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Abstract

In this paper we consider the problem of testing the equality of r (r ≥ 2) cumulative inci-

dence functions against an ordered alternative, using the likelihood ratio approach. We assume

a discrete time framework and obtain maximum likelihood estimators of the r cumulative in-

cidence functions under the restriction that they are uniformly ordered. The asymptotic null

distribution of the derived likelihood ratio test statistic for testing the equality of the cumu-

lative incidence functions against the alternative they are uniformly ordered is of the chi-bar

square type. In addition to applications within the competing risks setting our methods are

also applicable to investigating the association between failure time and a discretized or ordinal

mark variable that is observed only at time of failure. We give examples in both the compet-

ing risks and mark variable settings and discuss details concerning the implementation of our

methods.
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1 Introduction

In the standard competing risks model, a unit or subject is exposed to several risks at the same

time, but the actual failure is attributed to one cause. In studies with mark variables interest

lies in exploring the association between a subject’s failure time and the level of a mark variable

that is measured only when the subject fails. We only observe (T, δ) , where T is the time

until failure and δ is the cause of failure or the level of the mark variable at the time of failure.

Typically, in both situations, statistical inference is based on the sub-survival functions,

Si(t) = P (T ≥ t, δ = i); i = 1, . . . , r

or the cumulative incidence functions (CIF),

Fi(t) = P (T ≤ t, δ = i); i = 1, . . . , r.

Note that
r∑

i=1

Si(t) = ST (t) and
r∑

i=1

Fi(t) = FT (t) where ST and FT are the survival function

and the distribution function of T , respectively.

An alternative approach is to compare the cause (mark) specific hazard rates, which for

continuous failure times are defined by

hi(t) = lim
∆t→0

1

∆t
P (t ≤ T < t + ∆t, δ = i|T ≥ t); i = 1, . . . , r,

and for discrete T are given by

P (T = t, δ = i|T ≥ t).

The overall hazard rate for time to failure is given by h(t) =
r∑

i=1

hi(t). In the continuous case

the sub-survival functions and the cumulative incidence functions can be expressed in terms of

the cause specific hazard rates by the relations,

Si(t) =

∫ ∞

t
hi(u)ST (u) du, Fi(t) =

∫ t

0
hi(u)ST (u) du, (1.1)

for i = 1, 2, . . . , r. Similar relations can be established for the discrete case.
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In many applications within both the competing risks setting and the studies involving mark

variables it is of interest to distinguish between the following alternatives: (i) the cumulative

incidence functions are equal, (ii) at least one CIF is greater than the others, (iii) the CIFs are

ordered according to a prespecified order. For example, one may wish to investigate whether

there is any evidence in the data that the CIFs are ordered according to the level of the mark

variable. Possible applications where one may be interested in testing this type of association

include a) studies that investigate the relationship between survival time and a qualilty of

life score, b) studies that relate survival time to accumulated medical costs, c) AIDS clinical

trial studies investigating the association between failure time and the extent of drug-selected

genetic evolution between baseline and failure, an example of which is presented in this paper.

In this paper, we consider the problem of testing the null hypothesis,

H0 : F1(t) = F2(t) = . . . = Fr(t) for t ≥ 0, (1.2)

against the alternative H1 − H0, where

H1 : F1(t) ≤ F2(t) ≤ . . . ≤ Fr(t), for t ≥ 0. (1.3)

We also consider the hypothesis test:

H1 versus H2 − H1, (1.4)

where H2 imposes no constraints on the cumulative incidence functions, Fi, i = 1, 2, . . . , r.

We note here that H0 can be expressed in terms of the sub-survival functions, H0: S1(t) =

S2(t) = . . . = Sr(t), or in terms of the cause (mark) specific hazard rates, H0: h1(t) = h2(t) =

. . . = hr(t). However H1 in (1.3) is not equivalent to

H
′

1: S1(t) ≥ S2(t) ≥ . . . ≥ Sr(t).

It is plausible that the cumulative incidence functions are ordered but the corresponding sub-

survival functions cross each other and vice versa.

Note that the hypothesis of ordered cumulative incidence functions, H1, can be expressed

as

H1 : P (δ = i|T ≤ t) ≤ P (δ = i + 1|T ≤ t) i = 1, 2, . . . , r − 1, for t ≥ 0.
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In this form H1 − H0 has the interpretation that given that a unit has failed by time t, the

conditional probability of its failing from cause i + 1 (or having a mark variable level equal to

i + 1) is uniformly greater than that from cause i (or having a mark variable equal to i).

Several tests are available in the literature for the special case of testing the equality of two

competing risks (r = 2). These have been referenced in Aly, Kochar & McKeague (1994), El

Barmi and Kochar (2003) and in the review paper by Kochar (1995).

We note here that Aly, Kochar & McKeague (1994) and Sun & Tiwari (1998) consider the

problem of testing the null hypothesis, H0 : F1(t) = F2(t) against the alternatives

H1 : F1(t) ≤ F2(t), t ≥ 0 ,

and

H
′

1 : S1(t) ≥ S2(t), t ≥ 0 ,

with strict inequality for some t. Kochar, Lam and Yip (2002) give a class of tests for testing

the equality of two cause specific hazard rates and this class contains the test of Aly, Kochar

and McKeague (1994) as a special case. Carriere and Kochar (2000) assume continuous failure

times and obtain a distribution-free test for the problem of testing H0 against H
′

1 − H0. Lam

(1998) proposed a class of distribution-free tests for testing the eqaulity of k cause specific

hazard rates. Kulathinal and Gasbarra (2002) considered the problem of testing the equality

of cause specific hazard rates corresponding to m competing risks in k groups. El Barmi and

Kochar (2003) consider the same problem with discrete failure times and use the likelihood

ratio to test H0 versus H
′

1 − H0.

