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Abstract

Generalized order statistics (gOSs) unify the study of order statistics, record values,

k-records, Pfeifer’s records and several other cases of ordered random variables. In this

paper we consider the problem of comparing the degree of dependence between a pair of

gOSs thus extending the recent work of Averous, Genest and Kochar (2005). It is noticed

that as in the case of ordinary order statistics, copula of gOSs is independent of the parent

distribution. For this comparison we consider the notion of more regression dependence or

more stochastic increasing. It follows that under some conditions, for i < j, the dependence

of the jth generalized order statistic on the ith generalized order statistic decreases as i

and j draw apart. We also obtain a close form expression for the Kendall’s coefficient of

concordance between a pair of record values.

Key words : Dispersive ordering; Pure birth process; Exponential distribution; Kendall’s

tau; Monotone regression dependence; Stochastic increasingness; Record values.

1 Introduction

Order statistics and record values play an important role in statistics, in general, and in Re-

liability Theory and Life Testing, in particular. Their distributional and stochastic properties

have been studied extensively but separately in the literature. However, they can be consid-

ered as special cases of generalized order statistics (gOSs) (cf. Kamps, 1995) which in addition

cover particular sequential order statistics, kth record values, Pfeifer’s record model, kn record

from nonidentical distributions, and ordered random variables which arise from truncated dis-

tributions. It is well known that a sequence of record values can be viewed as a sequence of

the occurrence times of a certain non-homogeneous Poisson process. It is also connected to the

failure times of a minimal repair process. There is a close connection between Pfeifer’s records

and the occurrence times of a pure birth process (cf. Pfeifer, 1982b).

∗Corresponding author. Work done while visiting Indian Statistical Institute, Delhi Center
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As said above many interesting stochastic orderings results for order statistics and spac-

ings on one hand; and for record values and record increments on the other hand, have been

obtained separately by many investigators without realizing that perhaps they can be unified

under the umbrella of gOSs. Kamps (1995) in the last chapter of his book studied some reli-

ability properties of generalized order statistics. Franco, Ruiz and Ruiz (2002) obtained some

stochastic ordering results for spacings of generalized order statistics.

Recently Averous, Genest and Kochar (2005) have studied the dependence properties of

order statistics of a random sample from a continuous distribution. To compare the degree

of association between two such pairs of ordered random variables, they considered a notion

of relative monotone regression dependence (or stochastic increasingness). Using this concept,

they proved that for i < j, the dependence of the jth order statistic on the ith order statistic

decreases as i and j draw apart. In this paper we study dependence properties of a pair

of generalized order statistics and as a consequence these results will be applicable to order

statistics, record values, occurrence times of a pure birth process and all those models which

are covered under gOSs.

The organization of the paper is as follows. In Section 2, we introduce gOSs and state the

main theorem which describes the conditions under which a pair of gOSs is more dependent

than another pair in the sense of more SI ordering. It is seen that the work of Averous, Genest

and Kochar (2005) can be extended to the gOSs. In Section 3 we point out a close connection

that exists between the concepts of dispersive ordering and that of more SI ordering. The

proofs of the various results are given in this section. In the last section, we obtain a close form

expression for the value of the Kendall’s τ between a pair of record values.

2 Main results

First we give the definition of the joint distribution of n generalized order statistics (cf. Kamps,

1995, p. 49).

Definition 2.1 Let n ∈ N , k ≥ 1, m1, . . . ,mn−1 ∈ IR, Mr =
∑n−1

j=r mj, 1 ≤ r ≤ n − 1 be

parameters such that

γr = k + n − r + Mr ≥ 1 for all r ∈ {1, . . . , n − 1}

and let m̃ = (m1, . . . ,mn−1), if n ≥ 2 (m̃ ∈ IR arbitrary, if n = 1).

If the random variables U(r, n, m̃, k), r = 1, . . . , n, possess a joint density function of the form

fU(1,n,m̃, k),...,U(n,n,m̃, k)(u1, . . . , un) = k




n−1∏

j=1

γj







n−1∏

j=1

(1 − ui)
mi


 (1 − un)k−1

on the cone 0 ≤ u1 ≤ . . . ≤ un < 1 of IRn, then they are called uniform generalized order

statistics.
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Generalized order statistics based on some distribution function F are now defined by means

of the quantile transformation

X(r, n, m̃, k) = F−1(U(r, n, m̃, k)), r = 1, . . . , n

and they are denoted by gOSs. As discussed in Kamps (1995), for suitable choices of the

parameters these reduce to the joint distributions of order statistics from a continuous distri-

bution, record values, Pfeifer’s record values and so on.

