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NONPARAMETRIC CLASSES OF LIFETIME DISTRIBUTIONSVIA BINARY ASSOCIATIVE OPERATIONB.L.S.Prakasa RaoIndian Statisti
al Institute, New DelhiAbstra
tA binary operation * over real numbers is said to be asso
iative if (x�y)�z = x� (y �z) andit is said to be redu
ible if x � y = x � z or y �w = z �w if and only if z = y: The operation * issaid to have an identity element ~e if x � ~e = x: We study di�erent 
lasses of lifetime probabilitydistributions under binary asso
iative operations between random variables.1 Introdu
tionLet T be a positive random variable with distrbution fun
tion F whi
h 
an be interpreted asthe lifetime of a 
omponent or system. If the distribution fun
tion has a probability densityf; then �(t) = f(t)�F (t) is 
alled the failure rate or hazard rate where �F (t) = 1 � F (t) is thesurvival probability. Interpreting T as the lifetime of some 
omponent or system, the failurerate measures the proneness to failure at time t: It is well known that�F (t) = expf� Z t0 �(s) dsgwhi
h shows that F is uniquely determined by the failure rate. Aging of a system is re
e
tedin the properies of its failure rate. If �(:) is in
reasing, then the distribution F is said to havethe IFR (in
reasing failure rate property). Analogous properies of distributions su
h as DFR(de
reasing failure rate), IFRA (in
reasing failure rate average), NBU ( new better than used)and NBUE( new better than used in expe
tation) are dis
ussed in the literature to des
ribe theaging of a system. We will now extend these notions using the 
on
ept of a binary asso
iativeoperation. A binary operation * over real numbers is said to be asso
iative if(x � y) � z = x � (y � z) (1. 1)for all real numbers x; y; z: The binary operation * is said to be redu
ible if x � y = x � z if andonly if y = z and if y � w = z � w if and only if y = z: It is known that the general redu
ible
ontinuous solution of the fun
tional equation (1.1) isx � y = g�1(g(x) + g(y)) (1. 2)where g(:) is a 
ontinuous and stri
tly monotone fun
tion provided x; y; x � y belong to a �xed(possibly in�nite) interval A (
f. A
zel (1966)). The fun
tion g in (1.2) is determined up to amultipli
ative 
onstant, that is,g�11 (g1(x) + g1(y)) = g�12 (g2(x) + g2(y))1



for all x; y in a �xed interval A implies g2(x) = �g1(x) for all x in that interval for some � 6= 0:We assume here after that the binary operation is redu
ible and asso
iative with the fun
tiong(:) 
ontinuous and stri
tly in
reasing. Further assume that there exists an identity element~e 2 �R su
h that x � ~e = x; x 2 A:It is also known that every 
ontinuous, redu
ible and asso
iative operation de�ned on an intervalA in the real line is 
ommutative (
f. A
zel (1966), p.267). Let X be a random variable withthe distribution fun
tion F (x) having support A: De�ne��X(s) = ZA expfisg(x)g F (dx);�1 < s <1: (1. 3)Note that the fun
tion ��X(s) is the 
hara
teristi
 fun
tion of the random variable g(X) andhen
e determines the distribution fun
tion of the random variable g(X) uniquely. Examples ofsu
h binary operations are given in Castagnoli (1974, 1978, 1982), Muliere (1984) and Castag-noli and Muliere (1984, 1986, 1988). For instan
e (i) if A = (�1;1) and x � y = x + y,then g(x) = x; (ii) if A = (0;1) and x � y = xy; x > 0; y > 0 then g(x) = log x, (iii) ifA = (0;1) and x � y = (x� + y�)1=�; x > 0; y > 0 for some � > 0; then g(x) = x�; (iv)if A = (�1;1) and x � y = x + y + xy + 1; x > �1; y > �1, then g(x) = log(1 + x) (v)ifA = (0;1) and x � y = xy=(x + y); x > 0; then g(x) = 1=x and (vi)if A = (0;1) andx � y = (x+ y)=(1 + xy); x > 0; y > 0; then g(x) = arth x: A 
hara
terization of the multivari-ate normal distribution through a binary operation whi
h is asso
iative is given in Prakasa Rao(1974) and in Prakasa Rao (1977) for Gaussian measures on lo
ally 
ompa
t abelian groups.Muliere and S
arsini (1987) 
hara
terize a 
lass of bivariate distributions that generalize theMarshall-Olkin bivariate exponential distribution through a fun
tional equation involving twoasso
iative operations. Muliere and Prakasa Rao (2003) studied 
hara
terization of some prob-ability distributions via binary asso
iative operation. They 
hara
terize distributions with thealmost la
k of memory property or strong Markov property or with the periodi
 failure rateunder a binary asso
iative operation extending the properties of exponential distribution underaddition operation as binary asso
iative operation. A type of bivariate la
k of memory propertyunder binary asso
iative operation was investigated in Prakasa Rao (2004).2 Nonparametri
 
