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1 Introduction

Let A be a positive definite matrix and consider the following matrix equations:

(L1) AX + XA = B.

(L2) A2X + XA2 + tAXA = B.

(L3) A3X + XA3 + t(A2XA + AXA2) = B.

(L4) A4X + XA4 + t(A3XA + AXA3) + 6A2XA2 = B.

(L5) A4X + XA4 + 4(A3XA + AXA3) + tA2XA2 = B.

The equation (L1) is known as the Lyapunov equation and has been studied extensively.

We may choose an orthonormal basis for the underlying space in which A is diagonal,

A = diag(λ1, . . . , λn). Then, in component form, (L1) may be written as

(λi + λj)xij = bij

and solved as

xij =
bij

λi + λj
. (1)

The matrix C with entries

cij =
1

λi + λj
(2)

is called the Cauchy matrix. It is positive definite. One way of seeing this is by writing

1

λi + λj
=

∫ ∞

0
e−t(λi+λj)dt, (3)

and thus realising C as the Gram matrix associated with the vectors
{
e−tλi

}
in the Hilbert

space L2(0,∞). The solution (1) can be written in matrix form as

X = C ◦ B

where ◦ denotes the entrywise product (Schur product) of two matrices. So, if B is positive

semidefinite, then X is also positive semidefinite. This is an important fact in Lyapunov’s

theory of stability of dynamical systems [13]. Some generalizations of Lyapunov’s equation

where the solution is positive definite, and their importance, are discussed in [5, Ch.10].

The analogous question about the equation (L2) was considered, and partly answered, by

M. K. Kwong [12]. We want to know for what real numbers t, the equation (L2) has a positive

definite solution X whenever B is positive definite. Our arguments above show that this is

the same as asking when the matrix Z with entries

zij =
1

λ2
i + λ2

j + tλiλj
(4)
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is positive definite (for any given positive numbers λ1, . . . , λn ). Clearly the restriction t >

−2 is necessary. By a somewhat intricate topological argument Kwong [12] showed that the

condition −2 < t ≤ 2 is sufficient to guarantee that the matrix (4) is positive definite for all

orders n. (A simple proof of this statement is given in Section 2 below.) He showed also that

when n = 2, the matrix (4) is positive definite for all t > −2, but further restrictions on t

are needed for higher dimensions. The problem was solved completely in a paper of Bhatia

and Parthasarathy [4, Thm 5.1]. We have :

Theorem 1.1 (Kwong, Bhatia-Parthasarathy) The n × n matrices Z defined by (4) are

positive definite for all n and all positive numbers λ1, . . . , λn if and only if −2 < t ≤ 2.

The method of Bhatia and Parthasarathy [4] consists of showing that matrices such as (4)

are congruent to others related to difference kernels, and then checking whether these kernels are

positive definite. In the process this leads to interesting examples of positive definite functions

which may be useful in other contexts. See, in particular, the monograph of F. Hiai and H.

Kosaki [9] which shows numerous applications to operator theory discovered by these authors

in a series of papers [7,8,11]. Our aim in this paper is to apply these ideas to the equations

(L3)-(L5). We prove the following three theorems.

Theorem 1.2 If t > −1, then for all n and all positive numbers λ1, . . . , λn the n × n

matrices Y with entries

yij =
1

λ3
i + λ3

j + t(λ2
i λj + λiλ

2
j )

(5)

are positive definite. The restriction t > −1 is necessary for any such matrix to be positive

definite.

Theorem 1.3 If t ≥ 4, then for all n and all positive numbers λ1, . . . , λn the n×n matrices

W with entries

wij =
1

λ4
i + λ4

j + t(λ3
i λj + λiλ

3
j) + 6λ2

i λ
2
j

(6)

are positive definite. The restriction t ≥ 4 is necessary in general, while the restriction t > −4

is necessary for any such matrix to be positive definite.

Theorem 1.4 If −10 < t ≤ 6, then for all n and all positive numbers λ1, . . . , λn the n×n

matrices V with entries

vij =
1

λ4
i + λ4

j + 4(λ3
i λj + λiλ3

j) + tλ2
i λ

2
j

(7)

are positive definite. The restriction t > −10 is necessary for any such matrix to be positive

definite, while the restriction t ≤ 6 is necessary in general.