Let (S, T ) be a continuous bivariate random vector with joint distribution function H.

Recall that T is said to be stochastically increasing in S if and only if, for all s, s′, t ∈ R,

s ≤ s′ =⇒ P (T ≤ t|S = s′) ≤ PT ≤ t|S = s). (2.1)

Let H[s] denote the distribution function of the conditional distribution of T given S = s.

The above implication may then be expressed in the alternate form

s ≤ s′ =⇒ H[s′] ◦ H−1
[s] (u) ≤ u,

where u ∈ (0, 1). .

Note that property (2.1) is not symmetric in S and T , but that in case these variables are

independent, H[s′] ◦ H−1
[s]

(u) ≡ u for all u ∈ (0, 1) and for all s, s′ ∈ R. Observe also that if

ξp = F−1(p) denotes the pth quantile of the marginal distribution of S, then (2.1) is equivalent

to the condition

0 < p ≤ q < 1 =⇒ H[ξq] ◦ H[ξp]
−1(u) ≤ u

holding true for all u ∈ (0, 1).

To compare the relative degree of dependence between arbitrary pairs of gOSs we use the

notion of more stochastically increasing dependence ordering as discussed in Averous, Genest

and Kochar (2005). For i = 1, 2, let (Si, Ti) be a pair of continuous random variables with joint

cumulative distribution function Hi and marginals Fi and Gi.

Definition 2.2 T2 is said to be more stochastically increasing in S2 than T1 is in S1, denoted

by (T1|S1) ≺SI (T2|S2) or H1 ≺SI H2, if and only if

0 < p ≤ q < 1 =⇒ H2[ξ2q] ◦ H2[ξ2p]
−1(u) ≤ H1[ξ1q] ◦ H1[ξ1p]

−1(u), (2.2)

for all u ∈ (0, 1), where for i = 1, 2, Hi[s] denotes the conditional distribution of Ti given Si = s,

and ξip = F−1
i (p) stands for the pth quantile of the marginal distribution of Si.

Obviously, (2.2) implies that T2 is stochastically increasing in S2 if S1 and T1 are inde-

pendent. It also implies that if T1 is stochastically increasing in S1, then so is T2 in S2; and

conversely, if T2 is stochastically decreasing in S2, then so is T1 in S1. As observed in Aver-

ous, Genest and Kochar (2005), the above definition of more SI ordering depends on the joint

distributions of the underlying random variables only through their copulas. Also

(T1|S1) ≺SI (T2|S2) ⇒ C1(u, v) ≤ C2(u, v), (2.3)
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where Ci is the copula of (Si, Ti), i = 1, 2, which in turn implies that

κ(S1, T1) ≤ κ(S2, T2)

where κ(S, T ) represents Spearman’s rho, Kendall’s tau, Gini’s coefficient, or indeed any other

copula-based measure of concordance satisfying the axioms of Scarsini (1984). In the special

case where F1 = F2 and G1 = G2, it also follows from (2.3) that the pairs (S1, T1) and (S2, T2)

are ordered by Pearson’s correlation coefficient, namely

corr(S1, T1) ≤ corr(S2, T2).

Note that the copula of a pair of gOSs is independent of the parent distribution F . For

comparing two different gOSs we use the following pre-ordering on IR+.

Definition 2.3 A vector x in IR+ is said to be p-larger than another vector y also in IR+

(written x
p
� y) if

∏j
i=1 x(i) ≤

∏j
i=1 y(i), j = 1, . . . , n, where x(1) ≤ . . . ≤ x(n) and y(1) ≤

. . . y(n) are the increasing arrangements of the components of x and y, respectively.

Now we state the main theorem of the this paper whose proof is given in Section 3.

