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Abstract

We find distribution-free confidence intervals for quantiles of subdistribution functions and

also tolerance intervals for subdistribution functions. Both these are based on order statistics.
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for distribution functions.
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1 Introduction

Let F (.) be a continuous distribution function with qp a quantile of order p, qp = inf{x : F (x) ≥

p}. A technique for constructing distribution-free confidence intervals for qp based on order

statistics is well-known. Let X(1),X(2), . . . ,X(n) be the order statistics corresponding to a

random sample from F . Then [X(r),X(s)], r ≤ s, provides a 100(1 − α)% confidence interval

for qp, where r and s are chosen such that

P (X(r) ≤ qp ≤ X(s)) =
s−1∑

j=r

(
n

j

)
pj(1 − p)n−j = 1 − α,

see, for example, Gibbons and Chakraborti ( 2003), Hettmansperger (1984).

However, the results are not true if F is not a proper distribution function, that is F (∞) < 1.

In several situations we come across a pair of random variables (T, δ) - one of which is continuous

and the other is discrete. For example, in reliability T denotes the lifetime of a series system

and δ denotes the component which has failed, and in survival analysis T is the age at death

and δ is the cause of death. For several other examples see Crowder (2001).

Suppose that there are two causes of death. The joint distribution of (T, δ) is given by

F (i, t) = P [T ≤ t, δ = i], i = 1, 2. (1)

Note that F (i, t) is a subdistribution function with F (i,∞) = P [δ = i] < 1, i = 1, 2. Assume

that F (i, t) is continuous. Let qip be the quantile of order p for the subdistribution function

F (i, t). In particular, the quantile q1p satisfies the following

F (1, q1p) = P [T ≤ q1p, δ = 1] = p, 0 ≤ p ≤ F (1,∞) = θ (say). (2)

We want to find distribution-free confidence intervals for q1p based on ordered statistics cor-

responding to failures due to the cause 1. Such intervals are of interest in various fields, for

example the policy makers for health care would like to have an idea of an interval in which the

median age of failure due to cardiac problems or AIDS lies. Similarly car reliability engineers

could be interested in a confidence interval of median failures due to electrical/mechanical

problems.

One could also be interested in setting tolerance limits for a continuous subdistribution

functions. A tolerance interval for a continuous distribution function with tolerance coefficient

γ is a random interval such that the probability is γ that the area between the end points of

the interval and under the probability density function is atleast a certain preassigned number

p. That is, this random interval includes atleast 100 p% of the distribution with probability

γ. Engineers giving guarantee for products (say refrigerators) need to ensure that the com-

pressors of a high percentage of refrigerators survive certain reasonable time point with a high

probability.

To the best of our knowledge this problem has not been looked into. Zhou (1997) obtained

confidence intervals for quantiles of the distribution function in the presence of independent
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censoring. These were based on the quantiles of the Kaplan-Meier estimator. Zhou and Wu

(2002) considered the sequential fixed-width interval estimation for quantiles with censored

data. In each case the data used were of the form (T, δ) where T is the minimum of the

failure time and the censoring time and δ the corresponding indicator function. However, we

are interested in distribution-free confidence intervals for quantiles of the joint distribution

function of (T, δ) and not in the confidence interval for quantiles of failure time distribution.

Further there are not many known and documented parameteric or semiparameteric functional

forms for subdistribution functions. We also extend the well studied procedures for distribution

functions based on order statistics to the case of subdistribution functions.

In section 2, we state some simple but interesting results on order statistics coming from

subdistribution functions and also the probability integral transformation for subdistribution

functions. In section 3, we discuss distribution-free confidence intervals for quantiles of order

p for F (1, t). These are based on order statistics from a sample with failures due to cause

1. In section 4, we find distribution-free tolerance limits for F (1, t), again based on order

statistics. In section 5, we give tables for conditional and unconditional confidence intervals for

the median (to be defined in section 2) and for p = 0.5 and compare them with the standard

case for distribution functions and also give our conclusions.

2 Prelimnaries

First we look at some simple results on distribution of order statistics based on a random sample

from improper distribution. Let X1,X2, . . . ,Xn be i.i.d. random variables from a distribution

function F (x), where F (x) is increasing and right continuous with F (0) = 0, F (∞) = θ < 1,

that is, F is an improper distribution function. Note that the survival function is given by

F̄ (x) = F (∞) − F (x) = θ − F (x). (3)

Let the density function be denoted by f(x), where
∫
∞

0 f(x)dx = θ < 1. The median, m of

the improper distribution F (.) is such that F (m) = θ/2. Let X(1),X(2), . . . ,X(n) denote the

order statistics corresponding to the given random sample. The following theorem discusses

the distribution of the minimum, the maximum, the rth order statistics as well as the joint

distribution of rth and sth, r < s order statistics. The results are straightforward but since

they have not been reported elsewhere, we state them here for completeness.

Theorem 1 Let X1,X2, . . . ,Xn be i.i.d. random variables from an improper distribution

function F (x). Then for x < y, 1 ≤ r < s ≤ n, the following are true

(i) P [X(1) > x] = (θ − F (x))n,

(ii) hX(1)
(x) = n(θ − F (x))n−1(x)f(x),

(iii) P [X(n) ≤ x] = Fn(x),

(iv) hX(n)
(x) = n(F (x))n−1f(x),
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(v) hX(r)
(x) =

n!

(r − 1)!(n − r)!
F (x)r−1(θ − F (x))n−rf(x), 1 ≤ r ≤ n,

(vi) hX(r),X(s)
(x) =

n!

(r − 1)!(s − r − 1)!(n − s)!
F (x)r−1(F (y) − F (x))s−r−1

(θ − F (y))n−sf(x)f(y). (4)

In particular, if we let G(x) = F (x)/θ, then G(x) is a proper distribution function. Let g(x) be

the corresponding density function. Then, the above results can be restated in terms of G(x)

as follows.