lasses of lifetime distibutionsLet * be a binary operation whi
h is redu
ible and asso
iative over an interval A 
ontainedin R and g(:) be the asso
iated fun
tion as des
ribed above. Without loss of generality, weassume that the fun
tion g(:) is 
ontinuous and stri
tly in
reasing with identity ~e 2 �R withthe property x � ~e = x for all x 2 A: Suppose that T is a random variable with distributionfun
tion F: Then P (T > t � xjT > t) = �F (t � x)�F (t)2



for all t 2 A; x � ~e su
h that t � x 2 A and �F (t) > 0: De�nition 2.1: The distributionfun
tion F is said to have an IFR*(in
reasing failure rate under the binary asso
iative operation*) property if �F (t�x)�F (t) is nonin
reasing in t 2 A for all x � ~e su
h that t � x 2 A: Thedistribution fun
tion F is said to have an DFR* (de
reasing failure rate under the binaryasso
iative operation *) property if �F (t�x)�F (t) is nonde
reasing in t 2 A for all x � ~e su
h thatt � x 2 A:Let G(:) be the distribution fun
tion of the random variable g(T ): ThenP (T > t � g�1yjT > t) = P (g(T ) > g(t � g�1y)jT > t)= P (g(T ) > g(t) + yjT > t)= P (g(T ) > g(t) + yjg(T ) > g(t))= expf� Z g(t)+yg(t) �G(s)dsgwhere �g(:) is the failure rate 
orresponding to the distribution fun
tion of g(T ): This followsfrom the fa
t that the fun
tion g(:) is 
ontinuous and stri
tly in
reasing. Hen
eP (T > t � xjT > t) = expf� Z g(t)+g(x)g(t) �G(s)dsg:Following the above remarks, we de�ne the IFRA* and DFRA* properties.De�nition 2.2: A distribution fun
tion F is said to have the IFRA* (in
reasing failure rateaverage under the binary asso
iative operation *) property if �(1=u) log �G(u) is nonde
reasingon the set fu : �G(u) > 0g: It is said to have DFRA*(de
reasing failure rate average underthe binary asso
iative operation *) property if �(1=u) log �G(u) is nonin
reasing on the setf(u : �G(u) > 0g:It is obvious that G(y) = Fog�1(y) and �G(y) = �Fog�1(y): Further more�G(y) = �(g�1(y)) ddy [g�1(y)℄:Suppose that F is IFRA*. Then ( �G(y))1=yis nonde
reasing in the range of y whi
h implies that�G(�t) � ( �G(t))�for 0 � � � 1 and t � 0: Alternatively [ �F (g�1(y))℄1=y3



