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1 Introduction

1.1 Positive semidefinite matrices

Let A be an n× n matrix with complex entries aij . We write this as A = [aij ] . A is Hermitian(
A = A∗

)
if aij = aji, a condition that is readily verified by inspection. A Hermitian matrix

is positive semidefinite (psd for short) if it satisfies any of the following equivalent conditions

(i) For every vector x ∈ C
n, the inner product 〈x,Ax〉 ≥ 0.

(ii) All principal minors of A are nonnegative.

(iii) All eigenvalues of A are nonnegative.

(iv) A = BB∗ for some matrix B.

(v) A = LL∗ for some lower triangular matrix L.

(vi) There exist vectors u1, . . . , un in some inner product space such that aij = 〈ui, uj〉. The

matrix A is then said to be the Gram matrix associated with the vectors {u1, . . . , un}.

It is not easy to verify any of the conditions (i)–(vi) and a little ingenuity is often needed

in proving that a certain matrix is psd.

1.2 The Hadamard product

Let A = [aij ] and B = [bij ] be two n × n matrices. The Hadamard product (or the entrywise

product) of A and B is the matrix A ◦ B = [aijbij].

The most interesting theorem about Hadamard products was proved by I. Schur. This says

that if A and B are psd, then so is A ◦ B. This theorem is so striking that the product A ◦ B

is often called the Schur product. Note that the usual matrix product AB (of psd matrices A

and B) is psd if and only if AB = BA.

For each nonnegative integer m let A◦m =
[
am

ij

]
be the mth Hadamard power of A, and

Am the usual mth power. If A is psd, then both A◦m and Am are psd.
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1.3 Infinitely divisible matrices

Fractional powers of psd matrices are defined via the spectral theorem. Let λ1, . . . , λn be

the eigenvalues of a psd matrix A and v1, . . . , vn the corresponding (orthonormal) eigenvectors.

Then A =
∑

λiviv
∗
i , and for all r ≥ 0 the (usual) rth power of A is the psd matrix A =

∑
λr

i viv
∗
i .

If the entries aij are nonnegative real numbers, it is natural to define fractional Hadamard

powers of A. In this case for every r ≥ 0 we write A◦r =
[
ar

ij

]
.

Suppose A is psd and aij ≥ 0 for all i, j. We say that A is infinitely divisible if for every

r ≥ 0 the matrix A◦r is psd. Every 2 × 2 psd matrix with nonnegative entries is infinitely

divisible. This is no longer the case when n > 2. The 3 × 3 matrix

A =




1 1 0

1 2 1

0 1 1




is psd. But A◦r is psd if and only if r ≥ 1.

C. FitzGerald and R. Horn [11] have shown that if A is an n × n psd matrix and aij ≥ 0,

then for all real numbers r ≥ n − 2, the matrix A◦r is psd. The critical exponent n − 2 is best

possible here; for each r < n − 2 one can construct a psd matrix A for which A◦r is not psd.

If A◦r is psd for r = 1
m , m = 1, 2, . . . , then by Schur’s Theorem A◦r is psd for all positive

rational numbers r. Taking limits, we see that A◦r is psd for all nonnegative real numbers.

Thus a psd matrix with nonnegative entries is infinitely divisible if and only if for every positive

integer m there exists a psd matrix B such that A = B◦m. The term infinitely divisible originates

from this property.

The purpose of this note is to give very simple proofs of the infinite divisibility of some

interesting matrices. The ideas and methods we employ are likely to be useful in other contexts.

1.4 Some simple facts

Most of our proofs invoke the followig facts.

If A1, . . . , Ak are psd, then so is any linear combination a1A1 + · · ·+akAk with nonnegative

coefficients aj .

If a sequence {Ak} of psd matrices converges to A, then A is psd.

The matrix E with all entries eij = 1 is called the flat matrix. It is a rank-one psd matrix.