Theorem 2 Let X1,X2, . . . ,Xn be i.i.d. random variables from the distribution function G(x)

defined above. Then for x < y, 1 ≤ r < s ≤ n, the following are true

(i) P [X(1) > x] = θn(1 − G(x))n

(ii) hX(1)
(x) = nθn(1 − G(x))n−1g(x)

(iii) P [X(n) ≤ x] = θnGn(x)

(iv) hX(n)
(x) = nθn(G(x))n−1g(x)

(v) hX(r)
(x) = θn n!

(r − 1)!(n − r)!
G(x)r−1(1 − G(x))n−rg(x), 1 ≤ r ≤ n,

(vi) hX(r),X(s)
(x) = θn n!

(r − 1)!(s − r − 1)!(n − s)!
G(x)r−1(G(y) − G(x))s−r−1

(1 − G(y))n−sg(x)g(y). (5)

Probability integral transformation states that if X is a continuous random variable with distri-

bution function F (x), then the random variable Y = F (X) has a uniform distribution on (0, 1).

It is a useful tool in nonparametric inference - in particular in the study of distribution-free

confidence intervals and tolerance intervals. Next we extend this result to the case when F is

not a proper distribution function. Let F−1(y) = inf{x|F (x) ≥ y}, 0 < y < θ.

Theorem 3 Suppose X is a continuous random variable with an improper ditribution function

F (x), that is, F (∞) = θ < 1. Then the random variable Y = F (X) has an improper uniform

distribution given by

P [Y ≤ y] = 0, y ≤ 0,

= y, 0 ≤ y ≤ θ,

= θ, y ≥ θ. (6)

Proof: Since F (.) is continuous, F (F−1(y)) = y for 0 < y < θ. Since F (.) is monotonic, we

have {X ≤ F−1(y)} implies {F (X) ≤ F (F−1(y)) = y}. Also

{F (X) ≤ y} = {X ≤ F−1(y)}U{X > F−1(y)andF (X) = y}.

Since X has a continuous distribution, we have P [F (X) = y] = 0. Hence,

P [Y ≤ y] = P [F (X) ≤ y] = P [X ≤ F−1(y)] = y, 0 < y < θ.
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3 Confidence intervals for quantiles of subdistribution func-

tions

Let (T1, δ1), (T2, δ2), . . . , (Tn, δn) denote a random sample of failure times and the corresponding

causes of failure. Suppose there are n1 failures due to the first cause and n2 failures due to

the second cause, n = n1 + n2. Let T11, T21, . . . , Tn11 denote the n1 ordered lifetimes where the

failure was due to risk 1.

Then

P [Tj1 ≤ q1p] = P [at least j Tk1 ’s are ≤ q1p]

=
n∑

n1=j

n1∑

k=j

P [k out of n1T
′

i1s are ≤ q1p]P [there are n1Tj1]

=
n∑

n1=j

n1∑

k=j

(
n1

k

)
pk(θ − p)n1−k

(
n

n1

)
θn1(1 − θ)n−n1,

=
n∑

n1=j

n1∑

k=j

(
n1

k

)
pk(θ − p)n1−k

(
n

n1

)
θn1(1 − θ)n−n1, (7)

and hence

P [Ti1 ≤ q1p ≤ Tj1] =
n∑

n1=j

j−1∑

k=i

(
n1

k

)
pk(θ − p)n1−k

(
n

n1

)
θn1(1 − θ)n−n1, (8)

Note that if n1 < j, then, P [Tj1 ≤ q1p] = 0. Hence we have the following theorem.

Theorem 4 [Ti1, Tj1], i < j is a 100(1 − α)% confidence interval for q1p if

n∑

n1=j

j−1∑

k=i

(
n1

k

)
pk(θ − p)n1−k

(
n

n1

)
θn1(1 − θ)n−n1 = (1 − α). (9)

Thus, we need to choose i and j so as to satisfy (9) for a given choice of n, p, θ, α.

Proof: Consider n i.i.d. T ′

is. There are three mutually exclusive events. X1 : Ti ≤

q1p, δi = 1 with probability p, X2 : Ti > q1p, δi = 1 with probability θ − p, and X3 : Ti, δi =

2 with probability 1 − θ. Hence,

P [X1 = x1,X2 = x2,X3 = x3] =
n!

x1!x2!x3!
px1(θ − p)x2(1 − θ)x3, (10)

where x1, x2, x3 ≥ 0, x1 + x2 + x3 = n. This is a multinomial distribution. For given n1,

x1 = 0, 1, . . . , n1; x2 = n1 − x1;x3 = 0, 1, . . . , n − n1. It is interesting to note that
(

n1

k

)
pk(θ − p)n1−k

(
n

n1

)
θn1(1 − θ)n−n1)

=
n!

k!(n1 − k)!(n − n1)!
pk(θ − p)n1−kθn1(1 − θ)n−n1

= θn1
n!

k!(n1 − k)!(n − n1)!
pk(θ − p)n1−k(1 − θ)n−n1. (11)
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Hence the terms in the summation in (11) are θn1 times multinomial probabilities.

Thus, given θ, the probability of failing due to cause 1, we can easily find appropriate

choices of i, j. However, if θ is unknown, we can estimate it and then use multinomial tables

to find i and j.

The case when T and δ are independent is of special interest as it simplifies the problem.

Dewan et al. (2004) have proposed distribution-free tests for testing independence of T and

δ against various dependence alternatives. In this case p = θF (q1p), where F is the cdf of T .

Then we have the following result.

Theorem 5 If T and δ are independent, then [Ti1, Tj1], i < j is a 100(1 − α)% confidence

interval for q1p such that

n∑

n1=j

(
n

n1

)
θ2n1(1 − θ)n−n1

j−1∑

k=i

(
n1

k

)
(F (q1p))

k(1 − F (q1p))
n1−k = (1 − α). (12)

The following theorem gives conditional confidence intervals for quantiles, conditional on the

number of failures due to cause 1.

