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Abstract

Let {Yn, n ≥ 1} be a sequence of nonmonotonic functions of associated random variables.

We derive a Newman and Wright (1981) type of inequality for the maximum of partial sums

of the sequence {Yn, n ≥ 1} and a Hajek-Renyi type inequality for nonmonotonic functions of

associated random variables under some conditions.
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1 Introduction

Let {Ω,F ,P} be a probability space and {Xn, n ≥ 1} be a sequence of associated random

variables defined on it. A finite collection {X1,X2, . . . ,Xn} is said to be associated if for every

pair of functions h(x) and g(x) from Rn to R, which are nondecreasing componentwise,

Cov(h(X),g(X)) ≥ 0,

whenever it is finite, where X = (X1,X2, ...,Xn). The infinite sequence

{Xn, n ≥ 1} is said to be associated if every finite subfamily is associated.

Associated random variables are of considerable interest in reliability studies (cf. Esary,

Proschan and Walkup (1967), Barlow and Proschan (1981)), statistical physics (cf. Newman

(1980, 1983)) and percolation theory (cf. Cox and Grimmet (1984)). For an extensive review

of several probabilistic and statistical results for associated sequences, see Roussas (1999) and

Prakasa Rao and Dewan (2001).

Newman and Wright (1981) proved an inequality for maximum of partial sums and Prakasa

Rao (2002) proved the Hajek-Renyi type inequality for associated random variables. Esary et al

(1967) proved that monotonic functions of associated random variables are associated. Hence

one can easily extend the above mentioned inequalities to monotonic functions of associated

random variables. We now generalise above results to some nonmonotonic functions of associ-

ated random variables.

In Section 2, we discuss some preliminaries. Two inequalities are proved for nonmonotonic

functions of associated random variables in Section 3. Some applications of these inequalities

are discussed in Section 4.

2 Preliminaries

Let us discuss some definitions and results which will be useful in proving our main results.

DEFINITION 2.1 : (Newman (1984)) Let f and f1 be two complex-valued functions on

Rn. Then we say that f << f1 if f1 −Re(eiαf) is componentwise nondecreasing for all real α.

REMARK 2.2 : (Newman (1984)) Let f and f1 be two real-valued functions. Then f << f1

if and only if f1+f and f1−f are both nondecreasing componentwise. In particular, if f << f1

and f, f1 are functions of a single variable, then f1 will be nondecreasing.

Dewan and Prakasa Rao (2001) observed the following.

REMARK 2.3 : Suppose that f is real-valued function. Then f << f1 for f1 real iff for

x < y,

f(y) − f(x) ≤ f1(y) − f1(x) (2.1)
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and

f(x) − f(y) ≤ f1(y) − f1(x). (2.2)

It is clear that these relations hold iff, for x < y,

|f(y) − f(x)| ≤ f1(y) − f1(x). (2.3)

REMARK 2.4 : Suppose f << f̃ . Following the Remark 2.3, we must have, for x < y ,

|f(y) − f(x)| ≤ f̃(y) − f̃(x). (2.4)

Let f̃(x) = cx for some constant c > 0. Then f << f̃ iff, for x < y,

|f(y) − f(x)| ≤ c(y − x) (2.5)

which indicates that f is Lipschitzian. A sufficient condition for (2.5) to hold is that

supx|f
′(x)| ≤ C. (2.6)

Let {Xn, n ≥ 1} be a sequence of associated random variables. Let

(i) Yn = fn(X1,X2, . . .),

(ii) Ỹn = f̃n(X1,X2, . . .),

(iii) fn << f̃n, and

(iv) E(Y 2

n ) < ∞ , E(Ỹ 2

n ) < ∞, for n ∈ N. (2.7)

The functions fn, f̃n are assumed to be real and depend only on a finite number of X ′
ns.

Let Sn =
∑n

k=1
Yk, S̃n =

∑n
k=1

Ỹk. Matula (2001) proved the following result which will be

useful in proving our results. He used them to prove the strong law of large numbers and the

central limit theorem for nonmonotonic functions of associated random variables.

Lemma 2.5 : Suppose the conditions stated above in (2.7) hold. Then

(i) V ar(fn) ≤ V ar(f̃n),

(ii) |Cov(fn, f̃n)| ≤ V ar(f̃n),

(iii) V ar(Sn) ≤ V ar(S̃n),

(iv) f1 + f2 + . . . + fn << f̃1 + f̃2 + . . . + f̃n,

(v) Cov(f1 + f̃1, f2 + f̃2) ≤ 4 Cov(f̃1, f̃2), and

(vi) Cov(f̃1 − f1, f̃2 − f2) ≤ 4 Cov(f̃1, f̃2). (2.8)

It is easy to see that

4 V ar(f̃1) = V ar(f̃1 + f1) + 2 Cov(f̃1 + f1, f̃1 − f1) + V ar(f̃1 − f1).
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Note that the covariance term in the above equation is nonnegative since f̃1 + f1 and f̃1 − f1

are nondecreasing functions of associated random variables. Hence

V ar(f1 + f̃1) ≤ 4 V ar(f̃1)

and

V ar(f̃1 − f1) ≤ 4 V ar(f̃1).