Note the differences in the nature of restrictions on t in the three theorems. The restric-

tions t > −1, t > −4, and t > −10, respectively, are necessary even in the case n = 1. For

n ≥ 2, in the absence of these restrictions the matrices in question have nonpositive diagonal

entries and can not be positive definite.
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Some parts of these statements can be proved by rather simple arguments. These are

shown in Section 2. Complete proofs need more elaborate arguments given in Section 4. This

separation brings out more interesting differences among the three results.

For brevity we use the term positive matrix to mean a positive semidefinite matrix in the

rest of the paper.

2 The easier parts

Schur’s Theorem says that the Schur product A ◦B of two positive matrices is positive. Two

matrices X and Y are said to be congruent if Y = T ⋆XT for some nonsingular matrix T.

If X is positive, then so is every matrix congruent to it.

Let zij be the numbers defined by the equation (4). For all real numbers t we have

zij =
1

(λi + λj)2
1

1 − (2−t)λiλj

(λi+λj)2

.

Since 4λiλj/(λi + λj)
2 ≤ 1, we can expand this as an infinite series

zij =
1

(λi + λj)2

∞∑

n=0

(2 − t)n
λn

i λn
j

(λi + λj)2n
, (8)

which is convergent provided |2−t| < 4. The matrix with entries 1/(λi+λj)
2 is positive being

the Schur product of the Cauchy matrix with itself. The matrix with entries λiλj/(λi + λj)
2

is congruent to this matrix (via a congruence by the diagonal matrix T = diag(λ1, . . . , λn) ).

Each n -fold Schur product of this matrix with itself is again positive. Hence, if t < 2, the

matrix Z is positive, being a sum of several positive matrices. This proves one half of Theorem

1.1 first proved by Kwong [12]. (The case t = 2 follows by a limits argument.) It is interesting,

and perhaps surprising, that the sufficient condition −2 < t ≤ 2 turns out to be necessary as

well.

In the same way we can write the numbers yij defined by (5) as

yij =
1

(λi + λj)3
1

1 − (3−t)(λ2

i
λj+λiλ2

j
)

(λi+λj)3

.

Since 4(λ2
i λj + λiλ

2
j )/(λi + λj)

3 ≤ 1 this can be expanded as an infinite series

yij =
1

(λi + λj)3

∞∑

n=0

(3 − t)n

(
λ2

i λj + λiλ
2
j

(λi + λj)3

)n

, (9)

which is convergent provided |3 − t| < 4; i.e., provided −1 < t < 7. Note that

λ2
i λj + λiλ

2
j

(λi + λj)3
=

λiλj

(λi + λj)2
,
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and we have observed that the matrix with these numbers as its ij entries is positive. By the

same arguments as we used for the matrix Z we can conclude that the matrix Y is positive

for −1 < t ≤ 3. This is where the similarity with Z ends. The matrices Y turn out to be

positive for t > 3 as well.

More interesting things happen when we apply these considerations to the matrix W

defined by (6). Since

8(λ3
i λj + λiλ

3
j ) ≤ (λi + λj)

4, (10)

we have

wij =
1

(λi + λj)4

∞∑

n=0

(4 − t)n

(
λ3

i λj + λiλ
3
j

(λi + λj)4

)n

, (11)

provided |4− t| < 8; i.e., provided −4 < t < 12. To proceed further we need to know whether

the matrix G with entries

gij =
λ3

i λj + λiλ
3
j

(λi + λj)4
(12)

is positive. From the inequality (10) it follows that any 2× 2 matrix G with entries given by

(12) is positive. Thus from the identity (11) we can conclude that for −4 < t ≤ 4 the matrix

W is positive in the special case n = 2. We will see in Section 4 that the matrix G is not

always positive in general for all n. So this argument does not carry us further. We have to

rely on other arguments to decide whether W is positive in all dimensions. It turns out that

this is not always the case for t < 4 but is always the case for t ≥ 4. In other words the

matrix W is positive for t ≥ 4, and for arbitrary n this restriction is necessary. For n = 2,

the matrix W is positive for all −4 < t ≤ 4 as well.