In this paper we investigate inference based on the cumulative incidence function assuming

discrete failure times and mark variables. Discrete failure times arise in competing risk and

mark variable studies when the recorded times to failure are grouped in intervals. A discrete

mark variable can result by grouping a continuous mark variable in intervals or by observing

an ordinal categorical variable at time of failure. We note here that for this framework, and

within the competing risks context, Dykstra, Kochar and Robertson (1995) obtained the non-

parametric maximum likelihood estimates (NPMLEs) of the cause specific hazard rates under

the ordered alternative and derived the likelihood ratio test statistic for testing the equality

hypothesis of the cause specific hazard rates against the ordered alternative.
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Besides many applications in the health sciences, our procedure has potential applications

in industrial accelerated life tests. While comparing different brands of a component, the com-

ponents may be tested in series. The components are functioning in the same environment and

their times to failure are generally dependent. The system fails as soon as one of the compo-

nents fails. Our methods allow testing whether components supplied by different suppliers are

of the same quality against the ordered alternative, thus leading to early identification of weak

components.

In Section 2 we obtain maximum likelihood estimators of the cumulative incidence functions

Fi, i = 1, 2, . . . , r, under H0 as well as under H1. In Section 3 we derive the likelihood ratio test

for testing H0 versus H1 −H0, and the likelihood ratio test for testing H1 versus H2 −H1 and

obtain their asymptotic null distribution. In Section 4 we present two examples, one from a

competing risks study and one from a clinical trial study investigating the association between

survival and a mark variable. The more technical details related to the proofs of the theorems

behind our results as well as details on the algorithms needed for the computation of our test

statistics and their asymptotic p-values are given in the Appendix. Finally, we note that this

work is closely related to that of El Barmi and Dykstra (1995) on testing for and against a set

of linear inequality constraints in a multinomial setting.

2 Maximum Likelihood Estimation

Suppose that we have n individuals exposed to r risks and assume the times and causes of failure

represent a random sample from (T, δ). Denote the observations by (T1, δ1), . . . , (Tn, δn).

In this section we obtain nonparametric maximum likelihood estimates of the cumulative

incidence functions, Fi, i = 1, 2, . . . , r, under H0, H1, and H2.

For the special case, r = 2, Peterson (1977) derived the unrestricted generalized nonpara-

metric MLEs of the two sub-survival functions. The generalized NPMLEs put their weights

on the set of observations. Similarly it can be shown that for more than two competing risks (

r > 2), the unrestricted generalized NPMLE of the ith cumulative incidence function, Fi(t), is

F̂i(t) =

n∑

j=1

I(Tj ≤ t, δj = i)

n
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In this paper we assume that failures occur on the discrete time points t1 < t2 < . . . < tk

(t0 = 0 and tk+1 = ∞). For i = 1, 2, . . . , r and j = 1, 2, . . . , k, let pij denote the probability of

failure from cause i at time tj and dij denote the number of failures from cause i at time tj .

Then

Fi(tj) = pr(T ≤ tj , δ = i) =
j∑

l=1

pil, (2.1)

i = 1, 2, . . . , r; j = 1, 2, . . . , k. We write the likelihood function as Ln =
r∏

i=1

k∏

j=1

p
dij

ij , and the

corresponding log-likelihood function as

Ln = n
r∑

i=1

k∑

j=1

p̂ij ln pij, (2.2)

where

p̂ij =

n∑

l=1

I[Tl = tj, δl = i]

n
=

dij

n
(2.3)

is the usual unrestricted MLE of pij.

It is easy to show that under H0 : F1 = F2 = . . . = Fr, the restricted maximum likelihood

estimate of pij is given by

p̂
(0)
ij =

n∑

l=1

I[Tl = tj ]

rn
= d.j. (2.4)

To facilitate the discussion on finding the maximum likelihood estimates of the pijs under the

hypothesis H1, we first introduce some notation. Note that the restriction Fu ≤ Fu+1 implies

k constraints. Hence, for each u ∈ {1, 2, . . . , r − 1} define the k constraint matrices

x
(u,s)
i,j =





1 if i = u and j = 1, 2, . . . , s

−1 if i = u + 1 and j = 1, 2, . . . , s

0 otherwise

; s ∈ {1, 2, . . . , k}

It is easily seen that Fu ≤ Fu+1 is equivalent to

r∑

i=1

k∑

j=1

x
(u,s)
i,j pij ≤ 0, s = 1, 2, . . . , k.

Therefore the maximum likelihood estimates of the pijs under H1 are the maximizers of the

log-likelihood, Ln, in (2.2), subject to the k × (r − 1) constraints

r∑

i=1

k∑

j=1

x
(u,s)
i,j pij ≤ 0, u = 1, 2, . . . , r − 1, s = 1, 2, . . . , k. (2.5)
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The solution to this optimization problem does not exist in a closed form but can be obtained

by using an iterative algorithm based on the Fenchel duality (El Barmi and Dysktra (1994)).

This algorithm is presented in Appendix A. We will denote the restricted MLEs under H1 by

p̂
(1)
ij , i = 1, . . . , r; j = 1, . . . , k.