Theorem 2.1 Let (X (r, n, m̃, k) , r = 1, . . . , n) and
(
X ′(r

′

, n
′

, m̃
′

, k
′

) r = 1, . . . , n
)

be the gOSs

based on distributions F and G, respectively. Let γr = k + n − r +
∑n−1

h=r mh and γ
′

r =

k
′

+ n
′

− r +
∑n−1

h=r m
′

h. Then for i ≤ j and i
′

≤ j
′

,

(
X ′(j

′

, n
′

, m̃
′

, k
′

) | X ′(i
′

, n
′

, m̃
′

, k
′

)
)
≺SI (X(j, n, m̃, k) | X(i, n, m̃, k)) ,

provided the following conditions are satisfied,

(a1) i ≥ i
′

and j − i ≤ j
′

− i
′

,

(a2) (γℓ1 , . . . , γℓi′
)

p
� (γ

′

1, . . . , γ
′

i′
)

for some set {ℓ1, . . . , ℓi′} ⊂ {1, . . . , i}.

(a3) (γ
′

k1
, . . . , γ

′

kj−i
)

p
� (γi+1, . . . , γj)

for some set {k1, . . . , kj−i} ⊂ {i
′

+ 1, . . . , j
′

}

It is well known that for specific sets of parameters, n, k and mi, i = 1, . . . , n−1, the gOSs

reduce to the well known ordered random variables. Now we find sufficient conditions on the

parameters of the various sub-models of gOSs for which Theorem 2.1 holds.

(A) Order Statistics from i.i.d random variables. For n ≥ 1, let Xi:n denote the ith

order statistic based on a random sample X1, . . . ,Xn from a continuous distribution with

cdf F . This is a special case of gOSs with m1 = . . . = mn−1 = 0 and k = 1. In this case

γr = n− r + 1, r = 1, . . . , n− 1. Let mi = m′
i = 0, i = 1, . . . , n− 1 and k = k

′

= 1. With

these settings we see that the conditions (a2) and (a3) are satisfied when n − i ≤ n
′

− i
′
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and n− j ≥ n
′

− j
′

. That is, for i ≥ i
′

, j − i ≤ j
′

− i
′

, n− i ≤ n
′

− i
′

and n− j ≥ n
′

− j
′

,

we have (
X ′

j′ :n′ | X ′
i′ :n′

)
≺SI (Xj:n | Xi:n) ,

as proved recently by Averous, Genest and Kochar (2005). In the special case of one-

sample problem when n = n′, we have the following results.

(a) (Xk:n| Xi:n) ≺SI (Xj:n| Xi:n) for all 1 ≤ i < j < k ≤ n;

(b) (Xj:n| Xi:n) ≺SI (Xj+1:n+1| Xi+1:n+1) for all 1 ≤ i < j ≤ n;

(c) (Xn+1:n+1| X1:n+1) ≺SI (Xn:n| X1:n) for every integer n ≥ 2.

(B) k-Records. Let {Xi, i ≥ 1} be a sequence of i.i.d random variables from a continuous

distribution F and let k be a positive integer. The random variables L(k)(n) given by

L(k)(1) = 1,

L(k)(n + 1) = min{j ∈ N ;Xj:j+k−1 > XL(k)(n):L(k)((n)+k−1)}, n ≥ 1,

are called the nth k-record times and the quantities XL(k)(n):L(k)((n)+k−1) which we denote

by R(n : k) are termed the nth k-records (cf. Kamps, 1995, p.34). The joint density of

the first n k-records corresponding to a sequence of independent random variables from

a continuous distribution F is a special case of the joint density of first n gOSs with

m1 = . . . = mn−1 = −1. In this case γr = k, r = 1, . . . , n − 1. Now let mi = m
′

i = −1,

i = 1, . . . , n − 1 and k = k
′

. Using the above setting it follows that the conditions (a2)

and (a3) of Theorem 2.1 are satisfied. Therefore, for i ≥ i
′

, j − i ≤ j
′

− i
′

, we have

(
R′(j

′

: k) | R′(i
′

: k)
)
≺SI (R(j : k) | R(i : k)) ,

where R(j : k),j ≥ 1 and R′(j
′

: k), j′ ≥ 1 stand for the jth and j′th k-records. This

means that for i < j, the dependence of the jth k-record on the ith k-record decreases as

i and j draw apart.