is nonde
reasing in the range of y:Let �G(t) = 1�F (t) Z g�1(1)~e �F (t � x)dx:Note that �G(t) = 1�G(g(t)) Z g�1(1)~e �G(g(t � x))dx= 1�G(g(t)) Z g�1(1)~e �G(g(t) + g(x))dx= E[g(T ) � g(t) > g(x)jg(T ) > g(t)℄:The fun
tion �G(t) redu
es to mean residual life time of the distribution of T if the binaryasso
iative operation is addition.De�nition 2.3: A distibution fun
tion F is said to have NBU* (new better than used underthe binary asso
iative operation*) property if�F (x � t) � �F (x) �F (t)for all x and t su
h that x 2 A; x� t 2 A; ~e < t < g�1(1): It is said to have NBUE* (new betterthan used in expe
tation under the binary asso
iative operation *) property if�G(t) � �G = Z 10 �G(y)d[g�1(y)℄ <1:Note that the 
onstant �G redu
es to the mean residual life time of the distibution fun
tionF if the binary asso
iative operation is addition. One 
an similarly de�ne NWU* and NWUE*properties by reversing the inequality signs in the above de�nition.3 Interelations between di�erent 
lasses of lifetime distrbutionsThe following theorem gives the inter relation between di�erent 
lasses of lifetime distributionsde�ned above. Theorem 3.1: Let T be a random variable with distribution fun
tion F:Suppose that E(g(T )) < 1 where g(:) is a fun
tion asso
iated with a binary asso
iatioveoperation *. Further suppose that the random variable g(T ) � 0 with probability one and has
ontinuous distribution fun
tion. Then the following 
hain relation holds for the distributionfun
tion F: F IFR� ) F IFRA� ) F NBU� ) F NBUE � :4



Proof: Suppose the distribution fun
tion F has the IFR* property. Let G be the distributionof g(T ): Sin
e the distribution F is IFR*, it follows that�F (t � x)�F (t)is nonin
reasing in t in the appropriate domain. In other words,�G(g(t � x))�G(g(t))is nonin
reasing in t in the appropriate domain. Let �G(t) = expf��G(t)g: Then it follows that,for every x � g�1(~e); expf�G(g(t � x))� �G(t)gis nonde
reasing in t in the appropriate range of t. Thereforeexpf�G(g(t) + g(x)) � �G(g(t))gis nonde
reasing in t in the appropriate range of t for every x � g�1(~e): Sin
e the fun
tion g(:)is 
ontinuous and stri
tli in
reasing, it follows thatexpf�G(u+ v)� �G(v)gis nonde
reasing in v in the appropriate range of v for every u � 0:. Therefore the the fun
tion�G(:) is 
onvex whi
h implies that�G(�u+ (1� �)v) � � �G(u) + (1� �) �G(v); 0 � � � 1:Let v ! 0 from the right. Then we get that �G(0) = 0 and it follows from the above 
onvexityproperty that �G(�u) � ��G(u)or equivalently �G(�u) � ( �G(u))�:This inequality proves that the distribution F has the IFRA* property a

ording to the De�-nition 2.2. Suppose now that F has the IFRA* property. For u; v � 0; let a = �(1=u) log �G(u)and b = �(1=v) log �G(v): It follows from the IFRA* property that�(1=(u+ v)) log �G(u+ v) � maxfa; bgand hen
e � log �G(u+ v) � maxfa; bg(u + v) � au+ bv = � log �G(u)� log �G(v)whi
h implies that �G(u+ v) � �G(u) �G(v):5



The last statement in turn shows that�Fog�1(u+ v) � �Fog�1(u) �Fog�1(v)or equivalently �F (g�1u � g�1(v)) � �F (g�1(u)) �F (g�1(v))for all u; v � 0: Hen
e �F (x � t) � �F (x) �F (t)for all x; t 2 A su
h thatt � g�1(~e) and x � t 2 A: This proves that the distribution F has theNBU* property. Suppose now that the distribution F has the NBU* property. Then it followsthat Z g�1(1)~e �F (x � t)dx � �F (t) Z g�1(1)~e �F (x)dxwhi
h implies that Z g�1(1)~e �G(g(t) + g(x))dx � �G(g(t)) Z g�1(1)~e �G(g(x))dx;that is �G(t) = 1�G(g(t)) Z g�1(1)~e �G(g(t � x)) dx� Z g�1(1)~e �G(g(x)) dx= Z 10 �G(y)d[g�1(y)℄= �G:Hen
e the distribution fun
tion F has the NBUE* property.Remarks: It is known that the none of the above impli
ations 
an be reversed when binaryasso
iative operation is addition. The same 
omment 
ontinues to hold here.4 Closure theoremsSuppose we 
onsider a system where 
omponents are allowed to have an arbitrary but �nitenumber of states or levels. Let the 
omponents be numbered from 1 to n: Let xi represent thestate of the 
omponent i: Suppose that xi 
an be in one out of Mi + 1 statesxi0; xi1; : : : ; xiMi ; (xi0 < xi1 < : : : ; xiMi):The states may represent di�erent levels of performan
e of the 
omponent, from the worst xi0to the best xiMi : We 
all the states xi0; xi1; : : : ; xiMi as the failure states of the i-th 
omponent.Let �(x1; : : : ; xn) denote the state of the system. The fun
tion � is 
alled the stru
ture fun
tion6



