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Abstract
A binary operation * over real numbers is said to be associative if (z*y)*z = % (y*z) and
it is said to be reducible if z xy = x x 2z or y * w = z * w if and only if z = y. The operation * is
said to have an identity element € if z x € = . We study different classes of lifetime probability

distributions under binary associative operations between random variables.

1 Introduction

Let T be a positive random variable with distrbution function F' which can be interpreted as
the lifetime of a component or system. If the distribution function has a probability density
f, then A(t) = % is called the failure rate or hazard rate where F(t) = 1 — F(t) is the
survival probability. Interpreting 7" as the lifetime of some component or system, the failure

rate measures the proneness to failure at time ¢. It is well known that

F(t) = exp{— /Ot)\(s) ds}

which shows that F' is uniquely determined by the failure rate. Aging of a system is reflected
in the properies of its failure rate. If A(.) is increasing, then the distribution F' is said to have
the IFR (increasing failure rate property). Analogous properies of distributions such as DFR
(decreasing failure rate), IFRA (increasing failure rate average), NBU ( new better than used)
and NBUE( new better than used in expectation) are discussed in the literature to describe the
aging of a system. We will now extend these notions using the concept of a binary associative

operation. A binary operation * over real numbers is said to be associative if
(xxy)xz=xx(y*2) (1. 1)

for all real numbers z,y, z. The binary operation * is said to be reducible if z *xy = z x z if and
only if y = z and if y x w = z x w if and only if y = 2. It is known that the general reducible

continuous solution of the functional equation (1.1) is

zxy=g "(9(z) +g(y)) (1. 2)

where ¢(.) is a continuous and strictly monotone function provided x,y, z * y belong to a fixed
(possibly infinite) interval A (cf. Aczel (1966)). The function g in (1.2) is determined up to a

multiplicative constant, that is,

91 H(g1(2) + 01(v) = g5 (g2(2) + 92(1))



for all z,y in a fixed interval A implies go(z) = gy (x) for all z in that interval for some a # 0.
We assume here after that the binary operation is reducible and associative with the function
g(.) continuous and strictly increasing. Further assume that there exists an identity element
¢ € R such that

rxe=ux,r € A

It is also known that every continuous, reducible and associative operation defined on an interval
A in the real line is commutative (cf. Aczel (1966), p.267). Let X be a random variable with
the distribution function F'(x) having support A. Define

5 (s) = /Aexp{z’sg(x)} Fdz), —00 < 5 < 0. (L. 3)

Note that the function ¢% (s) is the characteristic function of the random variable g(X) and
hence determines the distribution function of the random variable g(X) uniquely. Examples of
such binary operations are given in Castagnoli (1974, 1978, 1982), Muliere (1984) and Castag-
noli and Muliere (1984, 1986, 1988). For instance (i) if A = (—o00,00) and z xy = = + v,
then g(z) = z, (ii) if A = (0,00) and z xy = zy,z > 0,y > 0 then g(z) = logx, (iii) if
A= (0,00) and z xy = (z® + y*)'/% z > 0,5 > 0 for some a > 0, then g(z) = z%, (iv)
ifA=(-1l,0)and zxy =z +y+zy+ L,z > —1,y > —1, then g(z) = log(l + z) (v)if
A = (0,00) and z xy = zy/(z + y),z > 0, then g(z) = 1/x and (vi)if A = (0,00) and
zxy=(z+y)/(1+zy),z >0,y >0, then g(x) = arth z. A characterization of the multivari-
ate normal distribution through a binary operation which is associative is given in Prakasa Rao
(1974) and in Prakasa Rao (1977) for Gaussian measures on locally compact abelian groups.
Muliere and Scarsini (1987) characterize a class of bivariate distributions that generalize the
Marshall-Olkin bivariate exponential distribution through a functional equation involving two
associative operations. Muliere and Prakasa Rao (2003) studied characterization of some prob-
ability distributions via binary associative operation. They characterize distributions with the
almost lack of memory property or strong Markov property or with the periodic failure rate
under a binary associative operation extending the properties of exponential distribution under
addition operation as binary associative operation. A type of bivariate lack of memory property

under binary associative operation was investigated in Prakasa Rao (2004).