Theorem 6 Given n1, the number of failures due to cause 1, [Ti1, Tj1], i < j is a conditional

100(1 − α)% confidence interval for q1p such that

j−1∑

k=i

(
n1

k

)
pk(θ − p)n1−k = (1 − α). (13)

Thus, we need to choose i and j so as to satisfy (13) for a given choice of n, n1, p, θ, and α.

Note that confidence interval in (13) is same as that for confidence interval for quantiles of

distribution functions, with (1 − p) replaced by (θ − p) (see Gibbons and Chakraborti, 2003).

4 Tolerance intervals for subdistribution functions

Let the random variable T1 denote the failure time due to cause 1 having subdistribution

function F (1, t). Let T1r and T1s, r < s denote the rth and sth ordered statistic from a sample

of size n1 from T1. We have to find r, s such that for given n, γ, β

γ = P [P [T1r < T1 < T1s] ≥ β]. (14)

Theorem 7 Given n1, [T1r, T1s] is a conditional tolerance interval for subdistribution function

F (1, t), with tolerance coefficient

γ = 1 −
n1∑

j=s−r

θn1

(
n1

j

)
βj(1 − β)n1−j . (15)
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Proof: For 1 ≤ r < s ≤ n1, we have

γ = P [P [T1r < T1 < T1s] ≥ β]

= P [F (1, s) − F (1, r) ≥ β]. (16)

Using Theorems 1-3, the joint density of the rth and the sth order statistics from distribution

given by

n1!

(r − 1)!(s − r − 1)!(n1 − s)!
xr−1(y − x)s−r−1(θ − y)n1−s, 0 < x < y < θ. (17)

Hence the distribution of F (1, s) − F (1, r), is given by

g1(z) =
zs−r−1(θ − z)n1−s+r

B(s − r, n1 − s + r + 1)
, 0 < z < θ, (18)

which is an improper beta density function. Hence

γ =

∫ θ

β
g1(z)dz

= 1 −
n1∑

j=s−r

θn1

(
n1

j

)
βj(1 − β)n1−j , (19)

The following theorem gives the unconditional tolerance intervals.

Theorem 8 [T1r, T1s] is an unconditional tolerance interval for subdistribution function F (1, t),

with tolerance coefficient

γ =
n∑

n1=s

[1 −
n1∑

j=s−r

θn1

(
n1

j

)
βj(1 − β)n1−j]

(
n

n1

)
θn1(1 − θ)n−n1. (20)

5 Computation of confidence intervals

Here we illustrate the confidence intervals and corresponding confidence coefficients for the

quantiles of order p = θ/2 and p = 0.5 when the order statistics are from the proper distribution

function and from the subdistribution functions and for given values of n, n1, θ and two choices

of (1 − α) = 0.99 and 0.95. The tables give the confidence coefficients corresponding to the

specific values of i and j of order statistics for the following three cases:

(i) the standard case when i and j are order statistics based on a sample of size n from a

proper distribution function and the confidence coefficient is given by

j−1∑

k=i

(
n

k

)
pk(1 − p)n−k = Full Probability,

(ii) given n1(< n) number of failures due to cause 1, i and j are order statistics based on

failures due to the first cause and the confidence coefficient is given by

j−1∑

k=i

(
n1

k

)
pk(θ − p)n1−k = Conditional Probability,
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and

(iii) unconditional confidence coefficient by summing over all possible values of n1 in (ii)

and the confidence coefficient is given by

n∑

n1=j

j−1∑

k=i

(
n1

k

)
pk(θ − p)n1−k

(
n

n1

)
θn1(1 − θ)n−n1 = Unconditional Probability.

Note that for a given choice of p, the full probability depends only on n, the unconditional

probability varies with θ and n. Both these are not affected by the choice of n1. The conditional

probability varies with n , θ and n1.

For Table 1, the values of i and j were chosen such that the Full Probability is at least 99%

and p = 0.5 for various values of n. The Conditional Probability and Unconditional Probability

are reported for these choices of i and j and for θ = 0.6, 0.7, 0.8, 0.9. For n = 16 and θ = 0.7,

the standard confidence interval for a quantile of order p = 0.5 of the distribution function is

based on the third and the fourteenth order statistics and the confidence coefficient is given

by 0.9958. The unconditional confidence coefficient for this choice is 0.0006. However, given

n1 = 14, 15, 16, the third and the fourteenth order statistics from failures due to cause 1

give the confidence intervals for quantile of order p = 0.5 of the subdistribution function with

confidence coefficients 0.0067, 0.0045, 0.0029, respectively. Similarly, Table 2 is created for those

i and j such that the Full Probability is at least 95%. We find that the confidence coefficient

significantly drops in each of the cases - being slightly higher for relatively large values of (θ−p).

The reason for the drop is the small value for θn1. The multiplicative effect of small numbers

is extremely high, leading to extremely small values of the confidence coefficients.

Tables 3 and 4 give 99% and 95% confidence intervals for the median of the subdistribution

function (p = θ/2) for θ = 0.6, 0.7, 0.8, 0.9. As an illustration let us take θ = 0.6. For n = 16,

the standard confidence interval for a quantile of order p = 0.3 of the distribution function

is based on the first and the eleventh order statistics and the confidence coefficient is given

by 0.9951. The unconditional confidence coefficient for this choice is 0.0009. However, given

n1 = 11, 12, . . . , 16, the first and the eleventh order statistics from failures due to cause 1 give

the confidence intervals for quantile of order p = 0.3 of the subdistribution function with con-

fidence coefficients 0.0036, 0.0022, 0.0013, 0.0007, respectively. Note that all other parameters

remaining fixed, the confidence coefficient decreases with increase in n1. Here again the confi-

dence coefficient drops significantly when one moves from confidence intervals for distribution

functions to confidence intervals for subdistribution functions .