If A is psd, then for every X, the matrix X∗AX is psd. In particular, choosing X to be a

diagonal matrix with positive diagonal entries λi, we see that if A is psd (infinitely divisible),

then the matrix XAX = [λiλjaij ] is also psd (infinitely divisible). The matrices A and X∗AX

are said to be congruent to each other if X is invertible.

We will use Schur’s Theorem stated in Section 1.2. It is easy to prove this. One of the

several known proofs goes as follows. Every rank-one psd matrix A has the form A = xx∗

for some vector x; or in other words, aij = xixj for some x = (x1, . . . , xn) in C
n. If A = xx∗

and B = yy∗ are two such matrices, then A ◦ B = zz∗, where z = (x1y1, . . . , xnyn). Thus the
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Hadamard product of two rank-one psd matrices is psd. The general case follows from this as

every psd matrix is a sum of rank-one psd matrices.

The point to note is that it is easy to show that A◦m is psd if A is psd. It is not so easy to

decide whether A◦r is psd for every r ≥ 0.

Chapter 7 of [20] is a rich source of information on psd matrices. A very interesting and

lively discussion of the nomenclature, the history, and the most important properties of the

Hadamard product may be found in the survey article [19] by R. Horn.

2 Examples

2.1 The Cauchy matrix

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be any positive numbers. The matrix C with entries cij = 1
λi+λj

is called a Cauchy matrix. The Hilbert matrix H defined as hij = 1
i+j−1 is a Cauchy matrix.

In 1841 Cauchy gave a formula for the determinant of C

det C =
Π1≤i<j≤n (λi − λj)

2

Π1≤i,j≤n (λi + λj)
.

This shows that all principal minors of C are nonnegative, and hence C is psd. This fact

can be proved more easily as follows.

Since
1

λi + λj
=

∫ ∞

0
e−t(λi+λj)dt, (1)

the matrix C is the Gram matrix associated with the elements ui(t) = e−tλi in the Hilbert

space L2(0,∞). Hence C is psd.

Actually C is infinitely divisible. Two proofs are given below.

Choose any number ε between 0 and λ1. For every r > 0 we have

1

(λi + λj − ε)r
=

( ε

λiλj

)r 1(
1 −

(λi−ε)(λj−ε)
λiλj

)r

=
( ε

λiλj

)r
∞∑

m=0

am

((λi − ε)(λj − ε)

λiλj

)m
, (2)

where am are the coefficients in the series expansion

1

(1 − x)r
=

∞∑

m=0

amxm, |x| < 1.

All am are positive; we have a0 = 1 and am = r(r+1)···(r+m+1)
m! for m > 1.

The matrix with entries
(λi−ε)(λj−ε)

λiλj
is congruent to the flat matrix. Hence this matrix is

psd, and by Schur’s Theorem so are its mth Hadamard powers for m = 0, 1, 2, . . . . Thus the

matrix whose entries are given by the infinite series in (2) is psd. The matrix 1
(λiλj)r is psd

(being congruent to the flat matrix). So, again by Schur’s Theorem the matrix with entries
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given by (2) is psd. Letting ε ↓ 0 we see that the rth Hadamard power of the Cauchy matrix

is psd for every r > 0.

For our second proof we use the gamma function, defined for x > 0 by the formula

Γ(x) =

∫ ∞

0
e−ttx−1dt. (3)

Using this one can see that for r > 0 we have

1

(λi + λj)r
=

1

Γ(r)

∫ ∞

0
e−t(λi+λj)tr−1dt. (4)

When r = 1 this formula reduces to (1). Once again we see that the matrix with entries 1
(λi+λj)r

is the Gram matrix associated with the elements ui(t) = e−tλi in the space L2(0,∞) with the

measure

dµ(t) =
tr−1

Γ(r)
dt.

For the Hilbert matrix a proof similar to our first proof is given by M.-D. Choi [8].

2.2 Generalised Cauchy matrices

The ideas of the preceding section work for some other matrices.

Let λ1, λ2, . . . , λn be positive numbers and for each real number t let Z be the n×n matrix

with entries

zij =
1

λ2
i + λ2

j + tλiλj
.