3 Hypotheses Testing

Following the discussion and notation introduced in the previous section, write H0 and H1 as

H0 :
r∑

i=1

k∑

j=1

x
(u,s)
ij pij = 0, u = 1, 2, . . . r − 1, s = 1, 2, . . . , k, (3.1)

and

H1 :
r∑

i=1

k∑

j=1

x
(u,s)
ij pij ≤ 0, u = 1, 2, . . . r − 1, s = 1, 2, . . . , k. (3.2)

Let π ⊂ {(u, s), u = 1, 2, . . . , r − 1, s = 1, 2, . . . , k} be the indices that correspond to an

arbitrary subset of the (r − 1) × k equality constraints in (3.1) and let d denote its cardinal;

i.e. d = card(π).

First, consider testing H0 against H1,π − H0 where

H1,π :
k∑

i=1

k∑

j=1

x
(u,s)
ij pij = 0, (u, s) ∈ π. (3.3)

It is clear from equation (2.2) that the log-likelihood ratio test statistic for testing H0 versus

H1,π − H0 is given by

T01,π = −2n
r∑

i=1

k∑

j=1

p̂ij[ln(p̂
(0)
ij ) − ln(p̂ij(π))]. (3.4)

where p̂
(0)
ij and p̂ij(π), i = 1, . . . , r; j = 1, . . . , k, are the MLEs of pij under H0 and under

H1,π respectively.

It is a fairly standard exercise to show that the asymptotic distribution of T01,π is a chi-

square distribution. Nevertheless, we give a detailed proof of this, especially since the arguments

contained in our proof are crucial in obtaining the asymptotic distributions of the likelihood

ratio test statistics for testing a) H0 versus H1 − H0, and b) H1 versus H2 − H1.

To derive the asymptotic distributions of the log-likelihood ratio statistic in (3.4), we work

with the (rk − 1) column vector p = (p11, . . . , prk−1)
′

of cell probabilities. Corresponding to
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this parameterization, let p̂ denote the unrestricted MLE of p. Also let p̂(0) and p̂(π) denote

the MLEs of p under H0 and H1,π, respectively. Let B be the (rk − 1) × (rk − 1) matrix:

B = diag(p) − pp
′

. (3.5)

When in the above matrix we let p = p0, the true value of p, we obtain B0 = diag(p0)−p0p
′

0,

the asymptotic covariance matrix of
√

n(p̂ − p0).

Let H be an (rk − 1) × (r − 1)k matrix given by

H = [x
(u,s)
ij − x

(u,s)
rk ]1≤u≤r−1,1≤s≤k,1≤i≤r,1≤j≤k,(i,j)6=(r,k).

We note here that the columns of H define the (r− 1)k order constraints implied by H1. That

is, we can write H0 and H1 in equations (3.1) and (3.2) as:

H0 : H
′

p = e (3.6)

and

H1 : H
′

p ≤ e, (3.7)

where e is an (r − 1)k × 1 column vector with zeroes everywhere except for the last element

which is equal to 1. For an illustration of the matrix H see Examples 1 and 2.

Let H(π) be the (rk − 1)× d submatrix made of columns of H whose (u, s) index is in the

set π (recall that d = card(π)). Clearly the hypothesis H1,π in equation (3.3) can be expressed

as

H1,π : H
′

(π)p = e∗, (3.8)

where e∗ is the appropriate subvector of e in (3.7). The quantity p̂(π), the MLE of p under

H1,π, is the maximizer of the log-likelihood in (2.2) subject to the equality constraints in (3.3)

or equivalently in (3.8). It can be obtained using the El Barmi and Dykstra (1994) algorithm,

shown in Appendix A.

Let the d × 1 column vector α
∗(π) = [α∗

1, . . . , α
∗
d]

′

contain the Lagrange multipliers corre-

sponding to the maximization of (2.2) subject to (3.8). Define the (r − 1)k × (r − 1)k matrix
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R, the (rk − 1) × (rk − 1) matrices P and P(π) and the d × d matrix R(π) by

R = (H
′

BH)−1

R(π) = (H
′

(π)BH(π))−1

P = B − BH(H
′

BH)−1H
′

B

P(π) = B − BH(π)(H
′

(π)BH(π))−1H
′

(π)B. (3.9)

Let B0, R0, R0(π), P0, P0(π) denote the values of the matrices in (3.5) and (3.9) when

evaluated at p = p0, where p0 is the true value of p. It is shown in Appendix B that, under

H0,

√
n(p̂(0) − p0, p̂(π) − p0,α

∗(π))
d−→ N(0,V0(π)), (3.10)

where the variance-covariance matrix is given by

V0(π) =




P0 P0 0

P0 P0(π) 0

0 0 R0(π)


 .

The following theorem gives the asymptotic null distribution of T01,π, the log-likelihood

ratio test statistic in (3.4).

Theorem 3.1 1. Under H0,

√
n[p̂(0) − p̂(π)]

d−→ N(0,P0 − P0(π)),

2. Let T01,π be the log-likelihood ratio test statistic for testing H0 versus H1,π − H0. Let

d = card(π) denote the cardinal of π. Under H0, we have

T01,π
d−→ χ2

k(r−1)−d

Proof: The proof is given in Appendix B.

We now consider testing the two hypotheses tests of H0 versus H1 − H0 and H1 versus

H2 − H1.
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Let p̂(1) denote the restricted MLE of p under H1; i.e. under the constraints in (3.7), and

let

T01 = −2n
r∑

i=1

k∑

j=1

p̂ij [ln(p̂
(0)
ij ) − ln(p̂

(1)
ij )], T12 = −2n

r∑

i=1

k∑

j=1

p̂ij [ln(p̂
(1)
ij ) − ln(p̂ij)]

denote the log-likelihood ratio test statistics for testing H0 versus H1 − H0 and H1 versus

H2 − H1, respectively.