of the system. Suppose that the fun
tion � is equal to one if the system is in the fun
tioningstate and takes the value 0 if the system is in the failure state. A system is said to be monotoneif its stru
ture fun
tion � is nonde
reasing in ea
h argument and�(x10; x20; : : : ; xno) = 0 and �(x1M1 ; x2M2 ; : : : ; xnMn) = 1:Let pi = P (xi = 1); 1 � i � n and h(p) = P (�(x) = 1) where p = (p1; p2; : : : ; pn) and xdenotes the state of the system. The fun
tion h(p) is 
alled the system reliability or reliabilityfun
tion of the system. It is known that if the stru
ture fun
tion of a system is monotone, thenh(p�) � [h(p)℄�for 0 < � � 1 where p� = (p�1 ; p�2 ; : : : ; p�n) (for proof, see Aven and Jensen (1999), Lemma 3,p.41.)We now prove a 
losure theorem for IFRA* distributions.Theorem 4.1: If ea
h of the independent 
omponents of a monotone stru
ture has an IFRA*life time distribution, then the system itself has an IFRA* distribution. Proof: Let F andFi; i = 1; 2; : : : ; n be the distributions of the lifetimes T of the system and Ti; i = 1; 2; : : : ; n ofthe 
omponents respe
tively. Let g(:) be the fun
tion asso
iated with the binary asso
iativeoperation *. Let G and Gi be the distribution fun
tions of g(T ) and g(Ti) respe
tively fori = 1; 2; : : : ; n: Sin
e the distribution Fi has the IFRA* property, it follows that�Gi(�t) � ( �Gi(t))� (4. 1)for 0 � � � 1 and t � 0: Note that the distribution F is related to the distributions Fi; i =1; 2; : : : ; n by the reliability fun
tion�F (t) = h( �F1(t); : : : ; �Fn(t)):note that �G(�t) = �F (g�1(�t))= h( �F1(g�1(�t)); : : : ; �Fn(g�1(�t)))= h( �G1(�t); : : : ; �Gn(�t))� h( �G1(t)�; : : : ; �Gn(t)�)� [h( �G1(t); : : : ; �Gn(t))℄�= [h( �F1(g�1(t)); : : : ; �Fn(g�1(t))℄�= [ �F (g�1(t))℄�= [ �G(t)℄� 7



by the the equation (4.1) and the monotoni
ity of the fun
tion h(:) for 0 < � � 1: The inequalityholds 
learly for � = 0 sin
e G(0) = 0: Hen
e the distribution F of the system life T has theIFRA* property.Theorem 4.2: Let T1 and T2 be independent random variables su
h that their distributionshave IFR* property under a binary asso
iative operation *. Then the random variable T1 � T2has a distribution with IFR* property. Proof: Let g(:) be the fun
tion asso
iated with thebinary asso
iative operation *. Observe thatg(T1 � T2) = g(T1) + g(T2)Further more g(T1) and g(T2) are independent random variables and both of them have distri-butions with IFR property. Applying Theorem 5 in Aven and Jensen (1999), we obtain that therandom variable g(T1) + g(T2) has an IFR distribution. Hen
e the random variable g(T1 � T2)has an IFR distribution, that is, the random variable T1 � T2 has an IFR* distribution.5 Sto
hasti
 