One could similarly work out distribution-free tolerance intervals and the tolerance coeffi-

cients continue to be small as in the case of confidence intervals.

6 Conclusions

The mathematical theory for finding confidence intervals for quantiles of subdistribition func-

tions and tolerance intervals is simple and is an elegant extension of the similar theory for
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distribution functions. As seen from the tables, the confidence coefficients corresponding to

the proper distribution function are very high compared to the conditional as well as uncon-

ditional confidence coefficients. The tables are just illustrative - one could work them out for

other choices of n, p, θ.

For large sample sizes, one could approximate binomial probabilities by normal probabilities,

but the confidence coefficients are extremely small. There is a need to explore alternative

distribution-free procedures for finding confidence intervals for quantiles and tolerance intervals

for subdistribution functions for small as well as large sample sizes.
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Table 1: 99% Confidence intervals for p = 0.5

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

8 0.6 8 1 8 0.0129 0.0002 0.9922

8 0.7 8 1 8 0.0537 0.0031 0.9922

8 0.8 8 1 8 0.1638 0.0275 0.9922

8 0.9 8 1 8 0.4259 0.1833 0.9922

10 0.6 10 1 10 0.0051 0.00003 0.9980

10 0.7 10 1 10 0.0273 0.0007 0.9980

10 0.8 10 1 10 0.1064 0.01142 0.9980

10 0.9 10 1 10 0.3476 0.1212 0.9980

12 0.7 11 2 11 0.0193 0.0015 0.9936

12 0.7 12 2 11 0.0124 0.0015 0.9936

12 0.8 11 2 11 0.0854 0.0222 0.9936

12 0.8 12 2 11 0.0667 0.0222 0.9936

12 0.9 11 2 11 0.3127 0.1967 0.9936

12 0.9 12 2 11 0.2796 0.1967 0.9936

14 0.7 13 2 12 0.0089 0.0019 0.9926

14 0.7 14 2 12 0.0055 0.0019 0.9926

14 0.8 12 2 12 0.0685 0.0272 0.9926

14 0.8 13 2 12 0.0539 0.0272 0.9926

14 0.8 14 2 12 0.0414 0.0272 0.9926

14 0.9 12 2 12 0.2819 0.2137 0.9926

14 0.9 13 2 12 0.2527 0.2137 0.9926

14 0.9 14 2 12 0.2244 0.2137 0.9926

16 0.7 14 3 14 0.0067 0.0006 0.9958

16 0.7 15 3 14 0.0045 0.0006 0.9958

16 0.7 16 3 14 0.0029 0.0006 0.9958

16 0.8 14 3 14 0.0439 0.0139 0.9958

16 0.8 15 3 14 0.0349 0.0139 0.9958

16 0.8 16 3 14 0.0273 0.0139 0.9958

16 0.9 14 3 14 0.2283 0.1644 0.9958

16 0.9 15 3 14 0.2053 0.1644 0.9958

16 0.9 16 3 14 0.1838 0.1644 0.9958
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Table 1 continued ...

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

18 0.7 15 4 15 0.0047 0.0007 0.9925

18 0.7 16 4 15 0.0032 0.0007 0.9925

18 0.7 17 4 15 0.0021 0.0007 0.9925

18 0.7 18 4 15 0.0013 0.0007 0.9925

18 0.8 15 4 15 0.0351 0.0149 0.9925

18 0.8 16 4 15 0.0279 0.0149 0.9925

18 0.8 17 4 15 0.0221 0.0149 0.9925

18 0.8 18 4 15 0.0171 0.0149 0.9925

18 0.9 15 4 15 0.2047 0.1587 0.9925

18 0.9 16 4 15 0.1845 0.1587 0.9925

18 0.9 17 4 15 0.1657 0.1587 0.9925

18 0.9 18 4 15 0.1479 0.1587 0.9925

20 0.7 16 4 16 0.0033 0.0006 0.9928

20 0.7 17 4 16 0.0023 0.0006 0.9928

20 0.7 18 4 16 0.0015 0.0006 0.9928

20 0.7 19 4 16 0.0009 0.0006 0.9928

20 0.7 20 4 16 0.0005 0.0006 0.9928

20 0.8 16 4 16 0.0281 0.0141 0.9928

20 0.8 17 4 16 0.0224 0.0141 0.9928

20 0.8 18 4 16 0.0177 0.0141 0.9928

20 0.8 19 4 16 0.0139 0.0141 0.9928

20 0.8 20 4 16 0.0106 0.0141 0.9928

20 0.9 16 4 16 0.1847 0.1415 0.9928

20 0.9 17 4 16 0.1664 0.1415 0.9928

20 0.9 18 4 16 0.1495 0.1415 0.9928

20 0.9 19 4 16 0.1338 0.1415 0.9928

20 0.9 20 4 16 0.1189 0.1415 0.9928
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Table 2: 95% Confidence intervals for p = 0.5