For any positive definite matrix W, define Q(W) as the upper quadrant Gaussian proba-

bility,

Q(W) = P (N(0,W) > 0), (3.11)

and let

a0(p) = Q(H
′

BH) = Q(R−1),

ad(p) =
∑

π,card(π)=d

Q(R(π))Q(R−1(πc) − H
′

(πc)BH(π)R−1(π)H
′

(π)BH(πc));

d = 1, . . . , k(r − 1) − 1,

ak(r−1)(p) = Q(R) = 1 −
k(r−1)−1∑

d=0

ad, (3.12)

where πc denotes the complement of π. H(π) (H(πc)) is the submatrix of H with the columns

determined by the indices in π (πc).

The following theorem gives the joint asymptotic distribution of (T01, T12), under H0.

Theorem 3.2 Under H0 and for any t1 > 0 and t2 > 0, we have

lim
n→∞

P (T01 ≥ t1, T12 ≥ t2) =

k(r−1)∑

d=0

ad(p0)P (χ2
k(r−1)−d ≥ t1)P (χ2

d ≥ t2) (3.13)

with χ2
0 ≡ 0.

Proof: the proof is given in Appendix C.

In particular, the null asymptotic distribution of the log-likelihood ratio test statistic for

testing H0 versus H1 − H0 is obtained by

lim
n→∞

P (T01 ≥ t) =

k(r−1)∑

d=0

ad(p0)P (χ2
k(r−1)−d ≥ t) (3.14)
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with χ2
0 ≡ 0. Similarly the asymptotic distribution of the log-likelihood ratio test statistic

for testing H1 versus H2 − H1, under the hypothesis of equality of the cumulative incidence

functions, is obtained by

lim
n→∞

P (T12 ≥ t) =

k(r−1)∑

d=0

ad(p0)P (χ2
d ≥ t) (3.15)

with χ2
0 ≡ 0. In practice, since p0, the true value of p, is unknown, the weights ad(p0),

as defined in (3.12), are estimated by ad(p̂
(0)), their consistent estimators under H0. That

is, let B̂(0) be the estimated covariance matrix of p̂, under H0, obtained by setting p =

p̂(0) in equation (3.5). As indicated by (3.12), computation of the estimated asymptotic p-

values rests in obtaining the weights, ad(p̂
(0)), each of which involves estimation of multiple

multivariate quadrant probabilities, defined in (3.11). These can be efficiently obtained after

succesive applications of the Sweep operator to the matrix H
′

B̂(0)H combined with a routine

for approximating Gaussian quadrant probabilities. The matrix H
′

B̂(0)H involves the sample

cumulative frequency of failures and is given in the examples. Details on the efficient estimation

of the weights are given in Appendix D.

If r = 2 which is the case discussed in El Barmi and Kochar (2002), ad(p) = p(d, k,pr), d =

0, 1, . . . , k, where p(0, k,pr) is the probability that Epr [U|I] is identically zero and p(d, k,pr), d =

1, 2, . . . , k, is the probability that Epr [U|I] has d distinct values. Here pr = (p21, . . . , p2k)′,U =

(U1, U2, . . . , Uk)′ where Uis are independent and Ui has a normal distribution with mean 0 and

variance 1/p2i and Epr [U|I] is the least squares projection of U onto I = {x ∈ Rk, 0 ≥ x1 ≥

x2 ≥ ... ≥ xk}. So that for testing H0 against H1−H0, if there is evidence that p21, p22, . . . , p2k

do not vary too much, a test based on equal weights critical value will have a significance level

reasonably close to the reported value. These equal weights level probabilities can be found

in Robertson, Wright and Dykstra (1988). Since we have 0 as an upper bound in the cone

I, the value k should be increased by 1 to account for it. As pointed out in El Barmi and

Kochar (2002), this is like having k + 1 normal means indexed by 0, 1, 2, . . . , k with the weight

associated with the variable indexed by 0 being ∞. Finally, They also showed that

sup
p∈H0

lim
n→∞

P (T01 ≥ t) =
1

2
[P (χ2

k−1 ≥ t) + P (χ2
k ≥ t)] (3.16)
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and

sup
p∈H1

lim
n→∞

P (T12 ≥ t) = sup
p∈H0

lim
n→∞

P (T12 ≥ t) (3.17)

=
k+1∑

d=1

(
k
d−1

)
2−kP (χ2

d−1 ≥ t).

We have not being able to extend these results to r > 2 but from the well known properties of

the weights of a chi-bar square distribution (3.16) always hold with ≤ instead of =.

4 Examples

Example 1.

For our first illustration we consider the mortality data on RFM strain male mice reported

in Hoel (1972). Two risks are considered. The second risk is cancer and the first combines all

other risks. The failure times are grouped into k = 6 categories. Thus we have two competing

risks, r = 2, and k = 6 time periods. In this case the constraints are

s∑

j=1

p1j ≤
s∑

j=1

p2j, s = 1, . . . , 6,

and the matrix H is an 11 × 6 matrix and is given by

H =




1 1 1 1 1 2

0 1 1 1 1 2

0 0 1 1 1 2

0 0 0 1 1 2

0 0 0 0 1 2

0 0 0 0 0 2

-1 -1 -1 -1 -1 0

0 -1 -1 -1 -1 0

0 0 -1 -1 -1 0

0 0 0 -1 -1 0

0 0 0 0 -1 0




.