omparisonLet T be a random variable with an IFRA* distribution under a binary asso
iative operation*. Let g(:) be the asso
iated fun
tion as given in Se
tion 2. Note that g(:) is 
ontinuous andstri
tle in
reasing with g(~e) = 0: Suppose that g(T ) � 0 with probability one. Let F be thedistribution fun
tion of T and G be the distribution fun
tion of g(T ): De�nevG(t) = (� log �G(t))=t:Sin
e the distribution fun
tion F has the IFRA* property, it follows that the fun
tion vG(t) isnonde
reasing. For 0 < p < 1; de�ne xp su
h that G(xp) = p or equivalently F (g�1(xp)) = p:Let � = � 1xp log(1 � p): From the nonde
reasing property of the fun
tion vG(:) and the fa
tthat vG(t) � vG(xp) for all t < xp and vG(t) � � for t � xp, it follows that�G(t) � expf��tg for 0 � t � xpand �G(t) � expf��tg for t � xp:Noting that �G(t) = �F (g�1(t)) and observing that the fun
tion is 
ontinuous and stri
tly in-greasing, we obtain the following theorem.Theorem 5.1: Let T be a random variable with distribution fun
tion F with the IFRA*property under a binary asso
iative operation * with the asso
iated fun
tion g(:): Suppose thatg(~e) = 0 and g(T ) � 0 with probability one. Then�F (u) � expf�� g(u)g for ~e = g�1(0) � u � g�1(xp)8



and �F (u) � expf�� g(u)g for u � g�1(xp)where � = � 1xp log(1� p):Let T be a random variable with a 
ontinuous IFR* distribution and g(:) be as de�nedabove. Then g(T ) is a positive random variable with an IFR distribution, say, G: Let mG beits mean. Applying Lemma 7 in Aven and Jensen (1999), we get that�G(t) � expf�t=mGg for 0 � t < �Gand �G(t) � expf�t=mGg for t � �Gwhere �G = infft 2 R+ : �1t log �G(t) � 1mG g:These inequalities 
an be written in the form�F (u) � expf�g(u)=mGg for g�1(0) � u � g�1(�G)and �F (u) � expf�g(u)=mGg for u � g�1(�G):Theorem 5.2: Let T be a random variable with distribution fun
tion F with the IFR propertyunder a binary asso
iative operation * with the asso
iated fun
tion g(:): Suppose that g(~e) = 0and g(T ) � 0 with probability one. Let G be the distribution fun
tion of g(T ): Further supposethat mG = E(g(T )) <1: De�ne�G = infft 2 R+ : �1t log �G(t) � 1mG g:Then the following inequalities hold:�F (u) � expf�g(u)=mGg for g�1(0) � u � g�1(�G)and �F (u) � expf�g(u)=mGg for u � g�1(�G):
9



6 Examples:(i)Weibull distribution: Suppose the random variable T follows a Weibull distribution�F (u) = expf�u�g; 0 < u <1; � > 1:Let * be the binary asso
iative operation de�ned byx � y = (x� + y�)1=� :It 
an be 
he
ked that this operation is binary and asso
iative on the interval A = (0;1) andthe fun
tion asso
iated with the binary asso
iative operation * is g(u) = u�: It is easy to 
he
kthat �F (t � u)�F (t) = e�u�whi
h is stri
tly in
reasing in 0 � u <1 for � > 1: Hen
e the Weibull distribution F has theIFR* property.(ii)Pareto distribution: Suppose the random variable T follows a Pareto distribution�F (u) = u��; 1 � u <1; � > 0:Let � be the binary asso
iative opertion de�ned byx � y = xy; x > 0; y > 0:It 
an be 
he
ked that this operation is binary and asso
iative on the interval A = (0;1)and the fun
tion asso
iated with the binary asso
iative operation is g(x) = � log x: Observethat �F (t � u)�F (u) = t��whi
h is de
reasing for t � 1: Hen
e the Pareto distribution has the DFR* property. Refer-en
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