For completeness, we now state the inequalities due to Newman and Wright (1981) and

Prakasa Rao (2002) for associated random variables.

Lemma 2.6 : (Newman and Wright) : Suppose X1,X2, . . . ,Xm are associated, mean zero,

finite variance random variables and M∗
m = max(S∗

1
, S∗

2
, . . . , S∗

m), where S∗
n =

∑n
i=1

Xi. Then

E((M∗
m)2) ≤ V ar(S∗

m). (2.9)

Remark 2.7 : Note that if X1,X2, . . . ,Xm are associated random variables, then

−X1,−X2, . . . ,−Xm also form a set of associated random variables. Let M∗∗
m = max(−S∗

1
,−S∗

2
, . . . ,−S∗

m)

and M̃∗
m = max(|S∗

1
|, |S∗

2
|, . . . , |S∗

m|). Then M̃∗
m = max(M∗

m,M∗∗
m ) and ( M̃∗

m)2 ≤

(M∗
m)2 + (M∗∗

m )2 so that

E((M̃∗
m)2) ≤ 2 V ar(S∗

m). (2.10)

Lemma 2.8 : (Prakasa Rao): Let {Xn, n ≥ 1} be an associated sequence of random

variables with V ar(Xj) = σ2

j and {bn, n ≥ 1} be a positive nondecreasing sequence of real

numbers. Then, for any ǫ > 0,

P ( max
1≤k≤n

|
1

bn

k∑

i=1

(Xi − E(Xi))| ≥ ǫ) ≤
4

ǫ2
[

n∑

j=1

V ar(Xj)

b2

j

+
∑

1≤j 6=k≤n

Cov(Xj ,Xk)

bjbk
]. (2.11)

3 Main results

We now extend the Newman and Wright’s (1981) result to nonmonotonic functions of associated

random variables satisfying conditions (2.7).

Theorem 3.1 : Let Y1, Y2, . . . , Ym be as defined in (2.7) with zero mean and finite variances .

Let Mm = max(|S1|, |S2|, . . . , |Sm|). Then

E(M2

m) ≤ 20 V ar(S̃m). (3.1)

Proof: Observe that

max
1≤k≤m

|Sk|

= max
1≤k≤m

|S̃k − Sk − E(S̃k) − S̃k + E(S̃k)|

≤ max
1≤k≤m

|S̃k − Sk − E(S̃k)| + max
1≤k≤m

|S̃k − E(S̃k)| (3.2)
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Note that S̃k −E(S̃k) and S̃k −Sk −E(S̃k) are partial sums of associated random variables

each with mean zero. Hence using the results of Newman and Wright (1981), we get

E(M2

m)

=≤ E( max
1≤k≤m

|Sk|)
2

≤ 2[E( max
1≤k≤m

|S̃k − Sk − E(S̃k)|)
2 + E( max

1≤k≤m
|S̃k − E(S̃k)|)

2]

≤ 4[V ar(S̃m − Sm) + V ar(S̃m)] (by Remark 2.7)

≤ 4[V ar(2S̃m) + V ar(S̃m)]

= 20V ar(S̃m). (3.3)

We have used the fact that

V ar(2S̃n) = V ar(S̃n − Sn + S̃n + Sn)

= V ar(S̃n − Sn) + V ar(S̃n + Sn) + 2 Cov(S̃n + Sn, S̃n − Sn).

(3.4)

Since S̃n + Sn and S̃n − Sn are nondecreasing functions of associated random variables ,

it follows that Cov(S̃n + Sn, S̃n − Sn) ≥ 0 . Hence V ar(2S̃n) ≥ V ar(S̃n − Sn).

We now prove a Hajek-Renyi type inequality for some nonmonotonic functions of associated

random variables satisfying conditions (2.7).

Theorem 3.2 : Let {Yn, n ≥ 1} be sequence of nonmonotonic functions of associated random

variables as defined in (2.7). Suppose that Yn << Ỹn,

n ≥ 1. Let {bn, n ≥ 1} be a positive nondecreasing sequence of real numbers. Then for

any ǫ > 0,

P ( max
1≤k≤n

|
1

bn

k∑

i=1

(Yi − E(Yi))| ≥ ǫ) ≤ (80)ǫ−2[
n∑

j=1

V ar(Ỹj)

b2

j

+
∑

1≤j 6=k≤n

Cov(Ỹj, Ỹk)

bjbk
].