Under H0 :
s∑

j=1

p1j =
s∑

j=1

p2j , s = 1, 2, . . . , 6, we can write the vector p0 as

p0 = [p1, p2, p3, p4, p5, p6, p1, p2, p3, p4, p5]
′

.

It is easy to show that
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H
′

B0H =

2




p1 p1 p1 p1 p1 p1

p1 (p1 + p2) (p1 + p2) (p1 + p2) (p1 + p2) (p11 + p12)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3) (p1 + p2 + p3) (p1 + p2 + p3)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4 + p5) (p1 + p2 + p3 + p4 + p5)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4 + p5)
1
2




The data and estimates are shown in Table 1. In this table the column labeled d.j is the

total number of failures at time j, combined over both causes, and the column labeled D.j

contains the corresponding cumulative counts.

[INSERT TABLE 1 HERE]

The matrix, H
′

B̂(0)H, needed for estimation of the weights in (3.13)-(3.15), is given by

H
′

B̂(0)H =
1

99




33 33 33 33 33 33

33 46 46 46 46 46

33 46 56 56 56 56

33 46 56 82 82 82

33 46 56 82 96 96

33 46 56 82 96 99




.

The estimated weights needed for the null asymptotic distribution of the test statistic T01, are

given below

a0(p̂
(0)) = 0.2775879, a1(p̂

(0)) = 0.4532581, a2(p̂
(0)) = 0.2177982, a3(p̂

(0)) = 0.0403585

a4(p̂
(0)) = 0.0107544, a5(p̂

(0)) = 0.0002417 a6(p̂
(0)) = 0.0000012
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For this example the value of T01 = 12.6247 and the value of T12 = 0.3397.

The estimated approximate p-value for testing H0 vs H1 − H0 is pval = 0.02915. The

estimated approximate p-value for testing H1 vs H2 − H1 is pval = 0.7961356.

Example 2.

In our second illustration we consider data from a randomized study conducted by the Adult

AIDS Clinical Trials Group (AACTG) to evaluate two combination antiretroviral treatments

in terms of their ability to suppress HIV viral load. The failure time, T , was defined as the time

from randomization until plasma HIV levels rose above 1000 copies/ml. At failure a measure

of acquired mutational distance during the trial was obtained. This distance is a measure of

the accumulated HIV genetic resistance due to treatment exposure and is only obtained when

a subject fails. Gilbert et al (2004) normalize this distance so that it lies in the interval [0,

1]. For our purposes we discretize the normalized distance measure, call it V , and consider

r = 3 groups. A subject is classified as belonging to Group 1 if V ∈ (0, 1/3], to group 2 if

V ∈ (1/3, 2/3] and to group 3 if V ∈ (2/3, 1]. Also we consider k = 3 failure time intervals.

We take j = 1 if T ∈ (0, 5], j = 2 if T ∈ (5, 20] and j = 3 if T ∈ (20, 50]. Hence we have r = 3,

and k = 3. The matrix H is an 8 × 6 matrix and is given by

H =




1 1 1 0 0 1

0 1 1 0 0 1

0 0 1 0 0 1

-1 -1 -1 1 1 2

0 -1 -1 0 1 2

0 0 -1 0 0 2

0 0 0 -1 -1 0

0 0 0 0 -1 0




.

In the setting of this example, H0 states no association between the cumulative risk function

and the level of V , the acquired mutational distance. The hypothesis H1 states that for every

time period the cumulative incidence increases as the level of V increases. Under H0, we can
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write the vector p0 as

p0 = [p1, p2, p3, p1, p2, p3, p1, p2]
′

.

[INSERT TABLE 2 HERE]

The matrix, H
′

B̂(0)H, needed for estimation of the weights in (3.14), is given by

H
′

B̂(0)H =

3

45




19 19 19 -9.5 -9.5 -9.5

19 34 34 -9.5 -17 -17

19 34 45 -9.5 -17 -22.5

-9.5 -9.5 -9.5 19 19 19

-9.5 -17 -17 19 34 34

-9.5 -17 -22.5 19 34 45




The estimated weights needed for the null asymptotic distribution of the test statistic T01, are

given below

a0(p̂
(0)) = 0.0516802, a1(p̂

(0)) = 0.2325504, a2(p̂
(0)) = 0.3604903, a3(p̂

(0)) = 0.2532694

a4(p̂
(0)) = 0.0872682, a5(p̂

(0)) = 0.0143132 a6(p̂
(0)) = 0.0008899

For this example the value of T01 = 0.8958848 and the value of T12 = 0.1334323. The estimated

approximate p-value for testing H0 vs H1−H0 is pval = 0.8803156. The estimated approximate

p-value for testing H1 vs H2 − H1 is pval = 0.9647699. Thus we do not have enough evidence

to conclude association between the failure time and the level of the mark variable, a result

consistent with the conclusion in Gilbert et al (2004). Evidently, our test dependends on how

the data is grouped.
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16



13. Kochar, S. C., Lam, K.F. and Yip, Paul, S.F. (2002). Generalized supremum tests for

the equality of cause specific hazard rates. Lifetime Data Analysis 8 (2002), 277-288.

14. Kulathinal, S. B. and Gasbarra, Dario (2002). Testing equality of cause-specific hazard

rates corresponding to m competing risks among K groups. Lifetime Data Anal., 8 ,

147–161.

15. Lam, K.F. (1998). A class of tests for the equality of k cause-specific hazard rates in a

competing risks model. Biometrika, 85, 179-188.