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

8 0.6 7 1 7 0.0202 0.0019 0.9609

8 0.6 8 1 7 0.0066 0.0019 0.9609

8 0.7 7 1 7 0.0745 0.0171 0.9609

8 0.7 8 1 7 0.0412 0.0171 0.9609

8 0.8 7 1 7 0.2017 0.0921 0.9609

8 0.8 8 1 7 0.1451 0.0921 0.9609

8 0.9 7 1 7 0.4688 0.3519 0.9609

8 0.9 8 1 7 0.4009 0.3519 0.9609

10 0.6 9 2 9 0.0081 0.0003 0.9785

10 0.6 10 2 9 0.0031 0.0003 0.9785

10 0.7 9 2 9 0.0384 0.0053 0.9785

10 0.7 10 2 9 0.0234 0.0053 0.9785

10 0.8 9 2 9 0.1319 0.0462 0.9785

10 0.8 10 2 9 0.1004 0.0462 0.9785

10 0.9 9 2 9 0.3823 0.2661 0.9785

10 0.9 10 2 9 0.3385 0.2661 0.9785

12 0.6 10 3 10 0.0051 0.0004 0.9614

12 0.6 11 3 10 0.0021 0.0004 0.9614

12 0.6 12 3 10 0.0007 0.0004 0.9614

12 0.7 10 3 10 0.0272 0.0059 0.9614

12 0.7 11 3 10 0.0171 0.0059 0.9614

12 0.7 12 3 10 0.0098 0.0059 0.9614

12 0.8 10 3 10 0.1055 0.0509 0.9614

12 0.8 11 3 10 0.0819 0.0509 0.9614

12 0.8 12 3 10 0.0608 0.0509 0.9614

12 0.9 10 3 10 0.3389 0.2683 0.9614

12 0.9 11 3 10 0.3048 0.2683 0.9614

12 0.9 12 3 10 0.2675 0.2683 0.9614

14 0.6 11 3 11 0.0031 0.0003 0.9648

14 0.6 12 3 11 0.0013 0.0003 0.9648

14 0.6 13 3 11 0.0005 0.0003 0.9648

14 0.6 14 3 11 0.0001 0.0003 0.9648

14 0.7 11 3 11 0.0193 0.0055 0.9648

14 0.7 12 3 11 0.0124 0.0055 0.9648

14 0.7 13 3 11 0.0074 0.0055 0.9648

14 0.7 14 3 11 0.0041 0.0055 0.9648

14 0.8 11 3 11 0.0851 0.0473 0.9648

14 0.8 12 3 11 0.0666 0.0473 0.9648

14 0.8 13 3 11 0.0504 0.0473 0.9648

14 0.8 14 3 11 0.0366 0.0473 0.9648

14 0.9 11 3 11 0.3091 0.2428 0.9648

14 0.9 12 3 11 0.2778 0.2428 0.9648

14 0.9 13 3 11 0.2458 0.2428 0.9648

14 0.9 14 3 11 0.2127 0.2428 0.9648

16 0.6 12 4 12 0.0019 0.0002 0.9509

16 0.6 13 4 12 0.0009 0.0002 0.9509

16 0.6 14 4 12 0.0003 0.0002 0.9509

16 0.6 15 4 12 0.0001 0.0002 0.9509

16 0.7 12 4 12 0.0136 0.0045 0.9509

16 0.7 13 4 12 0.0089 0.0045 0.9509

16 0.7 14 4 12 0.0055 0.0045 0.9509

16 0.7 15 4 12 0.0031 0.0045 0.9509

16 0.7 16 4 12 0.0016 0.0045 0.9509
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Table 2 continued ...

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

16 0.8 12 4 12 0.0678 0.0396 0.9509

16 0.8 13 4 12 0.0536 0.0396 0.9509

16 0.8 14 4 12 0.0413 0.0396 0.9509

16 0.8 15 4 12 0.0307 0.0396 0.9509

16 0.8 16 4 12 0.0219 0.0396 0.9509

16 0.9 12 4 12 0.2729 0.2057 0.9509

16 0.9 13 4 12 0.2481 0.2057 0.9509

16 0.9 14 4 12 0.2221 0.2057 0.9509

16 0.9 15 4 12 0.1952 0.2057 0.9509

16 0.9 16 4 12 0.1676 0.2057 0.9509

18 0.6 13 3 13 0.0012 0.0002 0.9512

18 0.6 14 3 13 0.0005 0.0002 0.9512

18 0.6 15 3 13 0.0002 0.0002 0.9512

18 0.7 13 3 13 0.0096 0.0035 0.9512

18 0.7 14 3 13 0.0064 0.0035 0.95121

18 0.7 15 3 13 0.0040 0.0035 0.9512

18 0.7 16 3 13 0.0024 0.0035 0.9512

18 0.7 17 3 13 0.0013 0.0035 0.9512

18 0.7 18 3 13 0.0007 0.0035 0.9512

18 0.8 13 3 13 0.0548 0.0315 0.9512

18 0.8 14 3 13 0.0434 0.0315 0.9512

18 0.8 15 3 13 0.0337 0.0315 0.9512

18 0.8 16 3 13 0.0255 0.0315 0.9512

18 0.8 17 3 13 0.0186 0.0315 0.9512

18 0.8 18 3 13 0.0130 0.0315 0.9512

18 0.9 13 3 13 0.2531 0.1731 0.9512

18 0.9 14 3 13 0.2276 0.1731 0.9512

18 0.9 15 3 13 0.2032 0.1731 0.9512

18 0.9 16 3 13 0.1794 0.1731 0.9512

18 0.9 17 3 13 0.1559 0.1731 0.9512

18 0.9 18 3 13 0.1325 0.1731 0.9511

20 0.7 15 6 15 0.0047 0.0014 0.9586

20 0.7 16 6 15 0.0032 0.0014 0.9586

20 0.7 17 6 15 0.0021 0.0014 0.9586

20 0.7 18 6 15 0.0013 0.0014 0.9586

20 0.7 19 6 15 0.0007 0.0014 0.9586

20 0.7 20 6 15 0.0004 0.0014 0.9586

20 0.8 15 6 15 0.0344 0.0197 0.9586

20 0.8 16 6 15 0.0277 0.0197 0.9586

20 0.8 17 6 15 0.0219 0.0197 0.9586

20 0.8 18 6 15 0.0170 0.0197 0.9586

20 0.8 19 6 15 0.0129 0.0197 0.9586

20 0.8 20 6 15 0.0094 0.0197 0.9586

20 0.9 15 6 15 0.1913 0.1430 0.9586

20 0.9 16 6 15 0.1769 0.1430 0.9586

20 0.9 17 6 15 0.1615 0.1430 0.9586

20 0.9 18 6 15 0.1456 0.1430 0.9586

20 0.9 19 6 15 0.1296 0.1430 0.9586

20 0.9 20 6 15 0.1135 0.1430 0.9586
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Table 3: 99% Confidence intervals for median p = θ/2