2 Nonparametric classes of lifetime distibutions

Let * be a binary operation which is reducible and associative over an interval A contained
in R and g¢(.) be the associated function as described above. Without loss of generality, we
assume that the function g(.) is continuous and strictly increasing with identity ¢ € R with
the property z x € = x for all £ € A. Suppose that 7" is a random variable with distribution
function F. Then

P(T>t*x|T>t):%



for all t € A,x > ¢ such that t *x x € A and F(t) > 0. Definition 2.1: The distribution

function F is said to have an IFR* (increasing failure rate under the binary associative operation
F(txx)
F(t)

distribution function F' is said to have an DFR* (decreasing failure rate under the binary

*) property if is nonincreasing in ¢t € A for all z > € such that t x x € A. The

associative operation *) property if (t( ;C) is nondecreasing in ¢t € A for all x > é such that
txx € A.

Let G(.) be the distribution function of the random variable g(7"). Then

P(T>txg 'ylT >t) = P(g(T)>g(txg 'y)|T >1)
= P(g(T) > g(t) +y|T > t)
= P(g(T) > g(t) +ylg(T) > g(t))

= exp{— / s (s)ds}

where Ay(.) is the failure rate corresponding to the distribution function of ¢(7). This follows
from the fact that the function g(.) is continuous and strictly increasing. Hence

9()+9(z)
P(T > t+2|T > 1) = exp{—/ Aa(s)ds).
g9(t)

Following the above remarks, we define the IFRA* and DFRA* properties.

Definition 2.2: A distribution function F' is said to have the IFRA* (increasing failure rate
average under the binary associative operation *) property if —(1/u)log G(u) is nondecreasing
on the set {u : G(u) > 0}. It is said to have DFRA* (decreasing failure rate average under
the binary associative operation *) property if —(1/u)logG(u) is nonincreasing on the set

{(u : G(u) > 0}.

It is obvious that G(y) = Fog '(y) and G(y) = Fog '(y). Further more

d

Aa(y) = Mg " y)—

i lg7" (v)]-

Suppose that F is IFRA*. Then
(Gy)'¥

is nondecreasing in the range of y which implies that
G(at) > (G(1)"
for 0 < @ <1 and t > 0. Alternatively

[F(g~ ()]



is nondecreasing in the range of y.

Let “(o0)
g7 (o0) _
pa(t) = —Ftt) /é F(tx z)dz.
Note that
1 g™ (c0) _
no(t) = é@w)é Gg(t * 2))da

= o [ G + g
(7)) > o(@)lo(T) > ().

The function pg(t) reduces to mean residual life time of the distribution of T if the binary

associative operation is addition.

Definition 2.3: A distibution function F' is said to have NBU* (new better than used under

the binary associative operation™) property if
F(r+t) < F(x)F(t)

for all z and ¢ such that z € A,z %t € A,é <t < g '(c0). It is said to have NBUE* (new better

than used in expectation under the binary associative operation *) property if

pe(t) < pe = /Ooo G(y)dlg ' (y)] < oo.

Note that the constant ug reduces to the mean residual life time of the distibution function
F if the binary associative operation is addition. One can similarly define NWU* and NWUE*

properties by reversing the inequality signs in the above definition.

3 Interelations between different classes of lifetime distrbutions

The following theorem gives the inter relation between different classes of lifetime distributions
defined above. Theorem 3.1: Let 7" be a random variable with distribution function F.
Suppose that E(g(T)) < oo where ¢(.) is a function associated with a binary associatiove
operation *. Further suppose that the random variable g(7') > 0 with probability one and has
continuous distribution function. Then the following chain relation holds for the distribution
function F:

F IFR+=F IFRAx=F NBUx=F NBUE x.



Proof: Suppose the distribution function F' has the IFR* property. Let G be the distribution
of g(T'). Since the distribution F' is IFR*, it follows that
F(t*z)

F(1)

is nonincreasing in ¢ in the appropriate domain. In other words,

G(g(t %))
G(g(1))

is nonincreasing in ¢ in the appropriate domain. Let G(t) = exp{—A¢(¢)}. Then it follows that,
for every z > g '(&),
exp{Ac(g(t * z)) — Aa(t)}

is nondecreasing in ¢ in the appropriate range of ¢t. Therefore

exp{Aa(g(t) +9(x)) — Ac(g(?))}

is nondecreasing in ¢ in the appropriate range of t for every > g~'(&). Since the function g(.)

is continuous and strictli increasing, it follows that
exp{Ag(u +v) — Ag(v)}

is nondecreasing in v in the appropriate range of v for every u > 0.. Therefore the the function

A¢(.) is convex which implies that
Aglau+ (1 —a)v) <a Ag(u) + (1 —a) Ag(v),0 <a<1.