Finally let us consider the matrix V defined by (7). Since 16λ2
i λ

2
j ≤ (λi + λj)

4 we can

write

vij =
1

(λi + λj)4

∞∑

n=0

(6 − t)n

(
λ2

i λ
2
j

(λi + λj)4

)n

, (13)

provided |6− t| < 16; i.e., provided −10 < t < 22. Our arguments using the Cauchy matrix,

congruence, and Schur products allow us to deduce from this series expansion that V is positive

if −10 < t ≤ 6. (This fact has been noted by Kwong [12] as well.) It turns out that in this

case again the condition −10 < t ≤ 6 is necessary to ensure the positivity of all matrices V

for all orders n.

3 Some Fourier transforms

Fourier transforms of some functions are needed for our arguments. First we indicate how they

are calculated using contour integrations. See [14, p.116] for the theory behind the method

that we use. For a function f ∈ L1(R) we use the notation f̂ for the function

f̂(ξ) =

∫ ∞

−∞
f(x)eiξxdx. (14)
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If f is an even function, then

f̂(ξ) =

∫ ∞

−∞
f(x) cos ξx dx. (15)

Let f1 be the function

f1(x) =
1

cosh x + t
, −1 < t < 1. (16)

The integral (15) corresponding to this can be calculated by the method of residues. Let

ϕ(z) =
eiξz

cosh z + t
. (17)

If z = x + iy, then cosh z = cosh x cos y + i sinh x sin y. So the poles of ϕ are at the points

z = i arccos(−t) = i(π±arccos t). Choose the rectangular contour [−R,R,R+2πi,−R+2πi],

where R > 0. There are two poles of ϕ inside this rectangle: z1 = i(π + arccos t), z2 =

i(π − arccos t). Using the periodicity of the exponential function we get by the method of

residues ∫ ∞

−∞

eiξx

cosh x + t
dx =

2πi

1 − e−ξ2π

[
eiξz1

sinh z1
+

eiξz2

sinh z2

]
.

Substitute the values of z1 and z2. Use the relations sinh iz = i sin z and sin(π±arccos t) =

∓
√

1 − t2. A little calculation leads to the result that

f̂1(ξ) =
2π sinh(ξ arccos t)√

1 − t2 sinhξπ
. (18)

is the Fourier transform of the function (16).

Now consider the function

f2(x) =
1

cosh x + t
, t > 1. (19)

In this case the function ϕ defined as in (17) has poles at z = ±arccosh t + ikπ, where k is

an odd integer. For large R, the rectangular contour we chose above has two of these poles

inside it. These are z1 = arccosh t + iπ and z2 = −arccosh t + iπ. Again by the method of

residues ∫ ∞

−∞

eiξx

cosh x + t
dx =

2πi

1 − e−ξ2π

[
eiξz1

sinh z1
+

eiξz2

sinh z2

]
.

Substitute the values of z1 and z2. For t ≥ 1 we have arccosh t = log(t +
√

t2 − 1) and

sinh(arccosh t) =
√

t2 − 1. A little calculation shows that the Fourier transform of the function

f2 in (19) is

f̂2(ξ) =
2π sin(ξ arccosh t)√

t2 − 1 sinh ξπ
. (20)

Now consider the function

f3(x) =
1

cosh x + σ
. (21)
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where σ is a complex number. For σ varying in the plane slit along (−∞, 1], f and its

Fourier transform are analytic in σ. Hence we have

f̂3(ξ) =





2π sinh(ξ arccos σ)√
1−σ2 sinhξπ

for |σ| < 1
2π sin(ξ arccosh σ)√

σ2−1 sinh ξπ
for |σ| > 1, σ 6∈ (−∞, 1]

(22)

If σ 6∈ R, both formulas make sense and give the same value for f̂(ξ). The special case when

σ is purely imaginary will be needed in our calculation. Let

f4(x) =
1

cosh x + ia
, a ∈ R. (23)

Use the formula (22) and the relation arccos(ia) = π
2 − i arcsinh a. A little calculation shows

f̂4(ξ) =
π√

1 + a2

[
cos(ξ arcsinh a)

cosh ξπ
2

− i
sin(ξ arcsinh a)

sinh ξπ
2

]
. (24)

(When σ = 1, we can obtain an expression for f̂3(ξ) by taking limits in either of the formulas

(22). We get f̂(ξ) = 2πξ/sinh ξπ in this case.)