16. Peterson, A. (1977). Expressing the Kaplan-Meier estimator as a function of empirical

sub-survival functions. J. Amer. Statist. Assoc., 72, 854-858.

17. Silvey, S. D. (1959). The Lagrangian multiplier test. Annals of Mathematical Statistics,

30, 389-407.

18. Sun, Y. and Tiwari, R. C. (1995). Comparing cause-specific hazard rates of a competing

risks model with censored data. Analysis of Censored Data. IMS-LNMS 27, 255-270.

Editors: Hira L. Koul and J.V. Desphandé.
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APPENDIX

A Description of Algorithm

El Barmi and Dysktra (1994) showed that, if y∗ solves

max
y∈K∗

C

m∑

i=1

p̂i ln(1 + yi), (A.1)

where K∗
C = {y,

m∑

i=1

xiyi ≤ 0,∀x ∈ C}, for C a closed, convex subset of P = {(x1, x2, . . . , xm)
′

, xi ≥

0,∀i,
m∑

i=1

xi = 1}, then

p∗i =
p̂i

1 + y∗i
, i = 1, 2, . . . ,m,

solves

max
C

m∏

i=1

pp̂i

i . (A.2)
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Here p̂ = (p̂1, p̂2, . . . , p̂m)
′ ∈ P and is in general the vector of the relative frequencies. In the

event that C = {p ∈ P,
m∑

i=1

piaij = 0, j = 1, 2, . . . , s}, a set of linear constraints, it is easy to

show that (A.1) reduces to

max
αj ; j=1,...,s

m∑

i=1

p̂i ln(1 +
s∑

j=1

αjaij). (A.3)

Note that our maximization problem defined by maximizing the loglikelihood in (2.2) subject to

the constraints in equation (2.5) is of the type (A.2). Let (α∗
1, α

∗
2, . . . , α

∗
s) denote the maximizing

values of the above expression. Then the solution to the maximization in (A.2) is given by

p∗i =
p̂i

1 +
s∑

j=1

α∗
jaij

, i = 1, . . . ,m. (A.4)

The following algorithm can be used to find (α∗
1, α

∗
2, . . . , α

∗
s) and hence p∗1, p

∗
2, . . . , p

∗
s.

Algorithm:

• Step 1: initially αj = 0, j = 1, 2, . . . , s, ν = 1

• Step 2: Find the optimal value of αν over R with all the other αs held fix. This value of

αν replaces it previous value.

• If ν < s set ν = ν + 1, if ν = s, set ν = 1.

• Go to step 2. Find the optimal value of αν over R with all the other αs held fix. This

value of αν replace its previous value.

These steps are repeated for ν = 1, 2, . . . until sufficient accuracy is attained. We note

here that (α∗
1, α

∗
2, . . . , α

∗
s) are the Lagrange multipliers corresponding to maximizing the

log-likelihood function subject to the constraints p ∈ C, i.e.

k∑

i=1

aijpi = 0, j = 1, 2, . . . , s.

If it is the case that C = {p ∈ P,
k∑

i=1

piaij ≤ 0, j = 1, 2, . . . , s}, then Step 2 of the

algorithm should be replaced by

• Step 2*: Find the optimal value of αν over R+ with all the other αs held fix. This value

of αν replaces its previous value.
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We note that at a given step of the algorithm, the desired α can be found very quickly

by a Newton-Raphson (in general 2 to 3 steps to find the optimum value in each step). This

procedure been successfully used by by Dykstra et al (1996) for 60 linear constraints in a

61-dimensional space.

B Proof of Theorem 3.1

Using a Taylor expansion, under H0, we have

T01,π = −2n
r∑

i=1

k∑

j=1

p̂ij[ln(p̂
(0)
ij ) − ln(p̂ij(π))]

= n
r∑

i=1

k∑

j=1

1

p̂ij(π)
(p̂ij(π) − p̂

(0)
ij )2 + op(1). (B.1)

Write the likelihood function as

Ln =




∏

(i,j)6=(r,k)

p
nij

ij


 [1 −

∑

(i,j)6=(r,k)

pij]
nrk .

Let

DLn(p) =

(
∂

∂pij

ln Ln(p)

)

(i,j)6=(r,k)

be the gradient of the log likelihood and p0 = (p0
11, p

0
12, . . . , p

0
r1, . . . , p

0
r,k−1)

′ ∈ H0 be the true

value of p. Then we have

√
n[p̂(0) − p0] =

1√
n
P0DLn(p0) + op(1)

√
n[p̂(0)(π) − p0] =

1√
n
P0(π)DLn(p0) + op(1)

√
nα∗(π) =

1√
n
Q0(π)DLn(p0) + op(1) (B.2)

where p̂(0) = (p̂
(0)
11 , p̂

(0)
12 , . . . , p̂(0)r,k−1)

′

and p̂(π) = (p̂11(π), p̂12(π), . . . , p̂r,k−1(π))
′

are the max-

imum likilihood estimators of p under H0 and H1,π, resprectively and α∗(π) is the Lagrange

multiplier associated with the maximization of the likelihood function under H1,π. If the p̂ij > 0

for all (i, j) then p̂0 and p̂(π) will be unique. The matrices P and P(π) are as defined in (3.9)

and Q(π) = −BH(H
′

BH)−1. P0, P0(π) and Q0(π) are the values of the matrices when

B = B(p0), as defined before with p = p0.
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Therefore under H0, we have

√
n[p̂0

11 − p̂11(π), p̂0
12 − p̂12(π), . . . , . . . , p̂0

r,k−1 − p̂r,k−1(π))
′

=
1√
n

[P0 −P0(π)]D lnLn(p0) + op(1)

and therefore converges in distribution as n goes to infinity to a multivariate normal distribution

with mean vector zero and covariance matrix given by

(P0 − P0(π))B−1(P0 − P0(π)) = P0 − P0(π).