Let v — 0 from the right. Then we get that Ag(0) = 0 and it follows from the above convexity
property that
Ag(au) < alg(u)

or equivalently

G(au) > (G(u))™.

This inequality proves that the distribution F' has the IFRA* property according to the Defi-
nition 2.2. Suppose now that F' has the IFRA* property. For u,v > 0, let a = —(1/u) log G(u)
and b= —(1/v)log G(v). It follows from the IFRA* property that

—(1/(u +v))log G(u + v) > max{a, b}
and hence
—log G(u + v) > max{a,b}(u +v) > au + bv = —log G(u) — log G(v)

which implies that

G(u+v) < Gu)G(v).

ot



The last statement in turn shows that

Fog™'(u +v) < Fog~'(u)Fog™t(v)

or equivalently
F(g tuxg t(v)) < Fg~ (w)F(g~"(v))

for all u,v > 0. Hence
F(r+t) < F(x)F(t)

for all z,¢ € A such thatt > ¢g~!(€) and z * t € A. This proves that the distribution F' has the
NBU* property. Suppose now that the distribution F' has the NBU* property. Then it follows
that

Ho0) )
[ Fla s« t)ds < F(t)/~ Fa)dz

which implies that

g~ (c0) _ _ g t(o0) _
[ G0+ g@nds < Glo) [ Glgla)de,
that is
~H(oo) _
pa(t) = G(gl(t)) [g G(g(t xz)) dz
g7 (o0) _

< . G(g(z)) dx

— [ Gy )

= HaG-

Hence the distribution function F' has the NBUE* property.

Remarks: It is known that the none of the above implications can be reversed when binary

associative operation is addition. The same comment continues to hold here.

4 Closure theorems

Suppose we consider a system where components are allowed to have an arbitrary but finite
number of states or levels. Let the components be numbered from 1 to n. Let z; represent the

state of the component ¢. Suppose that z; can be in one out of M; 4+ 1 states
Ti0, Tils - - Tiddyy (Tio < Tix < ..., Tibg)-

The states may represent different levels of performance of the component, from the worst z;y
to the best z;57,. We call the states z;o, z;1, ..., i, as the failure states of the i-th component.

Let ®(z1,...,x,) denote the state of the system. The function ® is called the structure function



of the system. Suppose that the function @ is equal to one if the system is in the functioning
state and takes the value 0 if the system is in the failure state. A system is said to be monotone

if its structure function @ is nondecreasing in each argument and

(I)(wlo,wgo,. .. ,$n0) =0 and @($1M1,$2M2,. .. ,ngn) =1.

Let pj = P(z; = 1),1 < i < n and h(p) = P(®(x) = 1) where p = (p1,p2,-.-,pn) and x
denotes the state of the system. The function h(p) is called the system reliability or reliability

function of the system. It is known that if the structure function of a system is monotone, then

h(p®) > [h(p)]*

for 0 < @ < 1 where p® = (pf,p%,...,p%) (for proof, see Aven and Jensen (1999), Lemma 3,
p.41.)

We now prove a closure theorem for IFRA* distributions.

Theorem 4.1: If each of the independent components of a monotone structure has an IFRA*
life time distribution, then the system itself has an IFRA* distribution. Proof: Let F' and
F;,i=1,2,...,n be the distributions of the lifetimes 7" of the system and 73,7 = 1,2,...,n of
the components respectively. Let g(.) be the function associated with the binary associative
operation *. Let G and G; be the distribution functions of ¢g(7T") and ¢(7;) respectively for
i=1,2,...,n. Since the distribution F; has the IFRA* property, it follows that

Gi(at) = (Gi(t)" (4. 1)

for 0 < o <1 andt > 0. Note that the distribution F' is related to the distributions Fj,¢ =
1,2,...,n by the reliability function

note that

= h(EFi(g~ (at),..., Fulg™ (o))
= h(Gi(at),...,Gp(at))
> R(Gi(1)%...,Ga(t)Y)
> G (1))

— — o



by the the equation (4.1) and the monotonicity of the function A(.) for 0 < a < 1. The inequality
holds clearly for & = 0 since G(0) = 0. Hence the distribution F' of the system life 7" has the
IFRA* property.