(3.5)

Proof: Let Tn =
∑n

j=1
(Yj − E(Yj)). Note that

P [ max
1≤k≤n

|
Tk

bk
| ≥ ǫ]

= P [ max
1≤k≤n

|
T̃k − Tk − E(T̃k) − T̃k + E(T̃k)|

bk
| ≥ ǫ]

≤ P [ max
1≤k≤n

|
T̃k − Tk − E(T̃k)

bk
| ≥

ǫ

2
] + P [ max

1≤k≤n
|
T̃k − E(T̃k)|

bk
| ≥

ǫ

2
]

≤ (16)ǫ−2[
n∑

j=1

V ar(Ỹj − Yj)

b2

j

+
∑

1≤j 6=k≤n

Cov(Ỹj − Yj , Ỹk − Yk)

bjbk
]
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+ (16)ǫ−2[
n∑

j=1

V ar(Ỹj)

b2

j

+
∑

1≤j 6=k≤n

Cov(Ỹj , Ỹk)

bjbk
].

(3.6)

The result follows by applying the inequalities

V ar(Ỹj − Yj) ≤ 4 V ar(Ỹj)

and

Cov(Ỹj − Yj , Ỹk − Yk) ≤ 4 Cov(Ỹj , Ỹk).

4 Applications

Let C denote a generic positive constant.

Theorem 4.1 : Let {Yn, n ≥ 1} be sequence of nonmonotonic functions of associated

random variables satisfying condition (2.7). Assume that

∞∑

j=1

V ar(Ỹj) +
∑

1≤j 6=k<∞

Cov(Ỹj , Ỹk) < ∞. (4.1)

Then
∑∞

j=1
(Yj − EYj) converges almost surely.

Proof: Without loss of generality, assume that EYj = 0 for all j ≥ 1. Let ǫ > 0. Using

Theorem 3.2 is easy to see that

P (supk,m≥n|Tk − Tm| ≥ ǫ) ≤ P (supk≥n|Tk − Tn| ≥
ǫ

2
) + P (supm≥n|Tm − Tn| ≥

ǫ

2
)

≤ C lim
N→∞

P (supn≤k≤N |Tk − Tn| ≥
ǫ

2
)

≤ C ǫ−2[
∞∑

j=n

V ar(Ỹj) +
∑

n≤j 6=k<∞

Cov(Ỹj, Ỹk)].

(4.2)

The last term tends to zero as n → ∞ because of (4.1). Hence the sequence of random variables

{Tn, n ≥ 1} is Cauchy almost surely which implies that Tn converges almost surely.

The following theorem proves the strong law of large numbers for nonmonotonic functions

of associated random variables.

Theorem 4.2 : Let {Yn, n ≥ 1} be sequence of nonmonotonic functions of associated random

variables satisfying condition (2.7). Suppose that

n∑

j=1

V ar(Ỹj)

b2

j

+
∑

1≤j 6=k≤n

Cov(Ỹj, Ỹk)

bjbk
< ∞

Then 1

bn

∑n
j=1

(Yj − EYj) converges to zero almost surely as n → ∞.
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Proof: The proof is an immediate consequence of Theorem 4.2 and Kronecker Lemma

(Chung (1974)).

For any random variable X and any constant k > 0 , define Xk = X if

|X| ≤ k,Xk = −k if X < −k and Xk = k if X > k. The following theorem is an analogue of

the three series theorem for nonmonotonic functions of associated random variables.

Theorem 4.3 : Let {Yn, n ≥ 1} be sequence of nonmonotonic functions of associated random

variables satisfying condition (2.7). Further suppose that there exists a constant k > 0 such

that Y k
n << Ỹ k

n and

∞∑

n=1

P [|Yn| ≥ k] < ∞, (4.3)

∞∑

n=1

E(Y k
n ) < ∞, (4.4)

∞∑

j=1

V ar(Ỹ k
j ) +

∑

1≤j 6=j′<∞

Cov(Ỹ k
j , Ỹ k

j′ ) < ∞. (4.5)

Then
∑∞

n=1
Yn converges almost surely.

Theorem 4.4: Let {Yn, n ≥ 1} be sequence of nonmonotonic functions of associated random

variables satisfying condition (2.7). Suppose

n∑

j=1

V ar(Ỹj)

b2

j

+
∑

1≤j 6=k≤n

Cov(Ỹj , Ỹk)

bjbk
< ∞. (4.6)

Then, for any 0 < r < 2,

E[supn(
|Tn|

bn
)r] < ∞. (4.7)

Proof: Note that

E[supn(
|Tn|

bn
)r] < ∞.

if and only if ∫ ∞

1

P (supn(
|Tn|

bn
)r > t1/r)dt < ∞.

The above condition holds because of Theorem 3.2 and condition (4.6) and hence the result in

(4.7) holds.
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