NZN,Tyg(u) = E;’N exp u/ wie (t)dW; (t)
~ 0

e L)
—s— us. (t)dt =1).
9 QN,T,E 0 za( ) )
Denote
1/2
dpsN
VN,T,& = ( 052N> where 8, = 0 + T and 0 =0 + 6}12
dpal Q]2\7T5 Q]zvyT,E
o 1 al 'U/2 — Ul \/)\ +1
- 92 Z 1/2
1=1 N,Te
1 _ . 1 T
4 i=1 QN,T,E 0
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Now

5" { (Zhsn) (20t )}

N 1/2 N 1/2
dP;’ —1/2 dP; —1/2
_ E;,N +Eu1?VN,T,E +Eu2?VN,T,E
£, €,
dPG dPG
N 1/2 N 1/2
B dpg1 dPg2 e N
- e,N e,N dP9
dPa’ dPe’
1/2
P, N N
- () - m v
01
1 uy —u)vVN +1 (1
= B |expd 5> (uz 1) l / wic (£)dW; (t)
i=1 Q3 0
N,/ T
N
1 —up)?(N+1) [T
Iy |
i—1 N, T 0
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1 —u1) VA
_ 9 1—E;;Nexp 5Z(ug Uy +1 /

1/2
i=1 NTye
1 i (ug —u)2(N+1) [T
- / uZ (t)dt
4 & QN 0
enN )1 (ug —ur)vVAi +1
< 2|1l-expEy EZ 7
i=1 NTye
1on (ug —u)2(N+1) [T
—— / ul (t)dt (by Jensen’s inequality)
4 & QN 0
N
_(U2 - U1 )\ + 1 /
= 2(l—-ex
[ P {1,:21 4QN T
< 2 M(A —I—l)EEN (since 1 —e™* < 1)
— 4QNTe

B i@m—ul Ai+1 2(1_6 )—i—iz _l—e’Q(Ai’a)T
B 2Qna: | N—0" 2 &N 2(\; — 0)
(c Hiibner et. al (1993), p.152)

(uz — u1)?

N 2 N _—2M=0)T
_ 2(1 _ - e” l—e
QN “Onr. © ;{vl <1 ¢ >+ 2 ;{Az < 2(A\; —0) )H
(up —w)? (&
= QNTe (Z K )
< (%_71)20(”]0”%%2)
N,/ e
< C(ug —uy)?

for some constant C' depending on 0, N, T, e and || f]|.

Proof of Theorem:
Denote U, = {u 0 +uesl € @} , where © C R. Let 'y be the interval H +v < |u| < H+vy+1.

We use the following inequality to prove our theorem:

Ly

Py {S“pzN,T,g(m > 1} < O (1 + H 4 )b h0T02, . 3)

12



So
ng’N {|\/ QnTee " (éN,T,e — 9) | > H}

S Pg;N{ sup ZN,T,E(U) Z ZN,T,E(O)}

|u|>H,ueU.
oo
< >t {SUPZN,T,E(U) > 1}
- r
=0 K
o -
< Oy Z 6*03(H+"/)2
7=0

2
< 046_05H .

This proves Theorem 3.1.
We now prove the inequality (3.3).

We divide the interval I', into N sub-intervals each with length at most h. The number of
sub-intervals N < [%] + 1. Choose u; € FE,]), 1<73<N.

N | =

Y

N
Pg’N {Sup ZNTe(u) > 1} < ZPg’N {ZN,T,E(“) Z
j=1

1 1 1
—i—pg’N{ sup Zﬁ,’T’g(u) — Z]%’Tyg(u) > 5}
lu—v|<h
(when |ul, |v]| < H +v+1). (3. 4)

From the Chebyshev’s inequality and in view of Lemma 3.1 it follows that

1 1 :
M B a2 5 < ot

1
By Lemma 3.2 with ((u) = Z3 ;- _(u) and using Lemma 3.3 we obtain

By s |2 )~ Zge(o)]| < OCH -+ 120 log(h ™)
u—v|<h
lul o] S (H+7+1)

Hence

Pyt {Sup Znie(u) > 1} < Oy eI 4 (H -+ )30 og(h™)} (by wsing (3.4))

Dy

Considering h = e~ (H+7)?/ 2 we prove the inequality in Theorem 3.1.