When is such a matrix psd, or infinitely divisible? The condition t > −2 is clearly necessary

for Z to be psd. When n = 2 this condition is also sufficient to ensure that Z is psd, and hence

infinitely divisible. For n ≥ 3 the condition t > −2 is no longer sufficient. If (λ1, λ2, λ3) =

(1, 2, 3) and t = 10, then Z is not psd. However, if −2 < t ≤ 2, then for all n the matrix Z is

infinitely divisible. For −2 < t < 2 and r > 0 we have the expansion

zr
ij =

1

(λi + λj)2r

∞∑

m=0

am(2 − t)m
λm

i λm
j

(λi + λj)2m
.

This shows that the matrix Z◦r is a limit of sums of Hadamard products of psd matrices. So Z

is infinitely divisible for all t in the range −2 < t < 2. By continuity this is true also for t = 2.

It is known [5] that for every t > 2 there exists an n for which the n×n matrix Z is not psd

for some choice of numbers λ1, . . . , λn. The proof of this needs more advanced arguments (of

the kind discussed in Section 3.1 of this paper). The matrix Z was studied by M. K. Kwong

[22] who used somewhat intricate arguments to prove that for all n, Z is psd for −2 < t ≤ 2.

When t = 1, the matrix Z can be written also as

zij =
λi − λj

λ3
i − λ3

j

.
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The matrix W with entries

wij =
λi − λj

λ4
i − λ4

j

=
λi − λj

λ2
i − λ2

j

1

λ2
i + λ2

j

is infinitely divisible, being the Hadamard product of infinitely divisible matrices. This argu-

ment shows that the matrix V with entries

vij =
λi − λj

λn
i − λn

j

is infinitely divisible for positive integers n that can be expressed as 2m or as 3.2m. It is known

that the matrix V is infinitely divisible for all n. We discuss this in Section 3.3.

2.3 The Pascal matrix

The n × n Pascal matrix is the matrix A with entries

aij =

(
i + j

i

)
i, j = 0, 1, . . . , n − 1.

The rows of the Pascal triangle occupy the anti-diagonals of A. Thus the 4×4 Pascal matrix is

A =




1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20


 .

Let L be the lower triangular matrix whose rows are occupied by the rows of the Pascal triangle.

Thus for n = 4

L =




1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1


 .

It is well-known that A = LL∗, and hence A is psd. See the recent paper [10] for several proofs

of this fact, and for references to papers on Pascal matrices.

The positive definiteness of the Pascal matrix may be proved also by representing it as a

Gram matrix. One such representation is

ars =
1

2π

∫ 2π

0
(1 + eiθ)r(1 + e−iθ)sdθ. (5)

Another representation is obtained using the gamma function (3). For x, y > 0 we have

Γ(x + y + 1) =

∫ ∞

0
e−ttxtydt. (6)

Since Γ(n + 1) = n! for every nonnegative integer n, this shows that the matrix with entries

(i + j)! = Γ(i + j + 1)
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is a Gram matrix, and hence is psd. The Pascal matrix

aij =
(i + j)!

i! j!

is congruent to it, and is therefore psd.

Our argument shows that for any positive numbers λ1, . . . , λn the matrix K with entries

kij =
Γ(λi + λj + 1)

Γ(λi + 1)Γ(λj + 1)
(7)

is psd. When λj = j, this matrix is the Pascal matrix.

In fact, the matrix K is infinitely divisible. (This seems not to have been noticed before

even for the Pascal matrix.)

Using Gauss’s Formula

Γ(z) = lim
m→∞

m!mz

z(z + 1) . . . (z + m)
, z 6= 0,−1,−2, . . . (8)

we see that

kij = lim
m→∞

1

m.m!

m+1∏

p=1

(λi + p)(λj + p)

(λi + λj + p)
. (9)

For each p the matrix [
(λi + p)(λj + p)

λi + λj + p

]

is congruent to the Cauchy matrix [
1

λi + λj + p

]
,

and is, therefore, an infinitely divisible matrix. The expression (9) displays K as a limit

of products of infinitely divisible matrices. Hence by Schur’s Theorem and continuity, K is

infinitely divisible.