Assume without loss of generality assume that H(π) is made of the first d columns of H, then

P0 − P0(π) = BH(H
′

BH)−1H
′

B − BH(π)(H
′

(π)BH(π))−1H
′

(π)B

= (P0 − P0(π))B−1(P0 − P0(π))

= (BH(πc) − BH(π)Σ12)Σ
−1(H

′

(π)B − Σ12H(π)
′

B) (B.3)

where

Σ = H
′

(πc)[B − BH(π)(H
′

(π)BH(π))−1H(π)B]H(πc),

Σ12 = Σ
′

21 = (H
′

(π)BH(π))−1H(π)
′

BH(πc)

and H(πc) is made of the remaining columns of H.

Since
√

n
(
p̂0
11 − p̂11(π), . . . , p̂0

r,k−1 − p̂r,k−1(π)
)′

converges in distribution to N(0,P0(π) −

P0), it follows from (3.9) that the asymptotic covariance of
√

n[p̂0
i − p̂i(π)] and

√
n[p̂0

j − p̂j(π)]

is

v
′

i(π)Σ−1vj(π) − v
′

i(π)Σ−1Σ21uj(π) − u
′

i(π)Σ12Σ
−1vj(π) + u

′

i(π)Σ12Σ
−1Σ21uj(π)

where BH(π) = (u1(π),u2(π), . . . ,urk−1(π))
′

,BH(πc) = (v1(π),v2(π), . . . ,vrk−1(π))
′

,urk(π) =

−
rk−1∑

j=1

uj(π) and vrk(π) = −
rk−1∑

j=1

vj(π). Consequently, under H0

√
n



 p̂0
11 − p̂11(π)√

p0
11

, . . . ,
p̂0

rk − p̂rk(π)√
p0

rk



 d−→ N(0, [M
′

2 − M
′

1Σ12]
′

Σ−1[M2 − Σ21M1])

where

M1 = (u1(π)/
√

p0
11,u2(π)/

√
p0
12, . . . ,urk(π)/

√
p0

kk)
′

M2 = (v1(π)/
√

p0
11,v2(π)/

√
p0
12, . . . ,vrk(π)/

√
p0

rk)
′

.
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It then follows that
√

n



 p̂0
11 − p̂11(π)√

p0
11

, . . . ,
p̂0

rk − p̂rk(π)√
p0

rk





converges in distribution to

(Y11, Y12, . . . , Yr1, Yrk)
′

= [M
′

2 − M
′

1Σ12]
′

Σ− 1

2 (Z1, Z2, . . . , Z(r−1)k−d)
′

where Zi are i.i.d N(0, 1). It follows that

r∑

i=1

k∑

j=1

n
(p̂0

ij − p̂ij(π))2

p0
ij

converges in distribution to

r∑

i=1

k∑

j=1

Y 2
ij = Z

′

Σ− 1

2 [M2 − Σ21M1][M
′

2 − M
′

1Σ12]
′

Σ− 1

2 Z

=

(r−1)k−d∑

l=1

Z2
i

which has a chi-square distribution with (r−1)k−d degress of freedom. Here Z
′

= (Z1, Z2, . . . , Z(r−1)k−d)

and the second equality holds because

[M2 − Σ21M1][M
′

2 − M
′

1Σ12]
′

= Σ.

C Proof of Theorem 3.2

Let C be the set of all subsets of constraints. If follows from El Barmi and Dykstra (1994) (see

Appendix A) that p̂(1)(π), the maximizer of

r∏

i=1

k∏

j=1

p
nij

ij (C.1)

subject to
r∑

i=1

k∑

j=1

pijx
(u,s)
ij = 0, (u, s) ∈ π,

and the solution, α
∗(π), of the maximization

maxαus,(u,s)∈π

r∑

i=1

k∑

j=1

p̂ij ln



1 +
∑

(u,s)∈π

αusx
(u,s)
ij



 , (C.2)
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satisfy

p̂
(1)
ij =

p̂ij

1 +
∑

(u,s)∈π

α∗
us(π)x

(u,s)
ij

, ∀(i, j).

Moreover p̂(1) = p̂(1)(π) for precisely one π. Also, we have

p̂(1) = p̂(1)(π) ⇐⇒





α∗
us(π) > 0, (u, s) ∈ π
r∑

i=1

k∑

j=1

x
(u,s)
ij p̂

(1)
ij (π) ≤ 0, (u, s) ∈ πc

Combining the above statements gives

P (T01 ≥ t1, T12 ≥ t2)

=
∑

π∈C

P (T01 ≥ t1, T12 ≥ t2, p̂
(1) = p̂(1)(π))

=
∑

π∈C

P (T01 ≥ t1, T12 ≥ t2, α
∗
us(π) > 0, (u, s) ∈ π,

∑

i,j

x
(u,s)
ij p̂

(1)
ij (π) ≤ 0, (u, s) ∈ πc)

=
∑

π∈C

P (
∑

i,j

n
(p̂

(0)
ij − p̂

(1)
ij (π))2

p̂
(1)
ij (π)

+ op(1) ≥ t1,
√

nα
∗′(π)n[R0(π)]−1

α
∗(π) + op(1) ≥ t2,

α∗
us(π) > 0, (u, s) ∈ π,

∑

i,j

x
(u,s)
ij p̂

(1)
ij (π) ≤ 0, (u, s) ∈ πc)

where R0(π) is as defined before. The third equality is true by (B1) for T01 and a result in

Silvey (1959) for T12. Lemma B, page 71 in Robertson et al (1988) and (3.10) imply that

lim
n→∞

P (T01 ≥ t1, T12 ≥ t2) =

k(r−1)∑

j=0

aj(p
(0))P (χ2

k(r−1)−j ≥ t1)P (χ2
j ≥ t2),

which is the desired result.