(C) Two Stage Progressive Type II Censoring. Let X1, . . . ,Xv be a random sample

from a continuous distribution F . Let these be the lifetimes of v items put on test

at time t = 0. At the time of the r1th failure, n1 functioning items are randomly

selected and removed from the test. The test terminates when further r2 items have

failed. The n = r1 + r2 observations X1:v ≤ . . . ≤ Xn:v are called order statistics arising

in progressive type II censoring with two stages. This is a special case of gOSs with

m1 = . . . = mr1−1 = mr1+1 = . . . = mn−1 = 0, mr1 = n1 and k = v − n1 − n + 1. In

this case γr = v − r + 1, r = 1, . . . , r1 and γr = v − n1 − r + 1, r = r1 + 1, . . . , n − 1. Let

mi = m′
i = 0, i = 1, . . . , r1 − 1, r1 + 1, . . . , n − 1, mr1 = m′

r1
= n1, k = v − n1 − n + 1

and k
′

= v′ − n1 − n + 1. With these settings we see that the conditions (a2) and (a3)
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are satisfied when v − i ≤ v
′

− i
′

and v − j ≥ v
′

− j
′

. That is, for i ≥ i
′

, j − i ≤ j
′

− i
′

,

v − i ≤ v
′

− i
′

and v − j ≥ v
′

− j
′

, we have

(
X ′

j′ :v′
| X ′

i′ :v′

)
≺SI (Xj:v | Xi:v) .

As discussed in Kamps (1995), there are many other models like Pfeifer’s records, sequential

order statistics, order statistics with non-integral sample size etc which can also be expressed

as special cases of gOSs.

3 Auxiliary results and proofs

In this section we prove some auxiliary results to prove our Theorem 2.1. As we will see, there

is a close connection between the concepts of dispersive ordering and more SI ordering.

Definition 3.1 A random variable X with distribution function F is said to be less dispersed

than another variable Y with distribution G, written as X ≤disp Y or F ≤disp G, if and only if

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α)

for all 0 < α ≤ β < 1.

It is easy to see that the F ≤disp G is equivalent to

F{F−1(u) − c} ≤ G{G−1(u) − c} for every c ≥ 0 and u ∈ (0, 1).

For general information about dispersive ordering and its properties, refer to Section 2.B of

Shaked and Shanthikumar (1994). The next proposition establishes a close connection between

dispersive ordering and more SI ordering.

Proposition 3.1 Let Xi and Yi be independent random variables with distribution functions

Fi and Gi, respectively for i = 1, 2. Then

X2 ≤disp X1 and Y1 ≤disp Y2 ⇒ (X2 + Y2)|X2 ≺SI (X1 + Y1)|X1

Proof. Let ξip denote the pth quantile of Fi, i = 1, 2. Since Xi and Yi are independent for

i = 1, 2, Hi[ξip](z) = P [Xi + Yi ≤ z|Xi = ξip] = Gi(z − ξip) and H−1
i[ξip]

(u) = G−1
i (u) + ξip. This

gives

Hi[ξiq] ◦ Hi[ξip]
−1(u) = Gi[G

−1
i (u) − (ξiq − ξip)].

Since X2 ≤disp X1,

ξ2q − ξ2p ≤ ξ1q − ξ1p for 0 < p ≤ q < 1 (3.1)

In order to prove Proposition 3.1 one needs only show that one has for 0 < p ≤ q < 1,

H1[ξ1q] ◦ H1[ξ1p]
−1(u) ≤ H2[ξ2q] ◦ H2[ξ2p]

−1(u),
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that is,

G1[G
−1
1 (u) − (ξ1q − ξ1p)] ≤ G2[G

−1
2 (u) − (ξ2q − ξ2p)]. (3.2)

Since Y1 ≤disp Y2, by taking c = ξ1q−ξ1p ≥ 0 it follows from the definition of dispersive ordering

that

G1[G
−1
1 (u) − (ξ1q − ξ1p)] ≤ G2[G

−1
2 (u) − (ξ1q − ξ1p)]

Now (3.2) follows from it and (3.1) since X2 ≤disp X1 and G2 is nondecreasing.

We shall be using the following known results to prove Theorem 2.1 in this section.

Theorem 3.1 (Khaledi and Kochar, 2004). Let Xλ1 , . . . ,Xλn
be independent random variables

such that Xλi
has gamma distribution with shape parameter a ≥ 1 and scale parameter λi, for

i = 1, . . . , n. Then, λ

p
� λ

′ implies

n∑

k=1

Xλk
≥disp

n∑

k=1

Xλ′

k
.