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

10 0.8 9 1 9 0.1337 0.0473 0.9929

10 0.8 10 1 9 0.1061 0.0473 0.9929

10 0.9 9 1 9 0.3859 0.2697 0.9929

10 0.9 10 1 9 0.3446 0.2697 0.9929

12 0.7 10 1 10 0.0282 0.0063 0.9935

12 0.7 11 1 10 0.0196 0.0063 0.9935

12 0.7 12 1 10 0.0136 0.0063 0.9935

12 0.8 10 1 10 0.1072 0.0526 0.9935

12 0.8 11 1 10 0.0853 0.0526 0.9935

12 0.8 12 1 10 0.0674 0.0526 0.9935

12 0.9 10 1 10 0.3479 0.2757 0.9935

12 0.9 11 1 10 0.3118 0.2757 0.9935

12 0.9 12 1 10 0.2769 0.2757 0.9935

14 0.6 10 1 10 0.0060 0.0013 0.9915

14 0.6 11 1 10 0.0036 0.0013 0.9915

14 0.6 12 1 10 0.0021 0.0013 0.9915

14 0.6 13 1 10 0.0012 0.0013 0.9915

14 0.6 14 1 10 0.0007 0.0013 0.9915

14 0.7 10 1 10 0.0282 0.0122 0.9915

14 0.7 11 1 10 0.0196 0.0122 0.9915

14 0.7 12 1 10 0.0136 0.0122 0.9915

14 0.7 13 1 10 0.0092 0.0122 0.9915

14 0.7 14 1 10 0.0062 0.0122 0.9915

14 0.8 11 1 11 0.0858 0.0488 0.9953

14 0.8 12 1 11 0.0685 0.0488 0.9953

14 0.8 13 1 11 0.0543 0.0488 0.9953

14 0.8 14 1 11 0.0427 0.0488 0.9953

14 0.9 12 1 12 0.2823 0.2148 0.9976

14 0.9 13 1 12 0.2537 0.2148 0.9976

14 0.9 14 1 12 0.2273 0.2148 0.9976

16 0.6 11 1 11 0.0036 0.0009 0.9951

16 0.6 12 1 11 0.0022 0.0009 0.9951

16 0.6 13 1 11 0.0013 0.0009 0.9951

16 0.6 14 1 11 0.0008 0.0009 0.9951

16 0.6 15 1 11 0.0004 0.0009 0.9951

16 0.6 16 1 11 0.0002 0.0009 0.9951

16 0.7 11 1 11 0.0197 0.0089 0.9928

16 0.7 12 1 11 0.0137 0.0089 0.9928

16 0.7 13 1 11 0.0096 0.0089 0.9928

16 0.7 14 1 11 0.0066 0.0089 0.9928

16 0.7 15 1 11 0.0045 0.0089 0.9928

16 0.7 16 1 11 0.0029 0.0089 0.9928

16 0.8 12 1 12 0.0687 0.0411 0.9948

16 0.8 13 1 12 0.0549 0.0411 0.9948

16 0.8 14 1 12 0.0437 0.0411 0.9948

16 0.8 15 1 12 0.0346 0.0411 0.9948

16 0.8 16 1 12 0.0271 0.0411 0.9948

16 0.9 13 1 13 0.2541 0.2004 0.9965

16 0.9 14 1 13 0.2285 0.2004 0.9965

16 0.9 15 1 13 0.2051 0.2004 0.9965

16 0.9 16 1 13 0.1833 0.2004 0.9965
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Table 3 continued ...