A small aside may be of interest here. If λ1, . . . , λn are complex numbers with positive real

parts, then the matrix C with entries

cij =
1

λi + λj

is psd. This can be proved by representing C as a Gram matrix as in (1). The condition

Reλi > 0 guarantees that the integral
∫ ∞

0
e−t(λi+λj)dt

is congruent. Our arguments show that with this restriction on λi, the matrix K with entries

kij =
Γ(λi + λj)

Γ(λi)Γ(λj)

is a psd matrix.
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2.4 The matrix min(x, y)

Consider the n×n matrix M with entries mij = min(i, j). The idea behind the discussion that

follows is captured by the equation



1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4


 =




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


 +




0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1




+




0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1


 +




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




Each of the matrices in this sum is psd. So M is psd.

This can be generalised. Let λ1, . . . , λn be any positive numbers, and let M be the n × n

matrix with entries mij = min(λi, λj). The argument above can be modified to show that M

is infinitely divisible.

First, by applying a permutation similarity, we may assume that 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

Thus

M =




λ1 λ1 . . . λ1

λ1 λ2 . . . λ2
...

...
...

λ1 λ2 λn


 .

For 1 ≤ k ≤ n, let Ẽk be the n× n matrix whose bottom right corner is occupied by the k × k

flat matrix and the rest of whose entries are zero. Then we may write M as

M = λ1Ẽn + (λ2 − λ1)Ẽn−1 + (λ3 − λ2)Ẽn−2 + · · · + (λn − λn−1)Ẽ1.

Thus M is a psd matrix.

The same argument shows that if f is a monotonically increasing function from (0,∞) into

itself, then the matrix [f(mij)] is psd. The special choice f(t) = tr, r > 0, shows that M is

infinitely divisible.

We could have started the discussion in this section with the factoring



1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4


 =




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1







1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1


 .

Building on this, alternate proofs of other results in this section may be obtained.

2.5 The Lehmer matrix

For positive numbers x and y we have

min(x, y)

xy
=

1

max(x, y)
.
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So from the results of Section 2.4 it follows that for positive numbers λ1, . . . , λn the n × n

matrix W with entries

wij =
1

max(λi, λj)

is infinitely divisible.

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn and let L be the matrix with entries

lij =
min(λi, λj)

max(λi, λj)
.

Then L is infinitely divisible. We have lij = λi/λj for 1 ≤ i ≤ j ≤ n. For the special choice

λj = j, 1 ≤ j ≤ n, the matrix L is called the Lehmer matrix.

Let λ1, . . . , λn be positive numbers and let K be the matrix with entries

kij = exp(−|λi − λj |).

It follows from our discussion of the matrix L that K is an infinitely divisible matrix. This

property is equivalent to the fact that the function f(x) = e−|x| is a positive definite function

on R. See Section 3.1.

3 Other proofs and connections

3.1 Positive definite functions

The concept of infinite divisibility is important in the theory of characteristic functions of prob-

ability distributions. Infinitely divisible distributions are exactly the class of limit distributions

for sums of independent random variables. See [7, pp.190–196] and [12, Chapter 10]. General

techniques from this subject may be used to prove special results on matrices.

A complex-valued function f on R is said to be a positive definite function if for every

positive integer n and for every choice of points x1, . . . , xn in R, the n×n matrix [f(xi −xj)] is

positive semidefinite. A theorem of Bochner says that a function f, continuous at 0, is positive

definite if and only if there exists a finite positive Borel measure µ such that

f(t) =

∫ ∞

−∞
e−itxdµ(x). (10)

We say that f is the Fourier transform of µ, and write this as f = µ̂.