Theorem 4.2: Let 77 and T, be independent random variables such that their distributions
have IFR* property under a binary associative operation *. Then the random variable T} x T
has a distribution with IFR* property. Proof: Let g(.) be the function associated with the

binary associative operation *. Observe that

9(T1 x Tp) = g(T1) + g(T>)

Further more g(77) and g(7%) are independent random variables and both of them have distri-
butions with IFR property. Applying Theorem 5 in Aven and Jensen (1999), we obtain that the
random variable g(T7) + g(7%) has an IFR distribution. Hence the random variable g(T} * T%)
has an IFR distribution, that is, the random variable T} * T3 has an IFR* distribution.

5 Stochastic comparison

Let T be a random variable with an IFRA* distribution under a binary associative operation
*. Let g(.) be the associated function as given in Section 2. Note that g(.) is continuous and
strictle increasing with g(é) = 0. Suppose that g(7') > 0 with probability one. Let F' be the
distribution function of 7" and G be the distribution function of g(7'). Define

va(t) = (—log G(t))/t.

Since the distribution function F' has the IFRA* property, it follows that the function vg(¢) is
nondecreasing. For 0 < p < 1, define z, such that G(z,) = p or equivalently F(g~!(z,)) = p.
Let o = —x—lp log(1 — p). From the nondecreasing property of the function v (.) and the fact
that ve(t) < vg(zp) for all t < z;, and vg(t) > « for t > z,, it follows that

G(t) > exp{—at} for 0 <t <z,

and

G(t) < exp{—at} for t > z,.

Noting that G(t) = F(g~'(t)) and observing that the function is continuous and strictly in-

greasing, we obtain the following theorem.

Theorem 5.1: Let T be a random variable with distribution function F' with the IFRA*
property under a binary associative operation * with the associated function g(.). Suppose that
g(é) = 0 and ¢g(T') > 0 with probability one. Then

F(u) > exp{~a g(u)} for &=g7"(0) <u< g™ (z))



and

F(u) < exp{~a g(u)} for u>g™"(z,)

where

1
= log(l — p).
&% o) og(l —p)

Let T be a random variable with a continuous IFR* distribution and g(.) be as defined
above. Then ¢(T') is a positive random variable with an IFR distribution, say, G. Let m¢ be
its mean. Applying Lemma 7 in Aven and Jensen (1999), we get that

G(t) > exp{—t/mqg} for 0 <t <nq

and

G(t) < exp{—t/mg} for t > ng

where
, T 1
ng =inf{t € R" : ——log G(t) > —}.
t meqg

These inequalities can be written in the form

F(u) > exp{—g(u)/m¢} for ¢~'(0) <u<g ' (ng)

and
F(u) < exp{—g(u)/mg} for u> g~ (ng).

Theorem 5.2: Let T be a random variable with distribution function F' with the IFR property
under a binary associative operation * with the associated function g(.). Suppose that g(é) = 0
and ¢g(T') > 0 with probability one. Let G be the distribution function of g(7"). Further suppose
that mg = E(g(T)) < co. Define

1 - 1
ne = inf{t € Rt : —=log G(t) > —}.
t mgqg

Then the following inequalities hold:

F(u) > exp{—g(u)/m¢} for ¢7'(0) <u < g7 (ng)

and
F(u) < exp{—g(u)/mg} for u> g~ (nc).



6 Examples:
(i)Weibull distribution: Suppose the random variable T" follows a Weibull distribution
F(u) = exp{—u’},0 <u < 00,8 > 1.
Let * be the binary associative operation defined by
sy = (o +y")VP.

It can be checked that this operation is binary and associative on the interval A = (0, 00) and
the function associated with the binary associative operation * is g(u) = u”. It is easy to check
that

F(txu) B
———=c
F(t)
which is strictly increasing in 0 < u < oo for 5 > 1. Hence the Weibull distribution F' has the
IFR* property.
(ii)Pareto distribution: Suppose the random variable T follows a Pareto distribution
Flu)=u 1< u<oo,a>0.

Let * be the binary associative opertion defined by

zxy =zy,z >0,y > 0.

It can be checked that this operation is binary and associative on the interval A = (0, 00)

and the function associated with the binary associative operation is g(z) = —logz. Observe
that _
F (f * u) _ 4o
F(u)

which is decreasing for ¢ > 1. Hence the Pareto distribution has the DFR* property. Refer-
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