Lemma 3.1 (Lewis and Thompson, 1981). The random variable X satisfies X ≤disp X + Y

for any random variable Y independent of X if and only if X has a logconcave density.

Theorem 3.2 (cf. Kamps, 1995, p.81). Let X(r, n, m̃, k), r = 1, . . . , n be the gOSs based on

the distribution function F with F (x) = 1 − e−x, x ≥ 0. Let

Y1 = γ1X(1, n, m̃, k) and Yj = γj(X(j, n, m̃, k) − X(j − 1, n, m̃, k)), j = 2, . . . , n,

where γj = k + n − j +

n−1∑

i=j

mi. Then the random variables Y1, . . . , Yn are stochastically inde-

pendent and identically distributed according to distribution F .

Moreover, for r = 2, . . . , n we have the representation

X(r, n, m̃, k)
st
=

r∑

j=1

Xγj
,

where Xγj
has exponential distribution with hazard rate γj , j = 1, . . . , r.

To prove the main result in this section we use the following lemma which may be of

independent interest.

Lemma 3.2 Let Xγ1 , . . . ,Xγn be independent random variables such that Xγk
has gamma

distribution with shape parameter a ≥ 1 and scale parameter γk, for k = 1, . . . , n and let

Xγ′

1
, . . . ,Xγ′

n′

be another set of independent random variables such that Xγ′

k
has gamma dis-

tribution with shape parameter a ≥ 1 and scale parameter γ′
k, for k = 1, . . . , n′. Then if the

conditions (a1) − a(3) of Theorem 2.1 are satisfied, then for i ≤ j, i
′

≤ j
′

,

j′∑

k=1

Xγ′

k
|

i′∑

k=1

Xγ′

k
≺SI

j∑

k=1

Xγk
|

i∑

k=1

Xγk
.
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Proof : Using Proposition 3.1, it is enough to show that under the assumed conditions

(A)
i∑

ν=1

Xγν ≥disp

i′∑

ν=1

Xγν
′

and

(B)

j∑

ν=i+1

Xγν ≤disp

j′∑

ν=i′+1

Xγ′

ν
.

For i ≥ i′, we have

i∑

ν=1

Xγν =

i′∑

ν=1

Xγℓν
+

∑

ν /∈{ℓ1,...,ℓi′}

Xγν

≥disp

i′∑

ν=1

Xγℓν

≥disp

i′∑

ν=1

Xγ′

ν
,

since the density function of a gamma random variable with shape parameter a ≥ 1 is logconcave

and a convolution of independent random variables with logconcave densities is logconcave, the

first inequality follows from Lemma 3.1. The second inequality follows from Theorem 3.1 under

the condition (a2). This completes the proof of (A).

The proof of (B) follows on the same lines under the condition (a3).

Proof of Theorem 2.1. It is clear from the definition of the joint distribution of gOSs

that their copula is independent of the parent distribution. Hence without loss of generality

we can assume that the distributions F and G both are standard exponential. It follows from

Theorem 3.2 that

X(j, n, m̃, k)
st
=

j∑

h=1

Xγh
and X(j, n, m̃, k) | X(i, n, m̃, k)

st
=

j∑

h=1

Xγh
|

i∑

h=1

Xγh
,

where Xγh
has exponential distribution with hazard rate γh, h = 1, . . . , j and Xγh

’s are inde-

pendent. Now the required result follows from Lemma 3.2.

It is known that more SI ordering implies more PQD ordering (copulas are ordered) and it

is also known that the Spearman’s rho, Kendall’s tau, or Gini’s coefficient of association can be

expressed as a functional of copula which preserves the ordering of copula in the same direction

(cf. Joe, 1997). This leads us to the following corollary.

Corollary 3.1 Under the conditions of Theorem 2.1,

κ
(
X ′(i

′

, n
′

, m̃
′

, k
′

),X ′(j
′

, n
′

, m̃
′

, k
′

)
)
≤ κ (X(i, n, m̃, k),X(j, n, m̃, k))

where κ(S, T ) stands for any measure of concordance between S and T in the sense of Scarsini

(1984), e.g., Spearman’s rho, Kendall’s tau, or Gini’s coefficient of association
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4 Kendall’s τ for record values

In order to further understand the implications of Corollary 3.1 we find a closed form formula

for the Kendall’s coefficient of measure of concordance τ between any two records corresponding

to a sequence of i.i.d random variables from an arbitrary distribution F .