We write ν1 ∗ ν2 for the convolution of two measures ν1 and ν2. If f1 and f2 are the Fourier

transforms of ν1 and ν2, then f1f2 = (ν1 ∗ ν2)
∧. A measure µ is said to be infinitely divisible

if for each positive integer m there exists a measure ν such that µ = ν ∗ ν ∗ . . . ∗ ν (an m-fold

convolution).

The integral representation

e−|x| =
1

π

∫ ∞

−∞

e−itx

1 + t2
dt
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shows that for every r > 0 the function e−r|x| is positive definite. This gives another proof of

the infinite divisibility of the matrix K of Section 2.5.

One proof of the infinite divisibility of the Cauchy matrix goes as follows. Let λj = exj ,

j = 1, 2, . . . , n. Then
1

λi + λj
=

1

exi/2 2 cosh
(

xi−xj

2

)
exj/2

.

Thus the Cauchy matrix is congruent to the matrix whose ij entry is

1

cosh
(

xi−xj

2

) .

Since congruence is an equivalence relation that preserves positive semidefiniteness, the follow-

ing two statements are equivalent:

(i) For every n and for every choice of positive numbers λ1, . . . , λn the n×n Cauchy matrix[
1

λi+λj

]
is psd.

(ii) The function f(x) = 1
cosh x on the real line is positive definite.

The second of these statements can be proved by calculating its Fourier transform. This

turns out to be

f̂(t) =
1

cosh tπ
2

.

Since f̂(t) > 0 for all t, the function f is positive definite by Bochner’s Theorem.

For r > 0, let g(t) = 1
(cosh t)r . A calculation involving contour integrals shows that the

Fourier transform of g is

ĝ(t) = 2r−2 1

Γ(r)

∣∣∣∣Γ
(r + it

2

)∣∣∣∣
2

.

This shows that g is a positive definite function. Hence the Cauchy matrix is infinitely divisible.

A proof along these lines is given in [5] and in [13]. Positive definiteness of several other

matrices is proved there. This method is especially useful in showing that certain functions are

not positive definite, and hence certain matrices are not always psd.

The kernel M(x, y) = min(x, y) for x, y > 0, is known to be the covariance kernel of the

standard Brownian motion [7]. Hence it is infinitely divisible by what we said at the begining

of this section. This gives another way of looking at the matrix in Section 2.4.

3.2 Conditionally positive definite matrices

A Hermitian matrix A is said to be conditionally positive semidefinite (cpd for short) if x∗Ax ≥ 0

for all vectors x ∈ C
n for which

∑n
j=1 xj = 0.

C. Loewner showed that if A is a symmetric matrix with positive entries, then A is infinitely

divisible if and only if its Hadamard logarithm log◦(A) = [log aij ] is a cpd matrix. (See

Theorem 6.3.13 in [21].) Good necessary and sufficient conditions for a matrix to be cpd are
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also known. One of them says that an n × n Hermitian matrix B = [bij ] is cpd if and only if

the (n − 1) × (n − 1) matrix D = [dij ] with entries

dij = bij + bi+1,j+1 − bi,j+1 − bi+1,j

is positive semidefinite. See [21, pp. 457-458] where these criteria are used to prove the infinite

divisibility of some matrices.

Let us show how these considerations may be applied to the Pascal matrix. Using the two

conditions stated above one sees that the n× n Pascal matrix is infinitely divisible if and only

if the (n − 1) × (n − 1) matrix D with entries

dij = log
i + j + 2

i + j + 1
= log

(
1 +

1

i + j + 1

)
(11)

is psd.

For x ≥ 0 we have

log(1 + x) =

∫ ∞

1

tx

t + x
dµ(t),

where µ is the probability measure on [1,∞) defined as dµ(t) = dt/t2. (See [4, p. 145].) Using

this we can write the dij in (11) as

dij =

∫ ∞

1

1

i + j + 1 + 1
t

dµ(t).

Thus D is a limit of positive linear combinations of matrices C(t) = [cij(t)] where

Cij(t) =
1

i + j + 1 + 1
t

, t ≥ 1.