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

18 0.6 11 1 11 0.0036 0.0012 0.9923

18 0.6 12 1 11 0.0022 0.0012 0.9923

18 0.6 13 1 11 0.0013 0.0012 0.9923

18 0.6 14 1 11 0.0008 0.0012 0.9923

18 0.6 15 1 11 0.0004 0.0012 0.9923

18 0.6 16 1 11 0.0002 0.0012 0.9923

18 0.6 17 1 11 0.0001 0.0012 0.9923

18 0.7 12 1 12 0.0138 0.0063 0.9934

18 0.7 13 1 12 0.0097 0.0063 0.9934

18 0.7 14 1 12 0.0067 0.0063 0.9934

18 0.7 15 1 12 0.0047 0.0063 0.9934

18 0.7 16 1 12 0.0032 0.0063 0.9934

18 0.7 17 1 12 0.0021 0.0063 0.9934

18 0.7 18 1 12 0.0014 0.0063 0.9934

18 0.8 13 1 13 0.0549 0.0327 0.9941

18 0.8 14 1 13 0.0439 0.0327 0.9941

18 0.8 15 1 13 0.0350 0.0327 0.9941

18 0.8 16 1 13 0.0278 0.0327 0.9941

18 0.8 17 1 13 0.0219 0.0327 0.9941

18 0.8 18 1 13 0.0171 0.0327 0.9941

18 0.9 14 1 14 0.2287 0.1749 0.9951

18 0.9 15 1 14 0.2058 0.1749 0.9951

18 0.9 16 1 14 0.1849 0.1749 0.9951

18 0.9 17 1 14 0.1657 0.1749 0.9951

18 0.9 18 1 14 0.1478 0.1749 0.9951

20 0.6 12 1 12 0.0022 0.0007 0.9941

20 0.6 13 1 12 0.0013 0.0007 0.9941

20 0.6 14 1 12 0.0008 0.0007 0.9941

20 0.6 15 1 12 0.00056 0.0007 0.9941

20 0.6 16 1 12 0.0003 0.0007 0.9941

20 0.6 17 1 12 0.0001 0.0007 0.9941

20 0.7 13 1 13 0.0097 0.0044 0.9938

20 0.7 14 1 13 0.0068 0.0044 0.9938

20 0.7 15 1 13 0.0047 0.0044 0.9938

20 0.7 16 1 13 0.0033 0.0044 0.9938

20 0.7 17 1 13 0.0023 0.0044 0.9938

20 0.7 18 1 13 0.0015 0.0044 0.9938

20 0.7 19 1 13 0.0010 0.0044 0.9938

20 0.7 20 1 13 0.0007 0.0044 0.9938

20 0.8 14 1 14 0.0439 0.0250 0.9935

20 0.8 15 1 14 0.0352 0.0250 0.9935

20 0.8 16 1 14 0.0281 0.0250 0.9935

20 0.8 17 1 14 0.0224 0.0250 0.9935

20 0.8 18 1 14 0.0177 0.0250 0.9935

20 0.8 19 1 14 0.0139 0.0250 0.9935

20 0.8 20 1 14 0.0109 0.0250 0.9935

20 0.9 15 1 15 0.2059 0.1481 0.9936

20 0.9 16 1 15 0.1852 0.1481 0.9936

20 0.9 17 1 15 0.1666 0.1481 0.9936

20 0.9 18 1 15 0.1495 0.1481 0.9936

20 0.9 19 1 15 0.1338 0.1481 0.9936

20 0.9 20 1 15 0.1191 0.1481 0.9936
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Table 4: 95% Confidence intervals for median p = θ/2

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

8 0.7 7 1 7 0.0811 0.0192 0.9646

8 0.7 8 1 7 0.0554 0.0192 0.9646

8 0.8 7 1 7 0.2064 0.0963 0.9747

8 0.8 8 1 7 0.1612 0.0963 0.9747

8 0.9 7 1 7 0.4708 0.3582 0.9735

8 0.9 8 1 7 0.4136 0.3582 0.9735

10 0.6 7 1 7 0.0275 0.0083 0.9612

10 0.6 8 1 7 0.0161 0.0083 0.9612

10 0.6 9 1 7 0.0091 0.0083 0.9612

10 0.6 10 1 7 0.0050 0.0083 0.9612

10 0.7 7 1 7 0.0811 0.0397 0.9605

10 0.7 8 1 7 0.0554 0.0397 0.9605

10 0.7 9 1 7 0.0366 0.0397 0.9605

10 0.7 10 1 7 0.0234 0.0397 0.9605

10 0.8 8 1 8 0.1665 0.0964 0.9816

10 0.8 9 1 8 0.1313 0.0964 0.9816

10 0.8 10 1 8 0.1014 0.0964 0.9816

10 0.9 8 1 8 0.4271 0.3444 0.9701

10 0.9 9 1 8 0.3791 0.3444 0.9701

10 0.9 10 1 8 0.3293 0.3444 0.9701

12 0.6 8 1 8 0.0167 0.0054 0.9767

12 0.6 9 1 8 0.0099 0.0054 0.9767

12 0.6 10 1 8 0.0057 0.0054 0.9767

12 0.6 11 1 8 0.0032 0.0054 0.9767

12 0.6 12 1 8 0.0017 0.0054 0.9767

12 0.7 8 1 8 0.0572 0.0286 0.9688

12 0.7 9 1 8 0.0395 0.0286 0.9688

12 0.7 10 1 8 0.0267 0.0286 0.9688

12 0.7 11 1 8 0.0175 0.0286 0.9688

12 0.7 12 1 8 0.0111 0.0286 0.9688

12 0.8 9 1 9 0.1337 0.0831 0.9825

12 0.8 10 1 9 0.10617 0.0831 0.9825

12 0.8 11 1 9 0.08307 0.0831 0.9825

12 0.8 12 1 9 0.0637 0.0831 0.9825

12 0.9 9 1 9 0.3859 0.3004 0.9636

12 0.9 10 1 9 0.3446 0.3004 0.9636

12 0.9 11 1 9 0.3034 0.3004 0.9636

12 0.9 12 1 9 0.2617 0.3004 0.9636

14 0.6 8 1 8 0.0167 0.0067 0.9617

14 0.6 9 1 8 0.0099 0.0067 0.9617

14 0.6 10 1 8 0.00579 0.0067 0.9617

14 0.6 11 1 8 0.0032 0.0067 0.9617

14 0.6 12 1 8 0.0017 0.0067 0.9617

14 0.6 13 1 8 0.0009 0.0067 0.9617

14 0.6 14 1 8 0.0005 0.0067 0.9617

14 0.7 9 1 9 0.0402 0.0198 0.9732

14 0.7 10 1 9 0.0279 0.0198 0.9732

14 0.7 11 1 9 0.0191 0.0198 0.9732

14 0.7 12 1 9 0.0128 0.0198 0.9732

14 0.7 13 1 9 0.0084 0.0198 0.9732

14 0.7 14 1 9 0.0053 0.0198 0.9732
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Table 4 continued ...