Proof of Theorem 3.2 : Observe that the conditions (1) and (2) in Theorem 5.2 of Ibragimov
and Khasminskii (1981) are satisfied by Lemmas 3.1 and 3.2. In view of the conditions on the

2

loss function mentioned in Section 2 with @ = 2 and g(u) = u®, we can prove the Theorem 3.2

by using Theorem 5.2. We omit the details.
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4 Stochastic PDE with linear drift (Singular case)

Let (2, F, P) be a probability space and consider the process u;-(t,z), 0 <2 <1,0<¢t<T

governed by the stochastic partial differential equation
due(t, z) = OAu.(t, z)dt + e(1 — A)~2dW (¢, z) (4. 1)
where 6 > 0 satisfying the initial and boundary conditions
ue(0,z) = f(x),0 < z < 1, feL2]0,1],

ue(t,0) = ue(t,1) =0, 0<t<T (4. 2)

Here I is the identity operator, A = 38—; as defined in the Section 3 and the process W (¢, z)
is the cylindrical Brownian motion in Ly[0,1]. In analogy with the discussion following the
stochastic differential equation given by (2.5) in Section 2, it can be checked that the Fourier

coefficients ;e (t) satisfy the stochastic differential equation

duic(t) = —ONjuse (£)dt + —— _dWi(t), 0<t<T (4. 3)

WovEa
with .
u;e(0) = v; where wv; :/ f(z)ei(z)dz. (4. 4)

0

Let Pj be the measure generated by the process u. on C[0,T] when  is the true parameter.
It can be shown that the family of measures {Fj, 6 € ©} do not form a family of equivalent
probability measures. In fact Py is singular with respect to Pj,, when 6 # 6" in © (cf. Hiibner
et. al [3]).

Let uEN) (t,z) be the projection of u.(t,z) onto the subspace spanned by {ej,es,...,ex} in

L[0,1]. In other words,

N
ul™M(t,2) = uie(t)ei(x). (4. 5)
=1

Let Pg N be the probability measure generated by the process uEN) on the subspace spanned
by {e1,...en} in Lo[0, 1]. It can be shown that the measures {PHE’N, 0 e @} form an equivalent

family and

14



log dPg((f’N)( &)
N T
= A D000 [ w00 + o)
=1 0
+%(9 —00)*X; /Tuge(t)dt] (4. 6)
0

It can be checked that the MLE HANyT,E of 0 based on uEN) satisfies the likelihood equation

ey =€t (éN,T,s - 90) Be,N (4. 7)

when 6 is the true parameter,

N T
Qe N = Z AivAi+1 / uge (1) dW; (1)
i=1 0

and
N T
Bov = S e+ 03 [ a0y
i=1
Define
al >\ +1) AT €2
RN,T ; l(l—e ¢ )+T>\i+1}.
Then

AL NVA T wic®)awi )} /v/Rxr,:

v/ RN,T,e(éN,T,E — ) =
(SN O+ DX [ b (B)dt} /R

It can be checked that -
Ey, / ul (t)dt < oo
0

We define the Bayes Estimator éN,T,s as in Section 2 and assume that the conditions D(i) -
D(v) stated there for the loss function L(.,.) hold.

Main results :
Theorem 4.1 : Suppose 8 > 0. Under the conditions stated above, there exists positive

constants C7 and Cy, depending on @,¢, N,T and || f||, such that for every H > 0,

1 R .
PGE,N {‘R&Tﬁgl <9N,T’6 - 0)‘ > H} < 016*0217“7

15



where éN’T,E is the MLE of the parameter and

N 2

Ai(Ai+1) f o 20\ T £
I i - Y R P A .
Ry, ; 2% v} ( e ) + Nl

Theorem 4.2 : Suppose € > 0. Under the conditions stated above,there exists positive con-
stants C and C9, depending on #,e, N,T and || f||, such that for every H > 0,

1 ~ .
Py {‘R}Z\r,nefl (ON,T,E — 9)‘ > H} < Cre I

where éMT’E is the BE of the parameter with respect to the prior A(.) and the loss function
L(.,.) satisfies the conditions D(i)-D(v).

For proofs of Theorems given above, we need the following lemmas and Lemma 3.3. Define
dp>"

0+Eu/w / RN,T,E
dpy™

ZNTe(u) =

Lemma 4.1 : Under the conditions stated above, there exists positive constants C; and Cy
such that

e,N 1 —Cyu?
By 2. (w)] < Crem ™"

for —o0 < u < 0.

Lemma 4.2 : Under the conditions stated above, there exists positive constant Cy such that

2
1 1
e,N 5 > 2
Ey {Zﬁr,Tg(Ul) - Z]%T,T,E(UQ)} < Co(uy — ug)
for —oo < uq,us < 0.
Proofs of these two lemmas are given below.