If we put λi = i + 1
2

(
1 + 1

t

)
, then

Cij(t) =
1

λi + λj
.

Thus for each t ≥ 1, the matrix C(t) is a Cauchy matrix. Hence D is psd.

Several applications of cpd matrices may be found in the book [2]. Continuous analogues

and their applications are discussed in the monograph [24]. Two of the early papers on infinitely

divisible matrices are [17, 18].

3.3 Operator monotone functions

If A and B are Hermitian matrices and A − B is psd, then we say that A ≥ B. Let f be any

map of the positive half line [0,∞) into itself. We say that f is matrix monotone of order n if

f(A) ≥ f(B) whenever A and B are n × n psd matrices with A ≥ B. If f is matrix monotone

of order n for all n = 1, 2, . . . , then we say that f is operator monotone.
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Two famous theorems of C. Loewner characterise operator monotone functions. The first

says that (a differentiable function) f is matrix monotone of order n if and only if for all positive

numbers λ1, . . . , λn the n × n matrix
[
f(λi) − f(λj)

λi − λj

]
(12)

is psd. (If λi = λj , the difference quotient in (12) is understood to mean f ′(λi). ) The matrix

(12) is called the Loewner matrix associated with f.

The second theorem of Loewner says that f is operator monotone if and only it has an

analytic continuation mapping the upper half plane into itself. It was shown by R. Horn [16]

that this analytic continuation is a one-to-one (also called univalent or schlicht) map if and

only if all the Loewner matrices associated with f are infinitely divisible.

From Loewner’s Theorem it is clear that the function f(t) = tν is operator monotone for

0 ≤ ν ≤ 1. It follows from Horn’s Theorem that for every n, and for all positive numbers

λ1, . . . , λn the n × n matrix [
λν

i − λν
j

λi − λj

]

is infinitely divisible for 0 ≤ ν ≤ 1. In Section 2.2 we proved this for some special values of ν.

The reader may see [9] and [4, Chapter V] for the theory of operator monotone functions.

We should point out that some of the special matrices studied in this paper are frequently

used for testing the stability of numerical algorithms [14], and form a part of the matrix gallery

in MATLAB [15].

4 More Examples

4.1 GCD matrices

The matrix of Section 2.4 is a cousin, in spirit, of another matrix. Given a set S = {x1, . . . , xn}

of distinct positive integers the GCD matrix associated with S is the matrix A with entries

aij = (xi, xj), the greatest common divisor of xi and xj . This matrix is infinitely divisible. We

outline a proof of this. To make it easier reading we prove first that A is psd. The proofs

are borrowed from papers by Beslin and Ligh [3] and Bourque and Ligh [6]. The elementary

concepts of number theory that we need may be found in a basic text such as [1].

Let ϕ(n) be the Euler ϕ-function. For each positive integer n this function counts integers

m less than or equal to n such that (m,n) = 1. One has the equality

∑

d|n

ϕ(d) = n. (13)

Here, as usual d|n means that 1 ≤ d ≤ n and n is divisible by d.

We say that a set F of positive integers is factor-closed if whenever x ∈ F and d|x, then

d ∈ F. The smallest factor-closed set F containing a set S is called the factor-closure of S.

Thus, for example, the set {2, 3, 5, 6, 10} is the factor-closure of the set {2, 6, 10}.
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Let S = {x1, . . . , xn} be any set of distinct positive integers and let F = {d1, . . . , dt} be its

factor-closure. Define n × t matrices E and B as follows

eij =

{
1 if dj |xi

0 otherwise
,

bij = eij

√
ϕ(dj). (14)

Then the ij entry of the matrix BB∗ is

t∑

k=1

bikbjk =
∑

dk|xi
dk|xj

√
ϕ(dk)

√
ϕ(dk)

=
∑

dk|(xi,xj)

ϕ(dk)

= (xi, xj).

This shows that the GCD matrix aij = (xi, xj) is psd.