4 Proofs of Theorems 1.2 - 1.4

Following Bhatia and Parthasarathy [1] we convert the question of positive definiteness of the

matrices under consideration to that of positive definiteness of some functions on the real line.

Put λi = exi , xi ∈ R. Then the expression (5) is equal to

yij =
1

e3xi + e3xj + t (e2xi+xj + exi+2xj)

=
1

e3xi/2

(
1

e3(xi−xj)/2 + e3(xj−xi)/2 + t
(
e(xi−xj)/2 + e(xj−xi)/2

)
)

1

e3xj/2
.

Thus the matrix Y is congruent to one with entries

1

cosh
(

3(xi−xj)
2

)
+ t cosh

(
xi−xj

2

) .

To say that all such matrices are positive definite for t > −1 is to say that the function

f(x) =
1

cosh 3x + t cosh x

on the real line is positive definite for t > −1. Our argument in Section 2 shows that this is

certainly the case for −1 < t ≤ 3. Using the identity cosh 3x = 4cosh3 x − 3 cosh x we have

f(x) =
1

4 cosh3x + (t − 3)cosh x
.

The positive definiteness of this function for t ≥ 3 is equivalent to the following assertion.
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Proposition 4.1 For all real numbers a, the function

f(x) =
1

cosh3 x + a2cosh x
(25)

is positive definite.

Proof. By a theorem of Bochner f is positive definite if and only if its Fourier transform

f̂(ξ) ≥ 0. The function f in (25) can be expressed also as

f(x) =
1

a2

[
1

cosh x
− Re

1

cosh x + ia

]
.

The Fourier transform of this can be found using (24); it is

f̂(ξ) =
π

a2 cosh ξπ
2

[
1 − cos(ξ arcsinh a)√

1 + a2

]
.

It is clear that f̂(ξ) ≥ 0.

As explained above this proves Theorem 1.2.

Using the same argument we write the expression (6) as

wij =
1

e2xi

(
1

e2(xi−xj) + e2(xj−xi) + t (exi−xj + exj−xi) + 6

)
1

e2xj
.

The assertion of Theorem 1.3 is equivalent to the statement that the function

f(x) =
1

cosh 2x + t cosh x + 3

is positive definite for t ≥ 4 but not for −4 < t < 4. Using the identity cosh 2x = 2cosh2 x−1,

we see that this is equivalent to the following :

Proposition 4.2 The function

f(x) =
1

cosh2 x + t cosh x + 1
(26)

is positive definite for all t ≥ 2 but not for any t < 2.

Proof. Let t > 2. Let α, β be the roots of the polynomial x2 + tx + 1. Then α, β are

negative real numbers and their product is 1. We can write the function f in (26) as

f(x) =
1√

t2 − 4

[
1

cosh x + a
− 1

cosh x + b

]
(27)

where 0 < a < 1, and b = 1
a > 1. (The numbers a, b are the negatives of α and β. ) The

Fourier transform of the expression in the square brackets in (27) is calculated using (22). This

is equal to

2π

sinh ξπ

[
sinh(ξ arccos a)√

1 − a2
− sin(ξ arccosh b)√

b2 − 1

]

=
2π

sinh ξπ

1√
1 − a2

[
sinh(ξ arccos a) − a sin(ξ arccosh

1

a
)

]
. (28)
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We want to show that this is nonnegative for all ξ. As a function of ξ this expression is even.

So it suffices to show that for ξ ≥ 0 the expression inside the square brackets on the right

hand side of (28) is nonnegative.

The function g(a) = arccos a − a arccosh 1
a has the following properties: g(0) = π/2,

g(1) = 0 and g′(a) = −arccosh 1
a < 0. Hence g(a) > 0 for 0 < a < 1. So for all ξ ≥ 0 we

have

sinh(ξ arccos a) ≥ ξ arccos a ≥ a ξ arccosh
1

a
≥ a sin(ξ arccosh

1

a
).

This proves that the expression (28) is nonnegative. So the function (26) is positive definite

for all t > 2. By continuity this is true for t = 2 as well.