Proof of the Theorem 4.1 is similar to that of Theorem 3.1 following the procedure in
Ibragimov and Khasminskii (1981).
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Proof of the Theorem 4.2 can be given following the same remarks made earlier for Theorem
3.2.

Proof of Lemma 4.1: Observe that

e,N
- dPH-i—au/\/RNTE
Zngre(u) = — N
dPy
AV + lu
- —{z M [ awio
1
M\ + Dl (t)dt
+2RNTE; + Du(t) }]
Therefore,
N ) NNV T Tu
BN (Z g, () = N exp o — >R o uig(t)dWi(t)
i=1 6

8
z o]

=1

Proceeding as in Lemma 3.1, we get

[ES’N (Z]%,T,E(w)r < EE’Nexp[ {fj — / A2\ + 1) ()dt}]
< Eytexp o RiT,E ;A%(Ai +1) { /0 t —ugy (t)dt
- T|2uio(t)||uig(t)—uio(t>|dt}]. (4. 8)

From the equation (4.3) and by the Ito’s lemma, we get that

i € i
d (uig(t)ea)"t) = e AW (1)
1

or
t
, € ,
uie (1)t —v; = /0 PR PN AW(s).
An application of Lemma 1.13 of Kutoyants (1998), p.26 shows that

X &
sup |uge (£) — uio(t)] < " ———— sup [Wi(t)).
0<t<T Ai + 1o<t<r

Note that



and hence

T T
w0 (E) | |we () — wio(t)|dt < ea)‘iT/ V; 670)‘“5; sup |W;(s)|dt.
/0|0()||z() o(t)|dt < 0|| Nowt [Wi(s)]

+ 1 o<s<r

From (4.8), we obtain that

B [ng(w]

5 1— 6—2(9)\¢T
< exp |-C AF( +1 <7>
P Z Ryt o 20\,
xE5N Lexp |2 711 A2 (A + 1) ]3| el NIT (1 — = ONT
0 { Xp ;HAiRN,T,e z( ) )| Z|\/m77l ( )
N 2
u® A(Ai+1) 20\, T
< exp|-C V3 (1—6 i )
P ; Ryre 20 !
N
<N u (O 1) 3 |oslemselNIT (1 — g=0NT
o P QRN,T,Ei:ZI i(Ni +1)2|vilem;e ( € )|
(where n; = sup |W;(t)])
0<t<T
N U2 )
< exp|-C — N (N\; + 1o
> p 1 i:ZlRN,T,E l( 7 ) i
N u? 1
X HEgyN <8Xp (ea)\iT(l _ e—e)w‘T) >\z(>\z + 1)§|vz|€7h>>
i=1 BNre
N
< exp _Cl Z exp T€2 Z 2|0X; T‘ —0/\iT)2,L'6U7:2
i—1 NTE NTE
S 6702114 eXp 5 T€2ZZ6 2 2‘0}\ |T 7(9AiT)2
RNTE

for some positive constant Cy depending on 0,¢,T, N and ||f|| since
Ryr.>C i4v$
i=0

Hence the above inequality implies that

)N - 2
127 (28 qe(W)] < Cse e,

Proof of Lemma 4.2:
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Proceeding as in Lemma 3.2, we have

=

2
N 3
B { 2 ) = Zi g ()}
N 1
S 2 |:1 — E'6 {ZNTE(UI)ZNTE U2 }:|
)

N T
1 (UQ —up) VA + 1
5 Z /0 wge (£)dW;(t)

- 1
2
- RN,T,E

1 U2_U1 / 2
AF (O + Dui(t)dt
4 RNTs + D (1)

N
1 — u2) Aiv/ A
S 211— exp (91 —5 E U2 + / uzs dWZ

i ]%v
4 u;z,;;t Z/ SR VA )dt}] (by Jensen’s inequality)
= 2 [1 —eXP{—(IZ;VZIE Z/\2 (A +1 )dt}]
<2 (%}1 Z/ N0+ i (0 )dt)

(since 1 —e ¥ < x)

U2 - Ul Z 2
A2(\ + 1 / B2 (t)
2Rnr. —
(ug —u1)? <i M+ D)o2(1 — e=2NT) 4 Ti A-)
{3 {3 [} {3
ZHRNaTv‘E =1 i=1
(following Hiibner et. al. (1993), p.158)

< Ci(ug —u )2 EZ . - o ( ei%AiT) 17
- ZN 74 2(1 _ 6—20)\¢T)

| 14
n N
: N Mk £D) o ~200,T) —20MT
(since Ry1e = g Tvk(l —e M >\k 1 g > — e MY

k=1
< Cy(ug —up)?

for some positive constant Cy depending on 0,¢, N,T and ||f]|.
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