Theorem 4.1 Let {Xi, i ≥ 0} be a sequence of independent and identically distributed random

variables from a continuous distribution F . Then the Kendall’s coefficient of concordance τ

between the records Rm and Rn is

τ(Rm, Rn) = 1 − 4

n∑

j=m+1

n−j∑

i=0

1

2n+i+j+1

(
m + j

j

)(
n − m + i − 1

i

)
.

Proof : Since the copula and hence τ for a pair of records is independent of the parent

distribution, without loss of generality we assume that F is standard exponential. To derive

this formula we shall use the following identities :

1

β(a, n − a + 1)

∫ p

0
ta−1(1 − t)n−adt =

n∑

j=a

(
n

j

)
pj(1 − p)n−j, (4.1)

for 0 ≤ p ≤ 1, a = 1, . . . , n, n = 1, 2, . . . and

∫ +∞

x

1

Γ(n)
tn−1e−tdt = e−x

n−1∑

i=0

xi

i!
, (4.2)

where β(a, b) and Γ(a) stand, respectively for the beta and the gamma functions.

Let R
′

m and R
′

n be the records corresponding to a sequence
{

X
′

i , i ≥ 0
}

of i.i.d random

variables with common distribution function as standard exponential. We assume that this

sequence is independent of the sequence {Xi, i ≥ 0}.

The joint density function of (Rm, Rn) for m ≤ n is

fRm,Rn(x, y) =
1

m!(n − m − 1)!
xm(y − x)n−m−1e−y, for 0 < x ≤ y < ∞.

By definition, the Kendall’s τ is

τ(Rm, Rn) = 1 − 4p,

where

p = P (Rm < R
′

m, Rn > R
′

n) (4.3)

=

∫ +∞

0

∫ +∞

x
P (Rm < x,Rn > y)

1

m!(n − m − 1)!
xm(y − x)n−m−1e−ydy dx

9



Now first we compute h(x, y) = P (Rm < x,Rn > y).

h(x, y) =

∫ +∞

y

∫ x

0

1

m!(n − m − 1)!
um(v − u)n−m−1e−vdu dv

=

∫ +∞

y

vn−1e−v

Γ(n + 1)

∫ x

0

1

β(m + 1, n − m)

(u

v

)m(
1 −

u

v

)n−m−1
du dv

=

∫ +∞

y

vne−v

Γ(n + 1)

∫ x/v

0

1

β(m + 1, n − m)
(z)(m+1)−1(1 − z)(n−m)−1dz dv

=

∫ +∞

y

vne−v

Γ(n + 1)

n∑

j=m+1

(
n

j

)
(
x

v
)j(1 −

x

v
)n−jdv (4.4)

=

n∑

j=m+1

(
n

j

)
xj

Γ(n + 1)

∫ +∞

y
(v − x)n−je−vdv

=
n∑

j=m+1

(
n

j

)
xj

Γ(n + 1)

∫ +∞

y−x
(z)n−je−(x+z)dz

=
n∑

j=m+1

(
n

j

)
Γ(n − j + 1)xje−x

Γ(n + 1)

n−j∑

i=0

(y − x)ie−(y−x)

i!
(4.5)

=

n∑

j=m+1

n−j∑

i=0

xj(y − x)ie−y

i!j!

(4.4) and (4.5) follows respectively, from (4.1) and (4.2). Using the above expression in (4.3),

We get

p =

n∑

j=m+1

n−j∑

i=0

∫ +∞

0

(∫ +∞

x
(y − x)n−m+i−1e−2ydy

)
xm+j

i!j!m!(n − m − 1)!
dx.

Simplifying it, we get the required result.
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Table 1 gives the values of τ(Rm, Rn) for 1 ≤ m ≤ n = 7.

Table 1: The values of 2048 × τ(Ri, Rj).

j

i 2 3 4 5 6 7

1 1280 1024 880 784 714 660

2 1408 1168 1024 924 849

3 1488 1264 1124 1024

4 1544 1334 1199

5 1586 1388

6 1619

It is seen from the above table that for fixed i, τ(Ri, Rj) decreases with j (≥ i) and for fixed

j, it increases with i (≤ j). Also for a fixed integer c, τ(Ri, Ri+c) increases with i. It is easy to

see that the conclusions of Theorem 2.1 hold in this case.
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