When t = 0, the function f in (26) reduces to

f(x) =
1

cosh2 x + 1
= −Im

1

cosh x + i
.

The Fourier transform of this function can be read off from (24). It is

f̂(ξ) =
π sin(ξ arcsinh 1)√

2 sinh ξπ
2

.

This function is negative for some ξ, and hence f is not positive definite in this case.

More elaborate arguments are needed to decide the case −2 < t < 2, t 6= 0. In this case

let

α =
−t + i

√
4 − t2

2
.

Then α and β = ᾱ are the two roots of the polynomial x2 + tx + 1. They are complex

numbers of modulus 1. We have

α = eiθ = cos θ + i sin θ, 0 < θ < π. (29)

The case θ = π/2 corresponds to t = 0 which we have already settled. The function f in

(26) is equal to

f(x) =
2√

4 − t2
Im

1

cosh x − α
.

We wish to prove that if

g(x) =
1

cosh x − α

where α is as in (29), then the imaginary part of ĝ(ξ) is negative for some ξ.

Use the formula (22) valid by an analytic continuation for all points σ on the unit circle

except −1. Our problem reduces to showing that for every point α 6= ±1 on the unit circle

the expression

Im
sinh(ξ arccos α)√

1 − α2
(30)

is negative for some values of ξ > 0.
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In the next few lines we write the principal values of the functions involved. A small

calculation shows that for α as in (29)

√
1 − α2 =

√
sin θ + sin2 θ − i sgn(sin 2θ)

√
sin θ − sin2 θ, (31)

and

sinh(ξ arccos α) = −i sin
(
ξ log(α + i

√
1 − α2)

)
. (32)

Let γ = α + i
√

1 − α2. A calculation shows

γ = cos θ + sgn(sin 2θ)
√

sin θ − sin2 θ + i(sin θ +
√

sin θ + sin2 θ).

The conditions on θ guarantee that η = log γ is not a real number. The quantity (30) is

equal to

Im
−i sin(ξη)√

1 − α2
= −Re

sin(ξη)√
1 − α2

. (33)

Mapping properties of the function sin from the z -plane into the w -plane are well-known.

This function maps the strip |Re z| < π/2 bijectively onto the w -plane slit along a part of

the real line (−∞,−1]∪ [1,∞). Horizontal lines in the z -plane are mapped onto ellipses with

major axes contained in the u -axis and vertical lines are mapped onto hyperbolas with vertices

on the u -axis in the w -plane. From these properties it is easy to see that the quantity (33)

is negative for some values of ξ.

This completes the proof of Proposition 4.2. and that, in turn, proves Theorem 1.3.

These arguments can be repeated mutatis mutandis to prove Theorem 1.4. A little calcu-

lation shows that the statement of Theorem 1.4 is equivalent to the assertion that the function

1

2 cosh 2x + 8cosh x + t

is positive definite if and only if −10 < t ≤ 6. This is the same as saying that the function

f(x) =
1

cosh 2x + 4cosh x + t

is positive definite if and only if −5 < t ≤ 3. Using the identity cosh 2x = 2cosh2x − 1, we

see that this is equivalent to the assertion:

Proposition 4.3 The function

f(x) =
1

cosh2x + 2cosh x + t
(34)

is positive definite if and only if −3 < t ≤ 1.

Proof. The arguments in Section 2 show that the function (34) is positive definite if −3 <

t ≤ 1. Let t > 1 and let

α = −1 + i
√

t − 1.
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Then α and β = ᾱ are the two roots of the polynomial x2 + 2x + t. We have |α|2 = t > 1.

As in the proof of Proposition 4.2 our problem reduces to showing that when α is a complex

number with |α| > 1, and α is not real, then the imaginary part of the Fourier transform of

the function

f(x) =
1

cosh x − α

is negative at some points. The proof of this is similar to that given in Proposition 4.2.

In Section 2 we observed that when n = 2, the matrix G defined by (12) is positive.

This matrix would have been positive for all n if the function

f(x) =
cosh 2x

cosh4 x
=

2

cosh2 x
− 1

cosh4 x

were positive definite. The Fourier transform of the function 1/coshr x is known [9, p.138].