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

14 0.8 10 1 10 0.1072 0.0665 0.9817

14 0.8 11 1 10 0.0853 0.0665 0.9817

14 0.8 12 1 10 0.0674 0.0665 0.9817

14 0.8 13 1 10 0.0524 0.0665 0.9817

14 0.8 14 1 10 0.0400 0.0665 0.9817

14 0.9 10 1 10 0.3479 0.2528 0.9571

14 0.9 11 1 10 0.3118 0.2528 0.9571

14 0.9 12 1 10 0.2769 0.2528 0.9571

14 0.9 13 1 10 0.2424 0.2528 0.9571

14 0.9 14 1 10 0.2082 0.2528 0.9571

16 0.6 9 1 9 0.0100 0.0039 0.9710

16 0.6 10 1 9 0.0059 0.0039 0.9710

16 0.6 11 1 9 0.0035 0.0039 0.9710

16 0.6 12 1 9 0.0020 0.0039 0.9710

16 0.6 13 1 9 0.0011 0.0039 0.9710

16 0.6 14 1 9 0.0006 0.0039 0.9710

16 0.6 15 1 9 0.0003 0.0039 0.9710

16 0.6 16 1 9 0.0002 0.0039 0.9710

16 0.7 10 1 10 0.0282 0.0134 0.9761

16 0.7 11 1 10 0.0196 0.0134 0.9761

16 0.7 12 1 10 0.0136 0.0134 0.9761

16 0.7 13 1 10 0.0092 0.0134 0.9761

16 0.7 14 1 10 0.0062 0.0134 0.9761

16 0.7 15 1 10 0.0040 0.0134 0.9761

16 0.7 16 1 10 0.0026 0.0134 0.9761

16 0.8 11 1 11 0.0858 0.0508 0.9806

16 0.8 12 1 11 0.0685 0.0508 0.9806

16 0.8 13 1 11 0.0543 0.0508 0.9806

16 0.8 14 1 11 0.0427 0.0508 0.9806

16 0.8 15 1 11 0.0331 0.0508 0.9806

16 0.8 16 1 11 0.0252 0.0508 0.9806

16 0.9 11 1 11 0.3135 0.2101 0.9513

16 0.9 12 1 11 0.2815 0.2101 0.9513

16 0.9 13 1 11 0.2513 0.2101 0.9513

16 0.9 14 1 11 0.2222 0.2101 0.9513

16 0.9 15 1 11 0.1937 0.2101 0.9513

16 0.9 16 1 11 0.1658 0.2101 0.9513

18 0.6 10 1 10 0.0060 0.0023 0.9774

18 0.6 11 1 10 0.0036 0.0023 0.9774

18 0.6 12 1 10 0.0021 0.0023 0.9774

18 0.6 13 1 10 0.0012 0.0023 0.9774

18 0.6 14 1 10 0.0007 0.0023 0.9774

18 0.6 15 1 10 0.0004 0.0023 0.9774

18 0.6 16 1 10 0.0002 0.0023 0.9774

18 0.6 17 1 10 0.0001 0.0023 0.9774

18 0.7 11 1 11 0.0197 0.0089 0.9783

18 0.7 12 1 11 0.0138 0.0089 0.9783

18 0.7 13 1 11 0.0096 0.0089 0.9783
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Table 4 continued ...

n θ n1 i j Cond. Prob. Uncond. Prob. Full Prob.

18 0.7 14 1 11 0.0066 0.0089 0.9783

18 0.7 15 1 11 0.0045 0.0089 0.9783

18 0.7 16 1 11 0.0029 0.0089 0.9783

18 0.7 17 1 11 0.0019 0.0089 0.9783

18 0.7 18 1 11 0.0012 0.0089 0.9783

18 0.8 12 1 12 0.0687 0.0379 0.9796

18 0.8 13 1 12 0.0549 0.0379 0.9796

18 0.8 14 1 12 0.0437 0.0379 0.9796

18 0.8 15 1 12 0.0346 0.0379 0.9796

18 0.8 16 1 12 0.0271 0.0379 0.9796

18 0.8 17 1 12 0.0209 0.0379 0.9796

18 0.8 18 1 12 0.0159 0.0379 0.9796

18 0.9 13 1 13 0.2541 0.1782 0.9817

18 0.9 14 1 13 0.2285 0.1782 0.9817

18 0.9 15 1 13 0.2051 0.1782 0.9817

18 0.9 16 1 13 0.1833 0.1782 0.9817

18 0.9 17 1 13 0.1627 0.1782 0.9817

18 0.9 18 1 13 0.1429 0.1782 0.9817

20 0.6 10 1 10 0.0060 0.0020 0.9512

20 0.6 11 1 10 0.0036 0.0020 0.9512

20 0.6 12 1 10 0.0021 0.0020 0.9512

20 0.6 13 1 10 0.0012 0.0020 0.9512

20 0.6 14 1 10 0.0007 0.0020 0.9512

20 0.6 15 1 10 0.0004 0.0020 0.9512

20 0.6 16 1 10 0.0002 0.0020 0.9512

20 0.6 17 1 10 0.0001 0.0020 0.9512

20 0.7 12 1 12 0.0138 0.0059 0.9802

20 0.7 13 1 12 0.0097 0.0059 0.9802

20 0.7 14 1 12 0.0067 0.0059 0.9802

20 0.7 15 1 12 0.0047 0.0059 0.9802

20 0.7 16 1 12 0.0032 0.0059 0.9802

20 0.7 17 1 12 0.0021 0.0059 0.9802

20 0.7 18 1 12 0.0014 0.0059 0.9802

20 0.7 19 1 12 0.0009 0.0059 0.9802

20 0.7 20 1 12 0.0006 0.0059 0.9802

20 0.8 13 1 13 0.0549 0.0277 0.9789

20 0.8 14 1 13 0.0439 0.0277 0.9789

20 0.8 15 1 13 0.0350 0.0277 0.9789

20 0.8 16 1 13 0.0278 0.0277 0.9789

20 0.8 17 1 13 0.0219 0.0277 0.9789

20 0.8 18 1 13 0.0171 0.0277 0.9789

20 0.8 19 1 13 0.0132 0.0277 0.9789

20 0.8 20 1 13 0.0100 0.0277 0.9789

20 0.9 14 1 14 0.2287 0.1481 0.9786

20 0.9 15 1 14 0.2058 0.1481 0.9786

20 0.9 16 1 14 0.1849 0.1481 0.9786

20 0.9 17 1 14 0.1657 0.1481 0.9786

20 0.9 18 1 14 0.1478 0.1481 0.9786

20 0.9 19 1 14 0.1308 0.1481 0.9786

20 0.9 20 1 14 0.1146 0.1481 0.9786
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