A (complex) function f on N is said to be multiplicative if f(mn) = f(m)f(n) whenever

(m,n) = 1. The Euler ϕ function is multiplicative. The Dirichlet convolution of two multi-

plicative functions f and g is defined as

(f ∗ g)(n) =
∑

d|n

f(d)g
(n

d

)
.

With this binary operation, the collection of multiplicative functions is an abelian group. The

identity element of this group is the function ε(n) that takes the value 1 at n = 1 and zero at

n 6= 1.

The Möbius function µ(n) is defined as follows: µ(1) = 1. If n > 1 let

n = pk1

1 pk2

2 . . . pkm
m

be a factoring of n with p1, . . . , pm distinct primes. If k1 = k2 = · · · = km = 1 (i.e., n is

square-free), then µ(n) = (−1)m. Otherwise µ(n) = 0.

The Möbius function is multiplicative. Its inverse in the group of multiplicative functions

is the function u(n) ≡ 1; i.e., µ ∗ u = ε. Hence, (f ∗ µ) ∗ u = f ; i.e.

∑

d|n

(f ∗ µ)(d) = f(n) (15)

for every multiplicative function f.

We prove that for every multiplicative function f such that (f ∗ µ)(n) > 0 the matrix[
f
(
(xi, xj)

)]
is positive semidefinite. Instead of B defined by (14) now consider the matrix B

with entries

bij = eij

√
(f ∗ µ)(dj). (16)
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The same calculation as before, with the equality (15) replacing (13) shows that

BB∗ =
[
f
(
(xi, xj)

)]
.

Choosing f(n) = nr, r > 0 we see that the GCD matrix [(xi, xj)] is infinitely divisible.

If lij is the LCM of xi and xj , then the argument given in Section 2.5 shows that the matrix

A with entries aij = 1/lij is infinitely divisible.

4.2 Characteristic matrices

Let x1, . . . , xn be vectors in the space R
k. Associate with them an n×n matrix A as follows. If

exactly m coordinates of the vector xi are equal to the corresponding coordinates of the vector

xj, then aij = m. Note that 0 ≤ m ≤ k. The matrix A is psd. One proof of this goes as follows.

First consider the case k = 1. Arrange the numbers x1, . . . , xn in such a way that they are

grouped into disjoint classes S1, S2, . . . , Sl where xi and xj belong to the same class if and only

if they are equal. The matrix A is then a direct sum of flat matrices, and is, therefore, psd.

Now consider the case k > 1. For i ≤ p ≤ k, let Ap be the n× n matrix whose ij entry is 1

if the pth coordinate of xi is equal to the pth coordinate of xj, and 0 otherwise. Our matrix A

is equal to A1 + · · · + Ak and each matrix in this sum is psd.

This matrix, called the characteristic matrix associated with {x1, . . . , xn}, is not always

infinitely divisible. For example, let x1 = (1, 1), x2 = (2, 1), x3 = (1, 2). Then the characteristic

matrix

A =




2 1 1

1 2 0

1 0 2


 ,

and this is not infinitely divisible.

Two comments are in order here. Our discussion suggests that there might be something

special about the pattern of zero entries in an infinitely divisible matrix. The incidence matrix

of A is the matrix G(A) = [gij ], where gij = 1 if aij 6= 0, and gij = 0 if aij = 0. If A is infinitely

divisible, then G(A) is psd. It is not difficult to see that G(A) is psd if and only if there is a

permutation matrix X such that X∗AX is a direct sum of flat matrices and a zero matrix. See

[18], [21, p.457]. This gives a good necessary condition for infinite divisibility.

Our second remark points to a connection between characteristic matrices and positive

definite functions.

Let G be any additive subgroup of R. Then the characteristic function χ
G

is a positive

definite function. Using this one can see that if A is the matrix with aij = m if exactly m

coordinates of the vector xi−xj are in G, then A is psd. The special case G = {0} corresponds

to the characteristic matrix.

Characteristic matrices arise in diverse contexts. See [25] for their use in the study of

distance matrices and interpolation problems.
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