D Efficient Computation of the Weights Associated with the

Asymptotic Distribution of the Test Statistic

In this Section of the Appendix we show how the estimated weights needed for obtaining the

estimated asymptotic null distributions in (3.12) and (3.13) can be efficiently computed through

the succesive use of matrix sweeps and inversions.

Without loss of generality assume that π = {1, . . . , d}, i.e. the set of constraint indices

corresponding to the first d order constraints, i.e. the first d columns of H. Partition the H

matrix according to π as follows

H = [H(π) : H(πc].
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The corresponding partition of R−1 = H
′

BH is

R−1 =

[
H

′

(π)BH(π) H
′

(π)BH(πc)

H
′

(πc)BH(π) H
′

(πc)BH(πc)

]
(D.1)

A sweep of the the matrix R−1 on its first d rows yields two matrices needed for the computation

of the weights as its diagonal blocks. That is

SWEEP(R−1 ; π) =

[
R−1(π)

R−1(πc) − H
′

(πc)BH(π)R−1(π)H
′

(π)BH(πc)

]

Denote the two matrices shown above by

SWEEP(1)(R
−1 ; π) = R−1(π)

SWEEP(2)(R
−1 ; π) = R−1(πc) − H

′

(πc)BH(π)R−1(π)H
′

(π)BH(πc). (D.2)

Using the fact that the Sweep operator is reversible, that is SWEEP(SWEEP(R−1 ; π) ; π) =

R−1, we get

SWEEP−1(R−1 ; π) = (SWEEP(R−1 ; π))−1

=

[
R−1(π) − H

′

(π)BH(πc)R−1(πc)H
′

(πc)BH(π)

R−1(πc)

]
.

Denote the two matrices shown above by

SWEEP(3)(R
−1 ; π) = R−1(πc)

SWEEP(4)(R
−1 ; π) = R−1(πc) − H

′

(πc)BH(π)R−1(π)H
′

(π)BH(πc). (D.3)

Similarly define the matrices in (D.2) and (D.3) for an arbitrary π with card(π) = d.

The number of πs that have cardinal d is equal to

md = C
(r−1)k
d =

[(r − 1)k]!

d![(r − 1)k − d]!
.

Denote these by π1,d, . . . , πmd,d. Clearly the whole set of πs with cardinal (r − 1)k − d is easily

obtained as πc
1,d, . . . π

c
md,d.

From the discussion above it follows that we can compute the weights by successive sweeps

and inversions using the following algorithmic scheme:

ad(p) =
md∑

i=1

Q(SWEEP(1)(R
−1 ; πi,d))Q(SWEEP(2)(R

−1 ; πi,d))

ak(r−1)−d(p) =
md∑

i=1

Q([SWEEP(3)(R
−1 ; πi,d)]

−1)Q([SWEEP(4)(R
−1 ; πi,d)]

−1) (D.4)
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For a given cardinal d, we used the SAS procedure PROC PLAN to generate all possible πs

with cardinal d, i.e. all possible combinations of d rows of the R−1 matrix on which we sweep

in order to evaluate the weights in (D.4). The Sweep operations and matrix inversions were

done using SAS IML. Finally, we used a SAS/IML program for the calculation of the multi-

variate normal quadrant probabilities in (D.4). The program was written by Genz and Bretz

(2000, contact: bretz@ifgb.uni-hannover.de) and evaluates the multivariate normal integral by

applying a randomized lattice rule on a transformed integral as described by Genz (1992, 1993).

It utilizes variable priorization and antithetic sampling and can compute multivariate normal

probabilities for positive semi-definite covariance matrices until dimension 100.
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Table 1

Mortality data and estimates for the RFM strain male mice study. Note: d.j is the total number

of failures from both causes at time j; D.j is the corresponding cumulative count.

No. Interval d1j d2j d.j D.j p̂1j p̂2j p̂
(1)
1j p̂

(1)
2j

1 (0, 350) 15 18 33 33 0.1515 0.1818 0.1515 0.1818

2 [350, 450) 6 7 13 46 0.0606 0.0707 0.0606 0.0707

3 [450, 550) 6 4 10 56 0.0606 0.0404 0.0606 0.0404

4 [550, 650) 8 18 26 82 0.0808 0.1818 0.0808 0.1818

5 [650, 750) 2 12 14 96 0.0202 0.1212 0.0202 0.1212

6 [750, 850) 2 1 3 99 0.0202 0.0101 0.0152 0.0152
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Table 2

AACTG failure time data and estimates.

Interval d1j d2j d3j d.j D.j p̂1j p̂2j p̂3j p̂
(1)
1j p̂

(1)
2j p̂

(1)
3j

(0, 5] 5 7 7 19 19 0.1111 0.1556 0.1556 0.1111 0.1458 0.1667

(5, 20] 6 5 4 15 34 0.1333 0.1111 0.0889 0.1333 0.1042 0.0952

(20, 50] 4 4 3 11 45 0.0889 0.0889 0.0667 0.0889 0.0833 0.0714
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