Using that formula we see that

f̂(ξ) = 2

∣∣∣∣Γ
(

1 +
iξ

2

)∣∣∣∣
2
(

1 − 1

3

∣∣∣∣1 +
iξ

2

∣∣∣∣
2
)

.

This is negative for large ξ.

5 Operator Inequalities

Each of the positivity results in Section 2 leads to inequalities for norms of operators. Let

‖A‖ stand for the norm of A as a linear operator on the Hilbert space C
n, and |||A||| for

any unitarily invariant norm — one that has the property |||A||| = |||UAV ||| for any unitary

matrices U, V, and is normalised so that |||A||| = ||A|| for any operator A of rank one. If

A is positive, then for every B we have [10, p.343]

|||A ◦ B||| ≤ max
t

aii|||B|||. (35)

Let A,B be positive matrices, and let ν be any real number, 0 ≤ ν ≤ 1. Then for all X

and all unitarily invariant norms

|||AνXB1−ν + A1−νXBν ||| ≤ |||AX + XB|||. (36)

For the norm ||.|| alone this was proved by E. Heinz [6], and used to derive many important

results in perturbation theory. The general case, its history, and relations to other inequalities

may be found in [1, Chapter IX].

In [4] Bhatia and Parthasarathy showed that for any positive real numbers λ1, . . . , λn and

for −1 < α < 1, the matrix P with entries

pij =
λα

i + λα
j

λi + λj
(37)
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is positive and used this fact and (35) to give a proof of (36). Following this method some

quaint generalizations of (36) may be obtained using the matrices in (8), (9) and (13). For

example, we can prove that

(1 + t) |||AνXB1−ν + A1−νXBν ||| ≤ |||AX + XB + t
(
A2/3XB1/3 + A1/3XB2/3

)
|||, (38)

for −1 < t ≤ 3 and 1
3 ≤ ν ≤ 2

3 .

To see this write for −1 < α < 1 and −1 < t ≤ 3, the identity

λα
i + λα

j

λ3
i + λ3

j + t(λ2
i λj + λiλ2

j )
=

λα
i + λα

j

(λi + λj)

1

(λi + λj)2

∞∑

n=0

(3 − t)n

(
λ2

i λj + λiλ
2
j

(λi + λj)3

)n

. (39)

The matrix whose ij entries are given by (39) is a sum of Schur products of several positive

matrices. Hence it is positive. Multiply it on the left and the right by a diagonal matrix

diag (λr
1, . . . , λ

r
n) where 1 < r < 2. Then put α = 3 − 2r. This shows that the matrix with

its ij entries given by

(1 + t)
λ3−r

i λr
j + λr

iλ
3−r
j

λ3
i + λ3

j + t(λ2
i λj + λiλ2

j)
, −1 < t ≤ 3 (40)

is positive and all its diagonal entries are equal to 1. Using the arguments in [2] one gets from

this the inequality

(1 + t) |||ArXB3−r + A3−rXBr||| ≤ |||A3X + XB3 + t(A2XB + AXB2)|||,

for −1 < t ≤ 3, 1 < r < 2. Replace A and B by their cube roots and put ν = r/3. This

gives the inequality (38).

The choice t = 0 and ν = 1/2 reduces (38) to the arithmetic-geometric mean inequality

|||A1/2XB1/2||| ≤ 1

2
|||AX + XB|||,

first proved by Bhatia and Davis [2]; the special case X = I having been proved earlier by

Bhatia and Kittaneh [3].

Similar inequalities may be obtained by applying these considerations to (8) and to (13).

The first of these has been noted by X. Zhan [15]. One could also use the Schur product of the

matrix (37) with itself. For example, one can write

(λα
i + λα

j )2

λ2
i + λ2

j + tλiλj
=

(
λα

i + λα
j

λi + λj

)2 ∞∑

n=0

(2 − t)n
λn

i λn
j

(λi + λj)2n

for −1 < α < 1 and −2 < t ≤ 2 and get other operator inequalities.

The full power of this method has been exploited by Hiai and Kosaki in a series of interesting

papers [7,8,11] and in the monograph [9] to which the reader should turn for a large collection

of operator means inequalities.
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